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ABSTRACT
Protection of personal data has been raised to be among the top
requirements of modern systems. At the same time, it is now fre-
quent that the owner of the data and the owner of the computing
infrastructure are two entities with limited trust between them
(e. g., volunteer computing or the hybrid-cloud). Recently, trusted
execution environments (TEEs) became a viable solution to ensure
the security of systems in such environments. However, the perfor-
mance of relational operators in TEEs remains an open problem.
We conduct a comprehensive experimental study to identify the
main bottlenecks and challenges when executing relational equi-
joins in TEEs. For this, we introduce TEEbench, a framework for
unified benchmarking of relational operators in TEEs, and use it for
conducting our experimental evaluation. In a nutshell, we perform
the following experimental analysis for eight core join algorithms:
off-the-shelf performance; the performance implications of data
sealing and obliviousness; sensitivity and scalability. The results
show that all eight join algorithms significantly suffer from different
performance bottlenecks in TEEs. They can be up to three orders
of magnitude slower in TEEs than on plain CPUs. Our study also
indicates that existing join algorithms need a complete, hardware-
aware redesign to be efficient in TEEs, and that, in secure query
plans, managing TEE features is equally important to join selection.
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1 INTRODUCTION
An increasing number of applications deal with sensitive data. For
example, hospitals process health records of their patients, or social
media companies collect information about their users. A common
aspect across these applications is that data is in one of three states:
at rest, in transit, or in use. However, the current generation of data
processing systems protects data in only two of these states: at rest
(e. g., using data encryption) and in transit (e. g., using transport
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Figure 1: Secure joins throughput.

layer security). They have assumed that the machine running the
code is trusted, thereby protection of data in use is not necessary.

Several processing models, e. g., volunteer computing [4] and the
hybrid-cloud [44, 70], often involve cooperation between entities
that do not fully trust each other. For example, hospitals might
want to process their patient data in the public cloud. These models
challenge the assumption of existing systems because now data
has to be protected in all three states. Moreover, researchers have
found that joining different datasets is a daily routine across many
fields [22]. Crossing the boundary of a single organization just adds
to the complexity of the problem: Joins can be performed on infras-
tructure owned by entities other than the data owners, potentially,
with no trust between them. Although onemight think of encrypted
databases [53, 55] as a solution, the underlying encryption schemes
support a limited set of operations and can add large overheads [49].
Thus, encrypted databases have not been adopted on a broad scale
leaving a void in secure data processing.

The hardware community has proposed Trusted Execution En-
vironments (TEEs) to fill this gap. A TEE is a secure area inside the
CPU that protects code and data on the hardware level. While TEEs
provide the right level of security, their performance in executing
relational operators remains an open challenge. Additionally, the
performance of the existing data processing systems that utilize
TEEs is far from satisfactory. Opaque [72] comes with an overhead
of up to 46x, while ObliDB [21] uses Oblivious RAM (ORAM) which
does not scale [10]. To illustrate the problem, we examined the
performance of a radix-based equi-join using several security tech-
niques: (i) insecure (on a plain CPU), (ii) in a secure enclave, (iii)
in a TEE with ORAM enabled, (iv) using deterministic encryption,
and (v) using homomorphic encryption (nested loop equi-join).1
In addition, we estimated the privacy of each technique based on
the leakage profile. Figure 1 shows the results of this experiment.
We observe that throughput is reduced by one order of magnitude
when joining inside a TEE compared to a plain CPU. The perfor-
mance is further reduced by four orders of magnitude when the
join uses ORAM (i. e., hides data access patterns). These penalties
occur when we blindly execute existing solutions on this novel
1The experimental setup is described in Section 3 and the dataset in Section 6.2.
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hardware. Likewise, two encryption techniques did not present a
viable option. The homomorphic encryption join (HOM) [67] has
the highest privacy profile but the performance of the current en-
cryption schemes is still very low. In contrast, using deterministic
encryption (DET) for equi-joins, we only pay the price of processing
longer keys (e. g., in our case the RSA-encrypted keys were 64 bytes
long). However, DET is known to leak large amounts of information
if not combined with stronger encryption schemes [50].

We believe that the gap between TEEs and plain CPUs can be
significantly reduced. However, no study precisely shows where
the loss of performance comes from. Therefore, we first need to
thoroughly understand how relational operators perform inside
a TEE. We focus on equi-joins, as they are at the core of many
fields and emerging data processing platforms [23, 47, 65]. For
example, Agora [65] requires secure computation to join datasets
on untrusted nodes. The join operator is among the most resource-
intensive operators, making it a common study subject. Previous
works have benchmarked join algorithms for plain CPU [58] and
streaming scenarios [71], as well as the general performance of
TEEs [66, 68]. Unfortunately, none of them has provided insights
into the performance of the join operator in a TEE. As more works
on secure join processing emerge [1, 6, 42, 45], we need a detailed
analysis of the classic and new equi-join algorithms on TEEs.

We believe that the lack of such a comprehensive analysis slows
down the adoption of confidential computing in data processing
systems. Yet, performing such an analysis is challenging because
no framework allows us to thoroughly compare different join algo-
rithms (as well as any other relational operator). Our first contribu-
tion is then a unified benchmark framework to perform a detailed
comparison among different equi-join algorithms in TEEs:
(1) We introduce TEEbench, a framework for benchmarking rela-
tional joins and other operators in TEEs (Section 4). It allows for
the effortless execution of any join algorithm in a secure enclave.
To our knowledge, it is the first open-source framework that allows
for an experimental evaluation of any relational operator across
multiple TEEs. We use TEEbench to conduct all our experiments.

Our experimental study makes the following contributions:
(2) We start with a general performance comparison. We measure
the throughput of all eight algorithms for synthetic and real datasets.
We then look deeper into the stages of the algorithms and report
hardware performance counters (Section 5).
(3) We proceed to study features related to TEEs and secure pro-
cessing (Section 6). We measure the cost of data sealing and investi-
gate if chunking can reduce it. We estimate the cost of obliviousness
and compare its performance to related work [21, 42, 72]. We also
limit the interaction with the OS using lockless synchronization.
(4) We continue with sensitivity and scalability analysis of the join
algorithms in TEEs (Section 7). We use diverse input data to stress
the algorithms and measure the throughput using more threads.
(5) Finally, we discuss and benchmark alternative TEEs (Section 8).
In summary, our comprehensive study presents seven main

lessons learned (Section 9). Above all, we are the first to find that:
(a) Existing algorithms need a complete, hardware-aware redesign
that adapts to the secure memory model (i. e., considers the EPC)
and the runtime environment. For example, lockless synchroniza-
tion improves the throughput by up to 34%.

(b) Chunking reduces the overall cost of sealing by up to 40%.
(c) Radix partitioning adjusts well to the memory model of Intel
SGX and alleviates EPC paging.

2 BACKGROUND
We now (i) explain the technology of TEEs in Section 2.1, (ii) discuss
data access patterns and how they can be exploited in Section 2.2,
(iii) describe our threat model in Section 2.3, and (iv) present the
eight join algorithms that we consider in our study in Section 2.4.

