
Is Your LearnedQuery Optimizer Behaving As You Expect? A
Machine Learning Perspective

Claude Lehmann∗
claude.lehmann@zhaw.ch

Zurich University of Applied Sciences
Winterthur, Switzerland

Pavel Sulimov∗
pavel.sulimov@zhaw.ch

Zurich University of Applied Sciences
Winterthur, Switzerland

Kurt Stockinger
kurt.stockinger@zhaw.ch

Zurich University of Applied Sciences
Winterthur, Switzerland

ABSTRACT
The current boom of learned query optimizers (LQO) can be ex-
plained not only by the general continuous improvement of deep
learning (DL) methods but also by the straightforward formulation
of a query optimization problem (QOP) as a machine learning (ML)
one. The idea is often to replace dynamic programming approaches,
widespread for solving QOP, with more powerful methods such
as reinforcement learning. However, such a rapid "game change"
in the field of QOP could not pass without consequences - other
parts of the ML pipeline, except for predictive model development,
have large improvement potential. For instance, different LQOs
introduce their own restrictions on training data generation from
queries, use an arbitrary train/validation approach, and evaluate
on a voluntary split of benchmark queries.

In this paper, we attempt to standardize the ML pipeline for
evaluating LQOs by introducing a new end-to-end benchmarking
framework. Additionally, we guide the reader through each data
science stage in the ML pipeline and provide novel insights from
the machine learning perspective, considering the specifics of QOP.
Finally, we perform a rigorous evaluation of existing LQOs, showing
that PostgreSQL outperforms these LQOs in almost all experiments
depending on the train/test splits.

PVLDB Reference Format:
Claude Lehmann, Pavel Sulimov, and Kurt Stockinger. Is Your Learned
Query Optimizer Behaving As You Expect? A Machine Learning
Perspective. PVLDB, 17(7): 1565 - 1577, 2024.
doi:10.14778/3654621.3654625

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/edualc/lqo_ml_perspective.

1 INTRODUCTION
Over the last decade, machine learning (ML) approaches have heav-
ily dominated classical query optimization methods. Having in total
𝑂 (𝑛!) possible logical plans in the worst case for queries where
the join graph is a clique with 𝑛 tables, the problem is classified as
NP-hard [37]. This implies that exhaustive methods cannot solve

∗Both authors contributed equally to this work.
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 17, No. 7 ISSN 2150-8097.
doi:10.14778/3654621.3654625

the problem for a higher order of joins1, thus demanding the need
for heuristical approaches.

Figure 1: Comparison of classical and learned query optimiz-
ers (LQO) - see top and bottomhalves, respectively. The stages
(1) Training Data Generation, (3) LQO Training, and (4) LQO
Evaluation are the primary components of our End-to-End
Benchmarking Framework. Together with the (2) Query &
Plan Encoding stage, they form the typical machine learning
pipeline for a LQO.

In Figure 1, we compare typical pipelines for classical and learned
query optimizers. The classical approach, implemented inside data-
base management systems (DBMS), has the stages of query repre-
sentation via logical and physical plans, with a follow-up search
of an optimal plan using cardinality-based cost model estimations.
In addition to dynamic programming-based methods, genetic algo-
rithms [34] are also used since they are proven to be more efficient
for queries with a high number of joins [28].

The bottom part of Figure 1 shows learned query optimizers
(LQO), the most recent trend for end-to-end query optimization.
These approaches require a more complicated pipeline because of
1PostgreSQL abandons exhaustive methods for queries with 12 or more FROM items.

1565

https://doi.org/10.14778/3654621.3654625
https://github.com/edualc/lqo_ml_perspective
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3654621.3654625
https://www.acm.org/publications/policies/artifact-review-and-badging-current


the use of ML methods. Looking at it from the ML perspective, the
pipeline should consist of several stages: (1) training data genera-
tion, (2) query & plan encoding, (3) ML model training, and (4) ML
model evaluation. The violation of theoretical ML principles [30]
at each stage and the absence of a unified reproducible framework
make it currently impossible to fairly compare the results of LQOs.

Let us briefly describe what can go wrong at each stage, i.e., the
major challenges of the ML pipeline for LQOs from both a data
science and an engineering perspective and how we solve them as
contributions of this paper.

Training Data Generation.2 When no ready-to-use training
data is provided for benchmarking, opportunities for biased data
creation appear. For LQOs, we observed that only the queries are
given as SQL statements for popular benchmarks such as JOB [18].
The key problem is that these statements cannot be explicitly used
as input for ML models without querying the databases (DB) and
extracting metadata such as cardinalities or execution times. This
implies a gap between the given benchmark data and the actual
features used to train LQOs, which are strongly correlated with the
parametric conditions when querying the database.

Contribution: We discuss general limitations that could hamper
the process of similar training data creation in Section 3.

Query & Plan Encoding. Encoding the queries such that the
principle of invariance3 is broken, leads to inconsistencies in the per-
formance. When different queries are encoded using column selec-
tivities, it is possible that large sections of the encoding (or even the
full vectors) are identical. This is because many filter combinations
result in the same selectivity. Hence, the model would potentially
suffer from the mismatch between features and target variables and
will only perform well if this inconsistency is mitigated.

Contribution: We diagnose the invariance issues in particular
methods and give encoding recommendations in Section 4.

LQO Training. Contravening the basic training techniques and
misapplying mathematical models makes your ML model behave un-
expectedly. Complicated DL models are hard to train, which makes
hyperparameter tuning and validation procedures the cornerstone
for gaining high predictive power. Moreover, injecting additional
mathematical mechanisms can have adverse side effects that nega-
tively impact the training itself and, in turn, the query performance.

Contribution: We propose enhancements to make the training
process of LQO methods more stable and reliable in Section 5.

LQO Evaluation.When your model is trained and then evaluated
on a non-fixed train/test split, comparisons become data-centric rather
than model-centric, i.e., the choice of the train/test split strongly
correlates with the model’s performance. For example, the perfor-
mance on two different train/test splits of the same type (such as
randomly splitting queries) is not comparable. Explicit examples
of this can be seen in Figures 4 and 5 of our experiments). Despite
the existence of public query optimization benchmarks like the one
in [18] and [22], it remains an open question which queries serve
as the train data and which ones are the test data. The attempts
to suggest the procedure of a unified evaluation were only made
recently in [23], [39] and [43].

2The points about training data also apply to validation and test data.
3We formulate the principle of invariance [17] in data generation as follows: When
given the same input, the data generating system should return the same output.

Contribution: We unify data splitting for LQOs and introduce a
procedure to test different levels of generalization in Section 6.

Reproducibility. Any ML method developed in academia has
negligible practical value if it cannot be reproduced on arbitrary soft-
ware and hardware. With ML approaches finding widespread use
in academic research, navigating the realm of learned query opti-
mization presents challenges, as it requires proficiency in the core
subject of database research and numerous related engineering
fields. These approaches typically require complex programming
code and (ML) models with inherent stochasticity. Hence, repro-
ducibility is becoming a growing concern in academia.

Contribution:We suggest anEnd-to-EndBenchmarking Frame-
work - a novel meta-benchmarking framework that is capable of
equalizing the conditions under which the ML-based LQOs are trained
and tested, guaranteeing consistency in comparisons in Section 7.

Main contribution: We perform an extensive evaluation of ex-
isting LQOs using our end-to-end benchmarking framework in
Section 8. Our results demonstrate that current LQOs do not
systematically perform better than PostgreSQL. These findings
indicate that novel research is required to make LQOs competitive
with more traditional approaches - and not only in specific cases.

The paper is organized as follows: First, we briefly review re-
cent LQO methods in Section 2. Then, we dissect the data science
stages in the ML pipeline applied to query optimization, not only
discussing potential hurdles that can occur while processing each
stage but also suggesting ways of mitigating them via practical
(see Sections 3 & 6) and theoretical (see Sections 4 & 5) recom-
mendations. Based on the challenges in the reproducibility of ML
approaches, we propose our End-to-End Benchmarking Framework
in Section 7. Afterwards, we perform an elaborate experimental
evaluation of recently released LQOs from an ML perspective in
Section 8. Finally, we conclude the paper in Section 9.

2 RELATEDWORK
Before end-to-end LQOs appeared, significant progress had been
made toward using modern ML approaches for query optimization.
For instance, DQ [15], ReJOIN [24, 25], and others [11, 16] apply
reinforcement learning (RL) in an exploration-exploitation strategy
with the goal of finding the optimal join order. These methods use a
cost model to produce a "join score" reward for the learning agent.

The first end-to-end LQO Neo [23] uses a neural network (NN)
to estimate the latencies of a full query plan given a sub-plan as an
input. The optimal plan is predicted via a greedy tree search in the
join and scan space and consecutive bottom-up plan construction.

RTOS [42] assumes that the join graph is built as a sequence of
join operations between two tables, ignoring scans, and applies a
graph NN to train an RL agent. The predicted query plan is built
similarly to Neo, though it applies a depth-first search.

