
FlowWalker: A Memory-efficient and High-performance
GPU-based Dynamic Graph RandomWalk Framework
Junyi Mei

Shanghai Jiao Tong
University

meijunyi@sjtu.edu.cn

Shixuan Sun
Shanghai Jiao Tong

University
sunshixuan@sjtu.edu.cn

Chao Li
Shanghai Jiao Tong

University
lichao@cs.sjtu.edu.cn

Cheng Xu
Shanghai Jiao Tong

University
jerryxu@sjtu.edu.cn

Cheng Chen
ByteDance Inc.

chencheng.sg@bytedance.com

Yibo Liu
Shanghai Jiao Tong

University
liuyib@sjtu.edu.cn

Jing Wang
Shanghai Jiao Tong

University
jing618@sjtu.edu.cn

Cheng Zhao
ByteDance Inc.

zhaocheng.127@bytedance.com

Xiaofeng Hou
Shanghai Jiao Tong

University
hou-xf@cs.sjtu.edu.cn

Minyi Guo
Shanghai Jiao Tong

University
guo-my@cs.sjtu.edu.cn

Bingsheng He
National University of

Singapore
hebs@comp.nus.edu.sg

Xiaoliang Cong
ByteDance Inc.

congxiaoliang@bytedance.com

ABSTRACT
Dynamic graph random walk (DGRW) emerges as a practical tool
for capturing structural relations within a graph. Effectively exe-
cuting DGRW on GPU presents certain challenges. First, existing
sampling methods demand a pre-processing buffer, causing sub-
stantial space complexity. Moreover, the power-law distribution
of graph vertex degrees introduces workload imbalance issues, ren-
dering DGRWembarrassed to parallelize. In this paper, we propose
FlowWalker, a GPU-based dynamic graph randomwalk framework.
FlowWalker implements an efficient parallel sampling method to
fully exploit theGPUparallelism and reduce space complexity.More-
over, it employs a sampler-centric paradigm alongside a dynamic
scheduling strategy to handle the huge amounts ofwalking queries.
FlowWalker stands as a memory-efficient framework that requires
no auxiliary data structures in GPU global memory. We examine
the performance of FlowWalker extensively on ten datasets, and
experiment results show that FlowWalker achieves up to 752.2×,
72.1×, and 16.4× speedup compared with existing CPU, GPU, and
FPGA random walk frameworks, respectively. Case study shows
that FlowWalker diminishes random walk time from 35% to 3% in
a pipeline of ByteDance friend recommendation GNN training.

PVLDB Reference Format:
Junyi Mei, Shixuan Sun, Chao Li, Cheng Xu, Cheng Chen, Yibo Liu, Jing
Wang, Cheng Zhao, Xiaofeng Hou, Minyi Guo, Bingsheng He,
and Xiaoliang Cong. FlowWalker: A Memory-efficient and
High-performance GPU-based Dynamic Graph Random Walk Framework.
PVLDB, 17(8): 1788 - 1801, 2024.
doi:10.14778/3659437.3659438

PVLDB Artifact Availability:

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication
rights licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 17, No. 8 ISSN 2150-8097.
doi:10.14778/3659437.3659438

𝑵(𝒗𝟎) 𝑣1 𝑣2 𝑣3 𝑣4 𝑣5 𝑣6

Weight 2 3 5 4 2 4

Graph

2
𝑣1 𝑣2

𝑣3 𝑣4

𝑣5 𝑣6

𝑣0

3
5

4
2 4

0.1
0.15

0.25
0.2

0.1
0.2

v₁ v₂ v₃ v₄ v₅ v₆

Transition Probability

Initialization
Phase

Selection
Phase 0.1 0.15

0.25
0.2

0.1
0.2

v₁ v₂ v₃ v₄ v₅ v₆

Transition Probability

𝒗𝟏 𝒗𝟐 𝒗𝟑 𝒗𝟒 𝒗𝟓 𝒗𝟔

𝒗𝟏 𝒗𝟐 𝒗𝟑 𝒗𝟒 𝒗𝟓 𝒗𝟔𝒗𝟒

(a) An example graph.

𝑵(𝒗𝟎) 𝑣1 𝑣2 𝑣3 𝑣4 𝑣5 𝑣6

Weight 2 3 5 4 2 4

Graph

2
𝑣1 𝑣2

𝑣3 𝑣4

𝑣5 𝑣6

𝑣0

3
5

4
2 4

0.1
0.15

0.25
0.2

0.1
0.2

v₁ v₂ v₃ v₄ v₅ v₆

Transition Probability

Initialization
Phase

Selection
Phase 0.1 0.15

0.25
0.2

0.1
0.2

v₁ v₂ v₃ v₄ v₅ v₆

Transition Probability

𝒗𝟏 𝒗𝟐 𝒗𝟑 𝒗𝟒 𝒗𝟓 𝒗𝟔

𝒗𝟏 𝒗𝟐 𝒗𝟑 𝒗𝟒 𝒗𝟓 𝒗𝟔𝒗𝟒

(b) Sampling a neighbor of 𝑣0.
Figure 1: The procedure for sampling a neighbor of 𝑣0.

The source code has been made available at https://github.com/junyimei/
flowwalker-artifact.

1 INTRODUCTION
Random walk (RW) is a practical approach to extract graph infor-
mation and is widely used in real-world applications such as social
network analysis [14], recommendation systems [42], and knowl-
edge graphs [22]. Take the friend recommendation in Douyin (a
popular social media developed by ByteDance) as an example. In
the recommendation graph, vertices represent users, and edges de-
pict diverse user interactions such as co-liking, co-favoring, etc.
RW is used to generate random walk sequences serving the Graph
Neural Network (GNN) [32, 39, 52, 53] tasks for personalized friend
recommendations. However, the computational demands of RW
are substantial. For instance, on a recommendation graph snap-
shot with 227 million users and 2.71 billion edges, RW takes up to
3.5 hours, contributing to 35% of the end-to-end training duration.
Since recommendation graphs are undergoing frequent updates,
ensuring the prompt completion of the RW tasks becomes vital for
maintaining service quality. Consequently, there is an urgent need
to accelerate RW computations.