2.1 Trusted Execution Environments (TEEs)
A TEE is an isolated area in the CPU that protects data and compu-
tation on untrusted machines, e. g., in a public cloud. TEEs provide
two main properties: (i) data confidentiality, and (ii) code and data
integrity. These properties ensure that all data and executed code
are encrypted such that they can never be accessed by a mali-
cious OS, administrator, or hypervisor. TEEs are implemented in
hardware using the concept of enclaves, extensions to the CPU
instruction set, designed for confidential computing. They provide
mechanisms that enable the above-mentioned properties: protected
memory, isolated processing, and sealing. Although these concepts
are general, manufacturers implement them in different ways.
TEE Models. There are two TEE models: process-based (e. g., Intel
SGX) and VM-based (e. g., AMD SEV). The process-based model
divides a secure process into trusted and untrusted parts. While the
trusted part resides in the protected memory and handles isolated
processing, the untrusted part communicates with the OS and han-
dles the I/O from the trusted part. This model keeps the size of the
Trusted Computing Base (TCB) small and meticulously monitors
all traffic in and out of the enclaves. However, porting applications
requires a substantial amount of work and expert knowledge. The
VM-based model contains a traditional Virtual Machine (VM) with
its memory encrypted using hardware encryption keys. This model
offloads the integration burden to the VM-provider and makes the
adoption of TEEs easier. However, it requires running the OS inside
the VM, which increases the TCB and the attack surface.

In addition, while SGX never allocates more than 256 MB for its
protected memory, SEV allocates the memory needed to run the en-
tire VMwhich can easily be in the range of gigabytes. Yet, AMD SEV
has been reported to have negligible performance overhead [29].
Despite this, Intel has the dominant position on the market (93%
market share [54]) and is widely adopted by the industry. Therefore,
it is crucial to properly identify the bottlenecks of process-based
enclaves (such as Intel SGX). We thus consider Intel SGX.
ProtectedMemory. An enclave stores code and data in an isolated
virtual address space, called Enclave Page Cache (EPC). The EPC is
accessed exclusively by enclave processes. Before storing in the EPC,
the on-die Memory Encryption Engine (MME) encrypts the data.
The MME ensures that data is available in unencrypted form only in
the CPU cache. As of today, EPC memory sizes are severely limited
(at most 256 MB in current SGX implementations). Moreover, it is
shared between all the enclaves running on the sameCPU and stores
both its metadata and users’ data. Because one often exceeds this
limit, SGX provides a mechanism for evicting EPC pages to the main
memory by encrypting them first and storing them in an Eviction
Tree [17]. An EPC miss costs as much as 40K CPU cycles [64]. Even
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though there have been attempts to improve the performance of
EPC [52, 64], it has remained a significant bottleneck. The ongoing
work on Total Memory Encryption (TME) [35] might mitigate the
problem, but, till today, little is known how it will work with SGX.
Isolated Processing. The threads running in an enclave use pro-
tected virtual address space. Interactions with enclaves are possible
only through predefined calls: entry points (ECALLs) and exit points
(OCALLs), each executing a CPU instruction – EENTER and EEXIT,
respectively. They entail steps necessary to preserve privacy, such
as flushing the memory address translation cache (TLB), handling
page faults, or context switching. A single OCALL can cost up to
15K CPU cycles [63], hence it is advised to minimize them.
Sealing. An enclave can encrypt the data such that only the en-
clave’s owner can decrypt it. This mechanism is called sealing [3].
It enables the enclaves to use the OS or the outside network to
securely store their data as well as to exchange encrypted data with
outside services. We observed that sealing one megabyte of data
can cost up to 6M CPU cycles.

2.2 Data Access Patterns
Enclaves are dedicated to protecting data in use in all but one
aspect - access patterns [31]. The protected memory area resides in
the main memory, so a malicious administrator can still track the
exact memory addresses being accessed. Over time, the attacker can
learn facts from encrypted data and information about the queries
the users are sending. Numerous works have shown astonishing
effects exploiting this vulnerability [15, 30, 37, 38, 46, 56, 69].

There are two ways to hide access patterns: using Oblivious
RAM (ORAM) and accessing memory in a way indistinguishable
between two runs. ORAM [28] is an abstraction that uses obfus-
cating techniques to hide memory reads and writes of a program.
Although being a generic solution, ORAM introduces polyloga-
rithmic computation complexity and size overhead [10], making it
impractical for real-size datasets. In contrast, oblivious algorithms
may not introduce large hidden constants or such elevated com-
plexity as ORAM. However, an oblivious algorithm hides access
patterns in its specific way and the ideas cannot be generalized. This
dramatically increases the effort when hiding access patterns in a
complex system. In our experiments, we compare the performance
of state-of-the-art examples of these two approaches [21, 42, 72].

2.3 Threat Model
TEEs protect against a malicious system administrator, hypervi-
sor, or the OS. We expect that the attacker can monitor network
communication, learn memory access patterns, and tamper with
untrusted memory. She can perform full snapshots of the mem-
ory and learn facts about the data from the past (e. g., previous
unencrypted versions of the database) or outside sources (e. g., dis-
tribution of diseases in publicly available medical data). We do
not consider side-channel attacks on TEEs [51] as the majority
of them are implementation-specific. Each of the currently avail-
able TEEs has disclosed attacks [14, 51] and cannot be considered
fully secure. However, some of these attacks can already be miti-
gated [59, 60]. We expect the manufacturers to fix these vulnera-
bilities. TEE-based systems can support a wide range of security

Table 1: Join algorithms considered in this evaluation.

class acronym name code color

hash-based CHT Concise Hash Table [9] [58]
PHT Parallel Hash Table [11] [8]

sort-merge PSM Parallel Sort-Merge Own
MWAY Multi-Way Sort-Merge [41]

radix-based
RHT Radix Hash Table [41] [8]
RHO Radix Hash Optimized [8] [8]
RSM Radix Sort-Merge Own

nested-based INL Index Nested Loop Own

models [5, 21, 48, 63, 72]. Fewer privacy leaks mean a higher com-
putational price. Hence, users might decide on practical trade-offs
and choose to allow leakages to gain performance. For instance,
obliviousness can severely hurt performance [21, 48, 61, 72] but
benefits users only slightly as exploiting access patterns is in most
cases impractical. In fact, recent works [5, 63] assume operational
data confidentiality, i. e., they boost performance by allowing access
patterns leakage. Users might also focus on code integrity rather
than data confidentiality, e. g., when running systems compliant
with GDPR [61]. In such cases, users might choose to execute the
code in a TEE using plain data to avoid high encryption costs.

2.4 Join Algorithms
Recall that our goal is to provide an extensive experimental perfor-
mance study of state-of-the-art join algorithms running in a TEE.
These algorithms can be divided into four classes: (i) hash-based,
(ii) sort-merge, (iii) radix-based, and (iv) nested-based (Table 1).
Hash-based. We consider two hash-based algorithms: the Concise
Hash Table (CHT) [9] and the Parallel Hash Table (PHT) [11]. The
CHT join is based on a linear probing hash table redesigned to
consume less memory and to have faster access. It increases the
fill factor to 100% and avoids collisions with a sparse bitmap with
embedded population counts. Effectively, it reduces memory usage
by up to three orders of magnitude. This makes CHT an attractive
option for secure enclaves, which operate on limited securememory.
The PHT join follows a “no-partitioning” design of a hash join
algorithm. It builds a shared hash table and uses all available threads
to probe the table. We picked PHT for the benchmark as a robust
and efficient implementation of the canonical hash join algorithm.
Sort-merge. We consider two sort-merge algorithms: the Multi-
Way Sort-Merge (MWAY) [41] and the Parallel Sort-Merge (PSM).
The MWAY algorithm is optimized for NUMA systems. It splits
both relations into a few partitions. Each partition is locally sorted
using sorting networks. The partitions are then multi-way merged.
Finally, the sorted relations are joined with a single-pass merge join.
The PSM join comprises two phases: the sort and merge phases.
First, the algorithm uses a parallel three-way quicksort [34] to
efficiently sort both relations. Second, the algorithm scans both
tables sequentially and merges the matching results.
Radix-based. We consider three implementations for the radix-
based class: (i) Radix Hash Table (RHT) [41], (ii) Radix Hash Opti-
mized (RHO) [8], and (iii) Radix Sort Merge (RSM). All three algo-
rithms have two phases: the partition and join phases. They share
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Table 2: Datasets used in most of the experiments.

