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ABSTRACT
In this paper, we study how to acquire labeled data points from a
large data pool to enrich a training set for enhancing supervised
machine learning (ML) performance. The state-of-the-art solution
is the clustering-based training set selection (CTS) algorithm, which
initially clusters the data points in a data pool and subsequently
selects new data points from clusters. The efficiency of CTS is con-
strained by its frequent retraining of the target ML model, and the
effectiveness is limited by the selection criteria, which represent
the state of data points within each cluster and impose a restric-
tion of selecting only one cluster in each iteration. To overcome
these limitations, we propose a new algorithm, called CTS with
incremental estimation of adaptive score (IAS). IAS employs on-
line learning, enabling incremental model updates by using new
data, and eliminating the need to fully retrain the target model,
and hence improves the efficiency. To enhance the effectiveness of
IAS, we introduce adaptive score estimation, which serves as novel
selection criteria to identify clusters and select new data points by
balancing trade-offs between exploitation and exploration during
data acquisition. To further enhance the effectiveness of IAS, we
introduce a new adaptive mini-batch selection method that, in each
iteration, selects data points from multiple clusters rather than a
single cluster, hence eliminating the potential bias due to using
only one cluster. By integrating this method into the IAS algorithm,
we propose a novel algorithm termed IAS with adaptive mini-batch
selection (IAS-AMS). Experimental results highlight the superior
effectiveness of IAS-AMS, with IAS also outperforming other com-
peting algorithms. In terms of efficiency, IAS takes the lead, while
the efficiency of IAS-AMS is on par with that of the existing CTS
algorithm.
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1 INTRODUCTION
Machine learning (ML) has become standard practice in modern
data analytics and is integral to extracting new insights from data
and informing decision-making. The effectiveness and versatility
of contemporary ML models have resulted in extensive adoption
of these techniques in various application domains, such as image
recognition [32], natural language processing [40]. The remark-
able advances seen in ML rely heavily on the quality of training
data [45]. Therefore, the challenge of data acquisition to enhance
ML performance, which involves selecting high-quality training
data from a data pool to improve the performance of an ML model,
has recently attracted considerable attention [13, 15, 34, 60, 63].

Some recent studies assess the potential of data to enhance ML
performance using indirect indicators (e.g., freshness [63], truth-
fulness [15], and novelty [34]), rather than directly quantifying the
performance improvements produced by including the new data.
Other studies [15, 34, 60] focus on data acquisition from a single
distribution, which is rarely useful to content providers creating
large data pools.
Our Scenario & Problem. With the goal of directly improving
model performance for a target ML model, we address the broader
scenario where a data pool contains data with a variety of distri-
butions [13]. Conceptually, this can be characterized as a two-step
process. The first step is to collect a large amount of labeled data
from various sources and create a data pool using readily available
tools. Several Web APIs (e.g., NYU Auctus REST API [2] and Google
dataset search API [8]) can be used to aggregate datasets. By using
techniques such as schema alignment [13], these datasets can be
harmonized into a unified dataset, constituting the data pool. In the
second step, a supervised ML model, which may have been trained
on preliminary data, comes into focus. Our objective is to address
the problem of data acquisition to enhance ML performance, re-
ferred to as DA-ML and defined as: Given a supervised ML model
designed for a specific task, an initial training set, and a data pool,
the goal is to select a subset of data points from the data pool to
enrich the training set to maximize performance improvements of
the model trained on the enriched training set.
State-of-the-art solution. A pioneering effort to address the DA-
ML problem is presented in [13], which has introduced the state-
of-the-art Clustering-based Training set Selection (CTS) algorithm.
The framework of CTS consists of the two steps shown in Fig. 1. In
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the first step, the data points in the data pool, which may follow
different distributions, are grouped into clusters. In the second step,
data points are iteratively selected from the clusters.
Limitations and challenges. While CTS has demonstrated merit
in [13], there are three limitations: (L1) Frequent retraining overhead:
It requires frequent retraining of the targetMLmodel to evaluate the
performance using the new training set in each iteration. This sig-
nificantly degrades the efficiency of the algorithm. (L2) Exploitation-
exploration score marginality: The use of an exploitation-exploration
score to select a single cluster for sampling a mini-batch, helps pre-
vent local optima. However, the improvements in effectiveness can
be marginal as the score treats information from past iterations
as equally significant, disregarding crucial factors such as recency
and ignoring changes to the current cluster state. (L3) Single-cluster
sampling bias: In each iteration, only one cluster is selected when
sampling data points. This can reduce algorithm effectiveness since,
if a cluster fails to improve effectiveness in an iteration, the conse-
quences can cascade to subsequent iterations.
Our contributions. To resolve the above limitations, we develop
novel model-agnostic solutions that excel in both efficiency and
effectiveness. In summary, we make the following contributions:
• The IAS algorithm. We propose two key enhancements to the
CTS algorithm: (i) Online learning to address limitation L1 using
incremental updates of the model with new data, without requir-
ing complete retraining of the model (Sec. 3.1). (ii) Adaptive score
estimation to address limitation L2 by introducing a novel adap-
tive score, which combines adaptive exploitation and exploration
scores to guide cluster selection (Sec. 3.2). Leveraging these two
enhancements, we develop a new algorithm that demonstrates im-
provements in both effectiveness and efficiency, namely CTS with
incremental estimation of adaptive score (IAS) (Sec. 3.3).
• The IAS-AMS algorithm. To address limitation L3, we propose an
adaptive mini-batch selection technique, which involves sampling
a mini-batch from each cluster based on the proportion of the
cluster’s adaptive score to the sum of all adaptive scores (Sec. 4.1.1).
Hence, in each iteration, every cluster is explored, and the model
performance improvements arise from the collective contribution
from all of the clusters. Since adaptive score estimation considers
the cluster contribution to both performance improvement and the
“degree of exploration”, we proceed to adjust the formulation of the
adaptive score accordingly (Sec. 4.1.2 and 4.1.3). By integrating this
technique with the enhancements introduced in the IAS algorithm,
we propose another algorithm, called IAS with adaptive mini-batch
selection (IAS-AMS), that further improves effectiveness (Sec. 4.2).
• Evaluations. We conduct extensive experiments using five real
datasets and associated ML tasks. The results show that IAS exhibits
superior efficiency, achieving speedups of up to an order of magni-
tude while surpassing state-of-the-art algorithms in effectiveness.
Meanwhile, IAS-AMS excels in effectiveness, offering performance
improvements of up to 60%, while maintaining comparable effi-
ciency to state-of-the-art algorithms (Sec. 5).

2 PRELIMINARIES
We formally define the problem of data acquisition to enhance ML
performance (DA-ML) in Sec. 2.1 and then introduce the state-of-
the-art algorithms for solving the DA-ML problem in Sec. 2.2.

2.1 Problem Formulation
Training/validation/test sets. We describe a labeled dataset 𝑑 =

{(𝑥1, 𝑦1), ..., (𝑥 |𝑑 | , 𝑦 |𝑑 | )} as a set of (data point, label) pairs where
𝑥𝑖 is a data point (e.g., a row in a tabular dataset or an image in an
image dataset) and𝑦𝑖 is its label (e.g., a class label for a classification
task and a dependent variable value for a regression task). A labeled
dataset is typically split into three disjoint subsets: a training set
𝑑𝑡𝑟𝑎𝑖𝑛 , a validation set 𝑑𝑣𝑎𝑙 , and a test set 𝑑𝑡𝑒𝑠𝑡 . The training and
validation sets are utilized for model training, while the test set is
reserved for assessing the performance of trained models.
Machine learning (ML) tasks. We consider a supervised ML task
𝑇 that trains a model𝑀𝑇 to learn a mapping function 𝑓 : X→ Y,
where X denotes the feature space and Y denotes the label space.
We use 𝑀𝑇 (𝑑𝑡𝑟𝑎𝑖𝑛) to denote the model 𝑀𝑇 that is trained using
𝑑𝑡𝑟𝑎𝑖𝑛 . We also use𝑀𝑇 (𝑑𝑡𝑟𝑎𝑖𝑛, 𝑑𝑡𝑒𝑠𝑡 ) to denote the model𝑀𝑇 that
is trained with 𝑑𝑡𝑟𝑎𝑖𝑛 and evaluated with 𝑑𝑡𝑒𝑠𝑡 .
Data pool. For a supervised ML task 𝑇 , we define a data pool
𝑃 = {(𝑥1, 𝑦1), ..., (𝑥 |𝑃 | , 𝑦 |𝑃 | )} as a set of (data point, label) pairs that
are “relevant” to 𝑇 . For tabular datasets, the relevance implies that
these pairs share the same or highly overlapping schemawith𝑑𝑡𝑟𝑎𝑖𝑛 .
For image datasets, the relevance indicates that these pairs consist
of images sharing the same labels as 𝑑𝑡𝑟𝑎𝑖𝑛 . Typically, such pairs
in 𝑃 can be collected from various sources, such as data lakes, data
markets, and open data portals. A dataset discovery process [13]
can be utilized to generate a data pool, as illustrated in Fig. 1.

Definition 2.1 (Data Acquisition to EnhanceML Performance, DA-ML).
Given a supervised ML model 𝑀𝑇 for solving task 𝑇 , a training
set 𝑑𝑡𝑟𝑎𝑖𝑛 , a test set 𝑑𝑡𝑒𝑠𝑡 , a validation set 𝑑𝑣𝑎𝑙 , and a data pool 𝑃 ,
the DA-ML problem is to select a subset 𝑆 ⊂ 𝑃 utilizing 𝑑𝑡𝑟𝑎𝑖𝑛
and 𝑑𝑣𝑎𝑙 , such that the performance of 𝑀𝑇 , trained on the en-
riched training set 𝑑𝑡𝑟𝑎𝑖𝑛 ∪ 𝑆 , is improved maximally, that is, 𝑆 =

arg max𝑆⊂𝑃 𝑀𝑇 (𝑑𝑡𝑟𝑎𝑖𝑛 ∪ 𝑆, 𝑑𝑡𝑒𝑠𝑡 ) −𝑀𝑇 (𝑑𝑡𝑟𝑎𝑖𝑛, 𝑑𝑡𝑒𝑠𝑡 ).

