
A Demonstration of Multi-Region CockroachDB

Arul Ajmani
Aayush Shah
Cockroach Labs

Alexander Shraer
Adam Storm
Rebecca Taft
Cockroach Labs

Oliver Tan
Nathan VanBenschoten

Cockroach Labs

ABSTRACT

A database service is required to meet the consistency, performance,

and availability goals of modern applications serving a global user-

base. Con�guring a database deployed across multiple regions such

that it ful�lls these goals requires signi�cant expertise. In this paper,

we describe how CockroachDB makes this easy for developers by

providing a high-level declarative syntax that allows expressing

data access locality and availability goals through SQL statements.

CockroachDB also enables many types of queries on the multi-

region database to perform as well as they would in a single-region

deployment, due to enhancements to the SQL optimizer, transaction,

and replication layers. This paper showcases these features with

a comprehensive demonstration scenario tracking a ride-sharing

company’s journey as they expand their application globally.

PVLDB Reference Format:

Arul Ajmani, Aayush Shah, Alexander Shraer, Adam Storm, Rebecca Taft,

Oliver Tan, and Nathan VanBenschoten. A Demonstration of Multi-Region

CockroachDB. PVLDB, 15(12): 3610 - 3613, 2022.

doi:10.14778/3554821.3554856

1 INTRODUCTION

Developers today are �nding that the requirements of global ap-

plications cannot be met by traditional databases con�ned to a

single geographic region without compromising on performance,

availability, or compliance. High cross-region latencies [1] cause

a severe performance penalty when data is served from remote

regions. Natural disasters, hardware and software failures, and mis-

con�gurations have caused data center and region-wide failures,

and have made it clear that relying on a single data center to store

and serve application state is likely to result in service unavailabil-

ity or data loss. Finally, privacy regulations like GDPR [4] place

strict requirements on where data can and cannot reside.

Consequently, companies are turning to multi-region database

technologies. Ensuring low latency, high availability, and compli-

ance with regulations using most multi-region commercial o�er-

ings, however, is extremely challenging. The challenges stem from

the fact that these o�erings do not provide useful abstractions

that make these concepts easy to reason about and simple to de-

ploy. Instead, they require database administrators and application

developers to become experts in multi-region database concepts

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 15, No. 12 ISSN 2150-8097.
doi:10.14778/3554821.3554856

and tuning, which mandates a deep understanding of fundamen-

tal distributed systems trade-o�s. Developers also often need to

modify their applications in sophisticated ways to e�ciently use a

geo-distributed database. First, if the database is not region-aware,

developers have to include this awareness in their application, or

else su�er cross-region latencies on every query. Second, some

vendors only support a limited form of transactions [2, 6] or lower

consistency levels [3], forcing developers to �nd workarounds and

handle data anomalies at the application level [7].

This paper demonstrates new multi-region abstractions, �rst

introduced in our previous publication [5], that were recently added

into CockroachDB (abbrev. CRDB) as �rst-class concepts: region

(geographic area of operation), survivability (expected availability in

the presence of failures), and table locality (expected access pattern).

These abstractions are supported in CRDB with simple declarative

SQL commands and exposed at the schema level, making it easy for

developers to build global applications. The system then leverages

these �rst-class concepts to make data placement and replication

decisions that provide high performance while meeting availability

and data domiciling requirements. The SQL optimizer is locality-

aware and will choose to access data locally whenever possible.

An enhanced transaction protocol is optimized for di�erent table

access patterns.

1.1 Abstractions

CRDB extended SQL to allow users to declaratively set database re-

gions, survival goals, and table localities. This subsection describes

these abstractions (see Section 3 for the corresponding SQL).

1.1.1 Region. A multi-region CRDB cluster is any cluster with

nodes in two or more geographic regions, where a region has one

or more availability zones. Regions and zones are assigned to each

node at process startup with the locality command line �ag:

cockroach start \

--locality=region=us-east1,zone=us-east1-b # ...

A single multi-region cluster can have several databases, each using

a subset of the cluster regions. Users choose a PRIMARY region

and optionally specify additional regions to create a multi-region

database. All regions in CRDB can host leaseholder (i.e., primary)

replicas. The PRIMARY region serves as the default region for data

placement when an alternative region has not been speci�ed.