cache-fit cache-exceed
size of key/payload 4/4 bytes 4/4 bytes
R cardinality 1.3M 5.2M
S cardinality 13M 52M
|R|:|S|ratio 1:4 1:4
total input size 50 MB 500 MB

the same partitioning algorithm but differ in the join algorithm.
Partitioning follows the design by Kim et al. [41]. The relations are
reordered into multiple clusters based on pre-computed histograms.
This reduces TLB misses and improves cache locality. RHT uses a
histogram-based hash table with tuples reordering to join the parti-
tions. The hash table comprises a histogram of hash values and the
outer relation re-ordered by hash values. RHO improves on RHT. It
builds the hash table using an optimized implementation of bucket
chaining. It then stores the buckets and synchronization latches as
a contiguous array, removing the need for pointer dereferencing
and reducing cache misses. We include RHO in our benchmark as
one of the most performant radix joins. We also include RHT to
see if the difference between RHO and RHT translates to TEE. RSM
is our implementation that matches the tuples with a sort-merge
algorithm in the join phase. It quicksorts both partitions and scans
them to find matches. We benchmark RSM to see if a sort-merge
algorithm can prevail over hash join for small data chunks.
Nested-based. We consider Index Nested Loop (INL) because it is
a popular choice for join queries with low selectivities. INL first
builds an index on the outer table using a B+Tree. Second, it uses
multiple threads to probe each element of the inner table against
the index. We assume the index for the outer table already exists.
In addition, we measured the throughput of the classic nested-loop
join (NLJ). We decided to exclude it from the evaluation due to its
extremely low performance in all experiments.

3 METHODOLOGY
We now describe the setup and methodology of our evaluation. We
define the datasets in Section 3.1, outline the hardware in Section 3.2,
and detail how we measure the join’s performance in Section 3.3.

3.1 Datasets
We use two synthetic datasets (Table 2) designed to cover key TEE
scenarios: dataset cache-fit that fits into the secure memory and
dataset cache-exceed that significantly exceeds the secure memory.
Although limited in size, we believe that these two datasets trigger
the major behaviors of TEEs. The datasets comprise <key,payload>
tuples, where both attributes are 4 bytes wide, similar to related
work [8]. The keys follow a primary key-foreign key relationship,
as it is the most common use case for a join operator in DBMSes.
The keys are distributed uniformly in both datasets.

We also experiment with real data. We use two tables from the
IMDb dataset: name.basics and title.basics [32]. The cardinalities of
the tables are 10.5 million and 42.2 million, respectively, which after
filtering out unused columns sums up to 402 MB. While real data
validates the relevance of the results, synthetic data allows us to
vary the input characteristics and to cover more diverse scenarios.

Figure 2: Join in TEEs using plain and sealed data.

3.2 Platform
We ran our experiments on a machine with a 1.8 GHz quad-core
Intel Core i7-8565U CPU. The CPU has the following caches: 32 kB
L1d, 32 kB L1i, 256 kB L2, and 8 MB L3. The TLB has 64 entries for
both L1 TLB and L2 TLB with 4 kB pages. The machine has 38 GB of
main memory and 128 MB of EPC. It runs a 64-bit Ubuntu 18.04.02
OS and a custom SGX driver v2.11 [26].All algorithms were written
in C/C++ and compiled with gcc 7.5.0. The experimental setup
extends the Sample Enclave example code provided by Intel [33].

3.3 Join Processing Study
We study the performance of relational equi-joins. We join two
relations R and S, where R is the outer and S is the inner relation,
on a join predicate R.key = S.key. We run some experiments securely
(SGX version) and insecurely (plain CPU version). Note that the
code needs a separate compilation for each platform. The base
metric in most of the experiments is throughput, which we calculate
as the sum of input cardinalities divided by the join execution time.

Figure 2 shows two ways to measure the execution time of a join.
One isolates the performance of the algorithm to the highest extent
(measurement A ). We feed the enclave with plain data and do not
materialize the output. A similar methodology has been followed in
many related works [11, 19, 41, 58]. Although this scenario violates
data confidentiality, it allows focusing precisely on the performance
of the algorithm. In addition, it is useful when users seek to comply
with regulations (e. g., GDPR) and prove that specific computation
was performed over data (i. e., code integrity) without considering
its confidentiality. We then adapt the methodology to the secure
environment (measurement B ). We provide sealed input data and
expect sealed output. We thus measure the cost of sealing/unsealing,
joining, and output materialization. In both cases, we measure the
execution only on the untrusted machine. As the communication
between machines is not measured, we can simulate both trusted
and untrusted machines on a single-node setup.

Note that an experiment begins with the generation of data and
the creation of a new enclave. This ensures unpolluted EPC and
increases the repeatability of the experiments. The same data is
generated for each run by fixing the seed value. We repeated each
experiment five times and reported the average of the results. We
leave out the study of inequality joins [39, 40] to future work.

4 FRAMEWORK
Although confidential computing has started to attract the attention
of the database community [21, 42, 72], comparing different algo-
rithms (or systems) in TEEs is not trivial. First, when comparing
two algorithms one has to make sure to provide the same level of
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Figure 3: General architecture of TEEbench.

security (e. g., whether both algorithms are oblivious). Doing so is
hard because the technology is young and the community has not
worked out single standards and definitions (e. g., there are multiple
definitions of obliviousness [42]). Second, it is unclear how to take
precise measurements inside secure enclaves, because they have
no notion of time and have to call the resources of the OS. As a
result, different works often take different approaches to measure
the processing time. This introduces an ambiguity that leads to the
inability to compare results across algorithms and systems.

Thus, to be able to perform our experimental evaluation, it is cru-
cial to first come up with a way to compare algorithms (composed
of relational operators) fairly. Achieving this goal is challenging for
several reasons. First, enclaves have no notion of time as they do
not support system calls. Second, there are new hardware events,
e. g., swapping encrypted pages, that require new ways of detection
and measurement. Third, enclave implementations differ across
platforms, thereby the tool has to operate on different architectures.
Fourth, enclaves introduce new memory models and hardware
limitations that hinder the integration with current DBMSes.

We have developed TEEbench, a unified benchmarking frame-
work to tackle the above challenges. It is open-source under the
Apache 2.0 License [27].Using the framework, one can easily port
algorithms and compare them across different TEEs. TEEbench pro-
vides a full benchmarking experience: from generating test data and
algorithm execution to the presentation of the results and collection
of the logs. Figure 3 illustrates the architecture of TEEbench. The
framework is composed of four main components: Parser, Operator
Evaluator, TEE Executor, and Logger. In detail, TEEbench executes
programs (algorithms) as follows. As the first step, a user provides
an algorithm for a relational operator ( ) using Standard Template
Libraries (STL) [18] to remain independent of any CPU architecture.
To help the user, we provide a Secure Execution API, which can
be used to provide advanced insights into the execution. This API
provides a set of calls for precise time measurements and collection
of enclave’s hardware counters (e. g., EPC misses) among others.
Additionally, it provides an interface to a robust implementation of
Path ORAM [62] from ObliDB [21], which enables porting memory
accesses of any algorithm to ORAM. As a result, our framework
can transform any relational operator to its oblivious equivalent.