2.2 State-of-the-Art Algorithms
In this section, we introduce the Cluster-based Training set Selection
(CTS) algorithm [13], a state-of-the-art solution for the DA-ML
problem. The CTS algorithm contains two main steps, data point
clustering and iterative data point selection from clusters, as depicted
in Fig. 1 and discussed below.
Data point clustering. Since data points within the data pool 𝑃
originate from multiple sources and may exhibit varying distribu-
tions, a conventional approach to representing the data points is
through data point clustering, which involves grouping data points
within each cluster based on similarity. Several clustering meth-
ods can be used, such as a multivariate Gaussian mixture model
(GMM) [21], DBSCAN [20] or 𝑘-means [39]. The CTS algorithm
uses GMM due to its robustness as shown in [13]. Hence, a set of
clusters C = {𝐶1, ...,𝐶 | C | } can be created, and each cluster 𝐶𝑖 ∈ C
encompasses a set of (data point, label) pairs that are similar.
Iterative data point selection from clusters. After the set of clus-
ters is obtained, the CTS algorithm iteratively selects (data point,
label) pairs from these clusters. This process involves selecting (data
point, label) pairs from the data pool, to enrich the training set. This
enrichment is achieved through a sequence of five operations, as
shown in Fig. 1. One common selection strategy for this process,
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Figure 1: The framework of the CTS algorithm (bottom) and an overview of our algorithmic enhancements upon CTS (top).

called the CTS algorithm using a multi-armed bandit (MAB), solves
a constrained multi-armed bandit problem where each cluster is
treated as an arm from the MAB. Specifically, during each iteration,
MAB selects a cluster (i.e., an arm) and samples a mini-batch from
the chosen cluster (Operation 1: selecting a mini-batch). Then, it adds
the mini-batch into the existing training set and retrains the model
based on the new training set (Operation 2: training the model by
adding the mini-batch). Next, the performance improvement attrib-
uted to the added mini-batch is evaluated (Operation 3: evaluating
the performance improvement). If the observed performance im-
provement is negative, it removes the mini-batch from the new
training set (Operation 4: deleting the mini-batch). Finally, it updates
the reward of each cluster based on the performance improvement
realized by the mini-batch and the relationship between clusters,
followed by adjusting the selection criteria based on the assigned
rewards (Operation 5: adjusting selection criteria). The selection cri-
teria, as defined in the CTS algorithm, strikes a balance between the
choices made for the clusters that yield high rewards on average
from the initial iteration to the current iteration (i.e., exploitation)
and the clusters that are rarely chosen (i.e., exploration). This is
to prevent the emergence of local optima due to the emphasis on
exploitation in the subsequent iteration. Such an iterative process
terminates when a pre-specified stopping criterion is met.

Note that, there is an alternative solution to the CTS algorithm
which uses reinforcement learning based on a deep Q-network
(DQN) in [13]. We do not consider this option here as MAB is a more
practical and efficient option, and is competitive in performance
compared to DQN [13].

3 CTS WITH INCREMENTAL ESTIMATION OF
ADAPTIVE SCORE

While the CTS algorithm with a multi-armed bandit (MAB) is a
practical choice to address the DA-ML problem, it still exhibits
certain limitations in both effectiveness and efficiency. Specifically,
we discover the following limitations to two operations within the
iterative processing (i.e., Operation 2 and Operation 5 in Fig. 1):
• Operation 2 (training the model by adding the mini-batch) con-
sumes more than 90% of the total runtime in each iteration, as
shown in Fig. 2(a). Hence, it has a significant impact on the algo-
rithm’s overall efficiency.
• Operation 5 (adjusting selection criteria) aims to find a balance
between the exploitation score and the exploration score, but it
faces two issues that impede effectiveness: (1) The exploitation
score equally considers both the historical rewards from past it-
erations and the new reward from the current iteration for each
cluster. However, the reward of a cluster often exhibits significant

(a)
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(b)
Figure 2: Evidence of limitations in CTS using the Crop
dataset at Table 1: (a) runtime breakdown (the runtime of
Operation 2 and the runtime of other operations) of CTS; (b)
the impact of number of iterations based on rewards (only
two clusters).

variance over time and may not follow any specific distribution, as
illustrated in Fig. 2(b). Consequently, the current exploitation score,
being less likely to accurately reflect the current cluster state, may
not yield effective outcomes in practice. (2) The exploration score,
while emphasizing clusters that are rarely chosen, relies solely on
the exploration frequency and may not provide well-informed se-
lection guidance in the subsequent iteration. In cases when two
clusters have the same selection criteria due to identical exploration
frequencies, the CTS algorithm fails to distinguish between them
as potential candidates in the next iteration.

To address the above limitations, we propose a new algorithm
– CTS with Incremental estimation of Adaptive Score (IAS). IAS
follows a similar framework to CTS (see Fig. 1) but leverages two
key strategies to enhance the efficiency or effectiveness of the two
operations: online learning to optimize Operation 2 for improving
efficiency (Sec. 3.1), and adaptive score estimation to optimize Op-
eration 5 for improving effectiveness (Sec. 3.2). A complete IAS
algorithm will be presented in Sec. 3.3.

3.1 Optimizing Operation 2 via Online Learning
The key to optimizing Operation 2 is to speed up model training by
circumventing the necessity to retrain the ML model from scratch
using the entire training set in each iteration. To achieve this, we use
online learning [25], which is an ML approach designed to manage
data arriving in a sequential order. With the arrival of each new
data instance, online learning updates the underlying model based
on the prediction made from the new data instance. Continuous
updating improves the model’s predictive accuracy for unseen data.

Online learning incrementally updates the ML model’s learnable
parameters, using the current state of the model along with the
newly added training data. In this way, the necessity of full model
retraining is eliminated. Next, we will delve deeper into the concept
of online learning and explain how we use it to solve our problem.
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Conventional online learning settings. Given a closed, bounded,
and convex set F ∈ R𝑛 as input, the process is as follows: in each
sequential round 𝑡 = 1, 2, ...𝜏 , a point 𝑝𝑡 is chosen from F . A convex
loss function 𝑓𝑡 is taken into consideration, resulting in the loss
𝑓𝑡 (𝑝𝑡 ). At the conclusion of 𝜏 rounds, the regret is computed as the
difference between the cumulative loss incurred by point 𝑝𝑡 and the
minimum possible cumulative loss that could have been achieved by
any other point from F . That is, 𝜏𝑡=1 𝑓𝑡 (𝑝𝑡 ) −min𝑝∈F

𝜏
𝑡=1 𝑓𝑡 (𝑝).

The goal of online learning is to minimize the cumulative loss after
𝜏 rounds (i.e., min

𝜏
𝑡=1 𝑓𝑡 (𝑝𝑡 )) while ensuring a small regret.

Online learning in our work. We denote the feature vector of
a data point 𝑥 as x. We denote the learnable parameters of an
ML model 𝑀𝑇 by w, where |w| refers to the number of learnable
parameters. We consider the following online learning framework:
Given a mini-batch 𝐵, at each round 𝑡 = 1, ..., |𝐵 |, we are tasked
with making predictions for a training instance. This instance is
characterized by a feature vector x𝑡 corresponding to the data point
𝑥𝑡 ∈ 𝐵 and its associated label 𝑦𝑡 . Consequently, we update the
learnable parameters of the model𝑀𝑇 as w𝑡 , and make predictions
using𝑦𝑡 = 𝜎 (w𝑡 , x𝑡 ), where𝑦𝑡 denotes the predicted value of𝑦𝑡 and
𝜎 (·) is the function yielding the model output. We use a regularized
loss function 𝑓𝑡 (w𝑡 , x𝑡 , 𝑦𝑡 ) = ℓ (w𝑡 , x𝑡 , 𝑦𝑡 ) + Ψ(w𝑡 ) where ℓ (·) is
the loss function of 𝑀𝑇 and Ψ(·) is a non-smooth regularization
function. Our goal is to update the learnable parameters w𝑡 at each
round, such that the aggregated loss function after |𝐵 | rounds is
minimized, i.e., min

 |𝐵 |
𝑡=1 𝑓𝑡 (w𝑡 ). The gradient of𝑀𝑇 at round 𝑡 is

denoted as g𝑡 = 𝜕
𝜕w
ℓ (w) |w=w𝑡 , and the 𝑖-th entry of g𝑡 is denoted

as 𝑔𝑡,𝑖 where 1 ≤ 𝑖 ≤ |w|. Additionally, the compressed sum g1:𝑡 =𝑡
𝑠=1 g𝑠 is used. The gradients are required to solve the optimization

problem described above. For example,𝑀𝑇 is a logistic regression
model. Hence, at round 𝑡 , we have 𝜎 (w𝑡 , x𝑡 ) = 1/(1+exp(−w𝑡 ·x𝑡 ))
and ℓ (w𝑡 , x𝑡 , 𝑦𝑡 ) = −𝑦𝑡 log𝑦𝑡 − (1 − 𝑦𝑡 ) log(1 − 𝑦𝑡 ) where 𝑦𝑡 =

𝜎 (w𝑡 , x𝑡 ). The gradient of𝑀𝑇 is also g𝑡 = (𝜎 (w𝑡 , x𝑡 ) − 𝑦𝑡 )x𝑡 .
Many different online learning algorithms exist [42], with the

primary difference being the regularization approach used. Here, we
outline the state-of-the-art algorithm FTRL-Proximal [44], which
we have used to implement online learning in this work. At round 𝑡+
1, the FTRL-Proximal algorithm uses the following update equation

w𝑡+1 = arg min
w

g1:𝑡 ·w +
1
2

𝑡∑︁
𝑠=1

𝑄𝑠 | |w −w𝑠 | |22 + 𝐿1 | |w| |1 . (1)

Here, the first term is an approximation of the sum of prior
losses, i.e.,

𝑡
𝑠=1 ℓ (w𝑠 ), based on their respective gradients. The

second term is a stabilizing regularization function that prevents
regret from becoming too large. The matrix𝑄𝑠 presents generalized
learning rates, which can be chosen adaptively through techniques
introduced by [44] (discussed later). The third term is a non-smooth
regularization function Ψ(w) = 𝐿1 | |w| |1. The 𝐿1-norm regular-
ization promotes solution sparsity, i.e., it encourages a solution
w that contains many zero entries. This can be seen as a form of
feature selection, as it maintains only the most relevant features in
the model by retaining the corresponding non-zero values in the
solution w [58].

