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ABSTRACT
Dataframes have become universally popular as a means to represent
data in various stages of structure, and manipulate it using a rich
set of operators—thereby becoming an essential tool in the data
scientists’ toolbox. However, dataframe systems, such as pandas,
scale poorly—and are non-interactive on moderate to large datasets.
We discuss our experiences developing MODIN, our first cut at a
parallel dataframe system, which already has users across several
industries and over 1M downloads. MODIN translates pandas func-
tions into a core set of operators that are individually parallelized
via columnar, row-wise, or cell-wise decomposition rules that we
formalize in this paper. We also introduce metadata independence
to allow metadata—such as order and type—to be decoupled from
the physical representation and maintained lazily. Using rule-based
decomposition and metadata independence, along with careful en-
gineering, MODIN is able to support pandas operations across both
rows and columns on very large dataframes—unlike Koalas and
Dask DataFrames that either break down or are unable to support
such operations, while also being much faster than pandas.
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1 INTRODUCTION
Dataframe systems, such as pandas [5], have been widely embraced
by data scientists to perform tasks spanning transformation, valida-
tion, cleaning, and exploration. pandas is estimated to have 5-10M
users [3], and has been deemed to be “the most important tool in
data science” [1]. The popularity can be attributed to many factors,
including the flexible data model and rich set of functions or opera-
tors. From the data model standpoint, dataframes employ a flexible
and intuitive tabular data model, with no pre-defined schema and
support for mixed types per column, symmetric treatment of rows
and columns, and row and column ordering. Data scientists can

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 15, No. 3 ISSN 2150-8097.
doi:10.14778/3494124.3494152

quickly get started on analysis without having to declare a schema or
resolve type issues, and can employ non-relational operations useful
in data analysis (such as transpose). From the operator standpoint,
dataframe systems provide a rich and varied set tailored to data
science, allowing users to operate equivalently across both rows and
columns; pandas supports over 600 such functions. For example,
fillna allows data scientists to clean data by filling in NULL values,
without having to write custom code.

At the same time, it is well-known that dataframe systems like
pandas are non-interactive on moderate-to-large datasets, and break
down completely when operating on datasets beyond main mem-
ory [2, 6, 32–34, 42, 45]. These issues represent significant chal-
lenges for users who are unwilling or unable to switch to other,
more scalable tools, such as relational databases. To address these
shortcomings, we have been developing MODIN (https://github.com/
modin-project/modin), a parallel dataframe system, acting as a drop-
in replacement for pandas. MODIN is already being used by data
scientists across industries, including telecom, finance, and automo-
tive, has been downloaded more than 1 Million times, with over
75 contributors across 12+ institutions, and more than 6.4k GitHub
stars (as of September 2021). To build MODIN, we had to address
the dual problems of ensuring scalability of the rich set of dataframe
operators when operating on the tolerant data model, while also
providing clear, consistent, and correct semantics to users. In doing
so, we make first steps towards the vision we had outlined in our
previous paper [42], wherein we proposed a candidate dataframe
algebra. In this paper we operationalize and extend this algebra in a
real implementation of MODIN, and primarily target two key aspects,
each with their associated challenges:

Rule-based Decomposition. Unlike relational operators, dataframe
operations can be carried out at the granularity of rows, columns, or
even cells. For example, fillna accepts an input axis argument
that specifies whether NULL values are filled along rows or columns.
To apply dataframe operations in parallel, along rows or columns or
cells, we develop formal decomposition rules that allow us to rewrite
operations on the original dataframe into analogous operations on
vertical, horizontal, or block-based partitions of the dataframe while
being able to concatenate the outputs to reproduce the results on the
original operations. These decomposition rules respect the unique
properties of dataframes, such as preserving ordering and support-
ing mixed column types. Further, column types may change in the
decomposed dataframes in unpredictable ways, requiring possibly
expensive coordination across decompositions. Moreover, the flexi-
ble data model blurs the boundary between data and metadata, and
supports operators that query and manipulate data and metadata
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at the same time—identifying decomposition rules for paralleliz-
ing such operations is non-trivial. For example, unlike relational
databases, dataframes allow elevating data to and from metadata.
In addition, the labels, types, and shape of an output dataframe are
not just based on the operators, but also depend on the data (e.g.,
when dropping all columns with NULL values). Dataframe operators
commonly mix both data and metadata operations.

Finally, we outline these decomposition rules for a core set of
dataframe algebraic operators, with the understanding that the entire
set of operations (in systems like pandas) can be rewritten using this
core set. We draw on our proposed candidate algebra [42], but extend
it to make it practical—for example, our prior algebra requires us
to repeatedly take transposes to apply columnar operations; here,
we natively support columnar versions of operations. Distilling the
600+ functions in a system such as pandas into a small core set of
operators posed a substantial engineering challenge.

Metadata Independence. Dataframe systems make several metadata-
related design decisions that impact scalability and semantics. In
particular, they tightly couple metadata with the physical represen-
tation; instead, we strive for metadata independence, where the
metadata is captured at a logical level, with the physical representa-
tion of the metadata being decoupled from the logical. For instance,
pandas eagerly determines and materializes the type of each column
at the end of each operation—a time-consuming blocking step on
large dataframes. Morover, pandas often coerces types when this
may not be intended, such as casting integers into floats in columns
with a mix of both. Instead, our goal is to develop an independent
type system for dataframes that natively supports mixed and unspec-
ified types in a column, whereby we can defer type inference to only
when it is needed. Determining which algebraic operators require
type inference is not straightforward. Another important design deci-
sion in present-day dataframe systems is to physically store data in
logical order of rows and columns. While this is convenient in terms
of accessing data by row or column number, it also eliminates a de-
gree of freedom in terms of storage, and requires coordination after
each operation to materialize the ordering information associated
with each row and column. Instead, we support order independence
wherein the physical order can match the logical order on demand,
but isn’t done unless necessary. Overall, ensuring correct type and
ordering semantics for dataframe operators is a big challenge.

Our Approach. In this work, we address the scalability and seman-
tics challenges and instantiate our ideas in MODIN. MODIN adopts
a small set of core operators (proposed in our vision paper [42])
to implement the wide set of dataframe operations. To allow these
operators to be performed in parallel at scale, we identify flexible
equivalence rules that express each operator on the dataframe as
operators on decompositions or partitions thereof, with a suitable or-
dered concatenation operator to “reassemble” the overall dataframe
if needed. We formally describe the semantics of decomposition at
various granularities. MODIN internally uses these decomposition
rules to rewrite computation, by employing a flexible partitioning
scheme along rows, columns, cells, or blocks of cells, as necessary.
We identify two types of optimization opportunities for significantly
improving the system performance by intelligently applying the
decomposition rules. We also propose a dataframe type system as
implemented in MODIN and describe how typing is inherited across
the core operators, and develop techniques to support label- and
order-based access without requiring the physical order to match

the logical order. Overall, MODIN provides up to a 100× speedup
relative to pandas and Koalas on a range of workloads including
joins, type inference, and row-oriented UDFs.

Related Work. Recent efforts from the database research com-
munity has described how to rewrite dataframe operations into
SQL [32, 33, 45]; while these efforts are valuable, they only rewrite
a subset of the pandas API that is expressible as relational opera-
tors, leaving the rest to be executed as is in pandas. We describe
other differences with respect to metadata management in Section 7.
Koalas [4], Dask [44], and Ibis [12] are other dataframe imple-
mentations which support simple parallelization for row-oriented
operations; however, as we will show in our experiments, they are
unable to support columnar operations, or move data to metadata
and vice-versa. Our decomposition or partitioning schemes (row-,
column-, and block-wise partitioning) are analogous to matrix par-
titioning [28]; however, the matrix data model (with homogenous
data types) and set of operators are both very different, necessitating
different decomposition rules.

Contributions and Outline. Our contributions are as follows:
• We formalize the notion of flexible dataframe decomposi-

tions across multiple dimensions, and outline decomposition
rules for each of the core operators underlying MODIN—
allowing these operators to be executed in parallel. We also
introduce strategies for choosing between decomposition
rules in MODIN and identify two multi-operator optimiza-
tion strategies that immediately extend from the decomposi-
tion schemes (Section 3).

• We introduce metadata independence for dataframes, in-
cluding a flexible type system for dataframes that enabled
deferred and correct inference of types only when needed.
We discuss how to decouple logical ordering from physi-
cal ordering of dataframes, and a mechanism for dual but
lazy maintenance of labels along with and separate from the
data to facilitate easy lookup. We describe the ordering and
typing aspects for our core dataframe operators (Section 4).

• We describe the physical layout of MODIN and compare it
with existing systems, such as array-oriented databases [22,
41] (Section 5).