Altogether, TEEbench enables users to quickly “secure” their algo-
rithm and to easily compare it on hardware platforms from different
manufacturers. For instance, we used the framework to compare
the performance of Intel SGX and AMD SEV. Furthermore, it can
operate on both native CPU and TEE, offering insights into the
differences between the two environments. The Parser receives the
user’s algorithm and checks the correctness of both the input and
the runtime configuration. Then, the Parser compiles the algorithm
for the platform selected by the user and outputs a binary ( ).
Next, the Operator Evaluator executes the binary file. During the
execution, it imports the input data provided by the user or calls
the Data Generator. TEEbench provides an extended version of
the data generator originally implemented by Balkesen et al. [8].
The generator includes new features, such as reading input files or
manipulating join selectivity. The Operator Evaluator coordinates
the execution via the TEE Executor ( ). The latter abstracts the
interaction with the TEE. Hence, the user remains oblivious to the
underlying hardware. The Operator Evaluator outputs the aggre-
gates of the different execution measurements ( ). The Logger
gets the aggregated data and provides a unified way of reporting
and logging the results directly to the user or external memory ( ).

We thoroughly examined TEEbench’s usability for joins on
native CPU and TEEs (both Intel and AMD architectures). While
TEEbench successfully tackles the first three before-mentioned
challenges, the fourth requires building an enclave-native database
engine which is out of the scope of this work.

5 OFF-THE-SHELF PERFORMANCE
We first study which of the join algorithms has the highest through-
put in TEEs and what their bottlenecks are. We take the algo-
rithms off-the-shelf and measure their performance: We measure
their throughput (Section 5.1), analyze the CPU cycles of different
phases (Section 5.2), look at how they behave for significantly larger
inputs (Section 5.3), and inspect the hardware counters (Section 5.4).
Table 1 contains the join acronyms used in the experiments. In all
figures, we use colors to indicate an algorithm (e. g., CHT, RSM)
and hatching patterns to represent the mode (e. g., SGX, plain CPU)
in which an algorithm is executed.
Synopsis: We show that EPC paging is the thinnest performance
bottleneck and should be avoided at all costs. Partitioning of data
can be expensive but it alleviates the paging cost to a high de-
gree. As a result, the (radix-based) RHO algorithm has the highest
throughput for datasets exceeding the EPC due to its partitioning
mechanism. In contrast, for small datasets fitting the EPC, the
(hash-based) CHT algorithm has the highest throughput.

5.1 General Throughput
We take all eight join algorithms off-the-shelf and measure their
performance with regards to the overall throughput. We run the
same algorithms using both a plain CPU and a TEE. We use both
the cache-fit and cache-exceed datasets.

Figure 4 shows the results of these experiments. The most ap-
parent result is the significant difference in performance between
the insecure and secure processing modes. We observe that the
throughput of secure computation is up to three orders of mag-
nitude smaller than the one of an insecure computation. While
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Figure 4: Throughput of join algorithms.

the plain CPU (insecure mode) can achieve a throughput above
210M rec/s (e. g., RHO), the TEE (secure mode) achieves 35M rec/s
(e. g., CHT) at best. These costs include the maintenance of data
confidentiality as well as code and data integrity. The results clearly
show the massive processing cost added by TEEs.

In detail, we observe that CHT has the highest throughput for
dataset cache-fit due to its highly optimized hash table. The table
achieves almost 100% occupancy with almost no collisions, which
results in a low memory footprint and very fast access. However,
when the hash table grows too big it starts to utilize higher levels
of CPU caches, EPC, and, eventually, main memory. This causes the
low performance of CHT for the cache-exceed dataset. For such large
datasets, it makes sense to split the input dataset into small pieces
and ensure the data is kept high in the memory hierarchy and never
has to be paged out of EPC. Radix-based joins do exactly this. They
reduce memory access time by improving data locality [12]. This
is why radix-based joins outperform other families for the cache-
exceed dataset. The sort-merge family, in contrast, falls behind due
to two reasons. While PSM sorts entire relations, which causes
excessive randommemory access, MWAY allocates additional mem-
ory for partitions, which leads to EPC paging. Moreover, this family
suffers from the lack of SIMD instructions in TEEs [7, 16, 41].

We also observe that some secure algorithms demonstrate a sig-
nificant difference in throughput for different input sizes. Although
the radix-based and sort-merge joins do not experience major dif-
ferences between cache-fit and cache-exceed, the performance of
hash-based and nested-based joins is drastically reduced. For in-
stance, PHT processes 16.11M rec/s for dataset cache-fit while it
only takes 0.13M rec/s for dataset cache-exceed. Both CHT and PHT
process the input data in one batch and are hardware-oblivious.
As the input relations grow, they allocate more memory, which
expands to the next levels in the memory hierarchy, eventually
exceeding the EPC. Similarly, INL allocates memory for building
an index. If the size of the index exceeds the EPC (e. g., for dataset
cache-exceed) the performance immediately drops.

As EPC paging is a bottleneck [64] on the joins’ throughput,
we fix the size of the inner relation to 100MB and scale the size
of the outer relation. In this setup, we measure the throughput of
CHT as well as its EPC misses. We expect CHT to show a possible
relationship between paging and throughput in the clearest form
because it gradually allocates memory for the hash table. Figure 5
illustrates the results of this experiment. It is apparent, that when
EPC paging grows, throughput reduces. A barrier of 93MB (i. e., EPC
operational size) clearly marks the biggest difference in through-
put. Once we cross the EPC size, the EPC misses increase which

Figure 5: CHT’s throughput
and EPC paging

Figure 6: Join algorithms’
throughput with IMDb.

Figure 7: CPU cycles per tuple for each stage in joins. Dark
color indicates the first stage (build, sort, or partition) and
light color indicates the second stage (probe, merge, or join).

drastically decreases the throughput of CHT. With an estimated
cost of 40k CPU cycles for an EPC miss [64], paging becomes a se-
vere bottleneck. The results suggest that enclave-native algorithms
can do several optimizations to reduce EPC paging: (i) they should
reduce the memory consumption, even at the cost of more CPU
processing; (ii) they should align the data structures to the SGX
memory model, e. g., better exploit 4kB pages.

Finally, we measure the throughput of the joins using the IMDb
dataset. The size of the dataset is comparable to the size of cache-
exceed, thus we anticipate similar throughputs. Figure 6 shows
the results of this experiment. These results confirm our intuition.
All, except CHT, resemble the cache-exceed dataset. CHT performs
better due to the smaller cardinality of the outer table, which allows
it to allocate less memory and limit EPC paging (similar to Figure 5).

We can already observe that inaccurate join selection can lead
to heavy performance degradation. These results underline the
importance of a thorough examination of join algorithms on TEEs.
Finding: CHT is the fastest for cache-fit and RHO for cache-exceed.
EPC paging largely determines the performance of a join.

5.2 Measuring Phases of Joins
We now take a deeper look into each join. We seek to find out
where the CPU cycles are spent and identify themost CPU-intensive
operations. This will help us to reduce their impact. We split the join
families into stages: hash-based to build and probe; sort-merge to
sort and merge; and radix-based to partition and join. We measure
the CPU cycles to process one input tuple for each stage, which
allows us to compare stages between algorithms and datasets.