Implementing the FTRL-Proximal algorithm based on Eq. 1 is
far from straightforward, as it must retain all of the prior coeffi-
cients, resulting in substantial storage overhead. To mitigate this,

Algorithm 1 Online Learning
Input: mini-batch 𝐵, learnable parameters w, z, n, 𝛼 , 𝛽 , 𝐿1
Output: learnable parameters w and vectors z and n
1: 𝑧0,𝑖 ← z[𝑖 ], 𝑛0,𝑖 ← n[𝑖 ] for 𝑖 = 1 to |w |;
2: for 𝑡 = 1 to |𝐵 | do
3: receive the feature vector x𝑡 , representing 𝑥𝑡 ∈ 𝐵, and its label 𝑦𝑡 ;
4: for 𝑖 = 1 to𝑚 do
5: if 𝑧𝑡−1,𝑖 ≤ 𝐿1 then 𝑤𝑡,𝑖 = 0;
6: else 𝑤𝑡,𝑖 = − 𝛼

𝛽+√𝑛𝑡−1,𝑖
(𝑧𝑡−1,𝑖 − sgn(𝑧𝑡−1,𝑖 )𝐿1 ) ;

7: w[𝑖 ] ← 𝑤𝑡,𝑖 ;
8: obtain the gradient g𝑡 given the loss ℓ (w, x𝑡 , 𝑦𝑡 ) ;
9: for 𝑖 = 1 to𝑚 do
10: 𝑧𝑡,𝑖 ← 𝑧𝑡−1,𝑖 + 𝑔𝑡,𝑖 + 1

𝛼
(
√︃
𝑛𝑡−1,𝑖 + 𝑔2

𝑡,𝑖
− √𝑛𝑡−1,𝑖 )𝑤𝑡,𝑖 ;

11: 𝑛𝑡,𝑖 ← 𝑛𝑡−1,𝑖 + 𝑔2
𝑡,𝑖
, z[𝑖 ] ← 𝑧𝑡,𝑖 , n[𝑖 ] ← 𝑛𝑡,𝑖 ;

return z, n and w;

we streamline storage demands to a single number for each coeffi-
cient. Specifically, let

𝑡
𝑠=1𝑄𝑠 =

1
𝜂𝑡
, where 𝜂𝑡 is a non-increasing

learning rate, e.g., one viable choice for 𝜂𝑡 is 𝜂𝑡 = 1/
√
𝑡 . This modi-

fication enables us to reformulate Eq. 1 as

w𝑡+1 = arg min
w
(g1:𝑡 −

𝑡∑︁
𝑠=1

𝑄𝑠w𝑠 ) ·w +
1
𝜂𝑡
| |w| |22 + 𝐿1 | |w| |1 . (2)

In addition, instead of applying a single 𝜂𝑡 to all coordinates, we
use per-coordinate learning rates, since it has been shown to offer
significant performance advantages [56]. Recall that 𝑔𝑡,𝑖 is the 𝑖-th
entry of the gradient vector g𝑡 . We calculate the per-coordinate
learning rate 𝜂𝑡,𝑖 via the formula 𝜂𝑡,𝑖 = 𝛼/(𝛽 +

√︃𝑡
𝑠=1 𝑔

2
𝑠,𝑖
), which

has been demonstrated to be near-optimal according to [43].
Therefore, the update process only needs to store two vectors.We

denote these two vectors as z𝑡 and n𝑡 . We compute the 𝑖-th entry of
n𝑡 as 𝑛𝑡,𝑖 =

𝑡
𝑠=1 𝑔

2
𝑠,𝑖
. Moreover, we have z𝑡 = g1:𝑡 −

𝑡
𝑠=1𝑄𝑠w𝑠 at

the beginning of round 𝑡 +1 and z𝑡+1 = z𝑡 +g𝑡+1+ ( 1
𝜂𝑡+1
− 1
𝜂𝑡
)w𝑡+1 =

z𝑡 + g𝑡+1 + 1
𝛼 (

√︃𝑡+1
𝑠=1 𝑔

2
𝑠,𝑖
−

√︃𝑡
𝑠=1 𝑔

2
𝑠,𝑖
)w𝑡+1. Consequently, we

compute the update w𝑡+1 coordinate-wise via

𝑤𝑡+1,𝑖 =


0 if 𝑧𝑡,𝑖 ≤ 𝐿1
− 𝛼
𝛽+√𝑛𝑡,𝑖 (𝑧𝑡,𝑖 − sgn(𝑧𝑡,𝑖 )𝐿1) otherwise (3)

where sgn(𝑧𝑡,𝑖 ) = 1 if 𝑧𝑡,𝑖 > 0, sgn(𝑧𝑡,𝑖 ) = 0 if 𝑧𝑡,𝑖 = 0, and
sgn(𝑧𝑡,𝑖 ) = −1 if 𝑧𝑡,𝑖 < 0.

Alg. 1 shows the pseudocode of our online learning algorithm.
The input includes a mini-batch 𝐵, the learnable parameters w, the
stored vectors z and n, and the hyperparameters of FTRL-Proximal,
𝛼 , 𝛽 , and 𝐿1. At each round 𝑡 , it receives a feature vector x𝑡 repre-
senting a data point 𝑥𝑡 ∈ 𝐵, along with the associated label 𝑦𝑡 (Line
3). Then, Eq. 3 is used to update w (Lines 5-7) followed by updating
z and n according to the respective equations (Lines 10-11).
Time complexity analysis. At 𝑘-iteration, when adding a mini-batch
𝐵 into the current training set𝑇𝑘−1

𝑡𝑟𝑎𝑖𝑛
, the time complexity of online

learning is 𝑂 ( |𝐵 | |w|). If the gradients g𝑡 have at most 𝑎 non-zero
entries, only the corresponding non-zero entries are updated. Conse-
quently, the time complexity is 𝑂 ( |𝐵 |𝑎), which can be significantly
less than 𝑂 ( |𝐵 | |w|) for sparse gradients. In contrast, the previous
work [13] requires complete ML model retraining, yielding a time
complexity of 𝑂 ( |𝑇𝑘−1

𝑡𝑟𝑎𝑖𝑛
∪ 𝐵 | |w|).
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3.2 Optimizing Operation 5 via Adaptive Score
Estimation

Operation 5 enhances the cluster selection process in the subse-
quent iteration, guided by the refined selection criteria. In this
section, we first outline the existing approach for Operation 5 and
its drawbacks. Then, we introduce new selection criteria for Opera-
tion 5, namely adaptive score, which combines adaptive exploitation
score and adaptive exploration score.
Th existing approach for Operation 5. Operation 5 is generally
performed utilizing the upper confidence bound (UCB) scores [3]
as the selection criteria. The UCB score of any cluster𝐶𝑖 ∈ C at the
first 𝑘 iterations is calculated as

𝑠𝑘𝑖 = 𝑟𝑘𝑖 + 𝛾
√︃

2 ln𝑛𝑘/(𝑛𝑘
𝑖
+ 1) . (4)

Here, 𝑟𝑘
𝑖
= 1
𝑛𝑘
𝑖

𝑘
𝑗=1 𝑟

𝑗
𝑖
is the average reward of 𝐶𝑖 for the first 𝑘

iterations, 𝑟 𝑗
𝑖
is the reward of 𝐶𝑖 at the 𝑗-th iteration. The reward

is calculated based on the performance improvement achieved by
including the mini-batch 𝐵𝑖 from 𝐶𝑖 , 𝑛𝑘𝑖 is the total number of
times that 𝐶𝑖 has received non-zero rewards in the first 𝑘 itera-
tions, and 𝑛𝑘 is the sum of 𝑛𝑘

𝑖
across all clusters up to iteration

𝑘 (i.e., 𝑛𝑘 =
 | C |
𝑖=1 𝑛

𝑘
𝑖
). The first term on the right-hand side of

Eq. 4, 𝑟𝑘
𝑖
, corresponds to the exploitation score, which directs at-

tention to the cluster selected where data points have significantly
contributed to improving model performance. The second term,

𝛾

√︃
2 ln𝑛𝑘/(𝑛𝑘

𝑖
+ 1), is the exploration score, which hasmore weight

for clusters that have been infrequently chosen. The parameter𝛾 ad-
justs the balance between the exploration and exploitation aspects
of the selection process.

As discussed earlier, two challenges persist: (1) The exploitation
score treats the rewards of all iterations equally, which may not
accurately reflect the current cluster state. (2) The exploration score
relies solely on the exploration frequency, which may not yield the
best guidance when selecting clusters in subsequent iterations.

To tackle the above challenges, our new selection criteria cal-
culation, referred to as adaptive score estimation, incorporates two
key components. The first is adaptive exploitation score estimation
(Sec. 3.2.1), which emphasizes recent rewards, granting them higher
weight in the final score. This ensures that the current cluster state
is more accurately reflected, contrary to the uniform treatment of
rewards for all prior iterations. The second component is adaptive
exploration score estimation (Sec. 3.2.2), which guides exploration
efforts to enhance overall effectiveness.

3.2.1 Adaptive exploitation score estimation. Adaptive estimation [4]
has been widely used in streaming data scenarios to continuously
monitor the mean of a sequence of observations. When given a
sequence of observations 𝑜1, ..., 𝑜𝑁 and adaptive forgetting fac-
tors 𝜆 = (𝜆1, ...𝜆𝑁 ), adaptive estimation estimates the mean of
this sequence of observations after receiving a new observation
𝑜𝑁+1. This estimation is accomplished by computing an adaptive
forgetting factor mean as 𝑜

𝑁+1,𝜆 = 1
𝑤
𝑁 +1, 𝜆

𝑁+1
𝑠=1 (

𝑁
𝑝=𝑠 𝜆𝑝 )𝑜𝑠 . Here,

𝑤
𝑁+1,𝜆 =

𝑁+1
𝑠=1 (

𝑁
𝑝=𝑠 𝜆𝑝 ), 𝜆𝑖 ∈ [0, 1], and

𝑁
𝑝=𝑁+1 𝜆𝑝 = 1.