• We evaluate MODIN against existing systems like Koalas [4]
and Dask DataFrame [11], in addition to pandas [5]. We
demonstrate speedups of up to 100× over pandas and Koalas,
and 50× over Dask DataFrame. We also evaluate the end-to-
end performance of MODIN on real applications and demon-
strate performance improvements of individual optimization
techniques introduced in this paper. Finally, we perform
an experiment to show MODIN’s performance benefit in a
laptop setting (Section 6).

2 BACKGROUND AND PROBLEMS
In this section, we provide a brief recap of the dataframe data model
and MODIN’s approach from our vision paper [42] for completeness.
Then, we discuss the research problems that we focus on in this
paper, but are not addressed in the vision paper.

2.1 Background
Dataframe data model. A dataframe 𝐷 is a tuple (𝐴, 𝑅,𝐶,𝑇 ), where
𝐴 is an 𝑚 × 𝑛 array of data entries that represents the dataframe
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content, 𝑅 is an array of 𝑚 row labels, 𝐶 is an array of 𝑛 column
labels, and 𝑇 is array of types for each column [42]. Given they are
arrays, all of 𝐴, 𝑅, 𝐶, and 𝑇 are ordered. Dataframe operators either
maintain order or modify it based the semantics of the operator.
The row labels 𝑅 and column labels 𝐶 can be used to identify the
corresponding rows and columns, respectively, and they do not have
to be unique. Users can also use row/column numbers or positions
to uniquely identify a specific row/column.

MODIN architecture. The architecture of MODIN is composed of
four layers: the API layer, the MODIN core layer, and the execution
and storage layer. MODIN’s API layer is modular in order to support
multiple modes of interaction, including the pandas API, SQL, or
Spark DataFrame API [14].

To support these multiple modes, MODIN defines a compact set of
powerful and extensible operators that can implement existing APIs
and define new ones as part of the MODIN core layer. These opera-
tors include i) dataframe versions of relational ones (e.g., join),
ii) non-relational operators that query and manipulate metadata
(e.g., infer_types and transpose) to support flexible schema
and mixed types, and iii) low-level operators (e.g., map, groupby,
and explode) that accept an input function. We will describe the
semantics of decomposition for these operators in Section 3. While
the vision paper [42] introduces the core operators, it does not dis-
cuss how to parallelize them and efficiently manage metadata, which
will be the focus of this paper. We also modify the core operators to
allow for column-oriented versions of these operators (specified as
axis in pandas) to avoid expensive transposes.

After MODIN decides the approach to parallelizing the core op-
erators, they will be run by underlying execution engines, such as
Ray [37] and Dask. MODIN currently defaults to Ray. The Dask en-
gine [44] in MODIN is not to be confused with the Dask Dataframe [11].
MODIN can use Dask’s distributed scheduler, but does not share any
code with Dask Dataframe.

The storage layer of MODIN decides the storage format for the
dataframes. Currently, MODIN adopts the data format of pandas by
default, but is flexible enough to support other formats. This layer
additionally decides the caching policy for dataframes such that
MODIN can support out-of-core computation.

2.2 Research Problems
Here are the research problems we focus on in this paper.

Formal decomposition of dataframe operators. To ensure the scal-
ability of MODIN, we decompose dataframes into smaller partitions,
enabling parallel execution on the partitions. Our research problem
here is to formally define decomposition rules for the core dataframe
operators, so as to maintain ordering, support flexible access patterns
(row, column, and cell-wise), and parallelize operators unique to
dataframes. We discuss decomposition rules in Section 3.

Metadata management. MODIN has a metadata manager responsi-
ble for maintaining metadata, including data types, column and row
labels, and the mapping between logical and physical order.

The unique challenge with dataframes is that one column can
contain values from one or more types. To find these types, we need
to scan the column, which incurs significant overhead. In addition,
operators can change type information in data-dependent ways. Our
research problem here is to formally define the semantics of mixed
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Figure 1: Cell/row/column-wise decomposition
typed-columns and how types are changed across MODIN’s core
operators, and to reduce the overhead of finding types in dataframes.

Managing row and column labels is also non-trivial because meta-
data can become data, and vice-versa. For example, row labels may
be inserted into the data and operated on as data. In addition to this
interchange, users have expectations for low latency interactions
when they lookup rows or columns by labels. Therefore, the chal-
lenge here is to efficiently support querying and updating the labels
at the same time.

Finally, maintaining order is also challenging. We need to define
how order is changed across operators, which is not covered in
existing systems. In addition, inferring the precise position of each
row or column is time-consuming and should not be repeatedly
performed after each operator. Therefore, another research problem
here is how to defer this costly position inference. We address the
aforementioned research problems and challenges in Section 4.

3 DECOMPOSITION & OPTIMIZATION
We formally define the semantics of dataframe decompositions and

propose a set of decomposition rules for parallelizing operators over
dataframe decompositions.

3.1 Semantics of Dataframe Decomposition
Decomposing a dataframe means dividing the dataframe content
𝐴 into non-overlapping partitions, where for each partition 𝐴𝑘 , we
logically instantiate a new dataframe by adding the correspond-
ing row labels 𝑅𝑘 , column labels 𝐶𝑘 , and type information 𝑇𝑘 .
We propose five types of decompositions: cell-wise, row-wise,
column-wise, rowGroup-wise, and rowOrderGroup-wise. Fig-
ure 1 shows the first three types. The cell-wise decomposition decom-
poses a dataframe into a set of unit dataframes. A unit dataframe
𝐷𝑖 𝑗 = (𝐴𝑖 𝑗 , 𝑅𝑖 ,𝐶 𝑗 ,𝑇𝑗 ) includes a single value along with the corre-
sponding metadata. The row-wise and column-wise decomposition
decomposes a dataframe into a set of row and column dataframes,
respectively. A row dataframe 𝐷𝑖∗ = (𝐴𝑖∗, 𝑅𝑖 ,𝐶,𝑇 ) appends all of
the unit dataframes with the same row labels as new columns in
order. We denote this append operation as


𝑐 .

𝐷𝑖∗ =
𝑛
𝑗=1

𝑐
𝐷𝑖 𝑗

𝑐 can be generalized to append any dataframes with the same
row labels and therefore the same number of rows.


𝑟 is anal-

ogously defined as appending dataframes with the same column
labels as new rows. Note that unlike the relational context where
we union horizontal partitions of a relation, here, special care must
be taken to preserve the ordering of the dataframe partitions (which
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are themselves ordered) along rows and columns. The three types of
decomposition, as in Figure 1, can be summarized as follows:

𝐷 =

𝑚
𝑖=1

𝑟

𝑛
𝑗=1

𝑐
𝐷𝑖 𝑗 =


∗
𝐷𝑖 𝑗 =

𝑚
𝑖=1

𝑟
𝐷𝑖∗ =

𝑛
𝑗=1

𝑐
𝐷∗𝑗

The first equation represents cell-wise decomposition, for which we
use


∗ as shorthand. The second and the third equations represent

row-wise and column-wise decompositions, respectively.
The rowGroup-wise decomposition is a special case of row-wise

decomposition, where we partition the dataframe into groups of rows
based on a composite key of a set of columns 𝑐𝑜𝑙𝑠 and each group 𝑖

includes the rows whose composite key equals a distinct key 𝑘𝑖 . The
rowGroup-wise decomposition can be represented as

𝐷 =

𝑙
𝑖=1 𝑔 (𝑐𝑜𝑙𝑠)

𝐷𝑘𝑖 , where 𝐷𝑘𝑖 = 𝑓 𝑖𝑙𝑡𝑒𝑟𝑟 (𝐷, 𝑐𝑜𝑙𝑠 = 𝑘𝑖 )

𝑓 𝑖𝑙𝑡𝑒𝑟𝑟 selects the rows whose 𝑐𝑜𝑙𝑠’s composite key equals 𝑘𝑖 and
𝑔 (𝑐𝑜𝑙𝑠) appends the groups in the natural order that they arise

in the dataframe. This decomposition is commonly used in oper-
ators such as group-by and equi-join. Another decomposition is
the rowOrderGroup-wise decomposition. Compared to rowGroup,
which uses the natural order, rowOrderGroup orders groups by the
groupby key, which is used by the sort operator. We will discuss this
decomposition in Section 3.2.3 when we introduce the sort operator.

3.2 Decomposition Rules for Operators
We now describe the decomposition rules for the core operators
in MODIN. A core operator often takes a function as input. The
input function can be written by the user, e.g., the apply function in
pandas, which accepts a general purpose Python function as input,
in which case this is a user-defined function (UDF). Or this function
can be in-built into the system by the developer implementing the
API in MODIN , e.g., fillna in pandas, where NULL values are
filled in using a specific approach. We call this a system predefined
function (SPF).

cell-wise

row-wise column-wise

rowGroup-wise rowOrderGroup-wise

Figure 2: The hierarchy of decompositions: a parent node repre-
sents a more general decomposition than its children.