Figure 7 illustrates the results of these experiments. We observe
that the sort phase of PSM has a higher cost than any other stage
for dataset cache-fit. This is because of a high number of random
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Figure 8: Scaling dataset
cache-exceed.

Figure 9: Chunking impact.

memory accesses. However, the cost remains similar for dataset
cache-exceed due to its shallow copying of the input data: PSM
references the data to the outside of the enclave and avoids storing
it in EPC. We see that although MWAY reduced the cost of sorting,
it paid a big price to merge the partitions. In addition, MWAY does
not perform well due to using more memory than the EPC has.

We see that CHT uses the least CPU cycles for dataset cache-fit.
This is due to its concise data structures (see Section 2.4), which
avoid collisions in the hash table and reduce cache misses. However,
the hash joins and INL perform poorly for cache-exceed. Processing
all the data in one chunk leads to data structures that exceed the EPC
capacity and causes swapping to main memory. In our experiment
for dataset cache-exceed, CHT, PHT, and INL cross this point. EPC
thrashing brings their cost per tuple up to 15K CPU cycles.

In contrast to “no-partitioning” joins, radix-based joins partition
the data into small chunks. It improves data locality and cache hit
ratio, and avoids swapping to main memory. As a result, radix joins
are the fastest algorithms for cache-exceed. More importantly, they
show a performance independent of the dataset size.

Finding: Processing large chunks of data at once leads to more
CPU cycles when joining tuples in TEEs.

5.3 Scaling Input Data
We believe that datasets cache-fit and cache-exceed expose many
peculiarities of TEEs. Nevertheless, real datasets for in-memory
databases often have higher cardinalities. We scale the cache-exceed
dataset to 18 GBs – the maximum size before severe disk swap-
ping occurs. We measure the throughput to learn if larger data
alter the performance. The results show that, for the most part,
the performance does not change radically (Figure 8). While the
results of sort-merge and hash-based families are consistent with
the cache-exceed dataset (Figure 4), the performance of radix-based
joins reduces at 600M records. This marks when the partition size
overflows the L2 cache. Adding radix bits could improve the per-
formance. It results in more partitions but with smaller sizes. The
throughput further decreases for 18 GBs because disk swapping
starts. Note that enclaves often fail when disk swapping occurs.
Some algorithms were not able to join large data due to unexpected
behavior of enclaves or did not complete in the given time (i. e., 1h).

Finding: The performance of joins is stable for large data.

Table 3: Hardware performance counters for secure joins.
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MWAY 37640 3077 0.6 0.87 9959 516 7844 493 0.60 0.87 2612 128
PHT 584642 69772 0.51 0.79 180787 7011 2321834 280160 0.52 0.79 748240 27779
PSM 1827 148 0.31 0.91 173 1 19 3 0.28 0.84 2 0
RHO 18927 1627 0.58 0.85 5734 256 118 4 0.31 0.95 9 1
RHT 19164 1692 0.57 0.85 5785 256 1461 100 0.64 0.89 413 22
RSM 19536 1605 0.57 0.86 5763 256 332 18 0.26 0.94 27 1

5.4 Measuring Hardware Counters
We now take a look into the CPU to understand what happens
on the hardware level. Our goal is to understand the performance
bottlenecks that each algorithm has and show how to mitigate
them. We use hardware performance counters to get insights from
the CPU. In addition to the commonly used metrics (e. g., cache
misses), we count invocations of the EWB CPU instruction. EWB
is executed per EPC page eviction, thus, indicating the EPC misses.

Table 3 shows the results of this experiment. We can draw several
observations from these results. First, stages with EPC thrashing
(marked red) are among the longest-running ones, i. e., have the
highest execution time. Swapping from EPC is very expensive,
hence, EPC misses severely reduce performance (see EPCMiss col-
umn). Second, radix-based joins reach 256K EPC misses, for dataset
cache-exceed, during the partition stage (marked yellow). Yet, they
successfully reduce paging in the join phase and achieve a very
high L3 hit rate (marked green). This leads to good performance
independently of the input size (see Figure 4). Third, PSM achieves
minimal paging (marked bold) because of shallow copying of the
input data. This shows that in-place processing can mitigate EPC
paging. However, randommemory access leads PSM to be one of the
worst-performing algorithms. Moreover, when working with sealed
input (see Figure 2), PSM allocates secure memory for decrypted
data, which can lead to EPC paging and throughput reduction.
Finding: Partitioning helps to reduce EPC misses.

6 SECURE ENCLAVE OPERATIONS
In a secure query plan, a join operator does more than finding
matches. We study the performance implications of three actions an
operator may take: it might (i) receive and send encrypted (sealed)
data (Section 6.1), (ii) hide data access patterns (Section 6.2), and
(iii) synchronize threads in a parallel execution (Section 6.3).
Synopsis: For our test datasets, the price for data sealing and
materialization was up to 5× the overall cost of a join operator.
Sealing in chunks that fit in the L3 cache can reduce the cost by
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Figure 10: Materialization and data sealing impact on RHO.

up to 40%. We see that problem-specific obliviousness techniques
are the only way to hide access patterns at scale. We also observe
that lockless primitives can improve the throughput by up to 34%.

6.1 Data Sealing
Sealing enables secure data exchange with outside services (see
Section 2.1). We study its impact on the overall performance of the
join operator. We measure the CPU cycles the operator spends on
join and sealing for three different join selectivities: 1%, 50%, 100%.
We also look into the cost of materializing the output data. We then
check if splitting into chunks can reduce sealing costs. Finally, we
implement chunk sealing in RHO and measure its performance.

Figure 10 combines the results for data materialization and data
sealing (TEE bars) in one graph and compares the results to plain
CPU join (Plain CPU bars). Overall, we observe that sealing adds a
high computational cost to the operator. However, this cost depends
on the join selectivity. The sealing cost comprises unsealing the
input and sealing the output. Although for the three cases there
is a fixed cost for unsealing, the cost of sealing the output mainly
depends on the size of the join result. Clearly, the higher selectivity,
the higher sealing costs. In our setup, the sealing cost can reach
as much as 2.5× the join cost. Data sealing is expensive because
of two reasons: it allocates secure memory for decrypted input
and encrypted output; and it encrypts and decrypts the data. We
observed in our experiments that data sealing led to a 200% increase
in EPC misses, compared to processing unencrypted data with
materialization. This, in turn, reduces the overall throughput.

We observed that the cost of sealing is correlated with data
transfer between enclaves. To reduce this cost, we can apply tech-
niques akin to the data movement problem, e. g., filter pushdown,
pipelining operators, or improving locality. Another way to reduce
memory consumption is to split the relation into chunks and seal
them separately. We ran a micro-benchmark to verify this idea.
Figure 9 shows that well-tuned chunking reduces the seal time.
For both datasets, the best results showed chunks that fit into the
L3 cache. While smaller chunks require more CPU, larger chunks
generate first cache misses and then EPC misses.

Partitioning joins can easily seal in chunks. We implemented
this feature for RHO to verify if it improves the performance. We in-
cluded the results in Figure 10 (TEE-optimized bar). We observe that
the performance is now independent of selectivity. The matches are
distributed uniformly between partitions so most of the partitions
seal at least some data. Although the cost of chunking does not

Figure 11: Throughput of se-
cure and oblivious joins.