Bao [22] sits on top of the PostgreSQL query optimizer, control-
ling the execution flow by enabling or disabling a subset of join and
scan operations. These subsets are referred to as hint sets, and Bao
provides neither the full join order nor which scan types are used
for which table but rather advises which operations not to use.

Balsa [39] is based on the same architecture as Neo. However,
it introduces several modifications to the training pipeline: it pre-
trains using the cost model estimations of a DBMS instead of real

1566



latencies, it uses timeouts during query executions, and it does not
sample training data from the replay buffer but rather uses the data
points produced by the most recent NN state.

Lero [44] formulates the problem as a learning-to-rank (LTR)
task and generates various candidate query plans from the DBMS by
changing the internal cardinality estimations. The plan comparator
module selects the better of two generated candidate plans, similarly
choosing the optimal plan during inference. LEON [4] is another
LTR method. Unlike Lero, it brute-forces many possible physical
plans in a dynamic programming manner and prunes them before
training. Training happens only on the top chosen SQL/query plan-
pairs, ranked by their latency and posterior uncertainty estimation
obtained from a Bayesian NN.

LOGER [3] uses the conceptual ML model pipeline from RTOS,
though extending the action space for join order recommendations
by adding the join type. LOGER restricts the operation recommen-
dation, i.e., which join type not to use, by applying 𝜖-beam search
for plan prediction.

HybridQO [41] uses a mix of cost and latency estimations, like
some other methods, but in a different manner: it first gets the
candidate plans from the DBMS via hints. Those hints are obtained
from the top levels of the query plan tree explored by aMonte-Carlo
Tree Search (MCTS) with an upper confidence bound and using the
cost as a target (the cost is estimated with an NN from RTOS). Then,
the same network architecture is used to predict the latency and
uncertainty from the candidate plans. A multi-head performance
estimator makes the final plan selection.

In the recent paper [43], the authors question the reasonability
of training complicated and computationally costly LQOs. As an
alternative, they suggest the combination of look-ahead information
passing (LIP), in which adaptive semi-join techniques and adaptive
join algorithms (AJA) are used. The latter checks whether a hash
join should be replaced by a nested loop join at runtime.

In this paper, we introduce neither a new LQO nor a classical
alternative. Instead, we provide recommendations to improve LQOs
based on a vast evaluation of existing LQOs from an ML perspective.

3 TRAINING DATA GENERATION
Typically, ML problems have publicly available benchmarks with
ready-to-use training data that is identical for all participants. QOP
benchmarks differ regarding the provided data and only serve as
a source for generating the training data, suitable as an input into
ML models. This makes the whole ML pipeline vulnerable to incon-
sistencies in the data generation process, namely:

(1) Having training data generated under unreasonable restric-
tions reduces the domain of data points available for training and
potentially decreases the generalization of the ML models. (2) The
generated training data can result in cases where the same input
leads to a different output (or target).

In this section, we first explain the choice of the benchmark and
then discuss the issues around generating the training data from it.

3.1 Dataset Choice
We use the JOB [18] and STACK [22] benchmarks for all the ex-
periments in this paper. Sourcing data from the IMDB and Stack-
Exchange, respectively, both datasets reflect natural challenges in

real-world workloads. Moreover, a recent paper [44] claims that
the JOB benchmark is the most challenging one for LQOs, and the
majority of current methods use JOB and/or STACK. We do not use
the STATS-CEB benchmark suggested in [10], as it was originally
developed for challenges in cardinality estimation as opposed to
end-to-end query optimization, which is the focus of this paper. We
also do not use the TPC benchmark family [35], as it has underly-
ing assumptions of multivariate uniformity, which does not create
reasonable challenges for LQO methods.

3.2 Reduced Complexity of Query Plans
During our evaluation of LQOs, we noticed that some authors
suggest severely reducing the number of possible physical plans by,
for example, disabling nested loop joins (as has been done in [18]).
This might yield improvements for some queries but solves the
query optimization challenge by using a data-dependent solution
at the cost of reduced generalizability. In general, we observe from
some queries that limitations such as disabling specific scan or
join methods, non-exact optimization, or join tree types lead to a
possible increase in the chances of finding a sub-optimal plan.

E.g. the PostgresPro Community [29] discussed that any of the
join methods could have an advantage over others depending on the
selectivity of subqueries. The authors of [22] show experimentally
that disabling nested loop joins in PostgreSQL can improve the
performance of query 16b or harm the performance of query 24b.

For bitmap and tid scans, the Genetic Query Optimizer (GEQO),
and bushy trees, we provide extensive experiments producing the
counter-examples in Sections 8.4, 8.5 and 8.7 respectively.

3.3 Invariant Training Data Generation
The data used as an input into LQOMLmodels, which all have either
a reward or a prediction value, has a canonical view of (𝐷,𝑦)-pairs:
𝐷 refers to the vector of feature variables, consisting of either an
independent set of variables 𝑋 for supervised methods, or (𝑠, 𝑎, 𝑠 ′ )
- a set of state, action and next action, respectively, for RL methods.
𝑦 is a target variable, which is either the query latency, cost, or the
ranking depending on the ML model used.

In this subsection, we discuss why both types of variables are
subject to the absence of invariance during training data generation.

3.3.1 Feature Variables: Dynamic Optimization. The vast majority
of LQOs use the pg_hint_plan extension [27] to force PostgreSQL to
execute an explicit query plan rather than using a plan predicted by
the built-in query optimizer.

However, one should not expect that a plan with its hints is really
executed. This is due to the dynamic updates of the plan during
execution [1], referred to as dynamic optimization. All the LQOs we
evaluated force the DBMS to execute their plans during the stage
of plan encoding, hence potentially training on incorrect data.

Dynamic optimization could also be the reason for a possible
discrepancy between the executed plan and the output provided
by EXPLAIN. This means that LQOs, which rely on the cardinal-
ity estimations from EXPLAIN, potentially introduce significantly
inaccurate estimations.

Recommendation: This could bemitigated via a direct RL approach,
where the DBMS is treated as a "black box". The objective function
is directly maximized via gradient descent without the need to learn

1567



transition probabilities (i.e., the stochastic behavior of the DBMS)
and without the need to solve Bellman equations [8].

3.3.2 Dependent Variables: Cold vs. Hot Cache. If a query is exe-
cuted several times, the executing time decreases due to reading
pre-calculated information from previous runs (hot cache) instead
of creating everything from scratch (cold cache). We want to create
a situation that yields comparable and consistent results for every
query. Hence, the cache status should be either fully cold or hot, i.e.,
when all potential caching has been performed. No intermediate
"warm" cache should be allowed.

However, it is unreasonable to expect a full cold cache situa-
tion [19]. Moreover, it is an ethical question if it is fair enough to
run queries with a cold cache, considering that it disables all the
optimization techniques that the DBMS has based on cache buffers.

Recommendation: Taking into account potential correlations of
queries inside workloads like JOB due to the use of base tem-
plates/patterns, we believe that forcing a hot cache setting is fairer,
as it mitigates the influence of previously executed queries on the
execution time of any particular query. The way of achieving a hot
cache setup is discussed in detail in Section 7.3; conceptually, it is a
consecutive run of the same query until the latency converges.

4 QUERY & PLAN ENCODING
In this section, we discuss which information can be extracted from
SQL queries and their physical plans as input to the ML model.
Moreover, we explain which principles should be followed so that
LQO models are trained smoothly.

The recent LQOs, to the best of our knowledge, are all query-
driven methods in contrast to data-driven methods used for cardi-
nality estimation [12, 40]). In other words, LQOs use queries as an
indispensable proxy to the data underneath the DBMS. It implies
that the encoding schema for a query should be both expressive and
robust. We will now discuss the principles of encoding robustness
and expressiveness and how we can achieve them.

4.1 Encoding Robustness
Table 1 gives an overview of the main encoding components used
by various LQOs. Note that we distinguish between query encoding
(information that is independent of how the query is executed) and
plan encoding (information based on the physical plan). For instance,
the text attributes of the query can either be encoded based on their
cardinality or by using e.g. word2vec to generate a vectorized form.
Moreover, encodings can be aggregated using either stacking or
pooling, sometimes with additional post-transformations.

We notice that Bao [22] and Lero [44] do not use query encoding
but only plan encoding. For instance, Bao does not identify which
table is used in a particular node of the query plan, using only
table cardinalities and costs. Such a representation can benefit from
more schema-agnosticism and easier re-training when the database
schema changes, though it violates the principle of invariance [17].

Let us consider the following thought experiments. Applying
different filters in a query can result in the same cardinality for the
same table. Similarly, tables with the same cardinalities can have
the same encoding. In an ideal setting, we would want a unique
1-to-1 mapping between the feature variables 𝐷 and the latency or
cost 𝑦 of a query and its given plan. However, the query latency is

volatile and differs between multiple executions so that the plan
encoding will instead result in a 1-to-many mapping of (𝐷 , 𝑦)-pairs.