Each decomposition rule uses one or more types of decomposi-
tions discussed above. The five types of decomposition form a tree
structure (shown in Figure 2) where a parent node represents a more
general decomposition than its child nodes. For example, a row-
wise decomposition can be viewed to be a cell-wise decomposition,
but not the other way around. In addition, since a rowGroup-wise
decomposition partitions a dataframe into groups of rows, it is a
special case of the row-wise decomposition. When discussing the
decomposition rules of each operator, we use the most general de-
composition type because replacing this one with its descendants
will also result in valid decomposition rules for this operator. Note
that if an operator processes the input dataframe at the granularity
of rows/columns, we say that it is operating along the row/column
axis, respectively.

Rulebox 1: decomposition rules for low-level operators

map :𝑚𝑎𝑝∗ (𝑓𝑚𝑎𝑝
∗ , 𝐷) =

𝑚
𝑖=1

𝑟

𝑛
𝑗=1

𝑐
𝑓
𝑚𝑎𝑝
∗ (𝐷𝑖 𝑗 )

explode : 𝑒𝑥𝑝𝑙𝑜𝑑𝑒𝑟 (𝑓 𝑒𝑥𝑝𝑟 , 𝐷) =
𝑚
𝑖=1

𝑟
𝑓
𝑒𝑥𝑝
𝑟 (𝐷𝑖∗)

groupby : 𝑔𝑏 (𝑜𝑝, 𝑝𝑎𝑟𝑎𝑚,𝑐𝑜𝑙𝑠, 𝐷) =
𝑙

𝑖=1 𝑔 (𝑐𝑜𝑙𝑠 )
𝑜𝑝 (𝑝𝑎𝑟𝑎𝑚,𝐷𝑘𝑖 )

where 𝐷𝑘𝑖 = 𝑓 𝑖𝑙𝑡𝑒𝑟𝑟 (𝑐𝑜𝑙𝑠 = 𝑘𝑖 , 𝐷)

reduce : 𝑟𝑒𝑑𝑢𝑐𝑒𝑟 (𝑓 𝑟𝑒𝑑𝑟 , 𝐷) =
𝑚
𝑖=1

𝑟
𝑓 𝑟𝑒𝑑𝑟 (𝐷𝑖∗)

We first discuss the low-level operators. Then, we present the
decomposition rules for non-relational operators that query and ma-
nipulate metadata. Subsequently, we discuss the operators adapted
from relational operators. We defer discussion on metadata, like type
inference and ordering, to Section 4. In the following, we use 𝑓 to
represent a UDF or SPF (system predefined function) while ℎ is used
to represent an SPF, as defined early on in Section 3.

3.2.1 Low-level operators. The low-level operators include map,
explode, groupby, and reduce.

map and explode: The map operator accepts a UDF or SPF to
transform an input dataframe into a new dataframe maintaining the
same shape and metadata (e.g., row/column labels) as the input.
If the UDF/SPF 𝑓

𝑚𝑎𝑝
∗ is applied to each cell and outputs a single

value, the map operator can use cell-wise decomposition 𝑚𝑎𝑝∗ as
shown in Rulebox 1. Based on Figure 2, map also supports the
descendant decompositions (e.g., a row-wise decomposition,𝑚𝑎𝑝𝑟 ,
is also possible if 𝑓 is applied to each row). One use of map is to
implement fillna that fills NULL values using a specified method.

The explode operator uses a UDF/SPF to transform an input
dataframe into a new one with a different shape and metadata from
the input. The SPF/UDF can be applied row-wise or column-wise.
When applied row-wise (i.e., 𝑓 𝑒𝑥𝑝𝑟 in Rulebox 1), each row expands
into one or more rows, while maintaining the same column labels.
Similarly, 𝑓 𝑒𝑥𝑝𝑐 can transform a column into one or multiple columns
with the same row labels. When new rows or columns are gener-
ated, their corresponding row or column labels are derived from the
input counterparts. Therefore, the explode operator supports row-
wise (i.e., 𝑒𝑥𝑝𝑙𝑜𝑑𝑒𝑟 in Rulebox 1) and column-wise decompositions,
depending on how it is applied.

groupby: As shown in Rulebox 1, the groupby operator takes a
dataframe 𝐷, a set of groupby columns 𝑐𝑜𝑙𝑠, and a MODIN opera-
tor 𝑜𝑝 with parameters 𝑝𝑎𝑟𝑎𝑚 as input. It groups the rows of the
dataframe based on the composite key of the groupby columns 𝑐𝑜𝑙𝑠,
and applies the input MODIN operator 𝑜𝑝 to each group1, thereby
supporting the rowGroup-wise decomposition. One example usage
is to replace NULL values in each group with a value that is based on
the key of the groupby columns 𝑐𝑜𝑙𝑠. In this case, a map can be used
to replace NULL values for each group.

reduce: The reduce operator aggregates each row/column dataframe
into a single value based on a SPF/UDF (e.g., 𝑓 𝑟𝑒𝑑𝑟 in Rulebox 1);
one possible SPF could be average. Therefore, the row-wise de-
composition (i.e., 𝑟𝑒𝑑𝑢𝑐𝑒𝑟 in Rulebox 1) breaks the dataframe into
row dataframes 𝐷𝑖∗, applies the function 𝑓 𝑟𝑒𝑑𝑟 to each one, and

1Currently, MODIN does not allow operators that change the number of columns or the
column labels in a groupby operator
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Rulebox 2: decomposition rules for metadata operators

inferT : 𝑖𝑛𝑓 𝑒𝑟𝑇 (𝐷) =
𝑛
𝑗=1

𝑐
ℎ
𝑖𝑛𝑓 𝑒𝑟
𝑐 (𝐷∗𝑗 )

filterT : 𝑓 𝑖𝑙𝑡𝑒𝑟𝑇 (𝐷, 𝑡 ) =
𝑚
𝑖=1

𝑟

𝑛
𝑗=1

𝑐
𝑚𝑎𝑠𝑘 (ℎ𝑙𝑏∗ (𝑡, 𝐷), 𝐷𝑖 𝑗 )

to_labels : 𝑡𝑜_𝑙𝑎𝑏𝑒𝑙𝑠 (𝑐𝑜𝑙𝑠, 𝐷) =
𝑚
𝑖=1

𝑟
ℎ𝑡𝑜𝑟 (𝑐𝑜𝑙𝑠, 𝐷𝑖∗)

from_labels : 𝑓 𝑟𝑜𝑚_𝑙𝑎𝑏𝑒𝑙𝑠 (𝐷) =
𝑚
𝑖=1

𝑟
ℎ
𝑓 𝑟𝑜𝑚
𝑟 (𝐷𝑖∗)

transpose : 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒∗ (𝐷) =
𝑚
𝑖=1

𝑟

𝑛
𝑗=1

𝑐
ℎ𝑡𝑟𝑎𝑛𝑠∗ (𝐷𝑖 𝑗 )

outputs a unit dataframe. For some functions (e.g., sum), one possi-
ble optimization is to further decompose a row dataframe 𝐷𝑖∗ into
smaller partitions, apply this function for each partition, and ag-
gregate the results. The column-wise decomposition of reduce is
defined symmetrically.

3.2.2 Operators for manipulating metadata. We now introduce
the operators for querying and manipulating metadata.

infer_types and filter_by_types: To support mixed types in
a column, we provide the infer_types operator to infer the type
of a column by inspecting the type of each cell within the column
and finding the common type. MODIN organizes the types in a tree
structure, where a parent node represents a more generic type than
its child nodes. Section 4 introduces a dataframe type system, as
implemented in MODIN. The infer_types operator applies a SPF
ℎ
𝑖𝑛𝑓 𝑒𝑟
𝑐 to each column dataframe and generates a new one with

the updated type information (rule inferT in in Rulebox 2). The
filter_by_types operator checks the column types and filters out
the columns whose types are not in a specified list of types (rule
filterT in Rulebox 2). It uses a SPF ℎ𝑙𝑏∗ to find the column labels
whose column types are in the specified types 𝑡 and adopts a mask
operator to project the corresponding columns. The mask operator
extracts cells based on the specified row/column labels and will be
discussed in Section 3.2.3.

to_labels and from_labels: to_labels replaces the dataframe’s
row labels with one or more columns of data, while from_labels
operator converts the row labels into a column. Both operators sup-
port row-wise decomposition, but not column-wise. Their decompo-
sition rules are presented in Rulebox 2. to_labels uses the SPF ℎ𝑡𝑜𝑟
to replace each row dataframe’s row label with the data in columns
𝑐𝑜𝑙𝑠 and deletes the 𝑐𝑜𝑙𝑠 to generate a new row dataframe. The new
row dataframes are appended to generate the output. from_labels
uses SPF ℎ

𝑓 𝑟𝑜𝑚
𝑟 to do the opposite.

transpose: The transpose operator switches the row and column
data of a dataframe. It supports cell-wise decomposition: for each
unit dataframe, we swap the row and column label using a SPF
ℎ𝑡𝑟𝑎𝑛𝑠∗ as shown in Rulebox 2. We note that one system optimization
in MODIN is that we do not necessarily physically swap data and
labels for the transpose operator, instead modifying the mapping
from physical to logical for a no-shuffle dataframe transposition.