Figure 12: Lockless RHO.

compensate for small selectivities, it greatly improves the perfor-
mance for the higher ones. In fact, chunking reduced the cost per
tuple by 40% for the highest selectivity. The results also reveal that
materialization adds a large cost in TEE and plain CPU. For low
selectivity, there are a few records to materialize and the penalty is
small. However, the cost of materialization quickly grows to 1.5×
the join cost for the highest selectivity. Output materialization is
expensive due to memory allocation and frequent memory writes.
Finding: Sealing in chunks lifts the performance by up to 40%.

6.2 Obliviousness
Hiding access patterns is the cherry on top of confidential com-
puting. It is the last element that ensures no privacy leakage while
data is processed. However, TEEs do not protect against traffic anal-
ysis attacks [31]. Consequently, users are left with porting their
algorithms to ORAM or redesigning their memory access patterns
(see Section 2.2). We ran an experiment where we compare the
secure RHO algorithm (RHO TEE) with: (i) TEE RHO atop ORAM
(RHOBLI ); (ii) ObliDB hash join (OBLI) [21], (iii) Opaque sort-merge
join (OPAQ) [72], and (iv) the algorithm proposed by Krastnikov et
al. [42] (KRAS), which hides access patterns with a problem-specific
design. As ORAM has a very large memory consumption, we used
a modified version of the cache-fit dataset with the cardinalities of
the tables reduced to 200k and 400k for R and S, respectively.

Figure 11 shows the results of this experiment. We see a two
orders of magnitude difference between the ORAM-based (OBLI,
OPAQ, and RHOBLI) and problem-specific (KRAS) solutions. ORAM-
based joins perform poorly because of the polylogarithmic memory
cost and many OCALLs per tuple. This makes ORAM “useless” for
real-world applications. On the other hand, problem-specific de-
signs introduce complex calculations but require less memory and
tend to bound the execution to the secure environment only.

In contrast with earlier findings [21], we observe that the join
used in Opaque performs better than the join used in ObliDB. In
our experiment, OPAQ is faster than OBLI by 45%. This is because
our dataset is significantly larger than the ones used in [21]. Al-
though OBLI performs better for datasets in the ranges of a few
thousand records, OPAQ outperforms it for ranges of a few hundred
thousand (600k records in our case). To confirm the discrepancies,
we modified the code for the original experiment [24] to match
the parameters of our experiment and obtained results alike to our
findings. These results underline the need for thorough and diverse
experiments of novel algorithms. Last, we observe that RHOBLI
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outperforms OPAQ and OBLI due to a more efficient data repre-
sentation. OPAQ and OBLI store records as arrays of chars, which
generates a large overhead. Nonetheless, porting secure RHO to
ORAM (i. e., RHOBLI) cuts the throughput by four orders of magni-
tude, which is unacceptable in a realistic scenario. Note, that our
threat model excludes access pattern attacks and further investiga-
tion of obliviousness is out of the scope of this paper.

Finding: Adding obliviousness decreases the performance of TEE
joins by two to five orders of magnitude. ORAM-based solutions
are not practical for larger datasets.

6.3 Lockless Synchronization
During parallel execution, threads synchronize to use global data
structures. Process-based enclaves run on top of an OS, which is
responsible for thread management and synchronization. This can
easily become a bottleneck (see Section 2.1). This is the case of
Intel SGX whose threads wait for mutexes outside of the enclave,
generating many OCALLs. We could observe this behavior in the
radix-based joins, which use mutexes to access task queues. We be-
lieve that lockless primitives can reduce such a synchronization bot-
tleneck. We, thus, study the impact of mutexes and atomic variables
on the performance of RHO, a radix-based join. We implemented
RHO-lockless, which uses atomic variables for synchronization.

Figure 12 shows the results of the experiment for dataset cache-fit.
Here, the partitions are small and the tasks last short. This makes
thread management a relatively high cost for RHO. The results
indicate that in the case of RHO more threads do not pay off. Once
we reach the number of physical cores (4 cores), the threads start to
compete for resources. However, RHO-lockless behaves differently.
It scales very well with the number of threads, including hyper-
threads. For a large part of the execution, the threads remain inside
the enclave, which vastly reduces the cost of thread synchronization.
In fact, RHO-lockless was able to reduce the number of CPU context
switches by 99%. Overall, the throughput improves by 34%. This
effect can be seen in scenarios where more severe bottlenecks do
not occur, such as EPC paging. That is why RHO and RHO-lockless
perform very similarly for dataset cache-exceed. Thus, we decided
to leave out the results for dataset cache-exceed.
Finding: Lockless primitives significantly reduce OCALLS.

7 THE FIVE TWISTS
We now introduce five twists to see how the algorithms behave with
different data and hardware characteristics. First, we vary the join
selectivity and break the primary-foreign-key relation (Section 7.1).
We anticipate higher throughput of INL for low selectivity unless it
triggers EPC paging. Second, we introduce data skew (Section 7.2).
High skew improves data locality by accessing the same records
more frequently. We anticipate that joins with low cache hit rate
(e. g., hash joins) can benefit from high skew. Third, we feed the joins
with sorted data (Section 7.3). Here, PSMmight improve by skipping
the sort phase. Fourth, we scale the relations independently to each
other (Section 7.4). This tells us if the ratio between the input tuples
changes the throughput. We expect the hash-based joins to be the
most sensitive because they need memory for the entire hash table.

Figure 13: Throughput when varying join selectivity.

Fifth, we study the scalability of the join algorithms concerning the
number of threads (Section 7.5).
Synopsis:Hash-based joins benefit from data skew, low join selec-
tivity, and pre-sorted input. While PSM also benefits from sorted
input, INL improves with low selectivity. Radix-based joins have a
constant performance independently from the nature of the data.
Join algorithms scale until they saturate physical CPU cores and
scaling them beyond this point can have a detrimental effect.

7.1 Selectivity Experiment
We study the performance when varying the join selectivity. We call
join selectivity the ratio between the number of tuples from the inner
table that find a match and the cardinality of the inner table. Recall
we generated the datasets with a primary-foreign-key relationship
and the assumption that every tuple from the inner table finds a
match. We now generate tables with the same cardinalities but with
no guarantee if tuples from the outer table will be matched. We
vary the selectivity from 1% to 100% for both datasets.

Figure 13 illustrates that the nested-based and hash-based fam-
ilies have better performance for low selectivity. INL improves
highly due to the low cost of the index scan for small selectivities.
Interestingly, it is the fastest algorithm for both datasets with 1%
selectivity because it successfully avoids EPC paging. In the case of
CHT, the CPU better predicts the right branch. In contrast, we do
not observe the same benefit for the radix joins. The branch predic-
tor starts from scratch for every partition, which makes it tough to
reduce mispredictions. Except for INL, we observe throughputs sim-
ilar to Section 5.1, i. e., while CHT outperforms others for cache-fit,
RHO is the fastest for cache-exceed. The results are alike because
the time spent on matching tuples is minimal. The majority of the
execution time is spent processing the input. Recall that we do not
materialize the join results to better isolate the join operation.
Finding: INL outperforms other algorithms for very small selec-
tivities due to fast index scan.

7.2 Data Skew
Data skewness is common in real datasets. We evaluate it by con-
sidering the Zipfian distribution to represent non-uniform datasets.
We generated the test datasets with the Zipf factor from 0.5 to 0.99
and measured the throughput of the joins.

We observe that CHT reacts the most to data skew (Figure 14).
While the throughput of other algorithms varies slightly, CHT
improves up to an order of magnitude. A high concentration of keys
allows the CPU to access cached entries more often. For example,
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Figure 14: Skewed data distribution.