Moreover, even having the query encoding as an additional input
cannot guarantee invariance under a single cardinality encoding of
the attributes. As we have discussed in the example above, applying
different filters for a given column can result in the same cardinality
estimation, i.e., leads to the loss of invariance.

Recommendation: To avoid spoiling the training process by not
having the 1-to-1 mappings for (𝐷,𝑦)-data pairs, one can use the
embeddings instead of single value representations, e.g., embeddings
for text attributes like in Neo (see Figures 12 and 13 in the original
paper [23]), and explicit vectorization of filters like in RTOS [42].

4.2 Encoding Expressiveness
The final set of features should clearly reflect both the global and
local context. In query optimization, the global context is the query
(as it does not change throughout the physical plan space search),
and the local context is the query plan. This concept comes from
Graph CNNs [14]. The basic idea is that applying more rounds of
convolutions in the neural architectures will result in a graph node
embedding with more global graph context and less local context.

Continuing the idea of using graph NNs, graph transformers [5]
are used in LOGER [3] in an adjacent context for query encoding
aggregation. On the other hand, methods like Bao [22] and Lero [44]
aremissing the query encoding part, which increases the probability
of converging to a local optimum [9].

Recommendation: We would suggest using both the query and the
plan encoding, which will result in better convergence.

5 TRAINING LEARNED QUERY OPTIMIZERS
In this section, we discuss how the "brains" of LQOs work and what
conditions should be met to make them work as expected. The key
feature of recent LQOs is the possibility to learn the entire query
optimizer process with the help of ML models. From Table 1, it is
visible how different the training pipelines are among LQOs. For
example, a query plan having a tree representation structure implies
two possibilities when processing: some can treat it as an image and
apply Tree Convolutions [26], others treat it as a sequence of node
pairs (i.e., text) and apply a Tree-LSTM [33]. However, there is still
no common ground, e.g., for the performance analysis during model
training or the choice of the training method. In this section, we
discuss the most widespread issues of LQOs at the training phase.

5.1 Avoiding ML Model Overfitting
Overfitting is a typical ML problem when the model performance
improves on the training data and at the same time deteriorates
on the validation data [38]. From the definition, it is clear that RL-
based methods do not suffer from this problem because they learn
an optimal policy by maximizing or minimizing a non-stationary
objective function that depends on the action policy itself. However,
RL methods might get stuck in a sub-optimal policy without enough
exploration [32]. Contrarily, classical supervised methods are prone
to converge to a suboptimal solution.

To avoid overfitting, commonly hyperparameter tuning via cross-
validation (CV), early stopping and regularization are applied. Regu-
larizations like, e.g., dropout [36] are straightforward and simply

1568



Table 1: Main encoding components of LQOs. We distinguish between query encoding and plan encoding. Both Bao and LOGER
provide hints about what types of joins not to use. Bao also provides hints for scan types.

LQO Query Encoding Plan Encoding Training Specifics
Adjacency
Matrix1

Numerical
Attributes2

Text
Attributes

Encoding
Aggregation*

Join
Type

Scan
Type

Table
Identifier3 Data+4 ML Model* Plan

Processing
Model
Output Testing* DBMS

Integration
Neo [23] ✓ cardinality word2vec stacking ✓ ✓ ✓ - Regression Tree-CNN Plan Static -
RTOS [42] ✓ filters cardinality FC + pooling - - ✓ - Regression Tree-LSTM Plan CV -
Bao [22] - - - - ✓ ✓ - ✓ Regression Tree-CNN Hint set Time Series ✓
Balsa [39] ✓ cardinality cardinality stacking ✓ ✓ ✓ - Regression Tree-CNN Plan Static -
Lero [44] - - - - ✓ ✓ ✓ ✓ LTR Tree-CNN Plan Static ✓
LEON [4] ✓ cardinality cardinality stacking ✓ ✓ ✓ - LTR Tree-CNN Plan Static -
LOGER [3] ✓ filters cardinality FC + pooling + GT ✓ - ✓ - Regression Tree-LSTM Hint Static -
HybridQO [41] ✓ cardinality cardinality stacking + FC ✓ ✓ ✓ ✓ Regression Tree-LSTM Plan Static -

1 One-hot-encoding of the join subgraph for a particular (sub)query
2 Filters explicitly encode >, =, and < symbols with min-max scaled filter values
3 One-hot-encoding of tables in the DBMS schema
4Whether the method uses additional queries (outside of the provided benchmark queries) for training data generation or not
* Stacking: assembling of several features or vectors into a single vector, Pooling: downsampling of the spatial dimensions of the input data, CV: Cross-validation on JOB, FC: Fully-connected
layer in the neural network, GT: Graph transformation, LTR: Learning-to-rank, Static: Static split of JOB, Time Series: Sequential continuous testing on previously unseen queries

increase the number of hyperparameters that need to be tuned,
though other techniques are harder to tweak. Among recent LQOs,
only RTOS applies CV to measure final aggregated performance
metrics, though this does not help choose the final model. Balsa uses
early stopping with performance improvement on the non-fixed
validation set. LEON is doing a similar early stopping procedure,
though using accuracy as a target metric. Bao uses a continuous
"time series" testing of the model on previously unseen queries.

Recommendation: For RL methods, one can still use hyperparam-
eter tuning as it would also help to improve the general model
performance. For the QOP, accuracy for both cost and latency is
a suboptimal quality metric as we do not know the optimal plan
in advance (at least for higher-order joins). Thus, using accuracy
as an early-stopping or cross-validation criterion is undesirable.
The holdout data should be fixed (not CV, not "time series"), as the
measurement on it should be comparable [7].

5.2 Changing Target Variables On-the-Fly
Query optimization has interesting specifics regarding the target to
be optimized, which could either be a cost or a latency. It results in
finding a trade-off between speed (as costs could be quickly estimated
by an arbitrary cost model) and accuracy (as latency gives the exact
value for how long the query takes to execute). Some methods
like HybridQO take advantage of both by first training the model
that suggests plans based on cost and then training another model
that chooses between candidates based on latencies. At the same
time, methods like RTOS, Balsa, Lero, and LEON try to use a single
predictive model that first pre-trains using costs and then continues
training with latencies. A key issue of this approach is that latencies
and costs have significantly different numerical properties, and any
progress made in the pre-training phase is lost, as the model needs
to adapt to an entirely new scale and variance (i.e. deviation from
the mean) of the target values [2].

Recommendation: You can exchange the cost and latency on-the-fly
during the training when using learning-to-rank models, since real
values are transformed into relative rankings forming the target
variable [20]. Another approach is to use an architecture that chains
the ML models like in HybridQO, where different target variables
are served to different models in the ML pipeline.

6 EVALUATING LEARNED QUERY
OPTIMIZERS

In this section, we outline the importance of choosing the right test
set, how this decision influences themodel’s measured performance,
and the concept of covariate shift.

6.1 Test Set Choice
The train/test split is a cornerstone of any supervised method. This
split is used to differentiate between which part of the data an ML
model is allowed to see during training and which part is used to
test its ability to perform on previously unseen data, measuring the
generalization ability of the model.

The extended JOB workload introduced by Neo [23] was a first
attempt to test the ability of models to deal with previously unseen
queries that are distinct from the original JOB queries. The queries
added in Ext-JOB exhibit additional operators that are not present
in JOB (such as GROUP BY or ORDER BY). Due to the nature of
merge joins [13], LQOs that prefer this join method tend to gain
an advantage from including ORDER BY operators. As a result, the
comparison between different methods is unfairly skewed.

Balsa introduced JOB-Slow, where the 19 slowest queries shape
the test set, and all other queries are the training set. This intu-
itively simple-to-understand train/test split focuses on the queries
that have the most impact on the overall execution time for a full
workload. However, all the 19 queries of the JOB-Slow test set have
11 or fewer joins, while 11 queries have just 6 or fewer joins. Figure
2 shows a scatter plot of the execution time vs. the number of joins.
We observe that queries having between 6 and 11 joins have the
largest execution times and thus, the highest potential for being
optimized. At the same time, this is the range where non-exhaustive
optimizers are typically disabled (e.g., PostgreSQL’s GEQO is by de-
fault only enabled for 12 ormore tables). Hence, exhaustivemethods
can still fully explore the space of possible plans.

Another approach for splitting queries was introduced by [43],
where the authors built train/test splits based on the number of
joins. For example, all queries with 3 or 4 joins form the test set,
and all others form the training set. From Figure 2 it is clear that the
number of joins is an irrelevant proxy for execution time, according

1569



to a regression analysis with 𝑅2 = −0.11. Thus, splitting queries as
such forms groups that are not aligned with the true optimization
target, i.e., the execution time.

Recommendation: We propose several edge cases for train/test
splits to cover different areas of generalization, namely the general-
ization gap and sampling out-of-distribution (see Section 7.2).