3.2.3 Relational operators. The dataframe operators that are
adapted from relational operators include mask, filter, window,
sort, join, rename, and concat.

Rulebox 3: decomposition rules for relational operators

mask :𝑚𝑎𝑠𝑘∗ (𝑙𝑎𝑏𝑒𝑙𝑠, 𝐷) =
𝑚
𝑖=1

𝑟

𝑛
𝑗=1

𝑐
ℎ𝑚𝑎𝑠𝑘
∗ (𝑙𝑎𝑏𝑒𝑙𝑠, 𝐷𝑖 𝑗 )

:𝑚𝑎𝑠𝑘𝑟 (𝑟𝑛𝑆𝑒𝑡, 𝐷) =
𝑚
𝑖=1

𝑟
I[𝑖 ∈ 𝑟𝑛𝑆𝑒𝑡 ]𝐷𝑖∗

filter : 𝑓 𝑖𝑙𝑡𝑒𝑟𝑟 (𝑓 𝑓 𝑙𝑡
𝑟 , 𝐷) =

𝑚
𝑖=1

𝑟
𝑓
𝑓 𝑙𝑡
𝑟 (𝐷𝑖∗)

window : 𝑤𝑖𝑛𝑑𝑜𝑤𝑟 (𝑓 𝑤𝑖𝑛
𝑟 , 𝑤, 𝐷) =

𝑚
𝑖=1

𝑟

𝑛
𝑗=1

𝑐
𝑓 𝑤𝑖𝑛
𝑟 (

𝑗+𝑤
𝑘=𝑗

𝑐
𝐷𝑖𝑘 )

sort : 𝑠𝑜𝑟𝑡 (𝑐𝑜𝑙𝑠, 𝐷) =
𝑚
𝑖=1 𝑜 (𝑐𝑜𝑙𝑠 )

ℎ𝑠𝑜𝑟𝑡𝑜 (𝑐𝑜𝑙𝑠, 𝐷 [𝑝𝑖 ,𝑝𝑖+1 ) )

where 𝐷 [𝑝𝑖 ,𝑝𝑖+1 ) = 𝑓 𝑖𝑙𝑡𝑒𝑟𝑟 (𝑝𝑖 ⩽ 𝑐𝑜𝑙𝑠 < 𝑝𝑖+1, 𝐷)
join : 𝑗𝑜𝑖𝑛 (𝑐𝑜𝑙𝑠𝑙 , 𝐷𝑙 , 𝑐𝑜𝑙𝑠𝑟 , 𝐷𝑟 ) = 𝑗𝑜𝑖𝑛 (


𝑔
𝐷𝑙

𝑘 ,


𝑔
𝐷𝑟

𝑘 )

=


𝑔
𝑐𝑟𝑜𝑠𝑠_𝑝𝑟𝑜𝑑 (𝐷𝑙

𝑘 , 𝐷
𝑟
𝑘 )

where 𝐷𝑙
𝑘
= 𝑓 𝑖𝑙𝑡𝑒𝑟𝑟 (𝑐𝑜𝑙𝑠𝑙 = 𝑘, 𝐷𝑙 )

𝐷𝑟
𝑘
= 𝑓 𝑖𝑙𝑡𝑒𝑟𝑟 (𝑐𝑜𝑙𝑠𝑟 = 𝑘, 𝐷𝑟 )

concat : 𝑐𝑜𝑛𝑐𝑎𝑡𝑜𝑢𝑡𝑟 (𝐷1, 𝐷2) =


𝑘∈{1,2}
𝑟

𝑚𝑘
𝑖=1

𝑟
ℎ𝑜𝑢𝑡𝑟 (𝑙𝑎𝑏𝑒𝑙𝑠𝑜𝑢𝑡 , 𝐷𝑘

𝑖∗)

: 𝑐𝑜𝑛𝑐𝑎𝑡𝑖𝑛𝑟 (𝐷1, 𝐷2) =


𝑘∈{1,2}
𝑟

𝑚𝑘
𝑖=1

𝑟
𝑚𝑎𝑠𝑘𝑟 (𝑙𝑎𝑏𝑒𝑙𝑠𝑖𝑛, 𝐷𝑘

𝑖∗)
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d21 d22 d23

d11 d12 d13

d21 d22 d23

d12 d13

d22 d23

reduce each window
for each row

d'
11 d'

12 d'
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d'
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22 d'
23

row-wise window
window size = 2

row-wise
decomposition

Figure 3: An example of window operator

mask and filter: The mask and filter operators are adapted
from relational operators project and select. The main differ-
ence from their relational counterparts is that mask and filter can
be applied to both the row and column axes, and the output dataframe
maintains the same ordering as the input. The mask operator allows
developers to project and select the entries in a dataframe using
column labels and row labels together. mask also allows developers
to specify the row and column numbers. A mask that subselects
dataframe entries based on labels supports cell-wise decomposition,
that is, for each unit dataframe, the mask discards this unit dataframe
if its corresponding row and column labels are not in the specified
labels. Similarly, a mask that subselects dataframe entries by speci-
fied row numbers also supports cell-wise decomposition, where unit
dataframes are discarded if their row number is not in the specified
set. We express this using an indicator function I[𝑖 ∈ 𝑟𝑛𝑆𝑒𝑡] in
Rulebox 3. The column case is symmetric. The filter operator
eliminates rows/columns that do not satisfy certain data-specific
conditions (as opposed to label/order-specific conditions as in mask)
as encapsulated in a SPF/UDF. Rulebox 3 shows the decomposition
rules for mask and filter.

window: The window operator performs a sliding window operation
by grouping dataframe cells in a column-wise or row-wise manner,
and for each set of windowed cells, uses a SPF/UDF to reduce
them to a single value. We use an example in Figure 3 to explain the
decomposition rule of window in Rulebox 3. Here, the window size
is 2 and the window operator operates on the row axis. So we use
row-wise decomposition and for each row dataframe, we perform a
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window operation (i.e., each window includes 2 cells or less shown in
Figure 3). For each window of cells (i.e.,

𝑗+𝑤
𝑘=𝑗 𝑐

𝐷𝑖𝑘 in Rulebox 3),

we use a function 𝑓 𝑤𝑖𝑛
𝑟 to reduce them into a unit dataframe. The

generated unit dataframes are appended as new columns to generate
a new row dataframe (via

𝑛
𝑗=1𝑐 ). Finally, the row dataframes are

appended as new rows. The column-wise decomposition can be
defined symmetrically and is omitted.

sort, join, rename, and concat: The sort and join operators
have the same semantics as the relational counterparts. Their de-
composition rules are shown in Rulebox 3. The sort operator
uses rowOrderGroup-wise decomposition (i.e.,


𝑜 (𝑐𝑜𝑙𝑠) ), where

dataframe rows are range-partitioned based on the sorting columns
𝑐𝑜𝑙𝑠 such that the 𝑐𝑜𝑙𝑠 values across partitions are ordered. As shown
in Rulebox 3, the 𝑐𝑜𝑙𝑠 values of the rows in one partition 𝑖 fall into
a value range [𝑝𝑖 , 𝑝𝑖+1), where 𝑝𝑖 is the minimum key of a parti-
tion. We then use the function ℎ𝑠𝑜𝑟𝑡𝑜 to sort each partition indepen-
dently to complete the sort operation. The join2 operator supports
rowGroup-wise decomposition. The rows of input dataframes are
partitioned by the join keys (i.e., 𝑐𝑜𝑙𝑠𝑙 and 𝑐𝑜𝑙𝑠𝑟 for 𝐷𝑙 and 𝐷𝑟 in
Rulebox 3, respectively) and each pair of partitions 𝐷𝑙

𝑘
and 𝐷𝑟

𝑘
is

joined locally using cross product 𝑐𝑟𝑜𝑠𝑠_𝑝𝑟𝑜𝑑. The rename opera-
tor replaces the input dataframe’s row and column labels with the
specified new labels. Since rename does not access the dataframe
content, it does not have a decomposition rule.

