
NewQuery Optimization Techniques in the Spark Engine of
Azure Synapse

Abhishek Modi
Microsoft, India

Abhishek.Modi@microsoft.com

Kaushik Rajan
Microsoft Research, India
krajan@microsoft.com

Srinivas Thimmaiah
Microsoft, India

s.srinivas@microsoft.com

Prakhar Jain∗
Databricks, USA

prakhar.jain@databricks.com

Swinky Mann
Microsoft, India

Swinky.Mann@microsoft.com

Ayushi Agarwal
Microsoft, India

Ayushi.Agarwal@microsoft.com

Ajith Shetty
Microsoft, India

Ajith.Shetty@microsoft.com

Shahid K I
Microsoft, India

Shahid.K@microsoft.com

Ashit Gosalia
Microsoft, USA

Ashit.Gosalia@microsoft.com

Partho Sarthi∗
University of Wisconsin-Madison

sarthi@wisc.edu

ABSTRACT

The cost of big-data query execution is dominated by stateful oper-
ators. These include sort and hash-aggregate that typically materi-
alize intermediate data in memory, and exchange that materializes
data to disk and transfers data over the network. In this paper we
focus on several query optimization techniques that reduce the
cost of these operators. First, we introduce a novel exchange place-
ment algorithm that improves the state-of-the-art and significantly
reduces the amount of data exchanged. The algorithm simultane-
ously minimizes the number of exchanges required and maximizes
computation reuse via multi-consumer exchanges. Second, we in-
troduce three partial push-down optimizations that push down
partial computation derived from existing operators (group-bys,
intersections and joins) below these stateful operators. While these
optimizations are generically applicable we find that two of these
optimizations (partial aggregate and partial semi-join push-down)
are only beneficial in the scale-out setting where exchanges are
a bottleneck. We propose novel extensions to existing literature
to perform more aggressive partial push-downs than the state-of-
the-art and also specialize them to the big-data setting. Finally we
propose peephole optimizations that specialize the implementation
of stateful operators to their input parameters. All our optimiza-
tions are implemented in the spark engine that powers azure
synapse. We evaluate their impact on TPCDS and demonstrate that
they make our engine 1.8× faster than Apache Spark 3.0.1.

PVLDB Reference Format:

Modi et al. New Query Optimization Techniques in the Spark Engine of
Azure Synapse. PVLDB, 15(4): 936 - 948, 2022.
doi:10.14778/3503585.3503601

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 15, No. 4 ISSN 2150-8097.
doi:10.14778/3503585.3503601

1 INTRODUCTION

Modern query compilers rely on a combination of logical SQL
level query optimization techniques and low-level code-generation
techniques to produce efficient query executables. In the big-data
setting they produce plans withmultiple stages, such that each stage
can run in a data-parallel manner across many machines. Operators
within a stage are further grouped together into code-generation
blocks that are complied such that data is materialized only at block
boundaries [23]. Spark [6] is a popular big-data system that is based
on such a compilation methodology.

As one would expect, stateful operators, operators that material-
ize data at stage or code-generation boundaries, dominate the cost
of execution in these settings. In particular we find exchange, hash
aggregate and sort are the three most expensive operators in Spark.
An exchange operator is used to transfer data between stages. It
requires that data be materialized to disk at the end of every stage
and shuffled over the network to the tasks in the next stage. Hash
aggregate and sort on the other-hand are operators that materialize
data within a stage and hence demarcate code-generation blocks.
They both maintain state in memory, spilling to disk if needed.

In this paper we focus on a set of techniques that reduce the cost
of these operators. The optimizations fall into three categories.
Exchange placement. First, we introduce a new algorithm that
determines where exchange operators should be placed and what
exchange keys to be used by each of them. Exchange operators serve
a dual purpose. They re-partition data to satisfy the requirements
of key based operators like group-by, join and window functions so
that they can run in a data-parallel manner. In addition, exchanges
enable reuse of computation across different parts of the tree. If two
different sub-trees rooted at exchanges are performing the exact
same computation, then one could perform the computation only
once, persist the output in a partitioned manner at the source stage
and consume it multiple times.

∗Work done while at Microsoft.

936

https://doi.org/10.14778/3503585.3503601
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3503585.3503601


Existing systems [14, 27, 29, 35] determine exchange placement
without considering reuse opportunity. We find that there are sev-
eral cases where exchange placement conflicts with exchange reuse
and leads to a sub-optimal plan overall. To address this, we propose
a new algorithm that takes into account the possibility of exchange
reuses during exchange placement to determine candidate plans
with interesting trade-offs (see Section 2.2.1 for examples). We cost
these alternatives and pick the least cost plan.

To efficiently realize the algorithm we introduce a new imple-
mentation mechanism called plan-marking which enables us to
perform global reasoning across different parts of the tree. Our ex-
change placement algorithm utilizes plan-marking to tag identical
sub-trees with the same marker, indicating reuse opportunity.