Figure 2: Scatter plot of the execution time per number of
joins for all queries in JOB.

6.2 Covariate Shift
Another relevant topic for evaluating LQOs is the concept of co-
variate shift, i.e. a change in the database content away from how a
method was trained. DBMSes tackle this challenge by continuously
updating the internal statistics. For a LQO, however, a change in
the database content affects how a query is encoded and thus its
prediction. For example, a query about movies with a release date
greater than 2022 will continuously increase its result set size, as
newly released movies are added to the DBMS.

While this topic is often mentioned in aspirational future work,
methods like Bao have started to think about designing their en-
coding to be able to deal with covariate shift by omitting tables and
column identifiers in their encoding (see Section 4 for more details).
However, as we show in an experiment in Section 8.3, updated
cardinality estimates in the encoding are insufficient to keep up
with changing database content.

Recommendation:We propose that future methods should include
a simple experiment to measure the ability to deal with covariate shift,
as we have performed in Section 8.3.

7 FRAMEWORK FOR BENCHMARKING
LEARNED QUERY OPTIMIZERS

In this section, we introduce our benchmarking framework, aiming
for a comprehensive evaluation of LQOs. The objective is to conduct
benchmarking in a holistic manner, ensuring a fair comparison of
methods in an end-to-end setting.

To do this, our benchmark assumes a reproducible setup, par-
ticularly regarding engineering, including but not limited to (a)
the content of the database underlying a benchmark workload, (b)
the full code base of the LQO, (c) the version of the programming
language, such as Python, and all used libraries, (d) a detailed con-
figuration of the DBMS (unless all parameters are left on default),
as well as (e) all queries and their assignment into train/test splits.

7.1 DBMS Configuration & Database Tuning
For analyzing query execution times, both the used hardware and
the DBMS configuration greatly impact the comparability of LQOs.
We will now analyze the major parameter settings systematically.

Table 2 gives an overview of the different parameter settings
used in various publications, compared to the default values of
PostgreSQL, as well as the suggested setting for the Join Order
Benchmark [18]. Note that the configurations for Neo [23] and
HybridQO [41] are omitted from Table 2, as their code (Neo) and
database configuration (HybridQO) are not publicly available. A
further observation is that only Balsa and LEON published the full
DBMS configuration file among their artifacts. We have categorized
the parameters into the following groups:

Join Order: The join order is typically forced through libraries
such as pg_hint_plan [27], though PostgreSQL can also be made
to follow the explicit order given in the SQL statement by setting
join_collapse_limit to 1. The genetic query optimization algo-
rithm (GEQO) of PostgreSQL is used for queries with large number
of joins, by default 12 or more. It can either be disabled by setting
geqo_threshold to a value larger than the number of joins in a
workload or disabled completely with the geqo parameter.

Working Memory: The default values for PostgreSQL’s memory
are small. Given the amount of RAM available today, increasing
the working memory and buffer sizes is advisable. Balsa drastically
increases the working memory (work_mem) from 4 MB to 4 GB,
while Bao and Neo keep the default value, despite the proposed 2
GB by [18]. Similarly, for the shared_buffers, Balsa uses a much
larger buffer at 32 GB compared to the 4 GB recommendation that
Bao and Neo use. LOGER further increases the shared_buffers
value to 64 GB, though their machine also has more RAM available.

Note that the amount of work_mem is available to all workers in
parallel query execution, that means for 𝑁 amount of workers, the
shared_buffers should be at least 𝑁× work_mem. Furthermore, all
methods use the default cache size (effective_cache_size) of 4
GB, ignoring the recommendation to increase it to 32 GB by [18].
Increasing its value in our configuration from 4 to 32 GB reduced
the planning time for a handful of outlier queries significantly (from
up to 3 seconds to below 100 milliseconds).

Parallelization: These parameters define the number of work-
ers and processes used during query execution. To fully utilize
a multi-core system, Balsa increases the number of worker pro-
cesses max_worker_ processes tomatch max_parallel_workers.
While increasing the number of parallel workers can speed up query
execution, the amount of required compute resources also increases
significantly. LOGER and Lero take a different approach, disabling
any parallel query execution completely.

Scan Types: These parameters directly change the types of scans
that are being used by PostgreSQL and significantly alter the toolset
available for query execution. Only Balsa and LEON change these
values by disabling both bitmap and tid scans, while neither paper
offers an explanation for taking this approach.

7.2 Dataset Split
The way the dataset is split into training and test sets has a sig-
nificant impact on the performance of a trained model. While it is
advisable that both sets contain data from a similar distribution,

1570



Table 2: Overview of different PostgreSQL configurations (database tuning parameters) used in various papers of LQOs.
Deviations from PostgreSQL’s default values are marked in the respective columns. Note, that the values for Neo [23] and
HybridQO [41] are missing from the table, as their configuration parameters are not publicly available.

PostgreSQL Config Parameter Default Values JOB [18] Bao [22] Balsa [39], LEON [4] LOGER [3] Lero [44] Our Framework
Amount of RAM used by authors 64 GB 15 GB 64 GB 256 GB 512 GB 64 GB
Join Order
geqo_threshold 12 18 2 or 1,024
geqo on off off off off1

Working Memory
work_mem 4 MB 2 GB 4 GB 4 GB
shared_buffers 128 MB 4 GB 4 GB 32 GB 64 GB 32 GB
temp_buffers 8 MB 32 GB 32 GB
effective_cache_size 4 GB 32 GB 32 GB
Parallelization
max_parallel_workers 8 1 0
max_parallel_workers_per_gather 8 1 0
max_worker_processes 2 8 8
Scan Types
enable_bitmapscan on off
enable_tidscan on off

1 GEQO is only turned on for Bao and when PostgreSQL fully controls the query execution.

Figure 3: Overview of different dataset split sampling types for JOB: Leave One Out Sampling (top), Random Sampling (middle),
and Base Query Sampling (bottom). For instance, Base Query 1 has 4 variations: 1a, 1b, 1c and 1d.

we have to be careful to avoid leaking information from one set to
the other. More specifically, the Join Order Benchmark queries are
deduced from 33 different base queries (or templates), and the full
113 queries are made up of between 2 and 6 variations of each base
query (denoted as 1a, 1b, 1c, ...). Variants of the same base query
share the same tables and joins but differ in filter statements. These
differences can be different filter values (e.g. production_year <
2000 vs. production_year = 2023) or applying filters on other
columns (e.g. genre = ’horror’ vs. name LIKE %an%). The queries
in the STACK [22] dataset also follow the same pattern of 16 base
queries across 6,191 queries (with 100 to 1,010 variations per query).

Generating queries from templates introduces a strong correla-
tion in the structure of the optimal join plan for some, but not all,
queries. To measure the effect of potential data leakage, we propose
the following sampling techniques to generate dataset splits (see
Figure 3 for a visual example of training and test set assignments):
(1) Leave One Out Sampling extracts exactly one variant of each
base query into the test set. All other variants of the base query
are contained in the training set. This split maximizes the amount
of information that can potentially be leveraged from the training
onto the test set. We expect this split to be the easiest to learn.
(2) Random Sampling distributes all queries randomly into train
and test sets, ignoring any base query or template affiliations. This is
amedium difficulty sampling, and it can be applied to any workload,
as there is no requirement for the existence of base query families.

(3) Base Query Sampling keeps all queries of the same base query
either in the training or the test set. This ensures that the intra-
family similarity of the query structure does not leak from the
training set into the test set. We believe this to be the most difficult
split, as a model cannot apply the join structure learned from one
variant of the same base query to another.

7.3 Measuring Query Executions
As LQOs are all evaluated by the runtime of queries in a workload,
and some LQOs directly predict the execution time for a given phys-
ical plan, it is vital that runtime measurements are as consistent as
possible. One of the primary reasons for high variance in execut-
ing the same query is caused by the buffer and cache states in the
DBMS. For example, when the same query is executed twice one
after another, the first run generally takes longer than the second
one. As buffers and caches switch from cold to hot cache, runtimes
become more consistent. In the ideal scenario, we could execute
every query many times to achieve a robust measurement. How-
ever, every additional execution after the first one takes additional
time that is not spent on executing other queries, costing valuable
compute resources. We experimentally determined that executing
queries 3 times and taking the third execution gives the most sta-
ble results without incurring an unnecessary amount of execution
overhead (see Section 8.6 for more details on the experiment).

1571



8 EXPERIMENTS
In this section, we present our extensive evaluation of LQOs on
the Join Order Benchmark (JOB) and STACK. First, we give an
overview of the setup and hardware used; then, we discuss different
approaches to generate train/test splits. Finally, we show the results
of our experiments with a number of ablation studies.