Recognizing the significance of the problem, researchers have
conducted comprehensive studies [36, 46, 50] to parallelize RW on

1788

https://doi.org/10.14778/3659437.3659438
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3659437.3659438
https://github.com/junyimei/flowwalker-artifact
https://github.com/junyimei/flowwalker-artifact
https://www.acm.org/publications/policies/artifact-review-and-badging-current

multi-core CPUs. Some works modify state-of-the-art graph pro-
cessing frameworks to support RW algorithms, but they treat RW
the same as traditional graph algorithms and ignore its unique
properties [16, 18, 43].Thus specialized graph sampling frameworks
have been proposed to maximize the overall sampling through-
put. For instance, GraphWalker [46] introduces a partition-based
method for out-of-core computation. ThunderRW [36] optimizes
cache utilization to enhance in-memory computation.These frame-
worksworkwell in static graph randomwalk (SGRW) such asDeep-
Walk [30], where the transition probability remains constant. Specif-
ically, they execute SGRW in two phases: 1) a preprocessing phase
that computes the transition probability table for each vertex, and
2) a computation phase that runs random walk queries. As shown
in Figure 1, this approach greatly diminishes the sampling cost [36]
by avoiding the initialization of the probability table at every step.
However, this preprocessing strategy cannot process dynamic graph
random walks (DGRW), where transition probabilities are dynam-
ically determined during runtime as in Node2Vec [9] and MetaP-
ath [37]. As a result, the computational complexity surges inDGRW
as each step requires scanning the neighbors to calculate the transi-
tion probability table. For instance, ThunderRW can execute Deep-
Walk on the previously discussed recommendation graph in ap-
proximately 150 seconds with the preprocessing strategy; however,
it exceeds an eight-hour time limit when running Node2Vec.

Recently, DGRW has gained popularity over SGRW due to its
ability to capture temporal structure relations (i.e., the state of each
query), rendering it a more powerful tool [9, 38]. Researchers have
turned to GPU acceleration to enhance DGRW performance lever-
aging their high-bandwidth on-board memory and massive com-
puting power. For example, C-SAW [28] parallelizes inverse trans-
form sampling [27] on GPU, and Skywalker [44] proposes a GPU-
based alias table sampling [41] method. However, we uncover sev-
eral fundamental limitations in existing GPU-based frameworks
that lead to significant performance constraints.

First, these frameworks require extensivememory space to facil-
itate the query execution.They necessitate an𝑂 (𝑑) memory buffer
to store the transition probability table for each query, where 𝑑
denotes the degree of the vertex that is being sampled. Since dy-
namic memory allocation can be costly, they opt to pre-allocate a
bufferwith𝑂 (𝑑𝑚𝑎𝑥) size where𝑑𝑚𝑎𝑥 denotes themaximum vertex
degree in the graph. This approach can consume vast amounts of
memory, especially when dealing with real-world graphs charac-
terized by significant skewness. In the case where 𝑑𝑚𝑎𝑥 in twitter
reaches 3 × 106, a buffer size of around 11.45 MB is required for
every single query. Though GPUs offer powerful computing capa-
bilities, the limited memory space restricts concurrent parallelism
(i.e., queries processed simultaneously) and reduces available space
for graph data.

Second, these frameworks disregard the load imbalance issue
emanating from both workload and hardware characteristics. The
workload at each step is governed by the vertex degree, and the
degree skewness among vertices can lead to workload imbalance.
Besides, despite that RW is embarrassingly parallel, the concur-
rent execution capability of modern GPUs, which can support tens
of thousands of threads, exacerbates the load imbalance problems
among computing resources. While C-SAW overlooks these con-
cerns, Skywalker handles sampling tasks of varying degrees with

warps or blocks, which leads to burdensome memory costs as well
as communication overhead.

In this paper, we introduce FlowWalker, a GPU-based DGRW
framework that performs fast sampling at minimal memory cost.
We design a sampler-centric computation model, which abstracts
the computation from the hardware perspective. Under this model,
an RW application is conceptualized as a set of discrete sampling
tasks, where each task aims to randomly select a vertex from a
specified vertex set. The GPU threads are systematically organized
into a collection of samplers, which efficiently process these tasks.
This abstraction narrows the RW computation down to two crucial
problems: 1) devising efficient samplers; and 2) formulating an ef-
fective scheduling mechanism that assigns tasks to the samplers
according to workload characteristics.

Inspired by sampling on streams, we design a parallel sampling
method based on the reservoir sampling technique [40].Thismethod
is tailored for GPU optimization and is sufficiently adapted to han-
dle vertices with varied degrees. Our design significantly reduces
the space complexity of handling a sampling task from 𝑂 (𝑑) to
𝑂 (1), thereby facilitating the concurrent execution of a substan-
tial number of tasks. Coupled with efficient samplers, we develop
a high-performance processing engine based on a multi-level task
pool that distributes tasks among the samplers. Benefiting from its
sampler design and processing engine, FlowWalker attains notable
memory efficiency, with no auxiliary data structures in the global
memory to streamline computation. Thereby, FlowWalker effec-
tively tackles the challenges of limited query concurrency and load
imbalance, optimizing the utilization of computational resources.

We showcase the generality of FlowWalker by implementing
four representative algorithms, including DeepWalk [30], PPR [8],
Node2Vec [9], andMetaPath [37].We compare performance against
ThunderRW [36], the state-of-the-art CPU-based framework; Sky-
walker [44], a GPU-based approach; DGL [43], the widely used
GNN framework; and LightRW [38], the state-of-the-art FPGA-bas-
ed approach. We conduct extensive experiments on ten real-world
graphs, the size of which scale from millions to billions. Exper-
iment results show that 1) FlowWalker stands as the sole GPU-
based solution that able to support all of the four algorithms above;
2) FlowWalker consistently completes all test cases within a time
frame of 2.2 hours, achieving up to 752.2× speedup over competi-
tors, whereas DGL, LightRW, ThunderRW and Skywalker either
exceed an eight-hour limit or encounter memory constraints; and
3) FlowWalker has negligible memory cost by getting rid of auxil-
iary data structures. In summary, we make the following contribu-
tions in this paper:

• We introduce FlowWalker, a memory-efficient and high-
performance GPU-based random walk framework, which
leverages a sampler-centric computation model.

• We propose an efficient parallel sampling method for GPU
based on reservoir sampling. This method greatly dimin-
ishes the space complexity, thereby substantially acceler-
ating the sampling process.

• We develop a concise scheduling mechanism to efficiently
channel a vast number of fine-grained tasks through sam-
plers of different granularities. This mechanism enhances
overall efficiency and adaptability.