Adaptive estimation is well-suited for our scenario, and we lever-
age it to develop the adaptive exploitation score. Suppose, at the 𝑘-th

iteration, a cluster𝐶𝑖 is selected, resulting in a reward 𝑟𝑘
𝑖
. Using the

adaptive forgetting factors associated with cluster 𝐶𝑖 , denoted as
𝜆𝑖 = (𝜆1

𝑖
, 𝜆2
𝑖
, ...𝜆𝑘−1

𝑖
), we compute the adaptive exploitation score

of 𝐶𝑖 over the first 𝑘 iterations as:

𝑟𝑘𝑖 =
1
𝑤𝑘
𝑖

𝑘∑︁
𝑠=1
(
𝑘−1
𝑝=𝑠

𝜆
𝑝

𝑖
)𝑟𝑠𝑖 (5)

where𝑤𝑘
𝑖
=

𝑘
𝑠=1 (

𝑘−1
𝑝=𝑠 𝜆

𝑝

𝑖
) and 𝑘−1

𝑝=𝑘
𝜆𝑝 = 1.

Intuitively, early rewards are assigned diminishing weights by
virtue of the higher powers of the adaptive forgetting factors. That
is, recent rewards are given greater significance. As a result, we can
rewrite Eq. 5 as

𝑟𝑘𝑖 =
𝑚𝑘
𝑖

𝑤𝑘
𝑖

,𝑚𝑘𝑖 = 𝜆𝑘−1
𝑖 𝑚𝑘−1

𝑖 + 𝑟𝑘𝑖 ,𝑤
𝑘
𝑖 = 𝜆𝑘−1

𝑖 𝑤𝑘−1
𝑖 + 1 (6)

where𝑚0
𝑖
= 0 and𝑤0

𝑖
= 0.

The sequence 𝜆𝑖 grows over time. The key consideration when
using adaptive forgetting factors is how to update 𝜆𝑖 (i.e, add an
adaptive forgetting factor 𝜆𝑘

𝑖
to 𝜆𝑖 at 𝑘-th iteration). Similar to [4],

we update 𝜆𝑖 using a stochastic gradient descent step [5]. To imple-
ment the stochastic gradient descent, we first need to formulate a
cost function 𝐿𝑘𝜆𝑖

based on 𝑟𝑘
𝑖
, and then update 𝜆𝑖 by stepping in a

direction that minimizes 𝐿𝑘𝜆𝑖
, i.e.,

𝜆𝑘𝑖 = 𝜆𝑘−1
𝑖 − 𝜂 𝜕

𝜕 𝜆𝑖
𝐿𝑘𝜆𝑖

(7)

where 𝜂 ≪ 1 is the step size. We adopt the cost function 𝐿𝑘𝜆𝑖
=

(𝑟𝑘−1
𝑖
− 𝑟𝑘

𝑖
)2, a suitable choice for mean tracking [4], which can be

perceived as one-step-ahead squared prediction error. We have

𝑚̃𝑘𝑖 = 𝜆𝑘−1
𝑖 𝑚̃𝑘−1

𝑖 +𝑚𝑘−1
𝑖 , 𝑤̃𝑘𝑖 = 𝜆𝑘−1

𝑖 𝑤̃𝑘−1
𝑖 +𝑤𝑘−1

𝑖

𝜕

𝜕 𝜆𝑖
𝐿𝑘𝜆𝑖

= 2(𝑟𝑘−1
𝑖 − 𝑟𝑘𝑖 )

𝑚̃𝑘−1
𝑖
− 𝑤̃𝑘−1

𝑖
𝑟𝑘−1
𝑖

𝑤𝑘−1
𝑖

where 𝑚̃1
𝑖
= 0 and 𝑤̃1

𝑖
= 0. Moreover, considering that the rewards

of a cluster evolve, uncertainty surrounds unselected clusters in
each iteration. Therefore, we refine the adaptive exploitation score
of unselected clusters using a discount mechanism. This discount
can be calculated using adaptive forgetting factors linked to prior
selections. With this approach, we revise the adaptive exploitation
score of any cluster 𝐶 𝑗 ∈ C \𝐶𝑖 for the first 𝑘 iterations as:

𝑟𝑘𝑗 =
𝑚𝑘
𝑗

𝑤𝑘
𝑗

,𝑚𝑘𝑗 =
𝑘 − 𝑘𝑙𝑡

𝑗

|C| 𝜆
𝑘𝑙𝑡
𝑗

𝑗
𝑚
𝑘𝑙𝑡
𝑗

𝑗
,𝑤𝑘𝑗 =

𝑘 − 𝑘𝑙𝑡
𝑗

|C| 𝜆
𝑘𝑙𝑡
𝑗

𝑗
𝑤
𝑘𝑙𝑡
𝑗

𝑗
(8)

where 𝑘𝑙𝑡
𝑗
is the last iteration during which 𝐶 𝑗 has been selected.

3.2.2 Adaptive exploration score estimation. To optimize the explo-
ration score in Eq. 4, we pay special attention to the exploration
component from two perspectives, aiming to maximize benefits
from the selected clusters:
• Instead of only keeping track of the count 𝑛𝑘

𝑖
, we maintain a list

𝑣𝑖 that records the iterations when each cluster is explored. For
example, if cluster 𝐶𝑖 is explored in the first and fifth iterations
and the current iteration number is six, we have 𝑣𝑖 = [1, 0, 0, 0, 1, 0].
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Hence, in the 𝑘-th iteration, the adaptive exploration score for any
selected cluster 𝐶𝑖 is computed as:

𝛾


2 ln(𝑘)/


𝑘∑︁
𝑠=1

𝑘 − 𝑠 + 1
𝑘

𝑣𝑠
𝑖
+ 1


. (9)

This approach reduces the weight of older information, ensuring
that the decision to explore a cluster is influenced by more recent
information, even in scenarios where certain clusters have been
explored the same number of times.
• To further enhance effectiveness, we offer additional exploration
opportunities to clusters that have different distributions from the
cluster currently selected in the iteration. This permits data points
from diverse distributions to be included during ML model training.
As such, at the 𝑘-th iteration, the adaptive exploration score of an
unselected cluster 𝐶 𝑗 ∈ C \𝐶𝑖 can be calculated as:

𝛾 +
𝑑 (𝐶𝑖 ,𝐶 𝑗 )

max(𝑑 (𝐶𝑖 ,𝐶 𝑗 ))

 
2 ln(𝑘)/


𝑘∑︁
𝑠=1

𝑘 − 𝑠 + 1
𝑘

𝑣𝑠
𝑗
+ 1


. (10)

where the distance 𝑑 (𝐶𝑖 ,𝐶 𝑗 ) between 𝐶𝑖 and 𝐶 𝑗 is used to control
the likelihood of selecting the cluster in the next iteration and
calculated by Wasserstein distance [48].

Combining the adaptive exploitation score with the adaptive
exploration score, we are ready to introduce our final adaptive
score as new selection criteria. Specifically, at the 𝑘-th iteration,
the adaptive score 𝑠𝑘

𝑖
of any selected cluster 𝐶𝑖 is calculated by

combining Equations 6 and 9:

𝑠𝑘𝑖 = 𝑟𝑘𝑖 + 𝛾


2𝑙𝑛(𝑘)/(

𝑘∑︁
𝑠=1

𝑘 − 𝑠 + 1
𝑘

𝑣𝑠
𝑖
+ 1) . (11)

For any unselected cluster 𝐶 𝑗 ∈ C \ 𝐶𝑖 , combining Equations 8
and 10 yields the adaptive score 𝑠𝑘

𝑗
of 𝐶 𝑗 as

𝑠𝑘𝑗 = 𝑟
𝑘
𝑗 +


𝛾 +

𝑑 (𝐶𝑖 ,𝐶 𝑗 )
max(𝑑 (𝐶𝑖 ,𝐶 𝑗 ))

 
2 ln(𝑘)/


𝑘∑︁
𝑠=1

𝑘 − 𝑠 + 1
𝑘

𝑣𝑠
𝑗
+ 1


.

(12)

Example 3.1 (Our adaptive scores (Eq. 11 and Eq. 12) versus the
UCB scores (Eq. 4)). Consider a data pool containing three clusters,
C = {𝐶1,𝐶2,𝐶3}. Initialize 𝑟0

𝑖
and 𝑠0

𝑖
to 0 for all clusters and set

𝛾 = 0.05. At the first iteration, 𝐶1 is selected, resulting in a 22%
improvement in model performance.
Using existing UCB scores. At the second iteration, 𝐶1 is chosen,
leading to a 1% decrease in model performance. At the third itera-
tion,𝐶1 is selected, leading to a 1% reduction in model performance.
At the fourth iteration, 𝐶1 is picked, leading to a 1% decrease in
model performance. At the fifth iteration, 𝐶1 is selected, leading
to a 1% decrease in model performance. 𝐶1 is chosen at the first
five iterations even if it does not improve the model performance
after the first iteration. At the sixth iteration, we have 𝑠5

1 = 0.79,
𝑠5
2 = 0.089, and 𝑠5

3 = 0.089. In the CTS algorithms, 𝐶2 is chosen
randomly, yielding no improvement in model performance, while
selecting 𝐶3 can improve model performance.
Using our adaptive scores. Let𝜂 = 0.1 in Eq. 7. At the second iteration,
𝐶1 is selected, leading to a model performance decrease of 1%. At
the third iteration, 𝐶1 is chosen, leading to a 1% decrease in model

Algorithm 2 The IAS algorithm
Input: the clusters C, the training set 𝑑𝑡𝑟𝑎𝑖𝑛 , the ML model𝑀𝑇 , the vali-

dation set 𝑑𝑣𝑎𝑙 , the size of a mini-batch 𝑙 , the iterations 𝐾 , 𝛼 , 𝛽 , 𝐿1, 𝜂, 𝛾
Output: the updated training set and the trained model
1: obtain the gradients g and learnable parameters w from𝑀 (𝑑𝑡𝑟𝑎𝑖𝑛 ) ;
2: z[𝑖 ] ← g[𝑖 ] + g[𝑖 ]w[𝑖 ]/𝛼 , n[𝑖 ] ← 𝑡

𝑠=1 g[𝑖 ]2 for 1 ≤ 𝑖 ≤ |w |;
3: 𝑟 0

𝑖
← 0, 𝑠0

𝑖
← 0 for each𝐶𝑖 ∈ C, 𝜆0

𝑖
← 1, 𝑝 ← 𝑀𝑇 (𝑑𝑡𝑟𝑎𝑖𝑛, 𝑑𝑣𝑎𝑙 ) ;