8.1 General Setup
8.1.1 Software and Hardware. All our experiments were conducted
using PostgreSQL version 12.5 by measuring the query execution
time through EXPLAIN ANALYZE calls, using both execution and
planning time. In addition, we also include the inference time for
LQOs. Measurements are taken by executing the same query three
times and taking the last query execution (hot cache).

Our instance of PostgreSQL is configured largely with default
parameters in mind, closely following the configuration used by
Balsa [39]. In comparison, we reenabled both bitmap and tid scans
and increased the effective_cache_size from 4 to 32 GB. The
main differences to PostgreSQL’s default can be seen in Table 2
and primarily include changes to the memory configuration and an
increased amount of parallel workers. In addition, we disabled the
AUTOVACUUM feature, as the query workload is stable and ANALYZE
is run once after loading all data into PostgreSQL, taking 3 minutes
for IMDB (JOB) and 16.5 minutes for STACK.

We have decided to follow the configuration of the Balsa ex-
periments, as they include memory settings that strongly follow
the best practices guide proposed by PostgreSQL [31] and the sug-
gestions of Leis et al. [18]. Furthermore, Balsa is the first method
to increase the number of available workers processes from 2 to
8, given the typical machines with many CPU cores. We further
change the effective_cache_size parameter in line with the best
practices of PostgreSQL and re-enable both bitmap and tid scans.

For the Join Order Benchmark, the authors of Balsa added two
additional indexes on the subject_id and status_id columns of
the complete_cast table, compared to the indexes provided by
[18]. We also include the additional indexes in our experiments.
The experiments were run inside Docker containers, using a Tesla
T4 GPU, 64 GB of RAM, and 16 CPU cores.

8.1.2 Query Workload. We evaluate various LQOs on the JOB and
STACK workloads. Both workloads are highly relevant in recent
literature and have been used in most of the evaluated LQO meth-
ods. For JOB [18], we use the 113 queries provided. The STACK
[22] workload includes 6,191 queries across 16 base queries, which
we down-sampled to 14 base queries4 with 8 randomly sampled
variations, each. This allows the methods to be trained and evalu-
ated using a similar amount of data for JOB and STACK, leaving
the models at a similar level of statistical power.

8.1.3 Dataset Split. For our experiments, we generated the train/test
splits by uniformly sampling across all queries (Random Sampling),
the base queries (Base Query Sampling), or the variants of each
base query (Leave One Out Sampling). For the Random splits and
Base Query splits, we used an 80-20 ratio between training and test
sets. The dataset splits are sampled once and shared across all the

4Templates 9 and 10 are removed in accordance with Balsa [39], where the authors
report a limitation in the pg_hint_plan extension in dealing with views and subqueries.

evaluated methods. Detailed listings of the training and test sets
for all splits can be found in our code repository5, along with the
hyperparameters of all methods.

8.1.4 Additional Noteworthy Changes. As we evaluate the LQO
methods under our unified framework, there are differences to the
experiments conducted by the authors of the methods (see previous
sections). Hence, direct comparisons to prior results are impossible.

In addition, Bao was originally trained on 2,500 newly generated
queries in the JOB workload style. In our experiments, Bao was
only trained on the training set of the respective train/test splits
and has seen the training queries multiple times. For LEON, we
have limited the amount of real time spent on training to twice the
time it took Balsa to finish training, i.e., 120 hours. This time budget
likely reduces the performance of LEON, but as shown in Section
8.2.2, the inference time heavily dominates its overall runtime, not
just the execution time.

8.2 Comparison of Current State-of-the-Art
Learned Query Optimizers

In this section, we analyze the performance of current state-of-
the-art methods for LQOs (namely Neo6 [23], Bao [22], Balsa [39],
LEON [4] and HybridQO [41]) compared to PostgreSQL as our base-
line. We do not include RTOS [42], Lero [44] and LOGER [3] in our
experiments because they are either (a) unavailable, (b) require to
disable parallelization in query executions because multiple queries
are run in parallel or, (c) require to invest an extensive amount of
engineering to enable these methods to parse the EXPLAIN output.

8.2.1 End-to-End Performance. For all algorithms, we report a va-
riety of time measurements defined as follows:
(1) Inference Time: This measure includes all time that an LQO
spends to encode a query, iterate over variations of query plans,
gather cost information to guide further decisions, and finally, use
an ML model to generate predictions. After the inference time has
passed, a given SQL query is ready to be sent to PostgreSQL with
hints on which scan or join types to use and in which order.
(2) Planning Time:Once PostgreSQL receives a query, it spends an
amount of time on planning the query before a final physical plan
is generated and sent for execution. For LQOs with an extension
running inside PostgreSQL, typically, the inference time is reported
as part of the planning time.
(3) Execution Time: Encompasses the amount of time spent by
PostgreSQL to execute the query and gather the result set.
(4) End-to-end Execution Time: A combination of the previous
three-time measurements, measuring how long a method takes to
devise a query plan to execute and how much time PostgreSQL
spends to get the result from the database. We believe this measure-
ment to be the primary objective for optimization.

We do not include the network latency in our inference, planning
and execution times, as LQOs cannot influence it directly. While the
network latency can be a significant amount of time (notably for
fast queries), optimizing for it is beyond the scope of this evaluation.

5See our code here: https://github.com/edualc/lqo_ml_perspective
6Since the code of Neo is not publicly available, we have used the re-implementation
in Balsa. The original authors of Neo have checked it and confirmed to us that it is
suitable for benchmarking.

1572

https://github.com/edualc/lqo_ml_perspective


Figure 4: Comparative overview of each method’s performance on the test set of various dataset splits on the Join Order
Benchmark (JOB). Thefigure on the left depicts the planning time (darker colour) and inference time (lighter colour), respectively.
Note that Bao runs inside PostgreSQL as an extension, and its inference time is directly added to the planning time. The figure
on the right side shows the execution times on the same train/test splits. Please observe that the x-axis of both figures is divided.

Figure 5: Comparative overview of each method’s performance on the test set of various dataset splits on STACK.

1573



We increase the difficulty iteratively across experiments, starting
with the leave one out sampling, then the random sampling and
finally, the base query sampling that generated the train/test splits.
All queries were executed three times. The planning and execution
times have been taken from the third execution.

Figures 4 and 5 present the performance on JOB and STACK
across all three sampling methods and their individual train/test
splits. In summary, PostgreSQL generally performs best, fol-
lowed by HybridQO, then Bao, Neo, Balsa, and finally LEON.
However, PostgreSQL fails to eclipse all methods on all splits by a
statistically significant margin. In particular, HybridQO and Bao
achieve comparable results onmost train/test splits, with HybridQO
outperforming PostgreSQL on the leave one out split of STACK.

Let us first take a look at the results on JOB. For the leave one
out sampling, which we consider to be the easiest train/test split,
PostgreSQL, Bao and HybridQO execute the test queries in around
30 seconds. However, Bao spends 8.5 seconds longer to plan queries,
resulting in a 25% slower end-to-end execution time. Bao’s larger
confidence interval gives a first hint that it has found plans that
are generally faster than PostgreSQL, but they are not speeding
up the execution time enough to have an advantage. HybridQO,
on the other hand, finds plans that are 2.5 seconds faster while
only spending 1.4 seconds for inference, allowing it to outperform
PostgreSQL significantly on the third split.

LEON is the fourth fastest method by execution time at 58 sec-
onds, but its inference time is around 9.6 hours long, making its use
impractical for interactive querying (with more complex queries
requiring proportionally more inference time to complete).

The overall fourth fastest method is Neo at 93 seconds, followed
by Balsa at 134 seconds with 286% and 411% slower end-to-end
execution times compared to PostgreSQL, respectively.

For the random sampling, i.e., the medium difficulty train/test
split, PostgreSQL and Bao remain competitive with each other, with
Bao achieving even a lower execution time of 25 vs. PostgreSQL’s
28 seconds. However, this is not a statistically significant difference.
Including the inference and planning times as well, Bao is again
at a slight disadvantage. Similar to the previous split, HybridQO
matches PostgreSQL and even significantly outperforms it and
Bao on the third split with 24 seconds. Compared to the leave one
out sampling, both Neo and Balsa achieve 2-3× faster end-to-end
execution times, reaching comparable results for PostgreSQL on 2
out of the 3 train/test splits using this sampling. LEON struggles
with these queries and two queries timeout (26b and 32b) in two
separate splits, leading to a drastic increase in the execution time.
However, given the large inference time of on average of 3.8 hours,
this has little impact on its overall ranking.

Finally, let us examine the base query sampling, i.e., the most
difficult sampling technique. For the first time, Bao only achieves
comparable results to PostgreSQL on 1, and HybridQO on all, out
of the 3 train/test splits, confirming the increased difficulty. Neo
and Balsa struggle particularly with base query split 1. 3 queries of
the test set timeout for Neo, and 15 queries across both train and
test set for Balsa. LEON, however, can largely match PostgreSQL’s
direct execution time if the method can overcome its inference time.