Figure 15: Throughput with sorted and unsorted input.

for cache-exceed, we observed that CHT reduces L3 cache misses
and EPC paging ten-fold when the Zipf factor increases from 0 to
0.99. PHT and INL show similar behavior for cache-fit. However,
for the larger dataset even highly skewed data does not reduce
EPC paging enough to revive the algorithm. Although EPC paging
decreased more than 60%, it was not enough for a noticeable change.

Sort-merge and radix-based families do not react strongly to data
skew. The performance of PSM depends almost entirely on sorting.
The parallel quicksort [34] used in PSM performs similarly for both
uniform and skewed data. Hence, the performance of PSM is stable.
In the case of radix joins, the cache hit rate is already high (i. e., up
to 99%), hence, there is no space for reducing cache misses.

In essence, the algorithms perform similarly with or without
data skew (see Section 5.1). Although hash-based family benefits
from high skew, the overall picture does not change.
Finding: Hash joins benefit from high skew but retain the lowest
throughput for dataset cache-exceed.

7.3 Pre-Sorted Relations
When executing more complex queries, it is not uncommon to join
already sorted data. This occurs, for instance, when joining on
a sorted attribute (e. g., clustered index), or after some operators
in the query plan (e. g., a join that produces sorted output). Thus,
we examine the throughput of the join algorithms for pre-sorted
relations. We expect the sort-merge join to benefit the most from it.
PSM can skip its sort phase and directly merge the tuples.

Figure 15 shows that indeed PSM (as well as hash-based and
nested-based) join algorithms tremendously benefit from having
pre-sorted relations. As expected, PSM achieves its high through-
put due to skipping the sort phase and directly merging the tuples.
The merging stage comprises only a fast linear scan of both ta-
bles. Surprisingly, we also observe a resurgent performance of the
hash-based and nested-based families for dataset cache-exceed. This
is because these algorithms re-use the cached records optimally,
i. e., a record is fetched from the hash table (or index) only once
and used for all the records that will match. In our experiments, we

Figure 16: CHT’s throughput
– scaling the outer relation.

Figure 17: Throughput with
IMDb on AMD CPU.

also observed that processing sorted input reduces memory page
faults (which is the initial step of EPC paging) by 99%. This reduces
the major bottleneck of these algorithms and enables CHT, PHT,
and INL to process datasets cache-fit and cache-exceed with a simi-
lar throughput. On the other side, the radix-based family simply
ignores whether the input is sorted.

Finding: All but radix-based joins benefit from sorted input.

7.4 Scaling Relations
We fix the size of the inner relation (S) and measure the throughput
while scaling the outer relation (R). We considered four sizes of S,
which cover the edge cases of the SGX caches: (1) Ssize < L2 (200
kB), (2) L2 < Ssize < L3 (6.4 MB), (3) L3 < Ssize < EPC (16 MB), and
(4) EPC < Ssize (100 MB).

We observed that the hash-based joins severely drop as the outer
table grows. CHT and PHT need memory for the hash table and as
its size increases, the throughput decreases (Figure 16). Initially, the
performance drops for all four cases, because the amount of allo-
cated memory depends only on the size of the outer table. However,
the drop for EPC < Ssize ( ) at 90 MB marks where secure mem-
ory runs out and EPC thrashing starts. Interestingly, the other three
cases experience no such drops. They maintain the throughput due
to a smaller inner relation, such that, as it scans the inner relation,
it accesses a fraction of the hash table. The rest is swapped out from
EPC and never accessed. Thus, it is equally important to monitor
the amount of allocated memory and the fraction of it being in use.
We do not present the results of the other algorithms because we ob-
served no effect on the throughput. While partitioning in radix joins
reduces the memory allocated to a minimum, sort-merge escapes
EPC paging due to shallow copying (Section 5.4).

We also ran the opposite to the previous experiment: We fix
the size of the outer relation to the same four sizes and measure
the throughput while scaling the inner relation. However, we ob-
served no behavior related to TEEs. The throughput of the joins
was primarily determined by the memory consumption with EPC
as a reflection of another cache level.

Finding: Hash joins are susceptible to the outer relation’s size.
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Figure 18: Scaling joins with the number of threads.

7.5 Scaling Threads
We start by varying the number of threads used by a join algorithm.
Figure 18 illustrates the results of this experiment. For the cache-
fit dataset, the throughput of hash-based and sort-merge joins in-
creases with the number of used threads (including hyper-threads).
Both sorting the relations and accesses to hash tables are sources of
random memory access. They cause the threads to wait for the data
and create idle periods, which can be filled using hyper-threads. In
addition, the nested-based algorithm scales almost linearly thanks
to fast, concurrent access to the index. Interestingly, radix-based
joins improve only until reaching the number of physical cores (i.e.,
three, as one core is taken by the untrusted app) and then decline.
There are two reasons behind this performance drop. First, radix-
based joins depend on task queues, which synchronize outside of
the enclave using mutexes. This leads to excessive OCALLs, which
were identified as bottlenecks (see Section 2.1). This could be par-
tially mitigated by using busy-waiting primitives that avoid context-
switching (see Section 6.3). Second, the cost of thread maintenance
dominates when processing small datasets, such as cache-fit.

In contrast, for cache-exceed (Figure 18(b)), the radix-based family
does not suffer significant performance drops using hyper-threads.
Yet, they peak using only three threads. As the CPU caches are op-
timized, radix joins cannot benefit much from hyper-threads. PSM
performs similarly for both datasets: It does not trigger EPC pag-
ing. Finally, hash- and nested-based joins maintain low throughput
because multi-threading does not alleviate EPC thrashing.

Lastly, we tested if CPU affinity, i. e., pinning a thread to a core,
changes the performance. CPU affinity often improves cache effi-
ciency and has been widely used in join implementations [7, 8, 41,
58, 71]. As of today, SGX SDK does not support this functionality,
which we implemented in our release [25]. In the experiments, we
observed that PSM is the only algorithm that benefits from CPU
affinity. It cuts L2 cache misses by half because threads never jump
between physical cores. Other algorithms do not improve because
their costs are dominated by EPC paging. Therefore, CPU affinity
helps only if other bottlenecks are eliminated.
Finding:All algorithms benefit frommore threads (similar to plain
CPU) but radix joins only until reaching the number of physical
cores. Other families benefit from hyper-threads due to a higher
cache miss ratio.

8 OTHER HARDWARE PLATFORMS
We turn our attention to VM-based enclaves. We mentioned in
Section 2.1 that the focus of this work is the process-based archi-
tecture. However, we look into the performance of other designs

Figure 19: Join algorithms on AMD and AMD SEV.

to better understand secure enclaves as a whole. An alternative to
Intel SGX for the public cloud is AMD Secure Encrypted Virtual-
ization (SEV) [2]. SEV builds on the VM-based model, which costs
and benefits were discussed in Section 2.1. Note that there are suc-
cessful attacks against the SEV’s encryption mechanisms [13, 14].
Moreover, some versions lack memory integrity protection. This
boils down to (i) users being incapable of proving that their code
runs in a secure enclave and (ii) hypervisors being able to manip-
ulate the encrypted pages without the enclave noticing. Despite
its limitations, SEV has been reported to have low performance
overhead [29]. Although the technology does not satisfy our threat
model, it is worth seeing how it performs under similar conditions.
We compared AMD SEV with native AMD (similarly to Section 5.1).
For these experiments, we used two Google Cloud VMs with AMD
EPYC 7B12 CPU, 8GB RAM, and Ubuntu 18.04.5 OS. One machine
had SEV disabled.