1.1.2 Survivability Goal. By default, CRDB guarantees ZONE sur-

vivability, provided the cluster is comprised of nodes in three or

more zones. This ensures base-level fault tolerance with minimal

impact on read and write latency. CRDB additionally o�ers REGION

survivability which ensures availability for reads and writes, even

if an entire region goes down. This can be con�gured at the cost of

increased write latency. Read performance remains una�ected.

3610

https://doi.org/10.14778/3554821.3554856
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3554821.3554856


1.1.3 Table Locality. Every table in a multi-region database has a

table locality setting, which can be either REGIONAL BY TABLE (the

default), REGIONAL BY ROW, or GLOBAL.

Rows in REGIONAL tables are optimized for low-latency reads

and writes from a “home” region. This can either be con�gured at

the table level (REGIONAL BY TABLE) or at the row level (REGIONAL

BY ROW). Rows in GLOBAL tables are optimized for low-latency reads

from all regions, at the expense of slower writes.

2 PERFORMANCE OPTIMIZATIONS

In this section, we describe several mechanisms that allow CRDB

to e�ciently support geo-distributed workloads using locality-

awareness and optimizations throughout the stack.

2.1 Globally UNIQUE Constraints

Nearly all databases rely on unique indexes to enforce unique con-

straints on the index key columns. In a partitioned database, the

partition key must be part of the index key, so a unique index can

only guarantee uniqueness of the other columns at the partition

level. Some use-cases, however, require global uniqueness. In such

cases, forgoing partitioning for the unique index is undesirable

since it would hamper performance and might not be compatible

with domiciling requirements. In REGIONAL BY ROW tables, all in-

dexes are implicitly partitioned by region, and the CRDB optimizer

injects uniqueness checks on INSERT or UPDATE statements, as part

of the same transaction. These checks execute one point lookup of

the unique index in each region. To avoid cross-region latencies,

the optimizer removes these checks when it is correct to do so.

An optimization that becomes possible with globally unique keys

is Locality Optimized Search. When a user is searching for rows

that are known to be unique but their location is unknown, we

search in the local region �rst. If the rows are found (or, if enough

rows are retrieved to satisfy a LIMIT clause), there is no need to fan

out to remote regions. Assuming data is generally accessed from the

same region where it was originally inserted (or later rehomed to),

this strategy can result in low latency for many queries, including

both SELECTs and UPDATEs. To our knowledge, CRDB is the �rst

geo-distributed partitioned DBMS to support enforcement of global

UNIQUE constraints, or leverage them in the query optimizer.

2.2 Reads from Local Replicas

In order to serve reads with low latency from any region, and

improve read-scalability, CRDB supports reads from any replica.

Each transaction is assigned a read timestamp that determines the

MVCC snapshot read by the transaction; in order to serve the read

from a local replica, the read timestamp needs to be “closed” at

the replica. This means that the replica has seen all updates up

to the timestamp and no new updates are possible with a lower

timestamp. The leaseholder of a range determines and periodically

communicates the latest closed timestamp to its followers. Even

though new writes that can a�ect the read are not allowed, read-

write con�icts with in-progress transactions that have a lower

commit timestamp and performed writes before their timestamp

was closed may still occur; the read can only be served locally if

there are no such con�icting writes.

Follower replica reads are useful in several scenarios. When the

timestamp of a long-running transaction becomes old enough, its

reads are redirected and served by local replicas. An application

can also use the AS OF SYSTEM TIME clause to specify either a

speci�c timestamp that is likely to be closed (which can be auto-

matically chosen by CRDB with follower_read_timestamp()),

or a bound on maximum acceptable staleness (e.g. with_max_-

staleness(‘10s’)) which gives CRDB more �exibility to try to

pick a timestamp that can be served locally.

While follower replicas can reduce read latency and aid read-

scalability, they can hamper writes since the leaseholder needs to

replicate updates to a quorum of replicas. To mitigate this problem,

similarly to most Paxos-based systems, CRDB allows increasing

the number of followers without increasing the quorum size by

distinguishing between voting and non-voting followers.