The concat operator is analogous to union in relational alge-
bra. The difference here is that concat does not require the input
dataframes have the same row or column labels and can applied on
both the column and row axes. Additionally, concat maintains the
row and column ordering of the input dataframes. Our following dis-
cussion focuses on row-wise concat; here, concat appends rows
while joining their column labels. MODIN currently supports inner
and outer label join. concat with outer label join (i.e., 𝑐𝑜𝑛𝑐𝑎𝑡𝑜𝑢𝑡

in Rulebox 3) includes three steps: 1) take the union of the col-
umn labels of two input dataframes (i.e., 𝑙𝑎𝑏𝑒𝑙𝑠𝑜𝑢𝑡 ); 2) for each row
dataframe, use a function to extend its column labels to the union
column labels and filling the newly generated cells with NULL (i.e.,
ℎ𝑜𝑢𝑡𝑟 (𝑙𝑎𝑏𝑒𝑙𝑠𝑜𝑢𝑡 , 𝐷𝑘

𝑖∗)); 3) append the new rows together. concat us-
ing inner label join takes the intersection of the input column labels
(i.e., 𝑙𝑎𝑏𝑒𝑙𝑠𝑖𝑛) and uses the intersected column labels to project the
input rows (i.e., using𝑚𝑎𝑠𝑘𝑟 (𝑙𝑎𝑏𝑒𝑙𝑠𝑖𝑛, 𝐷𝑘

𝑖∗)).
Our decomposition rules are not covered by existing systems

for three reasons. First, our rules maintain logical order (i.e., ap-
pend maintains the ordering). Second, we define rules for operators
that are unique to dataframes, such as to_label and from_label.
Third, we consider five different types of decompositions whereas
relational or array-oriented databases only support a subset of the
decomposition rules covered by MODIN. Specifically, relational
databases do not support cell-wise and column-wise decomposition
because its semantics do not support applying the same operation
in parallel to each cell or column. Array-oriented databases do not
support rowGroup-wise and rowOrderGroup-wise decompositions.

3.3 Applying Decomposition Rules
MODIN selects the decomposition rules based on the correspond-
ing dataframe operations written by users. For example, the axis
2For simplicity, we assume an equi-join and omit other join types.

mapr map* mapr

mapr mapr mapr

a) eager data pipelining

Rewrite map*

mapr map* mapc

mapr mapc mapc

b) selective data exchange

Rewrite map*

P E

P P

P E

E P

P: data pipeline E: data exchange

Figure 4: Optimization opportunities from applying different
decomposition rules

parameter in a sum operation determines whether one is summing
over rows or columns, which subsequently determines if we should
use row-wise or column-wise decomposition. After assigning a de-
composition rule to each operator, we decide on the mechanisms for
communicating data across different operators. If one operator out-
puts data to another operator and they have the same decomposition
rules, then we will pipeline the output data. Otherwise, we exchange
data across the two operators.

In addition, we identify two potential optimization opportunities
if we choose the decomposition rules intelligently. Since some op-
erators can be decomposed in different ways, we can change the
decomposition pattern based on the immediate preceding or suc-
ceeding operator decompositions. For example, a 𝑚𝑎𝑝∗ operator
can be rewritten to 𝑚𝑎𝑝𝑟 or 𝑚𝑎𝑝𝑐 and maintains the same seman-
tics because 𝑚𝑎𝑝∗ is a more general version of 𝑚𝑎𝑝𝑟 and 𝑚𝑎𝑝𝑐 as
shown in Figure 2. Choosing different decomposition rules for the
same set of operators can result in different performance. Our exper-
iments in Section 6.4 demonstrate that selecting decomposition rules
appropriately can significantly improve the performance of MODIN.

Eager data pipelining. This optimization applies the decomposition
rules to allow more data pipelining. Figure 4(a) shows an exam-
ple. Here, users issue three chained map operators. The SDF/UDFs
of the first and the third operator need to be applied to each row
(i.e.𝑚𝑎𝑝𝑟 ) while the second SDF/UDF can be applied to each cell
(i.e., 𝑚𝑎𝑝∗). Independently applying the decomposition rules for
each operator results in a plan where the first and the third operator
use row-wise decomposition and the second operator uses cell-wise
decomposition. We can pipeline the data from a row-wise decom-
position to a cell-wise decomposition, but need to exchange [29]
data (via data shuffling) if the order of the two decompositions is
reversed because the cell-wise decomposition is more general than
row-wise decomposition. Therefore, the first plan in Figure 4(a) re-
quires data exchange when we pass data from the second to the third
operator. One optimization opportunity here is if we “downgrade”
the cell-wise decomposition into a row-wise decomposition, then
the three operators can be pipelined as shown in the second plan of
Figure 4(a). Therefore, an interesting optimization here is how to
opportunistically rewrite a decomposition into a more specific one
to enable more data pipelining.

Selective data exchange. We can also apply the decomposition rules
to swap data exchange and pipeline across different operators. Data
exchange is generally more costly than data pipelining. Therefore,
we prefer to exchange (or shuffle) less data at the cost of pipelining
more data. Figure 4(b) shows an example where users issue three
map operators. The first and third one require row-wise (i.e.,𝑚𝑎𝑝𝑟 )
and column-wise decomposition (i.e.,𝑚𝑎𝑝𝑐 ), respectively. The sec-
ond one uses a cell-wise decomposition (i.e.,𝑚𝑎𝑝∗). In this plan, we
need to exchange data between the second and the third operator.
An alternative plan is to rewrite the cell-wise decomposition into
a column-wise one (i.e., the second plan in Figure 4(b)). This plan
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Figure 5: Dataframe Type System Hierarchy
needs to exchange data for the first two operators with the benefit
of pipelining data between the second and the third operators. De-
pending on the amount of data passed across the three operators, the
two plans prevail in different cases. The optimization here involves
applying the decomposition rules to find the best plan that reduces
the cost of data exchange.
The two aforementioned optimizations are not possible in other
systems, such as Dask Dataframe, because it only supports row-wise
decomposition. MODIN supports the two optimizations due to its
flexible decomposition rules. To apply the two optimizations, MO-
DIN can use a cost model to quantify the cost of each candidate
plan (e.g., choosing when to pipeline and when to exchange data)
and choose one with the minimal cost. MODIN currently does not
automatically support applying the two optimizations. Integrating
them into a holistic optimizer is left as future work.

4 DATAFRAME METADATA MANAGEMENT
MODIN manages various types of metadata: data types, row/col-
umn labels, and mapping between the logical order of columns and
rows to the physical order. We employ metadata independence, i.e.,
metadata is logically maintained and decoupled from its physical
representation. Metadata independence enables lazy materialization
to reduce overheads while ensuring correct semantics.

4.1 Data Types
Unlike relations, columns in a dataframe can have mixed types,
which poses multiple unique challenges. First, querying the type
of a column may require a full scan of that column. In addition,
dataframe operations can change the type of a column in a data-
dependent way (e.g., map). To maintain precise types information,
we need perform column scanning repeatedly. Next, we need to
formally define the semantics of a column with mixed types and
how each operator modifies types information, especially when the
output type is data-dependent. Finally, this type system needs to be
extensible to support new types defined by users.

We propose a hierarchical type system for dataframes to address
the aforementioned challenges. We define how the core operators
modify types. With the clear semantics defined, MODIN can defer
type inference to when it is absolutely necessary.

Dataframe Type System. Our type system supports mixed types,
unspecified types, and type inference. Types are organized into a
hierarchy; Figure 5 shows one instantiation. Here, types including
integers, boolean, float are regarded as a number type. This number
type along with string, category, and other types inherit ANY. We
additionally have designation we call UNSPECIFIED, which repre-
sents columns where the type has not been determined yet. All types,
except ANY and UNSPECIFIED, are basic types and inherit ANY, but
MODIN can support more complicated types using the proposed
type system. NULLs in MODIN have the same semantics as NULLs
in relational databases. Our type system defines types only along
columns and follows two invariants.

Invariant 4.1. The output column types of the operators that ac-
cept a UDF/SDF is either provided at invocation or designated as
UNSPECIFIED and implicitly inferred. Type inference is deferred
until an operator requires it.

A column type with the designation of UNSPECIFIED can occur
after operators that allow UDF/SDFs (e.g., map). This designation
enables the user to apply functions anonymously without needing to
know what the output type(s) will be, and helps avoid calculating
and materializing type information when it may never be needed
by the user. Note that UNSPECIFIED does not inherit ANY, because
UNSPECIFIED is a designation specifically used to defer the materi-
alization and inference of a given column’s type.

Invariant 4.2. A dataframe column 𝑖’s type 𝑇𝑖 is always correct,
even though 𝑇𝑖 may not be the most precise type for 𝑖.

MODIN does not implicitly recalculate materialized types, even
if there is a more specific type that can describe a given column.
Suppose a dataframe column has all integers except a single string,
resulting in a column of type ANY. Here, a data scientist can remove
the string with a filter, resulting in a column where all data val-
ues are integers. In this case, the type of the column remains ANY,
despite a more precise type designation being possible. MODIN can
match the behavior of pandas by calling infer_types as a post-
processing step. Our type system gives users the flexibility to defer
type inference for performance, or to match pandas semantics that
uses eager type inference by calling infer_types after a given
pandas function.