The results on the STACK dataset (see Figure 5) largely confirm
the results of JOB. A major difference is the inference time of LEON,
which is one order of magnitude lower given the generally lower

number of joins in the STACK queries compared to JOB. Neo, Balsa
and LEON all suffer greatly from significant amounts of timed out
queries. Unlike in JOB, Bao is unable to match the performance of
PostgreSQL on STACK due to more complicated SQL features in the
STACK queries, leading to much longer inference times. HybridQO
outperforms PostgreSQL on the leave one out split, is comparable
on the base query split but also suffers from timed out queries on
the random split, hinting at problems of robustness.

In summary, we see the significant impact of the inference time
on the overall end-to-end execution time. While there are methods
that, on some train/test splits, perform comparable to PostgreSQL
or even slightly outperform it, these results show the importance
of how queries are split for training. Furthermore, it is vital that
evaluations include the inference time, as it strongly shapes the
ranking between methods compared to the execution time alone.

Figure 6: Comparison of the end-to-end training time against
the combined workload runtime for both workloads, where
each dot represents a model from a different split.

8.2.2 Training Time. After comparing the query performances, we
also take a look at the amount of time to train a model. While the
definition of training time is sometimes unclear, we intend to take
a holistic look with an end-to-end training time, that is, including
(a) the time spent collecting query results from the DBMS, (b) any
time spent training the model, (c) the ongoing evaluation of the
current model’s performance, and (d) any pre- or postprocessing,
initialization, and artifact generation. In short, the full amount of
time spent from starting the training procedure until it terminates.

We make this distinction not to penalize additional logging or
more frequent checks on the model performance but to get a fairer
overall comparison. For example, a method might have a very quick
training period but spend a lot of time querying training data from
the DBMS, while another method needs fewer database queries
but uses a more complex NN architecture that spends more time

1574



in weight updates. The overall amount of time spent also informs
how often a model could be retrained given a time budget.

In Figure 6 we compare the end-to-end training times on the
x-axis and the combined workload runtimes (the sum of the end-to-
end execution times of all queries in the workload) on the y-axis.
Each dot represents one train/test split. For example, one orange
dot could be the Neo method on random split 2.

Since PostgreSQL’s optimizer does not require any inherent
training acting as a baseline, its end-to-end training time is set to
zero. Among the evaluated methods, Bao requires the least amount
of time on JOB at around 2 hours, HybridQO around 20 hours,
Neo between 20 and 40 hours, Balsa between 40 and 85 hours, and
LEON from 110 to 130 hours. For STACK, Bao trains for 2 hours,
HybridQO for 12 to 14 hours, Neo and LEON between 120 and 140
hour, and Balsa between 170 and 290 hours.

As a naive assumption, one would expect to see a performance
increase as more time is spent during training, but we observe ex-
actly the opposite behaviour: Methods that have spent more time to
build and train their model reach inferior results compared to meth-
ods that finish training more quickly. We primarily attribute this
discrepancy between methods to the number of plans considered.

For example, during the training on JOB, Neo executed between
4,000 and 8,000 plans in PostgreSQL, Balsa between 19,000 and
21,000 plans. Even ignoring the quality of either methods’ executed
plans, it is obvious that 2-3× more plans also require more process-
ing time. The authors of Balsa specifically tackled this challenge
by allowing all required plans to be executed on multiple DBMS
instances in parallel and by timing out long-running queries, which
Neo does not. LEON does not fully execute the majority of its gener-
ated plans; However, it calls PostgreSQL to ask for cost estimates up
to multiple tens of thousands of subplans, such that predicting just
a plan for query 29a (the query with 17 aliased tables, the highest
amount in all of JOB) takes around 6.5 hours7.

8.3 Ablation Study: Covariate Shift
One of the challenges for query optimizers, in general, is their
dependency on up-to-date statistics of the database content. In
DBMS, statistics are regularly refreshed, but LQOs do not have
the luxury to easily update trained model weights, with options to
either train a new model from scratch or fine-tune and continue
training, adapting to changes to the underlying database.

To show whether an encoding that represents the content of the
database solely by cardinality (such as Bao) can deal with covariate
shift, we conduct the following experiment. We generate a smaller
copy of IMDB, referred to as IMDB-50%. As the name implies, we
keep 50% of the rows in the title table using Bernoulli sampling,
ensuring that the available data is halved, but the distribution of
values remains comparable to the original version. The other 50%
of rows are dropped using CASCADE to ensure referential integrity.
We specifically choose to alter the contents of the title table since
it is the only table in IMDB that is part of all JOB queries.

After sampling, we see a reduction of 50% for the number of
records in all movie-related (title, movie_companies, movie_info,
movie_info_idx, movie_keyword, and movie_link) and cast-related

7LEON caches plan and subplan cost estimates, generating files on the hard disk as
large as 1.7 GB for JOB and 120 MB for STACK, respectively.

tables (cast_info and complete_cast). Our sampling on title leaves
all other tables unaffected. After the changes had been made to
IMDB-50%, the internal statistics of PostgreSQL were updated.

Our experiment aims to show that methods like Bao only using
the cardinality in their encoding show a performance degradation
when more data is added (simulating covariate shift). We train one
Bao model on IMDB (referred to as Bao-Full) and a second Bao
model on the reduced size IMDB-50% (referred to as Bao-50) using
the same "base query split 1" train/test split.

Query 16b is a striking outlier, timing out in 1 of 4 Bao-50 models,
while the other 3 generated plans that are 19 seconds slower than
Bao-Full. In relative differences, query 31c is 24× slower using Bao-
50 at 8.4 seconds compared to Bao-Full with 350 milliseconds. Query
17a is 4.5× slower at 12.2 seconds compared to Bao-Full with 2.7
seconds. On the other hand, the different cardinality regimes seen
by Bao-50 also allow it to improve a few queries over Bao-Full by a
factor of 1.9× for query 7c, 1.6× for 26c and 1.3× for 10c.

These results indicate that the DBMS system updating the statis-
tics (i.e., cardinality estimates) is insufficient to keep up with a newly
trained model. This performance degradation further points to diffi-
culties in generalization, particularly when larger cardinality values
have not been seen during the training process and are, hence, out
of distribution. There is currently no solution to this problem other
than re-training or fine-tuning the model with queries running
against the new database state. Because of this, methods that can
continuously be updated and re-trained are preferable.

8.4 Ablation Study: Bitmap and Tid Scans
We have observed multiple publications that disabled bitmap and
tid scans, namely Balsa [39], LEON [4], and a recently published
analysis [43], without giving a reason for doing so. This experi-
ment aims to see if changing PostgreSQL’s tool kit significantly
impacts the query performance of the individual queries. For the
comparison, we use the baseline PostgreSQL performance from the
previous experiment in Section 8.2, and we have run the same 113
queries from JOB with bitmap and tid scans disabled.

The difference in execution time exceeds 250 milliseconds for
28 queries, 24 of which are statistically significant. For those 24
queries, disabling bitmap and tid scans speeds up queries 28a, 7c,
and 30a relative to their original execution times by a factor of 5.5×,
2.0×, and 1.8×, respectively. In contrast, queries 30c, 28b, and 15c
are slowed down by a factor of 2.4×, 1.9× and 1.5×, respectively.

These findings show that allowing PostgreSQL to use bitmap and
tid scans significantly impacts the query performance, particularly
for the query templates 7, 8, 28, and 30. An interesting observation
here is that the same family that has the highest gain of disabling
said scans (query 28a with a speedup of 5.5×) also features a large
slowdown (query 28b with a slow down by 1.9×).

8.5 Ablation Study: Genetic Query Optimizer
Similar to the disabling of various scan types, there exist differences
in using GEQO, i.e., PostgreSQL’s genetic query optimizer, across re-
cent publications. We have analyzed the impact of disabling GEQO
on the execution time of queries from JOB. Our experiment revealed
5 queries, for which the difference is statistically significant. Dis-
abling GEQO speeds up query 30a by a factor of 1.6×, while the

1575



other four queries are slowed down by a factor of 9.9× (24b), 2.2×
(26c), 2.1× (28a) and 1.7× (28b). The large slow-down factor of query
24b is explained by its quick execution time of just 28 milliseconds
versus 272 milliseconds with GEQO disabled. While the impact
of GEQO is smaller than that of bitmap and tid scans, it remains
significant in particular among the slowest query templates.

In summary, these results show that it is paramount that Post-
greSQL operates at full capacity (i.e., with GEQO enabled) in partic-
ular when the LQO does not replace, but rather enhance or guide
the existing optimizer (for example, through the use of hints).

8.6 Robustness of Query Execution Times
The goal of this experiment is to determine the choice of the number
of repeated executions 𝑘 for the same query to reach a consistent
execution time in a hot cache scenario. For example, in LEON [4]
the authors use the geometric mean with 𝑘 = 3, while in [43] the
authors execute queries 𝑘 = 5 times and take the arithmetic mean.