2.3 Global Transactions

Finally, CRDB supports a novel transaction management protocol

that allows local-replica reads to be strongly consistent, even for

short-lived transactions. When a table is de�ned as GLOBAL, writes

are assigned a future write timestamp and leaseholders close times-

tamps in the future. Transactions are assigned read timestamps

just like before, but can now be served locally since present time is

likely to be closed. Writers block until the chosen write timestamp

becomes present time, after committing and releasing locks but be-

fore returning to their caller. When con�icts occur, because writers

are scheduled into the future, readers rarely wait for con�icting

writes to commit. Instead, the write’s outcome is commonly already

determined, so to coordinate the write’s visibility, readers need only

block for a duration bounded by the tolerated clock skew. These

delays, called commit-wait, guarantee that a read Ĩ starting after a

writeĭ commits observesĭ , which is essential for single-key lin-

earizability provided by CRDB (assuming clock-skew is bounded).

Just like with normal transactions, isolation (serializability) does

not depend on timing assumptions. This protocol uses time delays,

rather than communication, to coordinate between readers and

writers. Since writers always block, it trades o� write latency, but

in return achieves fast and predictable read latencies from any re-

gion. This makes GLOBAL tables most appropriate for read-heavy

data with little or no locality of access.

3 DEMONSTRATION

For our demonstration scenario, we will consider a ride-sharing

application from a �ctional company called movr. Fig. 1a shows

two tables from movr’s database schema. Fig. 1b shows some of the

challenges associated with converting them to multi-region using a

traditional DBMS, as the company expands its operation within the

US and internationally. Sharding can allow for low-latency access

and data domiciling support for the users table, but the schema

must be modi�ed to add a partitioning column since no natural

partitioning column exists in this case. The application logic and

DML must also be modi�ed to use this new column. Furthermore,

the database can no longer enforce the global uniqueness of email

addresses without compromising on performance and data domi-

ciling. Moreover, while partitioning is a viable (but problematic)

option for users, it does not make sense for the promo_codes table,

3611



(a) Single-region application. Global unique constraints and full schema �exibil-
ity are supported with high performance.

(b) Traditional multi-region application. (1) Partitioning column must be added.
(2) Application must be modi�ed to use new column. (3) Global unique con-
straints can’t be enforced. (4) Accessing tables without locality performs poorly.

(c) Multi-region application with CockroachDB. Tables designated as REGIONAL
or GLOBAL. No other changes from single-region required.

Figure 1: Adapting an application to be multi-region

which has no locality of access. With traditional approaches, there

is no way to perform low-latency reads of the promo_codes table

from all regions while also guaranteeing strong consistency. Finally,

depending on the chosen replication strategy, the database could

lose data and/or availability if a region su�ers an outage.

3.1 Adapting movr to use multi-region CRDB

Starting from movr’s single region deployment, our demonstration

will show how to easily expand to multiple regions with CRDB,

while retaining the performance, �exible schema design, and oper-

ational simplicity of their single-node deployment (see Fig. 1c).
To make the cluster multi-region, we can simply add nodes to

the cluster in the new regions, setting their locality �ags to indicate
their location (see Section 1.1.1). To see the added regions, run:

> SHOW REGIONS FROM CLUSTER;

region | zones

---------------+---------------------------------------

europe-west1 | {eur-west1-a,eur-west1-b,eur-west1-c}

us-east1 | {us-east1-a,us-east1-b,us-east1-c}

us-west1 | {us-west1-a,us-west1-b,us-west1-c}

To enable the use of the new multi-region abstractions, a DBA

need only make an easy con�guration change at the database level.