Type Rules by Operator. Each operator from Section 3.2 has two
rules for handling column types: 1) whether the input types must
be known to perform the operator, and 2) whether the output types
are inherited from the input dataframe(s) or the output types may be
specified or are UNSPECIFIED. Table 1 describes data type handling
rules for each operator. The column“Input Types” lists whether the
data types must be specified before that operator is applied. For
sort and join, the input dataframe types must be known upfront
to determine whether or not the values can be compared. The type
system will infer and update the types implicitly via infer_types if
the input dataframe’s types are UNSPECIFIED and the operator needs
to know the input types (i.e., “Inferred” in Table 1). The “Output
Types” column lists how the output types are derived. “Inherited”
means that the output data types will match the input dataframe’s
types or remain UNSPECIFIED. For example, for a filter, types
are not modified, even if they are UNSPECIFIED. For operators that
allow a UDF/SDF as input, the output types can be specified by the
developer (i.e., “Specified” in Table 1), or left unspecified. Suppose
a developer wants to perform a map with a SDF that returns TRUE
for non-NULL values, and FALSE otherwise. Since all columns in the
output are known to be boolean, this information can be provided
by the developer implementing the SDF to the map upfront to avoid
costly type inference. Alternatively, when the types of the output
dataframe after a map is not known, it ends up being UNSPECIFIED
for every column.

We believe our type system provides a consistent and correct
semantics to support mixed types. For example, unlike pandas, we
will not cast floating points to integers when they are mixed in a
column. This maintains the accuracy of a column with such mixed
types. In addition, different from pandas that does not support NULL
in integer columns, MODIN natively supports NULL and produces
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Table 1: Type inference and changes by operator.
Operator Input Types Output Types
mask N Inherited
filter_by_types Y Inherited
map N Specified or Unspecified
filter N Inherited
explode N Specified or Unspecified
reduce N Specified or Unspecified
window N Specified or Unspecified
groupby N Inherited
infer_types N Inferred
join Y Inherited
concat N Inherited
transpose N Unspecified
to_labels N Inherited
from_labels N Inherited
sort Y Inherited
rename N Inherited

correct results for left, right, and outer joins. Finally, this type sys-
tem allows MODIN to easily support new user-defined types while
maintaining consistent semantics.

While the high-level idea of lazy type inference has been adopted
before [31], our contribution is the type system in the dataframe
context and the formal description of the type semantics of dataframe
operators, which enables the lazy type inference optimization.

We note that the type system does not change the physical data
types, but defines the type of a column with mixed physical data
types and allows for deferring the type inference. The physical data
types of the data entries in a dataframe are determined by users’
programs. For example, a map operator can output data entries with
different types (e.g., int and float). Since the output data type of this
operator is undetermined (i.e., UNSPECIFIED), we can always infer
the type by physically scanning the dataframe with mixed int and
float, and return a number type. Since this process is time-consuming,
we defer the type inference until required.

4.2 Label and Order Management
We now discuss how MODIN manages labels and order.

Dataframe label management. The labels of a dataframe are part
of the metadata, but have unique properties which allow them to
be treated as data at any point. This presents an interesting chal-
lenge: the metadata manager must be flexible enough to allow the
labels to move into the data (i.e., to_label) and vice versa (i.e.,
from_label). In addition to the flexibility of the labels, there are
also latency expectations for mask. Thus, the system must be able to
quickly execute queries on the labels, while also remaining flexible
enough to move the labels into the data. We address this challenge
by maintaining two sets of labels. One set of labels is placed near the
data to allow fast conversion between labels and data, the other set is
maintained externally as an indexing structure to support querying
based on labels. MODIN lazily synchronizes the two sets of labels
when one set is changed and the other set is accessed. For example,
rename can change the column labels. If it is followed by a map
operator that adopts column-wise decomposition, we do not need to
synchronize the column labels because this map operator does not
need to access the labels. Unlike regular caching, our label caching
is aware of the semantics of dataframe operators, enabling lazy label
synchronization.

Logical Order management. Dataframes are logically ordered.
This logical order provides a consistent view of the data: after each
transformation, the rows/columns are shown in the same order. Each
row/column is also associated with a numeric offset, or position;
users can select rows/columns based on this position via mask.

Table 2: Order and position needs and changes by operator.
Operator Input Order Position Output Order & Position
mask N Y* Parameter-Dependent
filter_by_types N N Inherited | Updated
map N Y⋄ Inherited from Inputs
filter N Y⋄ Inherited | Updated
explode N Y⋄ Inherited | Updated
reduce N Y⋄ Inherited
window Y N Inherited
groupby N N Data-dependent
infer_types N N Inherited
join N N Inherited*
concat N N Inherited*
transpose N N Inherited
to_labels N N Inherited
from_labels N Y Inherited
sort N N Data-dependent
rename N N Inherited

In systems like pandas, the logical and physical layer are tightly
coupled. Instead, we propose a logical order management system
that maintains the logical order and physical positions separately,
that is, MODIN will eagerly maintain the logical order, but lazily
materialize positions, computing them when needed. This is because
materializing and maintaining positions is costly, and positions are
not frequently used. For example, a filter along rows does not
change the order of the rows, but changes the positions of many
rows. Maintaining these positions eagerly is costly since it requires
a full scan of the dataframe.

The rules for order and position materialization and updates for
each operator are listed in Table 2. The “Input Order” column spec-
ifies whether the column’s order needs to be known (but not the
position) before the operator can be applied. Among the operators,
window is the only operator that requires order but not position
information, because window parameter SDF/UDFs operate anony-
mously on the sliding window. The “Position” column specifies
whether the specific positions must be computed before the operator
can be applied. These are distinct requirements because there are
cases where the order may be known implicitly but not the position.
For mask, the positions are only needed when the parameters call
for using position as the selection criteria; for label-based mask,
positions are not required. The values marked with a Y⋄ in the “Po-
sition” column only require the position to be materialized on the
axis opposite that which the operators are applied. For example, to
apply a map across the rows (𝑚𝑎𝑝𝑟 ), the system need not calculate
the positions for the rows because the operator is decomposed across
that axis. In this case, the column positions are required on the input
dataframe because the SDF/UDF can access values based on posi-
tion. Operators that decompose cell-wise do not need to calculate
the positions of the input dataframe.

The last column of Table 2, “Output Order & Position“ shows how
the output order is determined. “Parameter-dependent” means the
order and positions are updated based on the values provided to the
operator as parameters. For mask, the order of the parameter labels
(or positions) is the output order and positions are derived from these
parameters. “Inherited | Updated” indicates that the output order is
identical to the input dataframe’s order, but the positions are changed
(e.g., filter). “Inherited” means the order and positions remain
unchanged from the input (e.g., map). “Data-dependent” indicates
that the order and positions are derived from the data values, usually
due to sorting or grouping. One example here is groupby, which
groups rows/columns and generates a new order based how groups
are generated and appended. The order of join and concat are
based first on the order of the left input dataframe, then on the right
input dataframes(s).
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Figure 6: Scalability of operators supported by MODIN and the baselines

5 PHYSICAL LAYOUT
In this section, we discuss MODIN’s physical layout that flexibly
supports different types of decompositions and correctly maintains
the unique metadata of dataframes.

A dataframe in MODIN is physically partitioned into blocks along
both the column and row axis such that MODIN can easily support
row-wise, column-wise, and cell-wise decompositions without repar-
titioning the data. Each data block, in addition to storing the data
entries, stores metadata including partial row/column labels of the
dataframe, and the type and ordering information within that block.
Therefore, a data block can be regarded as a “mini” dataframe and is
currently implemented using the data format of pandas dataframes.
To maintain global row/column order across blocks, MODIN assigns
each block a number based on their order and stores the assigned
numbers in a metadata manager.

An operator that uses row-wise or column-wise decomposition
may require shipping data across worker nodes. Therefore, the block
placement policy can impact MODIN’s performance. By default,
we prioritize placing blocks that belong to the same columns in
the same node because column-wise access and manipulation are
far more common than row-wise counterparts. Choosing the best
placement policy is left for future work. For rowGroup-wise and
rowOrderGroup-wise decompositions, we need to repartition the
dataframe and maintain the order as discussed in Section 4.

While MODIN’s physical layout design is not this paper’s major
contribution, it is different from existing systems, such as array-
oriented databases [22, 41, 46], mainly due to the unique semantics
of a dataframe. First, a dataframe needs to explicitly maintain or-
dering information because row/column labels do not capture it.
By contrast, the ordering information of an array is stored in the
attributes of the dimensions and does not need to be maintained
separately. In addition, a dataframe needs to maintain the positions,
which is not a concern for arrays because the dimensions of ar-
rays are immutable when the arrays are initially created. Second, a
dataframe has different types of data entries while an array adopts
a uniform tuple type. The unique type semantics in dataframes en-
ables new operations that query or manipulate data by type (e.g.,
filter_by_types). To accelerate these operations, a dataframe
needs to additionally store the type information in each data block.