To achieve a fair comparison, we executed all queries of JOB
using EXPLAIN ANALYZE 50 times in succession and in order (i.e.,
1a, 1a, 1a, ..., 1a, 1b, 1b, ...). The execution time is extracted from
PostgreSQL’s EXPLAIN response, removing the network latency to
the database from our measurements. By evaluating the distribution
of execution times for the 𝑘-th iteration empirically, we can propose
a value of 𝑘 that strikes the balance between costs and robustness.

Figure 7: Difference in normalized execution time between
successive query executions. For example, k=1 shows the
difference between the 1st and 2nd query execution.

Figure 7 shows the normalized difference in query execution time
(relative difference to the first executed query) when comparing
pairs of the 𝑘-th and (𝑘 + 1)-th query execution. We observe, that
the query execution time significantly shifts for the majority of
executed queries at 𝑘 = 1, with a mean reduction of 14.6% between
the 1st and 2nd query execution, and another 1.03% from the 2nd
to the 3rd. From then on, the fluctuations no longer show a trend
that would benefit from more executions.

We see, thus empirically, that for robust measurements of execu-
tion times, it is important to at least execute a query twice. If time
and costs allow, a third execution further improves the robustness,
after which one can safely stop. Compared to the choice of 𝑘 = 5 in
[43], taking the third execution is 40% faster and more robust than
averaging three measurements (for which the first query execution
typically dominates as an outlier measurement).

8.7 Analysis of Query Plan Types
Given that there exists a larger number of bushy compared to left-
deep and right-deep plans8, it needs to be asked whether omitting
bushy plans (as for example in RTOS, LOGER and HybridQO) is a
reasonable choice. In [18], the slowdown for restricted tree shapes
was measured in comparison to the optimal plan. The experiments’
outcome shows that left-deep trees are worse than bushy ones but
still result in a reasonable performance. It is worth noting that these
experiments were executed by injecting true cardinalities to the
cost model of the query optimizer. Moreover, some constraints on
the join method selection according to [6] were applied.

By forcing all combinations, we analyzed all possible plans for
JOB queries with ≤ 5 joins in the spirit of [18]. However, rather
than using true cardinalities (which are considered the optimal
case), we ran our experiments with the DBMS’s internal cardinality
estimator. Moreover, we allowed all join methods to be used.

As a result, bushy plans perform on average like left-deep plans. We
confirm our results by obtaining the minimum of p-value=0.285 for
a two-side Mann-Whitney U-test [21]9 for the means of execution
times. At the left tail of the combined distribution of execution times
(i.e. among the fastest plans), however, bushy trees are significantly
superior with a p-value of 0.015 for the alternative hypothesis. That
means, removing bushy trees from consideration drastically lowers
the chance that a model finds the best plan.

9 CONCLUSION
In this paper, we outline the limitations of current LQO methods
and put an emphasis on previously under-reported challenges. We
provide a framework to equalize many parameters involved in
benchmarking to yield increasingly robust results.

We perform an evaluation of current LQO methods on the Join
Order Benchmark and show that consistently outperforming Post-
greSQL is more difficult than expected, particularly when looking
at the query optimization problem as an end-to-end process. We
believe that our paper is a first step towards reproducible and consis-
tent benchmark evaluations for LQOs and thus provides important
novel insights into LQOs from an ML perspective.

ACKNOWLEDGMENTS
The project has received funding from the Swiss National Science
Foundation under grant number 1921052. We also thank our col-
leagues from University of Konstanz, namely Michael Grossniklaus,
Mehmet Aytimur and Silvan Reiner, and Dennis Gehrig from Zurich
University of Applied Sciences, for valuable discussions.

8Left-deep and right-deep plans are hereafter only referred to as left-deep plans,
without loss of generality.
9The selection of the non-parametric test over the T-test stems from the observed lack
of normal distribution plausibility across distinct logical and physical plans.

1576



REFERENCES
[1] Ron Avnur and Joseph M. Hellerstein. 2000. Eddies: Continuously Adaptive

Query Processing. SIGMOD Rec. 29, 2 (may 2000), 261–272. https://doi.org/10.
1145/335191.335420

[2] Jason Brownlee. 2020. Data preparation for machine learning: data cleaning,
feature selection, and data transforms in Python. Machine Learning Mastery.

[3] Tianyi Chen, Jun Gao, Hedui Chen, and Yaofeng Tu. 2023. LOGER: A Learned
Optimizer Towards Generating Efficient and Robust Query Execution Plans.
Proceedings of the VLDB Endowment 16, 7 (2023), 1777–1789.

[4] Xu Chen, Haitian Chen, Zibo Liang, Shuncheng Liu, Jinghong Wang, Kai Zeng,
Han Su, and Kai Zheng. 2023. LEON: A New Framework for ML-Aided Query
Optimization. Proc. VLDB Endow. 16, 9 (2023), 2261–2273.

[5] Vijay Prakash Dwivedi and Xavier Bresson. 2021. A Generalization of Trans-
former Networks to Graphs. arXiv:2012.09699 [cs.LG]

[6] Hector Garcia-Molina, Jeffrey D. Ullman, and Jennifer Widom. 2008. Database
Systems: The Complete Book (2 ed.). Prentice Hall Press, USA.

[7] Ian J. Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning.
MIT Press, Cambridge, MA, USA. http://www.deeplearningbook.org.

[8] Yang Guan, Shengbo Eben Li, Jingliang Duan, Jie Li, Yangang Ren, Qi
Sun, and Bo Cheng. 2021. Direct and indirect reinforcement learning.
arXiv:1912.10600 [cs.LG]

[9] Isabelle Guyon and André Elisseeff. 2006. An Introduction to Feature Extraction.
Springer Berlin Heidelberg, Berlin, Heidelberg, 1–25. https://doi.org/10.1007/
978-3-540-35488-8_1

[10] Yuxing Han, Ziniu Wu, Peizhi Wu, Rong Zhu, Jingyi Yang, Tan Wei Liang,
Kai Zeng, Gao Cong, Yanzhao Qin, Andreas Pfadler, Zhengping Qian, Jingren
Zhou, Jiangneng Li, and Bin Cui. 2022. Cardinality Estimation in DBMS: A
Comprehensive Benchmark Evaluation. VLDB 15, 4 (2022).

[11] Jonas Heitz and Kurt Stockinger. 2019. Join query optimization with deep
reinforcement learning algorithms. arXiv preprint arXiv:1911.11689 (2019).

[12] Benjamin Hilprecht, Andreas Schmidt, Moritz Kulessa, Alejandro Molina, Kris-
tian Kersting, and Carsten Binnig. 2020. DeepDB: Learn from Data, Not from
Queries! Proc. VLDB Endow. 13, 7 (mar 2020), 992–1005. https://doi.org/10.14778/
3384345.3384349

[13] Mouna Kacimi and Thomas Neumann. 2009. System R (R*) Optimizer. Springer
US, Boston, MA, 2900–2905. https://doi.org/10.1007/978-0-387-39940-9_384

[14] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with
Graph Convolutional Networks. In Proceedings of the 5th International Conference
on Learning Representations (Palais des Congrès Neptune, Toulon, France) (ICLR
’17). https://openreview.net/forum?id=SJU4ayYgl

[15] Sanjay Krishnan, Zongheng Yang, Kenneth Goldberg, Joseph Hellerstein, and
Ion Stoica. 2018. Learning to Optimize Join Queries With Deep Reinforcement
Learning. (08 2018).

[16] Sanjay Krishnan, Zongheng Yang, Ken Goldberg, Joseph Hellerstein, and Ion
Stoica. 2018. Learning to optimize join queries with deep reinforcement learning.
arXiv preprint arXiv:1808.03196 (2018).

[17] Joseph P La Salle. 1976. The stability of dynamical systems. SIAM.
[18] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter Boncz, Alfons Kemper, and

Thomas Neumann. 2015. How good are query optimizers, really? Proceedings of
the VLDB Endowment 9, 3 (2015), 204–215.

[19] Justin J Levandoski, Per-Åke Larson, and Radu Stoica. 2013. Identifying hot and
cold data in main-memory databases. In 2013 IEEE 29th International Conference
on Data Engineering (ICDE). IEEE, 26–37.

[20] Tie-Yan Liu. 2009. Learning to Rank for Information Retrieval. Foundations and
Trends® in Information Retrieval 3, 3 (2009), 225–331. https://doi.org/10.1561/
1500000016

[21] H. B. Mann and D. R. Whitney. 1947. On a Test of Whether one of Two Random
Variables is Stochastically Larger than the Other. The Annals of Mathematical
Statistics 18, 1 (1947), 50–60. http://www.jstor.org/stable/2236101

[22] Ryan Marcus, Parimarjan Negi, Hongzi Mao, Nesime Tatbul, Mohammad Al-
izadeh, and Tim Kraska. 2021. Bao: Making learned query optimization practical.
In Proceedings of the 2021 International Conference on Management of Data. 1275–
1288.