1789

Algorithm 1: Random Walk Computation Paradigm
Input: a graph𝐺 and a set Q of RW queries;
Output: the sequence of each query𝑄 ∈ Q;

1 for𝑄 ∈ Q do
2 do

/* The initialization phase. */
3 foreach 𝑢 ∈ 𝑁 (𝑄.𝑐𝑢𝑟) do
4 Calculate 𝑢’s transition probability 𝑝 (𝑢) ;

/* The selection phase. */
5 Select a 𝑢 ∈ 𝑁 (𝑄.𝑐𝑢𝑟) given 𝑝 (𝑢) and add it to𝑄.𝑠𝑒𝑞;
6 while Stop(𝑄) is false;
7 return Q.𝑠𝑒𝑞;

Paper Organization. Section 2 introduces backgrounds. Sec-
tion 3 gives an overview of the system. Sections 4 and 5 elabo-
rate on the samplingmethod and computation engine, respectively.
Section 6 details our experiment as well as case study. Section 7
concludes this paper.

2 BACKGROUND
We introduce the preliminary and the background related to our
work in this section.

2.1 Graph RandomWalk
Let𝐺 = (𝑉 , 𝐸) denote a directed graphwhere𝑉 is the set of vertices
and 𝐸 is the set of edges. Given a vertex 𝑣 ∈ 𝑉 ,𝑁 (𝑣) is the neighbor
set of 𝑣 and𝑑 (𝑣) is the degree, i.e., |𝑁 (𝑣) |. Given an edge 𝑒 (𝑢, 𝑣) ∈ 𝐸,
𝑤 (𝑢, 𝑣) and 𝑙 (𝑢, 𝑣) represent its weight and label respectively.

Algorithm 1 presents a common RW computation paradigm. An
RW algorithm has a set Q of random walk queries. A query 𝑄 be-
gins at a start vertex. At each step,𝑄 randomly selects a neighbor𝑢
of the current residing vertex𝑄.𝑐𝑢𝑟 and moves to it. The operation
is performed in two phases: 1) the initialization phase calculates
the transition probability 𝑝 (𝑢) for each neighbor 𝑢; and 2) the se-
lection phase randomly picks a neighbor given the distribution. 𝑄
records the walk sequence in 𝑄.𝑠𝑒𝑞 and stops until meets a speci-
fied condition, for example, 𝑄.𝑠𝑒𝑞 reaches a length threshold. The
outputs are the query sequences. Assume that the current residing
vertex is 𝑄.𝑐𝑢𝑟 = 𝑣 . The selection of a neighbor involves sampling
𝑢 from 𝑁 (𝑣) based on a transition probability 𝑝 (𝑢), determined by
a weight function 𝑓 applied to the edge 𝑒 (𝑣,𝑢). For instance, if we
define 𝑓 (𝑒 (𝑣,𝑢)) = 𝑤 (𝑣,𝑢), then 𝑝 (𝑢) = 𝑤 (𝑣,𝑢)∑

𝑢′ ∈𝑁 (𝑣) 𝑤 (𝑣,𝑢′) , which is
a normalized value. To simplify the presentation, we refer to the
transition probability 𝑝 (𝑢) as the relative chance (e.g., the edge
weight 𝑤 (𝑣,𝑢)) of 𝑢 being selected without normalization in the
subsequent discussions.

Graph randomwalk algorithms are broadly divided into two cat-
egories based on the transition probability property: static graph
random walk (SGRW) and dynamic graph random walk (DGRW).
In SGRW applications like DeepWalk and PPR, the transition prob-
ability is fixed throughout the computation. This allows for calcu-
lating values in a pre-processing stage (as discussed in Section 1),
which significantly reduces computational complexity by eliminat-
ing the initialization phase in Algorithm 1. In contrast, the transi-
tion probability of DGRW relies on the query states and requires
determination during runtime. Consequently, the initialization is

postponed to the computation step. Next, we will introduce two
representative DGRW algorithms.

MetaPath [37] is a widely used algorithm for representation
learning in heterogeneous networks [7].WithinMetaPath, an edge
label schema 𝑙1 → . . . → 𝑙𝑖 . . . → 𝑙𝑘 constrains the walk se-
quence 𝑄.𝑠𝑒𝑞 of a random walk query. Specifically, the labels of
adjacent vertices in the sequence must align with the schema, i.e.,
𝑙 (𝑄.𝑠𝑒𝑞 [𝑖], 𝑄.𝑠𝑒𝑞 [𝑖 + 1]) = 𝑙𝑖 . Suppose the current residing vertex
is 𝑄.𝑐𝑢𝑟 = 𝑣 , where 𝑣 is the 𝑖-th vertex in 𝑄.𝑠𝑒𝑞. The transition
probability for selecting a neighbor 𝑢 ∈ 𝑁 (𝑣) is defined by Equa-
tion 1. The weighted version of MetaPath incorporates the edge
weight into the calculation by multiplying it with the transition
probability 𝑝 (𝑢).

𝑝 (𝑢) =
{
1, if 𝑙 (𝑣,𝑢) = 𝑙𝑖 ,

0, otherwise.
(1)

Node2Vec [9] is a second-order RW algorithm, where the tran-
sition probability is dependent on the last visited vertex. Assuming
that 𝑄.𝑐𝑢𝑟 is 𝑣 , then the transition probability 𝑝 (𝑢) for selecting a
neighbor 𝑢 ∈ 𝑁 (𝑣) is governed by Equation 2, in which 𝑣 ′ rep-
resents the last visited vertex before 𝑣 and 𝑑𝑖𝑠𝑡 (𝑣 ′, 𝑢) denotes the
distance between 𝑣 ′ and 𝑢. 𝑎 and 𝑏 are two hyperparameters that
modulate the randomwalk behavior. Similar toMetaPath, the edge
weight 𝑤 (𝑣,𝑢) can be factored into the computation by multiply-
ing it with the computed transition probability 𝑝 (𝑢).

𝑝 (𝑢) =

1
𝑎 , if 𝑑𝑖𝑠𝑡 (𝑣 ′, 𝑢) = 0,

1, if 𝑑𝑖𝑠𝑡 (𝑣 ′, 𝑢) = 1,
1
𝑏 , if 𝑑𝑖𝑠𝑡 (𝑣 ′, 𝑢) = 2,

0, otherwise.