4: for 𝑘 from 1 to 𝐾 do
5: if k == 1 then𝐶𝑖 ← arg max𝐶𝑖 ∈C 𝑑 (𝐶𝑖 , 𝑑𝑡𝑟𝑎𝑖𝑛 ) ;
6: else select the cluster𝐶𝑖 ∈ C with the largest adaptive score;
7: sample a mini-batch 𝐵𝑖 of size 𝑙 from𝐶𝑖 ;
8: w, z, n← OnlineLearning(𝐵𝑖 ,w, z, n, 𝛼, 𝛽, 𝐿1 )
9: Δ← 𝑀w

𝑇
(𝐵𝑖 , 𝑑𝑣𝑎𝑙 ) − 𝑝 , 𝑝 ← 𝑀w

𝑇
(𝐵𝑖 , 𝑑𝑣𝑎𝑙 ) ;

10: if Δ > 0 then 𝑑𝑘
𝑡𝑟𝑎𝑖𝑛

← 𝑑𝑘−1
𝑡𝑟𝑎𝑖𝑛

∪ 𝐵𝑖 ;
11: 𝑟𝑘

𝑖
← Δ and update 𝑟𝑘

𝑖
with 𝑟𝑘

𝑖
and 𝜆𝑖 using Eq. 6;

12: 𝑠𝑘
𝑖
using Eq. 11 and update 𝜆𝑖 with 𝜂 using Eq. 7;

13: for𝐶 𝑗 ∈ C \𝐶𝑖 do
14: update 𝑟𝑘

𝑗
using Eq. 8 and 𝑠𝑘

𝑗
using Eq. 12;

return 𝑑𝐾
𝑡𝑟𝑎𝑖𝑛

,𝑀w

performance. At the fourth iteration, 𝑠3
1 = 0.108, 𝑠3

2 = 0.111, and 𝑠3
3 =

0.175. Hence,𝐶3 is picked, leading to a model performance increase
of 1%. Our adaptive score estimation enables a better exploration
of all clusters. Given that the exploration score in Eq. 10 accounts
for the distributions across various clusters, it provides a more
informed basis for cluster selection. Thus, we can select a cluster
that can deliver an earlier enhancement in model performance.

3.3 The IAS Algorithm
With all of the key components of online learning and adaptive score
estimation introduced in Sec. 3.1 and Sec. 3.2, we now present the
complete procedure for the proposed IAS algorithm in Alg. 2. First,
the ML model𝑀𝑇 trains on the initial training set 𝑑𝑡𝑟𝑎𝑖𝑛 , obtaining
the gradients g and learnable parameters w (Line 1). Then, vectors
z and n are stored for the online learning stage (Lines 2). In the first
iteration, the cluster that exhibits the most different distribution
compared to 𝑑𝑡𝑟𝑎𝑖𝑛 is selected where the distance 𝑑 (𝐶𝑖 , 𝑑𝑡𝑟𝑎𝑖𝑛) be-
tween𝐶𝑖 and 𝑑𝑡𝑟𝑎𝑖𝑛 is calculated byWasserstein distance [48] (Line
5), to enable the extraction of diverse information from 𝑑𝑡𝑟𝑎𝑖𝑛 to
enhance model training. In subsequent iterations, the cluster with
the largest adaptive score is selected (Line 6) and a mini-batch 𝐵𝑖
is sampled from the selected cluster 𝐶𝑖 (Line 8). Lines 8-9 provide
online-learning-based updates to𝑀𝑇 using mini-batch 𝐵𝑖 (Alg. 1),
and the performance improvement Δ of𝑀𝑇 attributed to the mini-
batch 𝐵𝑖 is computed. Here,𝑀w

𝑇
(𝐵𝑖 , 𝑑𝑣𝑎𝑙 ) represents𝑀𝑇 updated

via w with the inclusion of mini-batch 𝐵𝑖 and evaluated by 𝑑𝑣𝑎𝑙 .
Then, the training set is updated to 𝑑𝑘

𝑡𝑟𝑎𝑖𝑛
if Δ > 0 (Line 10). Finally,

the adaptive score of the selected cluster is updated in Lines 11-12,
and the adaptive scores of any unselected clusters are updated in
Lines 13-14. Assuming that each gradient g has at most 𝑎 non-zero
entries, the total time complexity of IAS is 𝑂 ((𝑙𝑎 + |C|)𝐾).

4 IAS WITH ADAPTIVE MINI-BATCH
SELECTION

Our IAS algorithm enhances Operations 2 and 5, leading to improve-
ments in both efficiency and effectiveness. However, as mentioned
in Sec. 1, another limitation exists when selecting a cluster to sample
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Figure 3: Performance improvement Δ obtained by IAS using
the Crop dataset (see Table 1) starting from different clusters.
a mini-batch (i.e. Operation 1). With regard to Operation 1, the IAS
algorithm selects the cluster with the least similar distribution to
𝑑𝑡𝑟𝑎𝑖𝑛 in the first iteration, while in subsequent iterations, it selects
the cluster with the highest adaptive score. Our experiments show
that this approach has the potential to reduce the overall effective-
ness of the IAS algorithm. That is, the effectiveness improvement
in each iteration depends on the single cluster used, which may not
always produce positive performance gains for that iteration. This
causes a cascading effect in subsequent cluster selection iterations.

To illustrate this point, consider a data pool containing three
clusters, C = {𝐶1,𝐶2,𝐶3}. Fig. 3 shows the performance improve-
ment for each iteration when different clusters are selected during
the first iteration. We can see that selecting 𝐶1 in the first iteration
fails to produce a positive performance improvement. Conversely,
selecting 𝐶2 or 𝐶3 in the first iteration does show improvements.
By selecting 𝐶2 in the first iteration, the maximum performance
gain can be achieved early. However, Alg. 2 does not make the best
choice since 𝐶1 is selected in the first iteration. Thus, we aim to
address this limitation in the IAS algorithm.

4.1 Optimizing Operation 1 through Adaptive
Mini-batch Selection

In this section, we first discuss how to optimize Operation 1 de-
scribed in Sec. 4.1.1, to mitigate the impact of single cluster selection
on the effectiveness of the algorithm. Then, we introduce how to
assign the reward of each cluster after optimizing Operation 1 in
Sec. 4.1.2 and how to calculate the adaptive score of each cluster
after optimizing Operation 1 in Sec. 4.1.3. Finally, in Sec. 4.2, we
present a novel algorithm that combines the enhancement on Oper-
ation 1 and the enhancements offered by the IAS algorithm. We call
this algorithm IAS with Adaptive Mini-batch Selection (IAS-AMS).
Fig. 1 shows the IAS-AMS algorithm in more detail.

4.1.1 Adaptive mini-batch selection to optimize Operation 1. The
key to optimizing Operation 1 is to reduce the impact of single
cluster selection on the algorithm’s effectiveness. To achieve this,
instead of sampling a mini-batch from a single cluster in each itera-
tion, we optimize Operation 1 using adaptive mini-batch selection,
which samples (data point, label) pairs from every cluster. The se-
lection process is based on the proportion of the adaptive score
for each cluster w.r.t. the sum of all adaptive scores. These propor-
tions guide the composition of the mini-batch in each iteration.
Specifically, let 𝑙 be the mini-batch size. The adaptive mini-batch
selection samples a set of (data point, label) pairs from each 𝐶𝑖 ,
denoted by 𝐵𝑖 . The cardinality of 𝐵𝑖 is |𝐵𝑖 | = (𝑠𝑘−1

𝑖
/ | C |

𝑗=1 𝑠
𝑘−1
𝑗
) × 𝑙 .

The selected mini-batch is then 𝐵 = ∪𝐶𝑖 ∈C𝐵𝑖 , which serves as the
input in subsequent operations.

The above enhancement approach for Operation 1 affects the
reward assignments as well as the adaptive score estimation for the

clusters. The performance improvement is due to the chosen mini-
batch that stemmed from a single cluster in each iteration in the IAS
algorithm.In contrast, our adaptive mini-batch selection improves
performance with mini-batch selection in each iteration, which
uses all of the clusters. Next, we will discuss reward assignments
after optimizing Operation 1 (Sec. 4.1.2), as well as adaptive score
estimation after optimizing Operation 1 (Sec. 4.1.3).

4.1.2 Reward assignments after optimizing Operation 1. When it
comes to assigning rewards to individual clusters after optimizing
Operation 1 using adaptive mini-batch selection, a natural question
arises: Can we accurately measure the relative contributions for
each cluster to the performance improvement from the selected
mini-batch? Our answer is affirmative. To achieve this objective, we
use the Shapley value (SV) [50], which is one of the most reliable
methods for equitable contribution assessment. It enables us to
quantify unique contributions from each cluster, and subsequently,
assign these contributions as the reward for each cluster.

In cooperative game theory [6], within a set of players denoted
as N = {𝑧1, ..., 𝑧 |N | }, let S ⊆ N represent a coalition of players
and 𝑢 be a utility function. The Shapley value allocated to a player
𝑧 signifies the marginal utility contribution ascribed to 𝑧, averaged
across all player coalitions, i.e.,

𝜙 (𝑧) = 1
|N |

∑︁
S⊆N\𝑧

1 |N |−1
|S |

 (𝑢 (𝑆 ∪ 𝑧) − 𝑢 (𝑆)) .
Accordingly, in our problem, the Shapley value assigned to a cluster
𝐶𝑖 ∈ C at the 𝑘-th iteration can be used as the reward attributable
to 𝐶𝑖 in iteration 𝑘 , expressed as:

𝑟𝑘𝑖 =
1
|C|

∑︁
S⊆C\𝐶𝑖

1 | C |−1
|S |

 (Δ(S ∪𝐶𝑖 ) − Δ(S)) . (13)

Here, Δ(𝑆) represents the performance improvement offered by a
mini-batch 𝐵 =


𝐶 𝑗 ∈S 𝐵 𝑗 where 𝐵 𝑗 is a set of (data point, label)

pairs sampled from 𝐶 𝑗 .
Generally, calculating the exact Shapley values for clusters in-

volves enumerating every possible subset of clusters, resulting in a
time complexity of 𝑂 (2 | C | ). Carrying out such computation with
exponential time complexity is intractable, particularly with a large
number of clusters. There are many existing studies on accelerating
Shapley value computations using various techniques [9, 11, 23, 29].
However, since we require a model-agnostic approach, sampling-
based methods are better-suited for our problem. Therefore, we use
a state-of-the-art method [62] to approximate the Shapley values.
This method estimates approximate Shapley values using stratified
sampling, which can be solved with a time complexity 𝑂 ( |C|2).
The accuracy of the approximation is influenced by the size of the
sample used to estimate marginal contributions [41]. Specifically,
according to Hoeffding’s inequality [52], given the range of a utility
function 𝑅, an error bound 𝜖 , and a confidence level 1 − 𝛿 , if the
sample size of marginal contributions for a player 𝑧 fulfills the con-
dition𝑚 ≥ 2𝑅2𝑙𝑜𝑔2/𝛿