[23] Ryan Marcus, Parimarjan Negi, Hongzi Mao, Chi Zhang, Mohammad Alizadeh,
Tim Kraska, Olga Papaemmanouil, and Nesime Tatbul. 2019. Neo: A Learned
Query Optimizer. Proceedings of the VLDB Endowment 12, 11 (2019).

[24] Ryan Marcus and Olga Papaemmanouil. 2018. Deep Reinforcement Learning
for Join Order Enumeration. In Proceedings of the First International Workshop

on Exploiting Artificial Intelligence Techniques for Data Management (Houston,
TX, USA) (aiDM’18). Association for Computing Machinery, New York, NY, USA,
Article 3, 4 pages. https://doi.org/10.1145/3211954.3211957

[25] Ryan Marcus and Olga Papaemmanouil. 2018. Towards a Hands-Free Query
Optimizer through Deep Learning. (09 2018).

[26] Lili Mou, Ge Li, Lu Zhang, Tao Wang, and Zhi Jin. 2016. Convolutional Neu-
ral Networks over Tree Structures for Programming Language Processing. In
Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (Phoenix,
Arizona) (AAAI’16). AAAI Press, 1287–1293.

[27] Nippon Telegraph and Telephone Corporation. 2012. pg_hint_plan Documenta-
tion. https://pghintplan.osdn.jp/pg_hint_plan.html. [Online; accessed August,
2023].

[28] Dušan Petković. 2011. Dynamic Programming Algorithm vs. Genetic Algorithm:
Which is Faster?. In Research and Development in Intelligent Systems XXVII, Max
Bramer, Miltos Petridis, and Adrian Hopgood (Eds.). Springer London, London,
483–488.

[29] Egor Rogov. 2022. Queries in PostgreSQL: Sort and Merge. https://postgrespro.
com/blog/pgsql/5969770. [Online; accessed August, 2023].

[30] Stuart Russell and Peter Norvig. 2010. Artificial Intelligence: A Modern Approach
(3 ed.). Prentice Hall.

[31] Greg Smith, Robert Treat, and Christopher Browne. 2021. Tuning Your Post-
greSQL Server. https://wiki.postgresql.org/wiki/Tuning_Your_PostgreSQL_
Server. [Online; accessed August, 2023].

[32] Richard S. Sutton and Andrew G. Barto. 2018. Reinforcement Learning: An Intro-
duction (second ed.). The MIT Press. http://incompleteideas.net/book/the-book-
2nd.html

[33] Kai Sheng Tai, Richard Socher, and Christopher D. Manning. 2015. Improved
Semantic Representations From Tree-Structured Long Short-Term Memory Net-
works. In Proceedings of the 53rd Annual Meeting of the Association for Computa-
tional Linguistics and the 7th International Joint Conference on Natural Language
Processing (Volume 1: Long Papers). Association for Computational Linguistics,
Beijing, China, 1556–1566. https://doi.org/10.3115/v1/P15-1150

[34] The PostgreSQL Global Development Group. 2023. Genetic Query Optimization
(GEQO) in PostgreSQL. https://www.postgresql.org/docs/current/geqo-pg-intro.
html. [Online; accessed August, 2023].

[35] Transaction Processing Performance Council. 2023. TPC Benchmarks Overview.
https://www.tpc.org/information/benchmarks5.asp. [Online; accessed August,
2023].

[36] Li Wan, Matthew Zeiler, Sixin Zhang, Yann Le Cun, and Rob Fergus. 2013. Reg-
ularization of Neural Networks using DropConnect. In Proceedings of the 30th
International Conference on Machine Learning (Proceedings of Machine Learning
Research), Sanjoy Dasgupta and David McAllester (Eds.), Vol. 28. PMLR, Atlanta,
Georgia, USA, 1058–1066. https://proceedings.mlr.press/v28/wan13.html

[37] Chihping Wang and Ming-Syan Chen. 1996. On the complexity of distributed
query optimization. IEEE Transactions on Knowledge and Data Engineering 8, 4
(1996), 650–662.

[38] Geoffrey I. Webb. 2010. Overfitting. Springer US, Boston, MA, 744–744. https:
//doi.org/10.1007/978-0-387-30164-8_623

[39] Zongheng Yang, Wei Lin Chiang, Sifei Luan, GautamMittal, Michael Luo, and Ion
Stoica. 2022. Balsa: Learning a Query Optimizer Without Expert Demonstrations.
Proceedings of the ACM SIGMOD International Conference on Management of Data
(6 2022), 931–944. https://doi.org/10.1145/3514221.3517885

[40] Zongheng Yang, Amog Kamsetty, Sifei Luan, Eric Liang, Yan Duan, Xi Chen,
and Ion Stoica. 2020. NeuroCard: One Cardinality Estimator for All Tables. Proc.
VLDB Endow. 14, 1 (sep 2020), 61–73. https://doi.org/10.14778/3421424.3421432

[41] Xiang Yu, Chengliang Chai, Guoliang Li, and Jiabin Liu. 2022. Cost-based or
learning-based? A hybrid query optimizer for query plan selection. Proceedings
of the VLDB Endowment 15, 13 (2022), 3924–3936.

[42] Xiang Yu, Guoliang Li, Chengliang Chai, and Nan Tang. 2020. Reinforcement
learning with tree-lstm for join order selection. In 2020 IEEE 36th International
Conference on Data Engineering (ICDE). IEEE, 1297–1308.

[43] Zhang Yunjia, Chronis Yannis, Patel Jignesh M., and Rekatsinas Theodoros. 2023.
Simple Adaptive Query Processing vs. Learned Query Optimizers: Observations
and Analysis. Proc. VLDB Endow. 16, 9 (2023), 2962–2975.

[44] Rong Zhu, Wei Chen, Bolin Ding, Xingguang Chen, Andreas Pfadler, Ziniu Wu,
and Jingren Zhou. 2023. Lero: A Learning-to-Rank Query Optimizer. arXiv
preprint arXiv:2302.06873 (2023).

1577

https://doi.org/10.1145/335191.335420
https://doi.org/10.1145/335191.335420
https://arxiv.org/abs/2012.09699
http://www.deeplearningbook.org
https://arxiv.org/abs/1912.10600
https://doi.org/10.1007/978-3-540-35488-8_1
https://doi.org/10.1007/978-3-540-35488-8_1
https://doi.org/10.14778/3384345.3384349
https://doi.org/10.14778/3384345.3384349
https://doi.org/10.1007/978-0-387-39940-9_384
https://openreview.net/forum?id=SJU4ayYgl
https://doi.org/10.1561/1500000016
https://doi.org/10.1561/1500000016
http://www.jstor.org/stable/2236101
https://doi.org/10.1145/3211954.3211957
https://pghintplan.osdn.jp/pg_hint_plan.html
https://postgrespro.com/blog/pgsql/5969770
https://postgrespro.com/blog/pgsql/5969770
https://wiki.postgresql.org/wiki/Tuning_Your_PostgreSQL_Server
https://wiki.postgresql.org/wiki/Tuning_Your_PostgreSQL_Server
http://incompleteideas.net/book/the-book-2nd.html
http://incompleteideas.net/book/the-book-2nd.html
https://doi.org/10.3115/v1/P15-1150
https://www.postgresql.org/docs/current/geqo-pg-intro.html
https://www.postgresql.org/docs/current/geqo-pg-intro.html
https://www.tpc.org/information/benchmarks5.asp
https://proceedings.mlr.press/v28/wan13.html
https://doi.org/10.1007/978-0-387-30164-8_623
https://doi.org/10.1007/978-0-387-30164-8_623
https://doi.org/10.1145/3514221.3517885
https://doi.org/10.14778/3421424.3421432

	Abstract
	1 Introduction
	2 Related Work
	3 Training Data Generation
	3.1 Dataset Choice
	3.2 Reduced Complexity of Query Plans
	3.3 Invariant Training Data Generation

	4 Query & Plan Encoding
	4.1 Encoding Robustness
	4.2 Encoding Expressiveness

	5 Training Learned Query Optimizers
	5.1 Avoiding ML Model Overfitting
	5.2 Changing Target Variables On-the-Fly

	6 Evaluating Learned Query Optimizers
	6.1 Test Set Choice
	6.2 Covariate Shift

	7 Framework for Benchmarking Learned Query Optimizers
	7.1 DBMS Configuration & Database Tuning
	7.2 Dataset Split
	7.3 Measuring Query Executions

	8 Experiments
	8.1 General Setup
	8.2 Comparison of Current State-of-the-Art Learned Query Optimizers
	8.3 Ablation Study: Covariate Shift
	8.4 Ablation Study: Bitmap and Tid Scans
	8.5 Ablation Study: Genetic Query Optimizer
	8.6 Robustness of Query Execution Times
	8.7 Analysis of Query Plan Types

	9 Conclusion
	Acknowledgments
	References