(2)

In addition to Node2Vec and MetaPath, methods such as Het-
espaceywalk [10] exemplify the application of DGRW. Represen-
tation learning methods on Heterogeneous Information Networks
(HINs) [19, 35] are typically grounded in DGRW, necessitating con-
sideration of label information—akin to the MetaPath approach.
DGRW is also used for similarity measurement [21, 48] and com-
munity detection [1, 6]. In ByteDance, there are massive graphs
with vertex labels such as users, videos, and advertisement items.
Taking the advertisement recommendation scenario in Douyin as
an example, we need to generate random walk sequences for each
user and advertisement item based on specific meta-paths, such as
user-item-user. Subsequently, the embeddings are trained to serve
as inputs for the recommendation models. The practical necessity
for dynamic walk algorithms in real-world business scenarios has
motivated us to commence work on FlowWorker.

2.2 Sampling Methods
In the context of our study, sampling is the process of selecting a
vertex 𝑢 from a neighbor set 𝑁 (𝑣) based on the transition prob-
ability distribution. Different frameworks implement this opera-
tion through various sampling methods. ThunderRW, for exam-
ple, offers inverse transform sampling (ITS) [27], rejection sampling
(RJS) [31], and alias table sampling (ALS) [12, 41], allowing users
to choose the method most suitable for the algorithm’s property.
C-SAW [28] and Skywalker [44] utilize ITS and ALS, respectively.

1790

Algorithm 2: Sequential Weighted Reservoir Sampling
Input: a vertex sequence 𝑆 , the corresponding weight sequence

𝑊 , the sequence length 𝑛;
Output: a vertex sampled from 𝑆 based on𝑊 ;

1 𝑊𝑃 ← 0, 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ← 0;
2 for 𝑖 ← 1 𝑡𝑜 𝑛 do
3 𝑊𝑃 ←𝑊𝑃 +𝑊 [𝑖];
4 if Random(0, 1)< 𝑊 [𝑖]

𝑊𝑃
then 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ← 𝑖;

5 return 𝑆 [𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑];

However, both methods require an 𝑂 (𝑑)-sized memory buffer to
store the transition probability, which, as discussed in Section 1,
consumes substantial memory and can lead to significant perfor-
mance issues. Contrastingly, RJS requires only𝑂 (1) space to store
the maximum transition probability, employing a “trial-and-error”
selection approach. However, this method comes with its draw-
backs: the non-deterministic running time of randomized selection
is heavily affected by the underlying probability distribution, and
the process leads to numerous random memory accesses. These
factors make RJS challenging to implement efficiently on GPUs.

Contrary to other methods, reservoir sampling (RS) [4, 40] is tai-
lored for sampling streaming data. As outlined in Algorithm 2, RS
operates on a vertex sequence 𝑆 with length 𝑛.𝑊𝑃 maintains the
prefix sum of weights, and 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 stores the index of the vertex
chosen from 𝑆 . Upon encountering a vertex at position 𝑖 , RS up-
dates𝑊𝑃 and generates a random number. If this number is smaller
than the transition probability 𝑊 [𝑖]

𝑊𝑃
, RS updates the 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 in-

dex accordingly (Line 4). Ultimately, RS returns the last selected
vertex. Notably, the space complexity of RS is 𝑂 (1), and the time
complexity is𝑂 (𝑑) given a neighbor set𝑁 (𝑣) with𝑑 vertices as the
input. While both ITS and ALS require only a single random num-
ber, RS necessitates generating a random number for each element.
Although this might pose a challenge for CPUs, it is well-suited for
GPUs, which offer ample computational resources.

2.3 GPU-based RandomWalk Frameworks
Researchers have proposed several works to accelerate RW appli-
cations using GPUs. NextDoor [13] is a graph sampling framework
utilizing the RJS sampling method. It adopts the offline computa-
tion mode, which calculates the maximum weight for a neighbor
set during the pre-processing stage. When executing random walk
queries, NextDoor only performs the selection phase of the sam-
pling. Therefore, NextDoor cannot support variant DGRW appli-
cations. Note that NextDoor implements unweighted Node2Vec by
choosing the maximum value from (1, 1𝑎 ,

1
𝑏) to bypass the initial-

ization phase.The implementation cannot be generalized toweight-
edNode2Vec and otherDGRWapplications such asweightedMeta-
Path. During runtime, NextDoor follows the BSP [5] model, ad-
vancing all queries by a single step at a time. NextDoor, which can
sample multiple vertices from a neighbor set, ensures load balance
by allocating threads according to the number of sampling results.

Distinct from NextDoor [13], C-SAW [28] supports DGRW and
employs the ITS sampling method. It adopts a query-centric com-
putation model, assigning each query to a warp and executing
them synchronously in a step-by-step fashion using the BSP [5]

model. Although C-SAW optimizes ITS for GPUs to speed up com-
putations, it falls short in supporting queries with variable walk
lengths, such as PPR, due to its synchronized execution approach.

Skywalker [44, 45] parallelizes the ALS sampling methods and
optimizes memory access by compressing alias tables. To address
the load imbalance caused by varying vertex degrees, Skywalker
employs versatile samplers tailored to vertices with different de-
grees. To further mitigate load imbalance among thread blocks, it
introduces a queue to distribute queries across blocks. As queries
can have different lengths, the space complexity of the queue is
𝑂 (𝐿𝑚𝑎𝑥 × |Q|) where 𝐿𝑚𝑎𝑥 is the maximum length of queries.

Despite these advancements, both C-SAW and Skywalker pos-
sess foundational limitations, as discussed in Section 1, which re-
strict their efficiency in handling large graphs. Besides, frameworks
like GraSS [51] focus on graph compression.This technique is com-
plementary to our work and can be integrated with FlowWalker to
further minimize memory usage.

2.4 Other Related Works
Given the critical role of Random Walk (RW) applications, numer-
ous studies have focused on optimizing CPU-based graph random
walk frameworks. NosWalker [47], DrunkardMob [17], and Graph-
Walker [46] are designed to handle graphs that exceed available
memory. ThunderRW [36] optimizes in-memory computation by
improving cache utilization. KnightKing [50] and FlashMob [49]
are distributed frameworks that address communication and mem-
ory bandwidth utilization. Nevertheless, all these frameworks are
optimized for SGRW, though some of them (e.g., ThunderRW) can
execute DGRW. Additionally, research efforts have been made to
optimizememory usage for randomwalks on both static and stream-
ing graphs [29, 34].