𝜖2 , then 𝑃 ( |𝜙 (𝑧) − 𝜙 (𝑧) | ≥ 𝜖) ≤ 𝛿 . Here, 𝜙 (𝑧)
denotes the approximate Shapley value for player 𝑧, and 𝜙 (𝑧) is the
exact Shapley value for player 𝑧.
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4.1.3 Adaptive score estimation after optimizing Operation 1. After
assigning rewards for each cluster using the Shapley value approxi-
mation, another critical question arises: How should we calculate
the adaptive score for each cluster after optimizing Operation 1
(adaptive mini-batch selection)? Clearly, with adaptive mini-batch
selection, every cluster is explored in each iteration. In this context,
calculating the adaptive exploration score in the adaptive score (i.e.,
the second term in Eq. 11) is equivalent to calculating the explo-
ration score in UCB (i.e., the second term in Eq. 4). However, it is
important to not overlook the fact that each cluster contributes
varying amounts of information, quantified by the number of (data
point, label) pairs it contains, in each iteration. To address this
concern, we modify the second term in Eq. 11 to account for this
variability. The essence of this modification lies in considering the
proportion of sampled (data point, label) pairs within a cluster rela-
tive to the total number of (data point, label) pairs in the cluster, as
a measure of how extensively the cluster is explored. Therefore, the
adaptive score of cluster 𝐶𝑖 ∈ C at the 𝑘-th iteration is computed
as:

𝑠𝑘𝑖 = 𝑟𝑘𝑖 + 𝛾


2 ln 

| C |∑︁
𝑖=1
|𝐵𝑖 |/|𝐶𝑖 | + 1 /(|𝐵𝑖 |/|𝐶𝑖 | + 1) (14)

where 𝐵𝑖 is the set of (data point, label) pairs sampled from cluster
𝐶𝑖 at 𝑘-th iteration via adaptive mini-batch selection.

Example 4.1 (Our adaptive mini-batch selection versus single-clus-
ter sampling). Consider three clusters as shown in Fig. 3 and let
each mini-batch contain 30 (data point, label) pairs. Using adaptive
mini-batch selection, in the first iteration, 10 pairs are sampled from
each cluster. This results in a performance improvement compared
to IAS’s sampling from𝐶1, which leads to performance degradation.
The calculated scores are 𝑠1

1 = 0.041, 𝑠1
2 = 0.071, and 𝑠1

3 = 0.061. In
the second iteration, 8 pairs are sampled from 𝐶1, 12 pairs from 𝐶2,
and 10 pairs from𝐶3. This continues to improve performance while
exploring more information from each cluster.

4.2 The IAS-AMS Algorithm
Combining the enhancement on Operation 1 and the enhancements
from the IAS algorithm, we get a new IAS-AMS algorithm that
further improves the effectiveness. We present the pseudocode of
the proposed IAS-AMS algorithm in Alg. 3. In this algorithm, the
ML model𝑀𝑇 is first trained using an initial training set 𝑑𝑡𝑟𝑎𝑖𝑛 and
the associated learnable parameters w and gradients g are obtained
(Line 1). Then, two vectors z and n are stored for online learning
(Lines 2). At the𝑘-th iteration, adaptive mini-batch selection obtains
amini-batch𝐵 by sampling (data point, label) pairs from each cluster
according to the proportional adaptive score of each cluster (Lines
6-7). In Lines 8-9, the ML model𝑀𝑇 is updated via online learning
using a mini-batch 𝐵 (Alg. 1), and the performance improvement Δ
of𝑀𝑇 provided by the mini-batch 𝐵 is computed. Here𝑀w

𝑇
(𝐵,𝑑𝑣𝑎𝑙 )

denotes𝑀𝑇 that is updated using learnable parameters w and the
mini-batch 𝐵, and evaluated with 𝑑𝑣𝑎𝑙 . Next, the training set is
updated to 𝑑𝑘

𝑡𝑟𝑎𝑖𝑛
, if Δ > 0 (Line 10). Finally, the reward for each

cluster is assigned using Eq. 13 and the adaptive score for each
cluster is updated using Eq. 14 (Lines 12-13).
Time complexity analysis. Since each gradient contains at most 𝑎
non-zero entries, the per-iteration time to update the ML model

Algorithm 3 The IAS-AMS algorithm
Input: the clusters C, the training set 𝑑𝑡𝑟𝑎𝑖𝑛 , the ML model𝑀𝑇 , the vali-

dation set 𝑑𝑣𝑎𝑙 , the size of a mini-batch 𝑙 , the iterations 𝐾 , 𝛼 , 𝛽 , 𝐿1, 𝜂, 𝛾
Output: the updated training set and the trained model
1: obtain the gradients g and learnable parameters w from𝑀 (𝑑𝑡𝑟𝑎𝑖𝑛 ) ;
2: z[𝑖 ] ← g[𝑖 ] + g[𝑖 ]w[𝑖 ]/𝛼 , n[𝑖 ] ← 𝑡

𝑠=1 g[𝑖 ]2 for 1 ≤ 𝑖 ≤ |w |;
3: 𝑟 0

𝑖
← 0, 𝑠0

𝑖
← 0 for each𝐶𝑖 ∈ C, 𝜆0

𝑖
← 1, 𝑝 ← 𝑀𝑇 (𝑑𝑡𝑟𝑎𝑖𝑛, 𝑑𝑣𝑎𝑙 ) ;

4: for 𝑘 from 1 to 𝐾 do
5: 𝐵 ← ∅
6: for𝐶𝑖 ∈ C do // Adaptive mini-batch selection

7: sample a mini-batch𝐵𝑖 with size
𝑠𝑘−1
𝑖

𝑙|C|
𝑗=1 𝑠

𝑘−1
𝑗

from𝐶𝑖 ,𝐵 ← 𝐵∪𝐵𝑖 ;

8: w, z, n← OnlineLearning(𝐵,w, z, n, 𝛼, 𝛽, 𝐿1 ) ;
9: Δ← 𝑀w

𝑇
(𝐵,𝑑𝑣𝑎𝑙 ) − 𝑝 , 𝑝 ← 𝑀w

𝑇
(𝐵,𝑑𝑣𝑎𝑙 ) ;

10: if Δ > 0 then 𝑑𝑘
𝑡𝑟𝑎𝑖𝑛

← 𝑑𝑘−1
𝑡𝑟𝑎𝑖𝑛

∪ 𝐵;
11: for𝐶𝑖 ∈ C do // Adaptive score estimation
12: compute 𝑟𝑘

𝑖
using Eq. 13 and update 𝜆𝑘−1

𝑖
with 𝜂 using Eq. 7;

13: update 𝑟𝑘
𝑖
with 𝜆𝑘−1

𝑖
using Eq. 6 and 𝑠𝑘

𝑖
using Eq. 14;

return 𝑑𝐾
𝑡𝑟𝑎𝑖𝑛

,𝑀w

Table 1: Statistical Properties of the Datasets

Dataset Dataset size # attributes Task type # classes

HR 19,159 12 Classification 2
Crop 325,835 175 Classification 7

CIFAR10 60,000 1,024 Classification 10
House 357,583 18 Regression N/A
Traffic 87,840 121 Regression N/A

using online learning and a mini-batch 𝐵 is 𝑂 (𝑙𝑎). Computing the
reward 𝑟𝑘

𝑖
(i.e., Shapley value) for each cluster𝐶𝑖 requires𝑂 ( |C|2𝑙𝑎)

and the adaptive score estimation requires 𝑂 ( |C|3𝑙𝑎) time. Thus,
the total time complexity of IAS-AMS is𝑂 ( |C|3𝑙𝑎𝐾). Notably, while
that exceeds IAS, which is 𝑂 ((𝑙𝑎 + |C|)𝐾), the primary advantage
of IAS is its superior effectiveness, as demonstrated in Sec. 5.2.

5 EXPERIMENTS
We conduct extensive experiments to verify: (1) the effectiveness of
our algorithms compared to state-of-the-art competitors (Sec. 5.2);
(2) the efficiency of our algorithms compared to state-of-the-art
competitors (Sec. 5.3); (3) the impact parameter settings and the
choice of clustering methods have on performance (Sec. 5.4); (4) ben-
efits from the proposed enhancements of our algorithms (Sec. 5.5).

5.1 Experimental setup
Datasets and tasks. We use five datasets, whose statistical proper-
ties are shown in Table 1: (1) HR [13] is a dataset for the classifica-
tion task “predicting whether an employee will change their job”.
It contains information provided by Finance, Sales, International,
Purchasing, Marketing, and Technology departments. (2) Crop [34]
is a dataset for the classification task “predicting which crop type a
cropland is used for”. It includes temporal, spectral, textural, and
polarimetric information. (3) House [22] is a dataset with the regres-
sion task “predicting the price of a house”. It includes information
on the house profile, transportation availability, and nearby ameni-
ties. (4) Traffic is a dataset for the regression task “predicting the
travel flow of a region at a future time interval”. We use the methods
in [61] to construct this dataset. Specifically, the Chengdu Road