The following commands add all three regions to the database and

set “us-east1” as the the default home for leaseholder replicas:

> ALTER DATABASE movr SET PRIMARY REGION "us-east1";

ALTER DATABASE movr ADD REGION "us-west1";

ALTER DATABASE movr ADD REGION "europe-west1";

These commands take a few seconds to complete because they

trigger a number of automatic con�guration changes: First, we have

modi�ed the database descriptor to indicate that it is a multi-region

database with zone survivability (the default):

> SELECT regions, survival_goal FROM [SHOW DATABASES]

WHERE database_name = 'movr';

regions | survival_goal

-----------------------------------+----------------

{europe-west1,us-east1,us-west1} | zone

Additionally, we have modi�ed all of the tables in the database

to have the default table locality:

> SELECT table_name, locality FROM [SHOW TABLES];

table_name | locality

--------------+--------------------------------------

promo_codes | REGIONAL BY TABLE IN PRIMARY REGION

rides | REGIONAL BY TABLE IN PRIMARY REGION

users | REGIONAL BY TABLE IN PRIMARY REGION

Finally, we have applied a zone con�guration at the database

level to place all voting replicas for this database in the primary

region, and one non-voting replica in each other region:

> SELECT raw_config_sql FROM [SHOW ZONE CONFIGURATION

FOR DATABASE movr];

raw_config_sql

--------------------------------------------------

ALTER DATABASE movr CONFIGURE ZONE USING

num_replicas = 5,

num_voters = 3,

constraints = '{+region=europe-west1: 1,

+region=us-east1: 1, +region=us-west1: 1}',

voter_constraints = '[+region=us-east1]',

lease_preferences = '[[+region=us-east1]]'

Non-voting replicas are important as they allow the non-primary

regions to serve follower reads without increasing write latency.

Without follower reads, a client issuing the query SELECT * FROM

promo_codes; will only experience low latency (< 10 ms) if they

are in the primary region, since consistent reads must be served by

the leaseholder for REGIONAL tables.

With follower reads, the same query results in low-latency for

clients in any database region thanks to the non-voting replicas:

> SELECT * FROM promo_codes AS OF SYSTEM TIME

follower_read_timestamp();

code | description

--------+------------------------------

10off | ride global and get 10% off

Time: 3ms

The REGIONAL BY TABLE locality may not be the best option

for some tables. REGIONAL BY ROW is a better choice for the users

3612



table as it allows fast consistent reads and writes from a region

speci�ed at the row level, matching each user’s region of residence.

> ALTER TABLE users SET LOCALITY REGIONAL BY ROW;

This command triggers a number of automatic actions. First,

we add a hidden column called crdb_region which encodes the

optimal region for reads and writes of each individual row. We can

see this new column with introspection:

> SELECT create_statement FROM [SHOW CREATE TABLE users];

create_statement

--------------------------------------------------------

CREATE TABLE users (

id UUID NOT NULL DEFAULT gen_random_uuid(),

name STRING NOT NULL,

email STRING NOT NULL,

home_addr STRING NOT NULL,

crdb_region crdb_internal_region NOT VISIBLE NOT

NULL DEFAULT default_to_database_primary_region(

gateway_region())::crdb_internal_region,

CONSTRAINT users_pkey PRIMARY KEY (id ASC),

UNIQUE INDEX users_email_key (email ASC)

) LOCALITY REGIONAL BY ROW

The new column is added using new NOT VISIBLE syntax which

means that the column won’t show up by default in SELECT *

queries (keeping it out of the way of users). If it is unspeci�ed on

INSERT, crdb_region will get a default value matching the region

of the SQL gateway node. We also partition the table, and all of its

indexes, by this hidden column. Zone con�gurations are assigned

to each partition so that they reside in the desired region.

Since all indexes are implicitly partitioned by the crdb_region

column, the indexes can no longer enforce global UNIQUE con-

straints, and we need to check that any mutation to a table will

not violate a constraint. This check is added by the optimizer as

a “post query” to be executed after the mutation, and causes the

transaction to fail if any rows are returned:

> EXPLAIN INSERT INTO users (name, email) VALUES (

'Craig Roacher', 'craig@cockroachlabs.com');

info

---------------------------------------------------------

• root

• insert into: users (id, name, email, crdb_region)

• values (gen_random_uuid(), 'Craig Roacher',

'craig@cockroachlabs.com', 'us-east1')

• constraint-check: error if rows

• semi join (lookup users@users_email_key)