Recently, Tan et al. [38] introduce an FPGA-based approach to
accelerate DGRW.They develop a parallel reservoir samplingmeth-
od on FPGAs, akin to Algorithm 3. Despite the similarities, the
fundamental differences in the underlying hardware architectures
set our approaches apart. LightRW’s emphasis lies in customizing
hardware to optimize pipeline execution and memory access dur-
ing sampling. In contrast, GPU architectures are fixed, with threads
grouped into thread blocks at runtime. Our approach involves a
meticulous exploration of the design space to adapt reservoir sam-
pling to the unique demands of GPUworkloads and hardware char-
acteristics. The inherent distinctions in hardware architectures in-
fluence our respective sampling algorithms, system designs, and
research focuses.

3 AN OVERVIEW OF FLOWWALKER
ComputationModel.Different from the query-centric model, we
propose the sampler-centric model that abstracts the computation
from the hardware perspective. Specifically, an RW application
consists of massive random walk queries each of which is a se-
quence of steps. A step performs one sampling operation, which
selects a neighbor from the neighbor set of the current residing
vertex and updates the query. Therefore, an RW application can
be viewed as a set of sampling tasks. The computation on GPUs is
to organize threads to a set of samplers to perform these sampling
tasks efficiently until all queries are complete.

1791

Thread Block

Global Memory

Shared
Memory

Execution Flow
Data Dependency

②

④

Global Task Pool

…

Result Pool

…

Graph Data

①

…

Local Task Pool
………………

RNG

Warp Samplers
③

Block Sampler

④

Figure 2: System Design Overview of FlowWalker. The exe-
cution flow is organized as follows: 1⃝ Thread blocks fetch
tasks from the global task pool into its local task pool. 2⃝
Tasks are dispatched to the appropriate sampler based on
the vertex degree. 3⃝ Warp and block samplers execute the
sampling tasks. The process necessitates graph data stored
in the globalmemory and randomnumber generators (RNG)
stored in the sharedmemory. 4⃝Thequery states in the local
task pool are updated and the sampling results are recorded.
System Design. Based on the sampler-centric model, we design
FlowWalker, amemory-efficient and high-performanceGPU-based
DGRW framework.We propose a parallel reservoir samplingmeth-
od that can perform the sampling with𝑂 (1) memory cost. Besides,
an efficient computation engine is implemented to guide global
task scheduling and computation inside a thread block.

Figure 2 gives an overview of our system design. In FlowWalker,
a thread block is an independent worker whose threads are orga-
nized into samplers with different parallelism. Particularly, given
a set of sampling tasks, a thread block adopts a two-stage execu-
tion scheme to handle variant workloads among these tasks. In
the first stage, threads are organized into warp samplers (i.e., a
warp works as a sampler) to process small tasks. In the second
stage, all threads in the same thread block form a block sampler
(i.e., a block works as a sampler) to handle large tasks. A multi-
level task pool based dynamic scheduling mechanism is adopted
to keep load balance among computing resources. A thread block
has a local task pool that maintains the queries assigned to it. Once
a query is completed, it will fetch a new query from the global task
pool. The fine-grained scheduling method requires no communica-
tion and synchronization among blocks and achieves good load
balance. Additionally, it gets rid of auxiliary data structures in the
global memory, and a small amount of intermediate data can be
held inside the shared memory, which is a type of fast-speed GPU
memory. In terms of APIs, our framework adheres to the conven-
tions established by prior works [28, 36, 44, 46].Therefore, we omit
the details for brevity.

Benefiting from the designs mentioned above, FlowWalker is
able to performmemory-efficient sampling with no data structures
stored in the global memory to assist the execution. This signifi-
cantly benefits GPU-based RW because GPUs have abundant com-
puting resources but limited memory space. We will introduce the
sampling method and the engine in Sections 4 and 5, respectively.

4 SAMPLING METHOD
Under the sampler-centric abstraction, sampling is the key opera-
tion in RW applications. As discussed in Section 2, existing meth-
ods [27, 31, 41] have severe performance issues on GPUs due to the
large memory consumption of the intermediate data. Inspired by
stream processing, we model the problem of choosing a neighbor
as that of sampling an element from a stream. Therefore, we can
adopt reservoir sampling (RS) to reveal the memory consumption
issue because RS does not maintain a state for each element.

4.1 Direct Parallel Reservoir Sampling
Given a sequence 𝑆 of𝑛 vertices, the corresponding weights𝑊 and
a group of 𝑘 threads (e.g., a warp), our goal is to parallel reservoir
sampling which selects a vertex 𝑣 from 𝑆 based on𝑊 . Moreover,
we want to keep 𝑘 threads having coalesced memory access pat-
terns to fully utilize GPUs. Recall that reservoir sampling scans 𝑆
along the sequence order with the probability of replacing the se-
lected vertex with 𝑣𝑖 as 𝑤𝑣

𝑊𝑖
where 𝑣𝑖 is the 𝑖th vertex in 𝑆 , 𝑤𝑣 is

the weight of 𝑣 , and𝑊𝑖 =
∑𝑖

𝑗=1𝑊 [𝑗] (i.e., the sum of weights of
vertices before 𝑣𝑖 in 𝑆). If 𝑣𝑖 is picked, then we replace the selected
vertex with 𝑣𝑖 . Reservoir sampling returns the last selected vertex
as the sampling result.

A straightforward idea of parallelization is to sample a vertex
from 𝑘 consecutive vertices in parallel in each iteration and re-
peat until all vertices are processed. We call this method the direct
parallel reservoir sampling (DPRS) algorithm. Algorithm 3 depicts
the details. In a certain iteration (Lines 4-11), we first read weights
from𝑊 for 𝑘 vertices in parallel with thread 𝑗 holding value𝑊𝐿 [𝑗].
Next, we compute the prefix sum𝑊𝑃 for the 𝑘 values in parallel.
𝑤𝐵 maintains the sum of weights in previous iterations, i.e. ver-
tices from 𝑆 [1] to 𝑆 [𝑖 × 𝑘]. Therefore, thread 𝑗 selects the vertex
𝑆 [𝑗 + 𝑖 × 𝑘] with the probability 𝑊𝐿 [𝑗]

𝑊𝑃 [𝑗]+𝑤𝐵
(Line 9). We then set

the selected index to the maximum value in 𝐶 (i.e., the maximum
sequence index selected by these 𝑘 threads) and update𝑤𝐵 (Lines
10-11). Finally, we return the sampled vertex given the index (Line
12). Note that returning 𝑆 [0] denotes that no vertex is selected, for
example, no label can match the constraint in MetaPath.