1317



Table 2: Parameter settings
Parameter Value

# of iterations 𝐾 1, 2, 3, ..., 20, 21, 22, ... 25
Size ratio 𝜌 5%, 10%, 15%, 20%, 25%

Sampling rate 𝑠 1%, 3%, 5%, 7%, 9%
# of clusters 10

Network (CRN) is sourced from OpenStreetMap [46], and divided
into 156 non-overlapping regions with each region spanning 2km
× 2km. Then, region-based traffic flows and travel demands within
a time interval of 5 mins are generated using Didi Chuxing’s or-
ders and associated trajectories in Chengdu from 10/01/2016 to
11/30/2016 [19]. After excluding rarely used regions with traffic
flows of fewer than 100, 40 regions remain. Each row records a time
interval, including travel demand, inflow, and outflow data for each
region. (5) CIFAR10 [31] is an image dataset for the classification
task “predicting the class of an image”.
Data Partitioning. Recall Sec. 2.1, the input includes the initial
training set 𝑑𝑡𝑟𝑎𝑖𝑛 , the test set 𝑑𝑡𝑒𝑠𝑡 , the validation set 𝑑𝑣𝑎𝑙 , and the
data pool 𝑃 . Here, we employ the technique from [34] to split the
datasets. Specifically, for HR, Crop, and House, we sample 1% of
the (data point, label) pairs for 𝑑𝑡𝑟𝑎𝑖𝑛 to replicate scenarios where
limited training data is available. In addition, we sample 10% for
𝑑𝑡𝑒𝑠𝑡 and another 10% for 𝑑𝑣𝑎𝑙 . We designate the remaining pairs
as 𝑃 . For Traffic, which is used to predict traffic flows, we divide all
tuples into 𝑃 , 𝑑𝑡𝑟𝑎𝑖𝑛 , 𝑑𝑣𝑎𝑙 , 𝑑𝑡𝑒𝑠𝑡 by partitioning the time intervals
with the respective proportions of 79%, 1%, 10%, and 10%. CIFAR10
has a training set of 50,000 images and a test set of 10,000 images.
Thus, we sample 1% for 𝑑𝑡𝑟𝑎𝑖𝑛 and 99% for 𝑃 using the training set
for model learning. We sample 50% for 𝑑𝑣𝑎𝑙 and 50% for 𝑑𝑡𝑒𝑠𝑡 using
the test dataset for performance evaluation.
Parameter settings. In Table 2, we summarize the key parameters
(default settings in bold). Following the state-of-the-art [13], we use
GMM as the default clustering method. After evaluating the GMM
clustering results using all datasets and AIC scoring [1], we fix the
number of clusters, |C|, to 10. We define the parameter 𝜌 as the size
ratio and consider the size of a mini-batch to be 𝑙 = 𝜌 × |𝑑𝑡𝑟𝑎𝑖𝑛 |. We
set 𝜌 = 20% by default. We define the parameter 𝑠 as the sampling
rate for extracting the initial training set from the complete dataset.
As previously mentioned, the default of 𝑠 is set to 1%. In Eq. 3, 𝛼
and 𝛽 are parameters associated with the learning rate, and 𝐿1 is a
regularization parameter. Typically, 𝛽 = 1 is sufficient, as suggested
by [43]. Using cross-validation and a grid search, we determine
near-optimal values for 𝛼 = 0.1 and 𝐿1 = 0.1. In Eq. 7, the step size
𝜂 ≪ 1 has a minimal impact on learning, as discussed by [43]. Here,
we set 𝜂 = 0.1. In Eq. 11 and Eq. 12, 𝛾 adjusts the balance between
the exploitation and exploration aspects of the selection process.
Here, we set 𝛾 = 0.05, which mainly focuses on the exploitation.
Model selection. We assess the performance of various models
using the initial training set and select the most effective one. We
aim to show that our enrichment algorithms are useful even when
combined with an already best-performing model. Specifically, for
classification tasks with HR and Crop, we opt for a multilayer per-
ceptron (MLP) model and an XGBoost model, respectively, due to
their superior performance compared to other common classifica-
tion models such as logistic regression and random forest. For the
regression task with House, we choose a support vector regression

(SVR) model and an XGBoost model as they exhibit superior per-
formance compared to common regression models such as linear
regression and random forest. For the regression task with Traffic,
both a deep sequence learning model, LSTM [35], and a deep meta-
learning model, ST-MetaNet [47], are used due to their established
competence in the previous work [61]. For the classification task
with CIFAR10, we employ ResNet50 [24] and VGG16 [54], recog-
nized as well-known deep learning models for image classification.
Evaluation. To evaluate the performance of the algorithms consid-
ered, we use the following performance measures:
• Root mean squared error (RMSE) for regression tasks [57].
• Area under curve (AUC) for classification tasks [13], AUC is the
area under the receiver operator characteristic (ROC) curve, and
quantifies a model’s capability to distinguish between classes.
• Runtime. The average running time over five independent runs.
Compared methods.
• ALL – The simple method that adds all (data point, label) pairs
from the data pool to the training set.
• RANDOM – The method that randomly selects a mini-batch at
each iteration.
•NN (nearest neighbors) – Themethod that, at each iteration, selects
a mini-batch that contains the data points closest to those in the
training set.
•MAB [13] – The CTS algorithm using a multi-armed bandit pro-
cess to select a mini-batch at each iteration.
• DQN [13] – The CTS algorithm using reinforcement learning
based on deep Q-network to select a mini-batch at each iteration.
• IAS – The proposed IAS algorithm (Alg. 2).
• IAS-AMS – The proposed IAS-AMS algorithm (Alg. 3).

All methods except ALL, are iterative and, in each iteration, select
data using a fixed mini-batch size. Similar to MAB and DQN, our
algorithms, IAS and IAS-AMS, also model the data pool 𝑃 as a set of
clusters. Hence, we use the same clustering method and the same
number of clusters in all four algorithms. We tune the parameters
of MAB and DQN that are not used by our algorithms to optimize
the performance and to ensure a fair and unbiased comparison.

Moreover, XGBoost being a tree-based model, faces limitations in
updating parameters associated with the structure of its constituent
trees through online learning for Operation 2 optimization. Thus,
for Operation 2, our algorithms IAS and IAS-AMS maintain the
optimal tree structure of the XGBoost model trained on the initial
training set. They solely update the weights of its leaf nodes using
online learning in each iteration, as these weights are computed
from the gradients of training instances.
Implementation. Experiments are run on a server running Red
Hat Enterprise Linux with an Intel® Xeon® CPU@2.60GHz, 512GB
RAM, and two Nvidia Tesla P100 GPUs, each with 16GB of memory.
We implement all algorithms in Python and code is available at [18].

5.2 Effectiveness Study
The effectiveness of the proposed algorithms, IAS and IAS-AMS,
is compared to that of their competitors in Fig. 4(a)-Fig. 4(j). The
analysis of results reveals compelling insights: (1) All examined
algorithms exhibit performance improvement with increasing itera-
tions, signaling the efficacy of data acquisition. (2) Among the base-
lines, RANDOM and NN perform least optimally. This is because
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Figure 4: The effectiveness of algorithms w.r.t the number of iterations.
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Figure 5: The efficiency of algorithms w.r.t the number of iterations.
RANDOM selects an arbitrary mini-batch in each iteration without
any alignment with the ML task. NN is biased towards selecting
data points closest to 𝑑𝑡𝑟𝑎𝑖𝑛 in each iteration. This restricts its ca-
pacity to effectively model the relevant data distribution essential
for the ML task. Moreover, RANDOM and NN struggle to converge
compared to other algorithms that tend to be stable after around
25 iterations. Their lack of consideration for the ML task’s unique
characteristics introduces uncertainty regarding their impact on
the overall task performance. (3) MAB and DQN are superior to
RANDOM and NN, thanks to their ability to improve performance
directly during data acquisition. The results also confirm the effi-
cacy of clustering in representing data points within a data pool as
well as the merit of employing an exploration-exploitation strategy
to acquire new data iteratively. (4) Our algorithms, IAS and IAS-
AMS, exhibit superior effectiveness, especially underscoring the
significance of adaptive score estimation. (5) IAS-AMS outperforms
IAS, validating the efficacy of IAS-AMS and its adaptive mini-batch
selection in diversifying the added data per iteration. (6) With the
Traffic dataset, ALL displays the poorest performance, potentially
due to the inclusion of noisy data points or outliers that negatively
impact model performance. This highlights the importance of se-
lecting a pertinent subset of data points for training ML models. (7)
The noticeable initial drop in RMSE or rapid rise in AUC within
the initial iterations, followed by marginal changes, underscores
the crucial role of data point selection and indicates that selective
data choices enable more robust model training with minimal data.

5.3 Efficiency Study
We present the runtime for the considered algorithms in Figs. 5(a)-
5(j). We observe that: (1) As the number of iterations increases, the
runtime for all algorithms also increases. (2) NN is the slowest al-
gorithm because it requires too many distance computations. Note
that it could be accelerated by utilizing indexing techniques [27],

which we have not tested here. (3) Our algorithm IAS is the fastest,
consistently outperforming all other algorithms. This highlights
the value of incorporating online learning to efficiently optimize
Operation 2. Online learning provides exceptional performance
gains, particularly with computationally intensive DL models. IAS
achieves a speed-up that is an order of magnitude better than the
other algorithms on the Traffic dataset and the CIFAR10 dataset. (4)
While IAS-AMS is slightly less efficient than MAB, it is still compet-
itive with DQN. This is due to IAS-AMS having to calculate Shapley
values for each cluster in every iteration, this equates to additional
computational overhead compared to MAB. However, the use of
online learning in IAS-AMS expedites model training, and using an
efficient Shapley value approximation method [62] removes the ex-
ponential growth expected when computing exact Shapley values.
Consequently, IAS-AMS remains a viable and practical choice.

5.4 Sensitivity Analysis
Here, we evaluate how the effectiveness of the proposed algorithms
is impacted by varying the size of the mini-batches, the size of the
initial training set, and the choice of the clustering algorithm.
The impact of mini-batch size. We show the performance eval-
uation results, w.r.t. mini-batch sizes in Fig. 6. Observe that: (1)
As the mini-batch size ratio 𝜌 increases, the performance gener-
ally improves for all algorithms since a greater number of training
data points within each iteration is available. Conversely, a smaller
mini-batch size requires more iterations to achieve acceptable per-
formance, leading to an increase in the overall runtime. (2) The
ratio 𝜌 = 20% is the best choice in our experiments as it delivers the
most favorable trade-off between effectiveness and efficiency. (3)
The performance of MAB and IAS [Figs. 6(a) and 6(b)] can degrade
as 𝜌 is increased as the inclusion of noisy data points to the training
set increases. In contrast, IAS-AMS is not influenced by noisy data
points, which highlights the robustness of the selection process.
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Figure 6: The impact of mini-batch size on effectiveness.
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Figure 7: The impact of initial training set size on effectiveness.