6 EVALUATION
Our experiments address the following questions:

• Compared to existing dataframe systems, including Koalas [4],
Dask Dataframe [11], and pandas [5], how well does MO-
DIN scale dataframe operations over a large number of CPU
cores? (Section 6.2 and Section 6.3)

• How much do the optimization techniques, eager data pipelin-
ing and selective data exchange, reduce the execution time?
(Section 6.4)

• What is the end-to-end performance of MODIN and how
much does lazy type inference reduce the execution time?
(Section 6.5)

Experiments in Sections 6.2, 6.3, and 6.4 are run on an AWS in-
stance x1e.32xlarge with 3904 GB of memory and 128 vCores,
running Ubuntu 20.04 OS. Experiments in Section 6.5 are run on an
x1e.4xlarge with 16 vCores and 488 GB of memory running Ubuntu
20.04 OS. MODIN is implemented in around 62k lines of Python
code and the source code is available at https://github.com/modin-
project/modin. In our experiments, we choose Ray as the execution
engine for MODIN.

6.1 Experiment setup
Benchmark. We use the NYC Yellow Taxi Dataset 2015 [38] with
150 million rows and 20 columns, occupying 23GB on disk. We use
this dataset to test the scalability of several widely-used dataframe
functions, including read_csv, fillna, count, groupby followed
by count, join, and median. These functions cover most stages of
a typical data science lifecycle, such as ingestion (e.g., read_csv),
cleaning (e.g., fillna), and analysis (e.g., join). We additionally
test two operators that manipulate the metadata: from_labels and
infer_types. We also use this dataset to test the optimization op-
portunities when choosing the best rewriting rules from Section 3.3.

We use two additional datasets to evaluate end-to-end perfor-
mance and benefits of lazy type inference. The first dataset, Loan
data, [10] is from Kaggle [13] contains 2260668 rows and 145
columns, and occupies 1.2 GB of data on disk. The second dataset
is the California state data from the Open Policing Dataset [15],
which contains 31778515 rows and 21 columns, and occupies 231
MB of data (compressed). Though the Open Policing dataset size is
roughly the same size (uncompressed) as the Loan data, it includes
mostly text, allowing us to test how MODIN handles text. There is
also a significant difference in the amount of skew in each of the
datasets, where the Loan data is heavily skewed, and significantly
more sparse, and the Open Policing data is more uniform and dense.
For the Loan data, we use a notebook [9] from Kaggle [13] and
deduplicate the operators of this notebook. Its key operators include
fillna, dropna, filter, and value_counts. For Open Policing
Dataset, we build a new notebook that follows the same workflow of
the notebook for Loan data to provide a frame of reference for how
data types and data skew can affect performance.

Baselines. We compare MODIN with three popular dataframe sys-
tems, pandas [5], Koalas [4], and Dask DataFrame [11] (denoted
Dask DF in this section)—not to be confused with the Dask paral-
lel compute framework [44]. pandas is the most popular dataframe
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system in use; however, pandas runs on a single thread and does not
support out-of-core computation. Koalas and Dask DF are designed
to scale a subset of the pandas API and allow the working dataset to
be larger than memory. Koalas translates the subset of the pandas
API supported by Spark SQL (approximately 55% [42]) to leverage
Spark’s distributed computation framework to scale computation.
Since Koalas translates to Spark SQL, it cannot support flexible op-
erators that decompose column-wise, does not maintain the logical
order, and adds additional user requirements like managing parti-
tioning. Dask DF scales the pandas API using a light-weight native
row-store implementation on Dask, a library for parallelizing Python
applications. Like Koalas, Dask DF supports approximately 55%
of the pandas API [42]. For example, Dask DF does not support
operations that decompose column-wise, like median (quantile),
map, and columnar filters, which are critical and common to
workloads that operate along columns, meaning that common fea-
ture engineering tasks are not supported in Dask DF. In addition,
Dask DF does not support iloc (mask based on position) or any
position-based logic, which are critical to operations that rely on the
user’s order (e.g., window functions commonly used in interpolation
and data cleaning). This is due to one of the main limitations of
the Dask DF data model, which forces the data to always be both
logically and physically stored in the sorted order of the row la-
bels. In practice, this means that the user cannot sort by one column
and have a separate, meaningful column for the row labels. In fact,
Dask DF does not support a sort API because of this data model
limitation. Some window functions are supported in Dask DF, but
they are only applied to the data in the sorted order of the index, as
opposed to the user’s logical order of the data. MODIN differs from
Dask DF in many ways: 1) Dask DF sorts the rows based on the row
labels for fast row lookups, while MODIN maintains the semantics
of the logical order (as necessary for emulating pandas semantics)
and builds an indexing structure on the row labels; 2) MODIN can
decompose dataframes at different granularities, but Dask DF only
decomposes dataframes row-wise; 3) MODIN employs its own type
system while Dask DF uses the pandas type system, which is not
always semantically consistent, as discussed in Section 4. We note
that although MODIN and pandas have different type systems, the
version of MODIN used in the experiments mimics pandas semantics
to ensure a fair comparison.

6.2 Operators supported by all systems
We first test the scalability of Dask DF, Koalas, pandas, and MO-
DIN for operators supported by all systems, including: read_csv,
fillna replacing the NULL values for each row, count counting the
non-NULL values for all columns, and groupby.count using the
“passenger_count” column as the group key. We vary the number of
vCPUs used by each system and report the execution time.

Note that Koalas was not able to run with default settings3, and
considerable effort was made to enable and optimize Koalas in this
environment. We also tuned Dask DF; the results from the best
performing Dask DF configuration are reported. The difference
between the default performance and the best case performance in
Dask DF was between 10× and 40×. MODIN is run with default
settings.

3Koalas consistently ran out of memory or forced all of the data onto a single partition on
default settings, so many attempts at optimization were made to ensure a fair comparison.

Figure 6 shows the test results. MODIN has the lowest execution
time compared to the baselines for all operators, because it paral-
lelizes these operators and lazily computes metadata. pandas does
not scale because it runs on a single thread. Koalas and Dask DF can
scale these operators because these operators can be implemented us-
ing row-wise decomposition. Koalas has higher execution time than
pandas and other systems for fillna, count, and groupby.count
due to the overhead of Spark and an extra phase of sorting the output
rows to maintain the natural order.

6.3 Operators not supported by all baselines
We now test operators that are not supported by all baselines, includ-
ing median, from_labels, infer_types, and join. The base-
lines do not support these operators because they do not support
operating on the column axis (e.g., computing the median for each
column), the systems run out of memory (e.g., join for Dask DF),
and they do not support querying and manipulating metadata (e.g.,
from_labels). We vary the number of vCPUs and report the exe-
cution time of each operator.

Since Dask DF and Koalas are row-store-based dataframe sys-
tems, they do not support computing median for each column. Fig-
ure 7a shows the scalability for this operation. The time reported
includes a filter on the types of the columns to select only numeric
columns. In this case, the parallelism MODIN can exploit is limited
by the number of columns, so increasing the number of cores beyond
20 (the number of columns) does not improve the performance.

Figure 7b and Figure 7c show the results of from_labels and
infer_types, respectively. infer_types is configured to infer the
types of all columns. Dask DF and Koalas do not support the two
metadata operators. from_labels in MODIN has the overhead of
inferring the positions of the labels and inserting them as data com-
pared to pandas, which eagerly materializes the positions. Therefore,
at a smaller number of cores, the overhead of inferring the posi-
tions dominates and MODIN has higher execution time than pandas.
However, as the number of cores increases, this overhead can be
amortized. MODIN can scale this operator and achieve up to a 10×
faster runtime than pandas. MODIN prevails over pandas for the
infer_types operator because it decomposes and parallelizes the
execution of infer_types and uses indexes in our type system to
quickly determine the type information. We see the performance
improvement of MODIN over pandas is up to 100×.

We also tested a self-join on the row labels of the NYC dataset.
Dask DF runs out of memory for the join operator, so it is not
included in the results shown in Figure 7d. We see that MODIN has
lower execution time than both pandas and Koalas. While Koalas
can reduce the execution time as the number of cores increases, the
overhead of the underlying Spark dominates and Koalas is slower
than pandas for join.