Example 4.1. Figure 3 presents a running example of DPRSwhere
𝑛 = 6 and 𝑘 = 3. At Iteration 1, threads 𝑇1−3 first load weights of
𝑣1−3 in parallel and then compute their prefix sum. After that, they
perform the selection independently. For example, 𝑇1 sets the se-
lected index 𝐶 to 1 since the random number value 𝑟 = 0.5 is less
than 𝑊𝐿

𝑊𝑃+𝑤𝐵
= 1.0. At the end of the iteration, DPRS performs a

parallel reduction to get the last selected index (i.e., the maximum
𝐶 among 𝑇1−3), which is the selected item at this iteration. Addi-
tionally, DPRS sets 𝑤𝐵 to 10, which is the 𝑊𝑃 value held by 𝑇3.
DPRS continues its computations until all elements have been pro-
cessed. The result is 4 and the selected vertex is 𝑣4. The parallel
sampling order is equivalent to the order of 𝑆 .

Analysis. Given the vertex 𝑣 = 𝑆 [𝑗 +𝑖×𝑘], thread 𝑗 updates the
selected vertexwith the probability of 𝑤𝑣∑𝑗+𝑖×𝑘

𝑚=1 𝑊 [𝑚]
.Themax opera-

tion keeps the algorithm to return the last picked vertex.Therefore,
Algorithm 3 intuitively has the same logic as Algorithm 2 though
it runs in parallel, and Proposition 1 holds.

1792

v₁ v₄ v₂ v₅ v₃ v₆𝑺′

DPRS ZPRS

Ite
ra

tio
n

1 𝑊𝑃 = 2

𝐓𝟏

Load
Prefix
Sum

Select 𝑟 = 0.5 <
𝑊 1

𝑊𝑃 + 𝑤𝐵

𝐶 = 1

𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 = 3

Ite
ra

tio
n

2

𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 = 4 (v₄)

𝑊𝑃 = 5

𝐓𝟐

𝑊𝑃 = 10

𝐓𝟑

Reduction

Load
Prefix
Sum

Select

Reduction

(𝑟 = 0.9) >
𝑊 2

𝑊𝑃 + 𝑤𝐵

𝐶 = 0

𝑟 = 0.2 <
𝑊 3

𝑊𝑃 + 𝑤𝐵

𝐶 = 3

𝑊𝑃 = 10

(𝑟 = 0.4) >
𝑊 6

𝑊𝑃 + 𝑤𝐵

𝐶 = 0

𝑊𝑃 = 6

(𝑟 = 0.6) >
𝑊 5

𝑊𝑃 + 𝑤𝐵

𝐶 = 0

𝑊𝑃 = 4

(𝑟 = 0.1) <
𝑊 4

𝑊𝑃 + 𝑤𝐵

𝐶 = 4

𝑊 1 = 2 𝑊 2 = 3 𝑊 3 = 5

𝑊 6 = 4𝑊 5 = 2𝑊 4 = 4

Ite
ra

tio
n

2
Ite

ra
tio

n
1

𝑊𝑃 = 0

𝐓𝟏

𝑊𝑃 = 6

𝐓𝟐

𝑊𝑃 = 11

𝐓𝟑

Load

Prefix
Sum
Load

Select

𝑊𝑃 = 𝑊𝑃 +𝑊 1

(𝑟 = 0.5) <
𝑊 1

𝑊𝑃

𝐶 = 1

Load

Select

𝑊𝑃 = 𝑊𝑃 +𝑊 2

(𝑟 = 0.9) >
𝑊 2

𝑊𝑃

𝐶 = 0

𝑊𝑃 = 𝑊𝑃 +𝑊 3

(𝑟 = 0.2) <
𝑊 3

𝑊𝑃

𝐶 = 3

𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 = 3 (v₃)Reduction

𝑊 1 ,𝑊[4] 𝑊 2 ,𝑊[5] 𝑊 3 ,𝑊[6]

𝑊 1 = 2 𝑊 2 = 3 𝑊 3 = 5

𝑊 4 = 4 𝑊 5 = 2 𝑊 6 = 4

𝑊𝑃 = 𝑊𝑃 +𝑊 4

𝑟 = 0.1 <
𝑊 4

𝑊𝑃

𝐶 = 4

𝑊𝑃 = 𝑊𝑃 +𝑊 5

(𝑟 = 0.6) >
𝑊 5

𝑊𝑃

𝐶 = 0

𝑊𝑃 = 𝑊𝑃 +𝑊 6

(𝑟 = 0.4) >
𝑊 6

𝑊𝑃

𝐶 = 3

𝑾 3 5 4 2 42

𝒗𝟏 𝒗𝟐 𝒗𝟑 𝒗𝟒 𝒗𝟓 𝒗𝟔 𝒗𝟏 𝒗𝟐 𝒗𝟑 𝒗𝟒 𝒗𝟓 𝒗𝟔

𝑤𝐵 = 10

𝑤𝐵 = 0

𝒗𝟏 𝒗𝟐 𝒗𝟑 𝒗𝟒 𝒗𝟓 𝒗𝟔𝑺

Scan along the sequence of 𝑺 Scan along the zig-zag sequence of 𝑺

Graph Information of 𝒗𝟎

Figure 3: The comparison of DPRS and ZPRS on sampling a neighbor of 𝑣0 in Figure 1a using three threads. DPRS scans𝑊
once, but the number of collective operations depends on the number of iterations. ZPRS performs two collective operations
only, but scans𝑊 twice. Logically, DPRS scans along the sequence of 𝑆 , whereas ZPRS scans in a zig-zag order of 𝑆 .

PRoposition 1. Given a sequence 𝑆 of vertices and the correspond-
ing weight sequence𝑊 , Algorithm 3 picks 𝑣 with the probability 𝑤𝑣∑

𝑊
where𝑤𝑣 is the weight of 𝑣 .