The impact of initial training set size. Fig. 7 shows the perfor-
mance evaluation results for different sizes of the initial training set.
We observe that: (1) Increasing the sampling rate 𝑠 improves the
performance of all algorithms. This is because a larger initial train-
ing set provides richer data for superior model training from the
outset. (2) Our algorithms, IAS-AMS and IAS, continue to surpass
two baselines even with the enhanced initial model performance.
This indicates their adeptness in selecting data points effectively,
further boosting the model performance.
The impact of clustering methods. We tested four classic clus-
tering methods, GMM [21], DBSCAN [20], 𝑘-means [39] and Mean-
Shift [16], to cluster the data points. We determine the number of
clusters for GMM using the AIC score [1]. We use the technique
from [51] to select two parameters in DBSCAN, the radius 𝑒𝑝𝑠 and
the density threshold𝑚𝑖𝑛𝑃𝑡𝑠 . We use the Silhouette score [49] to
determine the number of clusters in 𝑘-means. We use bandwidth
estimation [55] to set the parameter 𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ of MeanShift.

Fig. 8 shows the performance for each of the algorithms (includ-
ing the no clustering case) with IAS and IAS-AMS, compared to
the baselines MAB and DQN using several datasets. Observe that:
(1) The choice of clustering algorithm affects the performance of
the algorithm used. GMM is the most effective. For instance, on the
HR dataset, the AUC for IAS is 65.7% using GMM, surpassing the
performance with DBSCAN (62.4%), 𝑘-means (63.2%) or MeanShift
(64.4%). (2) Regardless of the clustering algorithm used, IAS-AMS
is the overall winner. This can be attributed to the sampling for
the mini-batch on all clusters rather than from a single cluster;
(3) The algorithms operating without data point clustering per-
form worse compared to any clustering-based counterpart. This is
strong evidence that the advantages of data point clustering in data
acquisition will enhance the performance of downstream ML tasks.

5.5 Ablation Study
Now, we perform an ablation study of our algorithms IAS and IAS-
AMS. Recall that IAS introduces two new enhancements – online
learning in Operation 2 to improve efficiency, and adaptive score
estimation in Operation 5 to improve effectiveness. Thus, we wish
to examine the following two variants of IAS in an ablation study:
• IS: This variant of the IAS algorithm excludes adaptive score

estimation. Instead, it uses the UCB score from Eq. 4 in Operation
5 but includes online learning in Operation 2.

• AS: This variant of the IAS algorithm removes online learning in
Operation 2 and retrains the model from scratch in each iteration
while retaining adaptive score estimation in Operation 5.
Our IAS-AMS algorithm also added three other enhancements,

two of which are shared with IAS, and the third which is in Opera-
tion 1 – adaptive mini-batch selection. Therefore, we also consider
three other variants of IAS-AMS in the ablation study:

(a) HR (MLP) (b) Crop (MLP)

(c) House (SVR) (d) Traffic (LSTM)

Figure 8: The impact of clustering methods on effectiveness.
Table 3: The effectiveness (AUC for Crop and RMSE for
House) of the proposed algorithms and their variants for
two datasets and different iteration numbers.

Dataset Algorithm # of iterations
5 10 15 20 25

Crop

IAS 80.9% 87.9% 89.2% 91.1% 91.1%
IS -2.6% -3.7% -3% -2% -1.3%
AS +2.4% +2.7% +2.7% +1.7% +2.1%

IAS-AMS 85.1% 89.6% 93.4% 95.8% 96%
IS-AMS -3.1% -2.9% -1.5% -2.7% -2.6%
AS-AMS +1.9% +3.4% +1.8% +1.6% +1.8%
S-AMS -1.5% -1.2% -0.7% -1.2% -1%

House

IAS 0.615 0.59 0.561 0.552 0.544
IS +0.025 +0.027 +0.029 +0.03 +0.03
AS -0.02 -0.035 -0.021 -0.022 -0.019

IAS-AMS 0.586 0.559 0.513 0.503 0.504
IS-AMS +0.029 +0.028 +0.044 +0.028 +0.027
AS-AMS -0.024 -0.022 -0.016 -0.022 -0.024
S-AMS +0.017 +0.013 +0.02 +0.015 +0.01

• IS-AMS: This variant of the IAS-AMS algorithm removes adaptive
score estimation in Operation 5 but keeps online learning in
Operation 2, and adaptive mini-batch selection in Operation 1.

• AS-AMS: This variant of the IAS-AMS algorithm removes online
learning in Operation 2 and keeps adaptive score estimation in
Operation 5 and adaptive mini-batch section in Operation 1.

• S-AMS: This variant of the IAS-AMS algorithm removes both
online learning and adaptive score estimation and only retains
adaptive mini-batch section in Operation 1.
Table 3 presents the effectiveness of these variants using two

datasets. To facilitate the comparison, we provide the value differ-
ences between the variant and its corresponding algorithm that
includes all components. Observe that: (1) IS and IS-AMS are less
effective than IAS and IAS-AMS, respectively. This is because, in
online learning, the ML model is updated with each new data point
added. Such updates can be influenced by noisy or outlier data
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Table 4: The runtime (in seconds) of the proposed algorithms
and their variants for two datasets and different iteration
numbers.

Dataset Algorithm† # of iterations
5 10 15 20 25

Crop

IAS 9.4 15.7 20.6 25.9 30.6
AS +47.2 +78.7 +87.2 +109.9 +166.5

IAS-AMS 20.2 55.5 94.9 135.9 194.3
AS-AMS +55.7 +96.2 +167.9 +302.1 +441.2

House

IAS 6.1 13.6 36.6 63.8 86.3
AS +9.8 +24.4 +49.1 +115.6 +514.5

IAS-AMS 13.7 44.9 100.7 179.4 325.6
AS-AMS +76.3 +205.5 +330.3 +514.5 +1002.1

†We compare IAS and IAS-AMS solely with AS and AS-AMS, respectively,
as an efficiency enhancement using only online learning.

points, causing the ML model to overfit individual observations,
and hence noise, which in turn results in higher variance. In con-
trast, retraining the ML model using the entire training set helps to
reduce the impact of noise and provides a more robust result. (2)
AS and AS-AMS are more effective compared to IAS and IAS-AMS,
respectively. This demonstrates that adaptive score estimation ex-
cels in selecting data points that lead to the greatest performance
improvements in an MLmodel. Thus, while there may be a trade-off
in model performance due to online learning, IAS and IAS-AMS
still outperform the baselines, as illustrated in Fig. 4. (3) IAS-AMS
and its variants consistently outperform IAS, even when including
only adaptive mini-batch selection (S-AMS). This highlights the
advantages introduced in the changes to Operation 1 using adaptive
mini-batch selection in terms of overall effectiveness.

Table 4 shows the runtime for our algorithms and each variant,
as the number of iterations is varied. Observe that: (1) AS and AS-
AMS are less efficient than IAS and IAS-AMS, respectively. This is
attributed to the addition of online learning in IAS and IAS-AMS
to improve Operation 2. In contrast, AS and AS-AMS retrain the
model in each iteration using the entire training set, incurring a
high computational cost. (2) Despite IAS-AMS being slower than
IAS, it is still competitive with the baselines, as shown in Fig. 5. It
also has the highest overall effectiveness in Fig. 4. This trade-off
between effectiveness and efficiency positions IAS-AMS as the best
option in new data acquisition strategies.

6 RELATEDWORK

Data acquisition is the process of extracting labeled data that are
the most useful to enhance the performance of a supervised model
from a pool of available data. Existing work uses data acquisition
to improve a model’s performance [13, 15, 30, 34, 37, 60, 63]. Li et
al. [34] introduce an interactive process where consumers provide
queries to obtain data for enhancing the accuracy of a specificmodel,
with data providers possessing the data to make them available for
training purposes. Zhang et al. [63] present an information update
system that ensures that new datasets can be easily obtained by a
data market for the purpose of improving model performance. Chai
et al. [13] study the same problem as ours and propose a state-of-the-
art CTS algorithm using a two-step framework to iteratively select
data points from a set of clusters. However, the CTS algorithm has
several practical limitations that limit its effectiveness and efficiency,

as discussed in Sec. 1. To remove the limitations in existing CTS-
based algorithms, we propose new algorithms which enhance CTS
in several ways, including the use of online learning, adaptive score
estimation, and adaptive mini-batch selection.
Feature augmentation refers to the process of enhancing an ML
model by introducing new features during training. This approach
has recently garnered significant research attention [17, 28, 33,
36, 38, 53, 64, 66]. For example, Kumar et al. [33] design easy-to-
understand decision rules to augment features when joins can be
avoided safely without affecting ML accuracy significantly. Chep-
urko et al. [17] propose an end-to-end approach to automatically
augment features to improve the performance of a targeted model.
Liu et al. [36] use reinforcement learning to augment features with
an exploration-exploitation strategy. However, these approaches
select features (columns in structured datasets) rather than data
points (rows in structured datasets), which is the focus of this work.
Coreset selection refers to the process of identifying a subset (a.k.a.
coreset) in a training set such that the ML model being trained on
this subset performs on par with the MLmodel trained on the entire
training set. There is a great deal of previous work addressing this
problem [7, 10, 12, 14, 26, 57, 59, 65]. For instance, Huang et al. [26]
propose a sequential method to select and update the coreset dur-
ing training and can reduce the complexity when using gradient
descent algorithms. Wang et al. [57] propose an efficient coreset
selection approach that avoids materializing the improved table by
performing the gradient computations using partial feature similar-
ity between tuples. Chai et al. [12] consider coreset selection over
incomplete data by modeling the unknown complete data as the
combinations of possible data repairs. Despite apparent similarities,
coreset selection is a different problem from the one explored here
as it is relevant in scenarios where ample labeled data is available
for training, and one of the key goals is to improve ML training
efficiency by reducing the size of the training set. In contrast, we
explore scenarios where limited labeled data is available for train-
ing, and the aim is to improve the existing model performance
using new data points from multiple sources to enrich the original
training set.

7 CONCLUSION
In this paper, we study the problem of data acquisition for enhanc-
ing ML performance. The state-of-the-art solution for this problem
is the CTS algorithm, which relies on five operations to select data
points from relevant clusters iteratively. However, CTS is not effi-
cient and proves ineffective in certain cases. Specifically, Operations
1, 2, and 5 (Fig. 1) can be bottlenecks. Therefore, we propose the
IAS algorithm, which improves the effectiveness and efficiency by
redefining Operation 2 using online learning and redefining Opera-
tion 5 using adaptive score estimation. Additionally, we propose
the IAS-AMS algorithm, which further improves the effectiveness
of IAS by adding adaptive mini-batch selection to Operation 1.
Comprehensive experiments using real datasets verify that IAS out-
performs all related baselines in both effectiveness and efficiency,
and IAS-AMS is the most effective overall.
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