The results (Figure 19) are interesting in several ways. First, the
performance of native AMD execution is similar to native Intel
execution (Figure 4). RHT and RHO (both radix-based) clearly out-
perform other algorithms. Second, the performance of AMD SEV
is only slightly worse than the native. This is due to offloading
the memory encryption cost to a secure coprocessor. Third, the
differences between datasets cache-fit and cache-exceed are small.
AMD SEV is not as sensitive to memory consumption as Intel SGX
because it uses the entire main memory for storing encrypted pages.
However, this comes at the price of a much larger attack surface.

We examined the performance of AMD SEV for a real dataset.
Similar to Section 5.1, we used the IMDb dataset. The results for the
real dataset (Figure 17) resemble the results for synthetic datasets.
We observe that the performance of AMD SEV is, again, only
slightly lower than plain AMD. The VM-based model has the po-
tential for killing two birds with one stone - providing native per-
formance and hardware security. However, it is still considered a
niche in the CPU market. The research community has proposed
techniques to mitigate the two security flaws - memory integrity
protection [64] and remote attestation [14].
Synopsis: AMD SEV has a performance comparable to native
execution. However, it lacks critical security features and has not
been widely adopted.

9 THE 7 LESSONS LEARNED
Our experimental study left us with seven lessons learned:
(1) CHT for small data and RHO for large. Hash joins per-
formed better in all experiments with dataset cache-fit. For instance,
in Section 5.1 secure CHT achieved only an order of magnitude
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worse performance than insecure CHT. However, for cache-exceed,
radix joins (RHT and RHO) always outperform other algorithms.
(2) RHO is a safe choice. RHO maintained similar performance
across all inputs. Across all experiments, it is the fastest algorithm
for cache-exceed and performs relatively well for small data. If it
cannot be ensured that the data fit the EPC, RHO is a safe bet.
(3) Avoid EPC paging at all costs. Although paging expands the
very small EPC memory, it comes with a prohibitive cost. In all ex-
periments, even low paging had a major impact on the performance.
In the cases of CHT and PHT, EPC paging made the algorithms
unusable for dataset cache-exceed. We recommend designing the
relational operators without exceeding the EPC. For recent SGX
implementations, this limits the memory usage to at most 90 MB.
(4) Use all available physical cores but no locks. Multithread-
ing can significantly improve throughput. However, while hyper-
threads may cause drastic performance cuts locks lead to excessive
OCALLs. We recommend using only physical cores and no locks.
(5) Consider secure enclave operations. Data sealing and tuple
reconstruction can increase the cost of the operator 5×, which can
be reduced with chunking. An optimizer building TEE query plans
should increase pipelining and late encryption and materialization.
(6) Double-check before hiding data access patterns. Oblivi-
ousness can cut the performance of a join operator by five orders of
magnitude. Besides, learning facts from access patterns is tedious
and impractical for most cases. Decide for obliviousness only if
your use-case requires no data access patterns leakage.
(7) Stay hardware-conscious. TEEs are rapidly changing. While
AMD improves the security of SEV, Intel developed TME [35]. TME
encrypts the entire main memory and, potentially, removes EPC
paging. Yet, till today, little is known how TME works with SGX.

10 RELATEDWORK
There are three types of related work: (i) works that focus on re-
lational joins; (ii) works that combine TEEs and data processing
systems; and (iii) tooling for performance measurement on TEEs.
Relational Joins is a fundamental topic that has been studied for
decades [7–9, 11, 12, 19, 20, 41, 43, 58, 71]. DeWitt et al. [19] analyzed
the costs of in-memory joins long ago. However, Boncz et al. [12]
were the first to measure the influence of the memory address-
translation cache (TLB) on the join performance and proposed
radix partitioning as a solution. Kim et al. [41] included modern
hardware features, such as wider SIMD instructions, in the hash and
sort joins. Later, Balkensen et al. [7] improved their sort-merge join
by reducing thread synchronization andmemory bandwidth. Blanas
et al. [11] demonstrated high performance of no-partitioning hash
joins. Balkesen et al. [8] improved [11] through hardware-conscious
design, i. e., reconsidering TLB and cache misses. Lang et al. [43]
further advanced the hash join algorithm for NUMA architectures.
Barber et al. [9] designed a concise hash table to reduce the memory
consumption of hash joins.We consider these latest advances in join
algorithms in our evaluation [8, 9, 11, 41]. Secure implementations
of relational join have also been studied [1, 6, 42, 45]. Agrawal
et al. [1] proposed joins that hide access patterns but have high
complexity. Li et al. [45] reported a security issue in [1], which
they fixed but the complexity remained high. Arasu et al. [6] and
Krastnikov et al. [42] proposed joins for oblivious processing and

achieved much lower complexity. We include the latest of them [42]
in our study. Others have also evaluated join algorithms on plain
CPU [58] and in a streaming scenario [71]. However, no existing
work studies how state-of-the-art algorithms perform in TEEs.
TEE-based DBMSes are quickly emerging as data protection has
become a key factor in designing modern systems [5, 21, 42, 48,
57, 63, 72]. Opaque [72] is a secure analytics platform for a dis-
tributed setup and ObliDB [21] is a secure database engine with
obliviousness guarantees. However, both assume an oblivious mem-
ory area provided by the hardware. This is not the case for some
TEEs (e. g., Intel SGX). EnclaveDB [57] is a secure DBMS engine
based on Intel SGX but with no data access patterns protection.
Oblix [48] is a doubly-oblivious search index, i. e., it does not re-
quire the enclave’s internal memory to be oblivious to hide data
access patterns. Always Encrypted [5] is an add-on for Microsoft
SQL Server that provides data confidentiality for high-sensitivity
columns. Enclage [63] is the first enclave-native storage engine.
Only the first two works [21, 72] introduce novelties to the field of
join processing. We include join algorithms from both in our study.
In summary, TEEs have attracted the attention of both the systems
and database communities. However, none of these works provides
insights into how different join algorithms perform in TEEs.
Profiling Intel SGX has not been the focus of the study of many
works and hence only a few tools are currently available to address
this need. The SGX SDK comes with sgx-gdb, an extension for the
GNU Debugger that reports the total memory consumption of en-
claves. VTune Profiler [36] supports the analysis of sgx-hotspots that
mark frequently executed pieces of code. sgx-perf [68] is a shared
library for performance analysis. Finally, Graphene-SGX [66] is a
library OS that runs unmodified applications in secure enclaves
and provides statistics on executed programs. Although these tools
are designed to be general, our profiling framework is specialized
for analyzing the performance of relational operators.

11 CONCLUSION
We highlighted the importance of confidential computing in data
processing and pointed out the lack of tools to understand the per-
formance problem of TEEs. We introduced TEEbench, a framework
for benchmarking any relational operator in multiple TEEs. Using
the framework, we conducted a deep study of major join algorithms
running in secure enclaves. Through our experiments, we observed
that existing join algorithms underperform in secure enclaves. We
showed that they can be up to three orders of magnitude slower in
TEEs than on plain CPUs. We identified surprising findings, such
as risks of using no-partitioning joins and adaptability of RHO.
To achieve performance close to native, we need novel, hardware-
aware algorithms. Our seven lessons learned can help to design
efficient algorithms for secure enclaves and improve the adoption
of confidential computing in databases. As future work, we are
designing a secure join algorithm that utilizes the full potential of
TEEs and integrating the findings into a database optimizer.
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