Partial push-down. Second, we introduce partial push-down
techniques into the big-data query optimizer. These techniques do
not substitute an operator but derive an auxiliary operator that
can be pushed down the tree. We extend the Spark optimizer to
enable three different partial pushdown techniques, namely partial
aggregation, semi-join push-down and bit-vector filtering.

Our partial aggregate push-downmechanism builds upon known
techniques to partially push-down group-by below joins [10, 20, 22,
30]. We adapt these techniques to push-down partial aggregates
not just below select and join as proposed in existing literature
but also unions, project and expand [2]. The Spark optimizer today
only introduces a partial aggregate directly before a group-by and
does so during physical planning. In contrast, we enable more
aggressive push-down by adding a new logical operator to represent
partial aggregates and new rules that incrementally push partial-
aggregates down. Further we propose new rewrites that derive
partial aggregates from other operators (semi-join and intersect).

We also propose a new partial semi-join push-down rule that
converts inner-joins in trees rooted at semi-joins into semi-joins
without changing the root (see Section 2.2.2 for examples). We
demonstrate (see Section 7.3) that both partial aggregation and semi-
join push-down are much more impactful in the big-data setting
when compared to the classical scale-up database setting.

Finally we incorporate push-down of bit-vector filters into the
Spark optimizer. While bit-vector filtering is well-known [11–13,
15] we propose an efficient implementation based on plan-marking
to avoid unnecessary materialization in the big-data setting. Further
we rely on Spark’s execution strategy to construct the filters in-
parallel; starting at tasks and finally combining across executors.

Partial push-downs perform additional computation but can
save on exchange. We therefore introduce them in a cost-based
manner. Our cost-functions combine column level statistics with
partitioning properties in novel ways to determine when these
partial push-downs are likely to be beneficial.

Peephole optimizations. Third, we propose a set of peephole
optimizations that improve the implementation of stateful opera-
tors. For example, we optimize the order of keys for a multi-column
sorting. Spark’s sorter compares keys in the byte space and lazily
de-serializes data. Our optimization brings down the cost by picking
an order that leads to fewer de-serializations and comparisons. Note
that while sort is order sensitive, operators like (sort-merge) join

0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00

Spark 3.0.1 Exchange Placement Partial-Aggregate

Other Partial Push-down Peephole

Figure 1: Speedup from optimizations in the spark engine

of azure synapse over latest version of Apache Spark

only need keys to be consistently ordered on both sides. Such an op-
timization again requires global reasoning and our implementation
once again relies on plan-marking to enforce consistent ordering.

Summary of performance benefits. We implement all these op-
timizations in the spark engine of azure synapse (synapse spark
for short) and compare it against the latest version of Apache Spark,
Spark 3.0.1 (in this paper whenever we mention Spark we implic-
itly refer to this distribution). Figure 1 illustrates the speedup that
the various optimizations bring about over all queries in TPCDS, a
standard data analytics benchmark (at 1TB scale factor). As can be
seen the optimizations together speedup the benchmark suite by
1.8×. Exchange placement brings about 27% speedup, the partial
push-down techniques together bring a speedup of 40% and the
rest of comes from our peephole optimizations.
Applicability of optimizations. synapse spark is a scale-out
big-data system derived from Apache Spark. While the peephole
optimizations we propose are specific to Spark based systems, the
other optimizations are more broadly applicable. The exchange
placement algorithm is applicable to all big-data systems [14, 27,
29, 35] as they all need an exchange operator. The patial push-
down techniques are not just applicable to scale-out systems but to
scale-up single machine databases as well. However, our empirical
evaluation brings up an interesting finding.While bit-vector filtering
brings significant benefits in scale-up settings (as they filter data
right after scan), we find that partial-aggregation and semi-join
push-down are not as beneficial in the scale-up setting. We observe
that they only bring benefits when they save on the amount of data
exchanged.
In summary, the paper makes the following core contributions.
• We characterize the performance bottlenecks in Spark. The
previous analysis [24] was done before Spark incorporated code-
generation and is out-dated.
• We propose a new algorithm for exchange placement that im-
proves over the state-of-the-art and significantly reduces the
number of exchanges needed to evaluate a query.
• We extend ideas from existing literature to provide holistic sup-
port for partial aggregation. We add new rules to push-down
below operators not considered in the past and propose a spe-
cialized cost model for big-data systems that incorporates parti-
tioning information.
• We propose a novel semi-join push-down technique that, we find,
benefits scale-out big-data systems much more than scale-up
databases (partial aggregation is similar).
• We propose a set of peephole optimizations that significantly
improve the performance of Spark’s sort implementation.
• All these optimizations are implemented in the synapse spark,
a production system available for general use. We demonstrate
that these optimizations bring significant performance gains.

937
