Next, we analyze the time cost of Algorithm 3. Suppose that the
cost of obtaining𝑊 [𝑖] is 𝛼 , that of communication among threads
is 𝛽 , and that of random number generation is 𝛾 . In Algorithm 3,
Line 6 accesses global memory, Lines 7 and 10 perform the par-
allel collective operations among 𝑘 threads, and Line 9 computes
a random number in each thread. Therefore, the cost at one it-
eration is 𝛼 + 2 × 𝛽 log𝑘 + 𝛾 . The time cost of the algorithm is
⌈𝑛𝑘 ⌉ × (𝛼 + 2 × 𝛽 log𝑘 + 𝛾). The time complexity is 𝑂 (𝑛𝑘 × log𝑘),
and the speedup over Algorithm 2 is 𝑂 (𝑘

log𝑘).
Finally, we discuss the space complexity of Algorithm 3. In addi-

tion to storing 𝑆 and𝑊 , we do not maintain a state for each vertex,
while each thread only requires several local variables (𝑊𝑃 ,𝐶 , and
𝑤𝐵 , etc.). Therefore, the space complexity of the algorithm is𝑂 (𝑘)
and that for one thread is 𝑂 (1).

4.2 Zig-Zag Parallel Reservoir Sampling
Although DPRS accesses the global memory in a coalesced pattern,
we find that DPRS can have performance issues when processing
long vertex sequences. Specifically, a GPU thread group has a lim-
ited number of threads, for example, a warp has 32 threads. Con-
sequently, given a long vertex sequence (e.g., millions of vertices),
DPRS frequently performs parallel collective operations that incur
expensive costs due to communication overhead among threads.
As real-world graphs have vertices with large degrees and pro-
cessing these vertices dominates the random walk cost, the per-
formance issue degrades the computation speed.

Algorithm 3: Direct Parallel Reservoir Sampling(DPRS)
Input: a vertex sequence 𝑆 , the corresponding weight sequence

𝑊 , the sequence length 𝑛 and 𝑘 threads;
Output: a vertex sampled from 𝑆 based on𝑊 ;

1 parallel for 𝑗 ← 1 to 𝑘 do
2 𝐶 [𝑗] ← 0,𝑊𝐿 [𝑗] ← 0,𝑊𝑃 [𝑗] ← 0;
3 𝑤𝐵 ← 0;
4 for 𝑖 ← 0 to ⌈ 𝑛𝑘 ⌉ − 1 do
5 parallel for 𝑗 ← 1 to 𝑘 do
6 𝑊𝐿 [𝑗] ←𝑊 [𝑗 + 𝑖 × 𝑘];
7 𝑊𝑃 ←paRallel_inclusive_pRefix_sum(𝑊𝐿, 𝑘);
8 parallel for 𝑗 ← 1 to 𝑘 do
9 if Random(0, 1) < 𝑊𝐿 [𝑗]

𝑊𝑃 [𝑗]+𝑤𝐵
then𝐶 [𝑗] ← 𝑗 + 𝑖 × 𝑘 ;

/* Get the maximum value in 𝐶. */
10 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ←paRallel_Reduction(𝐶,𝑘);
11 𝑤𝐵 ← 𝑤𝐵 +𝑊𝑃 [𝑘];
12 return 𝑆 [𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑];

To solve the problem, we design the zig-zag parallel reservoir
sampling (ZPRS), which not only has coalescedmemory access pat-
terns but also reduces the number of parallel collective operations.
In particular, different from DPRS scanning and sampling vertices
along the order of 𝑆 , ZPRS scans vertices along the order but sam-
ples in a zig-zag order 𝑆 ′. Algorithm 4 presents the details. 𝑆 can
be divided into 𝑘 sets where 𝑆 𝑗 = {𝑣𝑚 ∈ 𝑆 |𝑚 mod 𝑘 = 𝑗}. We
first compute the weight sum for vertices in 𝑆 𝑗 and store the value
to𝑊𝐿 [𝑗] (Lines 3-5). Next, we compute the exclusive prefix sum
on𝑊𝐿 such that𝑊𝑃 [𝑗] =

∑𝑗−1
𝑚=1

∑
𝑣∈𝑆𝑚 𝑤𝑣 . After that, thread 𝑗 re-

places the selected vertex with 𝑣 in the probability 𝑤𝑣
𝑊𝑃 [𝑗] . To pick

1793

Algorithm 4: Zig-Zag Parallel Reservoir Sampling(ZPRS)
Input: a vertex sequence 𝑆 , the corresponding weight sequence

𝑊 , the sequence length 𝑛 and 𝑘 threads;
Output: a vertex sampled from 𝑆 based on𝑊 ;

1 parallel for 𝑗 ← 1 to 𝑘 do
2 𝐶 [𝑗] ← 0,𝑊𝐿 [𝑗] ← 0,𝑊𝑃 [𝑗] ← 0;
3 for 𝑖 ← 0 to ⌈ 𝑛𝑘 ⌉ − 1 do
4 parallel for 𝑗 ← 1 to 𝑘 do
5 𝑊𝐿 [𝑗] ←𝑊𝐿 [𝑗] +𝑊 [𝑗 + 𝑖 × 𝑘];

6 𝑊𝑃 ←paRallel_exclusive_pRefix_sum(𝑊𝐿, 𝑘);
7 for 𝑖 ← 0 to ⌈ 𝑛𝑘 ⌉ − 1 do
8 parallel for 𝑗 ← 1 to 𝑘 do
9 𝑊𝑃 [𝑗] ←𝑊𝑃 [𝑗] +𝑊 [𝑗 + 𝑖 × 𝑘];

10 if Random(0, 1) < 𝑊 [𝑗+𝑖×𝑘]
𝑊𝑃 [𝑗] then𝐶 [𝑗] ← 𝑗 + 𝑖 × 𝑘 ;

/* Get the last item greater than 0 in 𝐶. */
11 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ←paRallel_Reduction(𝐶,𝑘);
12 return 𝑆 [𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑];

the last sampled vertex, we select the last item that is greater than
0 in 𝐶 in parallel (Line 11).

Example 4.2. Figure 3 presents a running example of ZPRSwhere
𝑛 = 6 and 𝑘 = 3. Threads 𝑇1−3 first load six weights in parallel at
two iterations and then calculate the exclusive prefix sum. As this
procedure is simple, we omit the details of the two iterations and
directly show𝑊𝑃 values. After that, 𝑇1−3 performs the sampling
independently. For example, at Iteration 1,𝑇3 first loads𝑊 [3] and
then sets the selected index 𝐶 to 3 because the random number
𝑟 = 0.2 is less than 𝑊 [3]

𝑊𝑃
= 0.31. After processing all elements,

𝑇1−3 performs a parallel reduction to get the last𝐶 value such that
𝐶 > 0. The result is 3 and the selected item is 𝑣3. The parallel sam-
pling order is equivalent to along a zig-zag order of 𝑆 .