• scan buffer

In addition to maintaining the consistency of customers’ UNIQUE

constraints, an important side bene�t of enforcing these constraints

is that we can use them for locality optimized search. This opti-

mization applies if we are searching for keys that we know to be

unique but do not know where they are located. We �rst search

the local region, and if all the requested keys are found locally, we

do not need to fan out to remote regions since we know that we

have found the only rows with those keys. The optimization is

implemented using a limited UNION ALL, allowing the operator to

short-circuit if the limit is reached by the �rst child:

> EXPLAIN SELECT * FROM users WHERE

email = 'craig@cockroachlabs.com';

info

---------------------------------------------------------

• index join (users@users_pkey)

• union all

limit: 1

• scan: users@users_email_key

[/'us-east1'/'craig@cockroachlabs.com']

• scan: users@users_email_key

[/'europe-west1'/'craig@cockroachlabs.com']

[/'us-west1'/'craig@cockroachlabs.com']

In our demonstration, attendees can simulate running this query

from each region, and see that it is signi�cantly faster in the region

where the row is located, since we can avoid visiting other regions.

Another table in movr’s schema that is well suited to REGIONAL

BY ROW locality is the rides table, since rides usually start and end

in the same region. rides has an additional complication, which is

that it includes a foreign key reference to the promo_codes table.

Inserting a row with a non-null promo code requires validating that

the code exists in promo_codes to maintain referential integrity.

To ensure serializability, this read must be consistent; it cannot be

a stale follower read. Since all of movr’s promo codes can be used

from any region, this requires a cross-region hop in most cases. The

following insert results in high latency in two out of three regions:

> INSERT INTO rides (id, revenue, promo_code) VALUES (

DEFAULT, 36.12, '10off')

INSERT 1

Time: 131ms

The solution is to make promo_codes a GLOBAL table, which will

ensure low latency for the previous insert from all regions:

> ALTER TABLE promo_codes SET LOCALITY GLOBAL;

promo_codes is a good candidate for GLOBAL locality, as it is

infrequently updated, but frequently read from all regions.

With only a few simple commands to alter database regions and

table locality, movr has a multi-region application that maintains

the semantics and performance of the single-region application.

REFERENCES
[1] BigBitBus. 2018. What is your ping, Google Cloud and Amazon AWS? https://

www.bigbitbus.com/2018/05/07/What-Is-Your-Ping-AWS-And-Google-Cloud/
[2] DataStax Documentation. [n.d.]. Apache Cassandra Lightweight Transactions.

https://docs.datastax.com/en/cql-oss/3.3/cql/cql_using/useInsertLWT.html.
[3] Microsoft. 2021. Consistency levels in Azure Cosmos DB | Microsoft

Docs. https://docs.microsoft.com/en-us/azure/cosmos-db/consistency-levels#
strong-consistency-and-multiple-write-regions.

[4] General Data Protection Regulation. 2016. Regulation EU 2016/679 of the European
Parliament and of the Council of 27 April 2016. O�cial Journal of the European
Union (2016).

[5] Nathan VanBenschoten, Arul Ajmani, et al. 2022. Enabling the Next Generation
of Multi-Region Applications with CockroachDB. In Proceedings of the 2022 ACM
International Conference on Management of Data (SIGMOD ’22).

[6] Vitess. [n.d.]. The Vitess Docs | Sharding. https://vitess.io/docs/reference/features/
sharding/.

[7] Todd Warszawski and Peter Bailis. 2017. ACIDRain: Concurrency-related attacks
on database-backed web applications. In Proceedings of the 2017 ACM International
Conference on Management of Data. ACM, 5–20.

3613

https://www.bigbitbus.com/2018/05/07/What-Is-Your-Ping-AWS-And-Google-Cloud/
https://www.bigbitbus.com/2018/05/07/What-Is-Your-Ping-AWS-And-Google-Cloud/
https://docs.datastax.com/en/cql-oss/3.3/cql/cql_using/useInsertLWT.html
https://docs.microsoft.com/en-us/azure/cosmos-db/consistency-levels#strong-consistency-and-multiple-write-regions
https://docs.microsoft.com/en-us/azure/cosmos-db/consistency-levels#strong-consistency-and-multiple-write-regions
https://vitess.io/docs/reference/features/sharding/
https://vitess.io/docs/reference/features/sharding/