To compare the join performance of Dask DF with MODIN and
other systems, we perform another experiment that uses the same
join query as in Figure 7d, varies the number of rows of the NYC
dataset, and fixes the number of CPUs to 128. Figure 8 shows the
results. We see that Dask DF runs out of memory when we use
more than 15 million rows. For the case of 15 million rows, MODIN
performs 50× faster than Dask DF.
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Figure 7: Scalability of operators not supported by all baselines
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6.4 Choosing decomposition rules
We first explore the optimization opportunity from eager data

pipelining. Recall that eager data pipelining pipelines operators
that decompose cell-wise in between two operators that decompose
row or column-wise. We test three map operators that are chained as
𝑚𝑎𝑝𝑟 →𝑚𝑎𝑝∗ →𝑚𝑎𝑝𝑟 , where each map operator accepts a UDF
that transforms NULL values in the dataset into a new value depend-
ing on the column type. 𝑚𝑎𝑝𝑟 operates on each row and pipelines
data to𝑚𝑎𝑝∗, which operates on each cell. Since𝑚𝑎𝑝∗ is followed
by𝑚𝑎𝑝𝑟 , it needs to do a data exchange. The eager data pipelining
technique rewrites this query into𝑚𝑎𝑝𝑟 →𝑚𝑎𝑝𝑟 →𝑚𝑎𝑝𝑟 because
𝑚𝑎𝑝∗ is a more general decomposition than𝑚𝑎𝑝𝑟 . This way, we can
pipeline the three operators. Figure 9 shows the execution time of
the two plans. We observe that the execution time of the optimized
plan is 57% of that of the original plan. The majority of the overall
reduction in the execution time is due to reduced communication
between operators.

The second technique we explore is selective data exchange. Se-
lective data exchange can occur when an operator that decomposes
cell-wise is surrounded by each of the other two decompositions:
row and column, which is a common pattern in regular dataframe
workloads. We test two plans that have equivalent semantics but
different performance. The first plan is 𝑚𝑎𝑝𝑟 → 𝑚𝑎𝑝∗ → 𝑚𝑎𝑝𝑐
(denoted as PlanA), which includes a data pipelining for the first
two operators and a data exchange for the last two. The first operator
𝑚𝑎𝑝𝑟 outputs significantly more data than the second operator𝑚𝑎𝑝∗
because the first operator converts each input row from the NYC
dataset to a row of strings while the second operator outputs the first
character of each input string. The 𝑚𝑎𝑝𝑐 operator converts strings
to numbers if possible, otherwise leaves the value unchanged. An
alternative plan is 𝑚𝑎𝑝𝑟 → 𝑚𝑎𝑝𝑐 → 𝑚𝑎𝑝𝑐 (denoted as PlanB),
which enforces exchanging data first and then pipelining. We expect
PlanB to be more costly because it exchanges more data than PlanA.
Figure 10 shows the results of the two plans: the execution time of
PlanA is 35% of PlanB. Therefore, our decomposition rules allow
more optimization opportunities.

6.5 End-to-end performance
We now evaluate the end-to-end workflow performance of MODIN
compared with pandas. Our comparison does not include Dask DF
and Koalas because each was unable to complete the workflow, even
with significant modification. Dask DF did not support dropna with
an axis argument. Koalas did not support the notebook’s use of
loc. We additionally show the performance impact of our three
optimization techniques: the decomposition rules from Section 3.2,
the optimization involving data pipelining from Section 3.3, and the
lazy type inference from Section 4.1. To do this, we test three variants
of MODIN, where the first variant only includes parallelism from
decomposition rules (ModinP), the second additionally includes lazy
type inference (ModinPT), and the third variant includes pipelining
as well (ModinPTP).

Evaluation on Loan data. The results for Loan data are shown
in Figure 11a. We see that our decomposition rules can signifi-
cantly reduce the execution time via parallel execution. We observe
a moderate performance benefit of lazy type inference, reducing
the execution time by about 0.5s. The overhead of type inference
in this workflow is not large because, like many Kaggle datasets,
the dataset is mostly provided clean upfront. After data types are
initially inferred, subsequent operators do not need to change the
data types, which does not trigger additional type inference. We test
a modified notebook next to examine the overhead of type inference.
Finally, we see that the pipelining can further reduce the execution
time. Overall, the three techniques show that MODIN can reduce the
execution time of pandas by over 8×.

Expanded evaluation on the type inference overhead. To evaluate
the benefit of lazy type inference, we modify the above workflow to
add three additional map operators that leave the data unchanged, but
also do not specify output types, which will trigger type inference.
This simulates a set of data cleaning operations without changing
the outputs of the notebook. The results are shown in Figure 11b,
we see that lazy type inference can further reduce execution time by
20% compared to raw parallelism, despite there being only three
additional cases where the types need to be inferred. In this workload,
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Figure 11: The end-to-end performance of MODIN and pandas on datasets: (a) loan (b) modified loan (c) open policing.

pipelining further reduces the execution time by 38% for a total of
over 8× faster than pandas.

Evaluation on the Open Policing data. Figure 11c shows the results
on the Open policing dataset. Despite the workflow being identical
to that in the Loan data and the datasets being similar in size, the
overall runtime is almost 5× longer than the modified Loan data
workflow. This runtime difference is primarily due to the differences
in data types, data skew, and data density.

7 RELATED WORK
Historically, many systems have attempted to solve the problems of
scaling dataframes, but are limited in different aspects: whether it be
by not supporting all dataframe functions, or even by changing the
underlying data model altogether.

Systems that support dataframe operations. Original implemen-
tations of dataframe systems include pandas [5] and R [43]. R
dataframes suffer similar limitations to pandas in that they cannot
exceed main-memory [7] and run on a single thread. Projects like
Tidyverse [50] remove some of the properties of R dataframes to
make them more like relational tables. R dataframe operators can
be similarly made to run in-parallel via the decomposition rules we
describe in Section 3. Dask DataFrame [11] partitions a dataframe
along rows to make operations along the row axis more scalable,
similar to a relational database. Vaex [8] is a system for imperatively
querying static memory-mapped HDF5 files, supporting around 35-
40% of the functionalities of the pandas API.

There are many systems that support a subset of the pandas API
via relational databases using various flavors of SQL. Koalas [4],
an open-source project, translates 55% of the pandas into the API
Spark SQL API via ANSII SQL. Ibis [12] translates a small subset of
the pandas API into a variety of database backends Recently, there
is work on choosing database backends [32] and translation into
database systems like A-frame [45], Grizzly [34], and AIDA [27].
RIOT [52] achieved similar goals of employing a database backend
for operating on R data beyond main-memory. Our prior vision paper
introduced scalable dataframe systems and a candidate algebra [42].
We also introduced opportunistic evaluation to execute dataframe
operations together in the background asynchronously [51]; this is
orthogonal to the techniques proposed in this paper.

Parallel/distributed database systems. Many parallel and dis-
tributed databases [40], such as Teradata [16], HadoopDB [17],
and SparkSQL [19], partition data into rows using hash or range-
based partitioning to parallelize row-oriented relational operators.
Additionally, column stores, like C-Store [47], Dremel [35], Mon-
etDB [21], BigTable [24], and HBase [49], partition the data along
columns to better compress data and accelerate large-scale data

analysis. Recent parallel relational and non-relational query process-
ing systems include BigQuery [36], RedShift [30], Synapse [18],
Snowflake [26], Impala [20], MongoDB [25], among others. While
these systems employ row/column-oriented partitioning to paral-
lelize the query execution, they focus on unordered row-oriented
operators and do not consider metadata operators. MODIN optimizes
operators that query and update metadata, and operate along rows,
columns, and blocks of cells. In addition, efficiently supporting
mixed types is not covered by these systems.

Matrix computing and decomposition. Matrix partitioning and
decomposition [23, 39, 53], commonly used to parallelize machine
learning and scientific computing applications, is similar to dataframes
in that it needs to support row-wise, column-wise, and cell-wise de-
composition patterns. However, typical matrix decompositions are
tailored for sparse matrices, and these systems generally don’t sup-
port operators like joins, filters, group-bys, or heterogeneous data
types. Array databases, like SciDB [22, 48] or TileDB [41], target
structured workloads, with well defined schemas optimized for sci-
entific workloads, making them ill-suited for handling the flexible
dataframe data model. We compared the physical layout in MODIN
and array-oriented databases in Section 5 and discussed differences
in decomposition rules in Section 3.2.

8 CONCLUSION AND FUTURE WORK
In this paper, we targeted the dual challenges of scalability and se-
mantics underlying dataframes. We introduced flexible rule-based
decomposition techniques for parallelizing dataframe operations
across both row and column axes, and label, order, and type man-
agement techniques that help ensure metadata independence. These
techniques enable MODIN to support pandas operations across both
rows and columns at scale, while not compromising on pandas op-
eration coverage, providing speedups of up to 50-100× relative to
other partial and full dataframe implementations. In future work,
we plan to extend our decomposition rules by applying full-fledged
query planning and cost-based optimization across a sequence of
dataframe operations. As we ponder the future of dataframe systems,
we plan to continue to support, empower, and draw inspiration from
MODIN’s many users and contributors.
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