Analysis. First, we prove Proposition 2 based on the correct-
ness of Algorithm 2, which is proved in the technical report [24].

PRoposition 2. Given a sequence 𝑆 of vertices and the correspond-
ing weight sequence𝑊 , Algorithm 4 picks 𝑣 with the probability 𝑤𝑣∑

𝑊
where𝑤𝑣 is the weight of 𝑣 .

PRoof. Consider a sequence 𝑆 of 𝑛 elements with correspond-
ing weights𝑊 and 𝑘 threads. Define 𝑆𝑖 as a sub-sequence of 𝑆 such
that 𝑆 [𝑗] ∈ 𝑆𝑖 if 𝑗 mod 𝑘 = 𝑖 for 1 ⩽ 𝑗 ⩽ 𝑛, and set 𝑆𝑘 = 𝑆0. This
construction yields a new sequence 𝑆 ′ = (𝑆1, 𝑆2, . . . , 𝑆𝑘) and its as-
sociated weight sequence𝑊 ′. As shown in Lines 7-10, each thread
𝑖 processes 𝑆𝑖 independently. Given 𝑣 = 𝑆𝑖 [𝑗] , thread 𝑖 replaces its
current selected vertex with a probability 𝑊 ′ [𝑗]∑𝑗

𝑙=1𝑊
′ [𝑙]

. Line 11 en-

sures that the element chosen by thread 𝑖 is replaced by the selec-
tion of thread 𝑗 if 𝑖 < 𝑗 . Consequently, parallel processing mirrors
serial sampling along 𝑆 ′. By Proposition 1, each element 𝑆 ′ [𝑖] is
selected with probability 𝑊 ′ [𝑖]∑

𝑊 ′ . So Proposition 2 holds. □

We next analyze the time cost of Algorithm 4. Compared with
DPRS, ZPRS only requires two collective operations (Lines 6 and
11). In contrast, ZPRS scans the weight sequence twice (Lines 3-5
and 7-10). Therefore, the time cost of ZPRS is ⌈𝑛𝑘 ⌉ × (2 × 𝛼 + 𝛾) +
2 × 𝛽 log𝑘 . The time complexity is 𝑂 (𝑛𝑘 + log𝑘) and the speedup

over the sequential method is 𝑂 (𝑘 × (1 − 𝑘 log𝑘
𝑛+𝑘 log𝑘)). When pro-

cessing long sequences, ZPRS has a better speedup than DPRS and
generally runs much faster than DPRS in practice, because modern
GPUs have a big bandwidth and a large cache, e.g., A100 has 1.5-2
TB/s bandwidth and 40 MB L2 cache. But for the cases where the
transition probability requires an expensive computation (i.e., 𝛼 is
high), ZPRS can run slower than DPRS in practice because it has
to calculate the probability for each element twice. Experiment re-
sults in Section 6.3 confirm our analysis. The space complexity of
ZPRS is 𝑂 (𝑘), which is the same as DPRS.

4.3 Implementation
Both DPRS and ZPRS access global memory in a coalesced pattern.
In their implementation, we focus on reducing the cost of collective
operations 𝛽 and that of random number generation.

In principle, both DPRS and ZPRS can be executed in parallel
with any number of threads. However, in practice, modern GPUs
manage threads with warps, blocks, and grids. Moreover, they only
support efficient communication and synchronization for warps
and blocks. Due to this constraint, we implement the warp and
block samplers, which execute with one warp and one block, re-
spectively.The parallel collective operations have been extensively
studied [11, 15, 23, 33]. In our implementation, we use CUB [25] to
conduct the prefix sum and reduction operations. Variables such
as 𝐶,𝑊𝐿 , and 𝑊𝑃 can be held with a register, and the collective
calculation merely requires a shared memory buffer.

The cuRAND library [26] generates a random number by updat-
ing a curandState, which is a C struct containing a small integer
array to record the generator state. As both DPRS and ZPRS gen-
erate a random number for each vertex in 𝑆 , a simple method is
to maintain an array of curandState for the warp (or block) with
each thread having one state. However, this leads to uncoalesced
global memory accesses. To resolve the issue, we transform the ar-
ray of structures into a structure of arrays to optimize the memory
access pattern. Similar to NextDoor [13], we store this structure
in shared memory to further accelerate the computation. The opti-
mization can bring up to 20.3× speedup in our experiment in tech-
nical report [24]. Investigating the efficient generation of massive
random numbers (e.g., each thread has a random number genera-
tor) on GPUs constitutes a compelling topic for future study.

5 FLOWWALKER ENGINE
An RW application consists of massive random walk queries and
each query is a sequence of walking steps. Steps from different
queries can be processed independently, while steps from the same
query have dependency. Under the sampler-centric computation
model, threads in GPUs are organized into samplers and each step
is a task unit. Specifically, given a step of a query, a sampler up-
dates the query by selecting a neighbor of the current residing ver-
tex. To process these tasks efficiently, we encounter two challenges
caused by the workload and hardware properties. First, the work-
load of a step is determined by the degree of the current residing
vertex. Due to degree skewness among vertices, workloads among

1794

Query

Query

Query

Stop?

Query

PL N

Y
①

𝒅 ≤ 𝒅𝒕
Warp Samplers

𝒅 > 𝒅𝒕
Block Sampler

②

Sampler

③

④

PG

⑤.1

⑤.2

Figure 4: Computation in a thread block. A query will not
be evicted from a thread block until stop conditions are met.
Tasks are processed in two stages. First, warp samplers pro-
cess tasks in which the degree of the current residing vertex
is no greater than 𝑑𝑡 . Then, the block sampler processes the
remaining tasks. After sampling, if one querymeets the stop
conditions, a new query will be fetched from the global task
pool (𝑃𝐺) and added to the local task pool (𝑃𝐿) (Step 5⃝.1).
Otherwise, we update the query state in 𝑃𝐿 (Step 5⃝.2).
different tasks are imbalanced. Second, although an RW applica-
tion is embarrassingly parallel, modern GPUs support tens of thou-
sands of threads executing concurrently, which leads to load imbal-
ance issues among computing resources. Additionally, the commu-
nication and synchronization cost on GPUs is expensive.

In this section, we design an efficient walking engine on the
top of our parallel reservoir samplers. In this engine, thread blocks
are independent workers. Given a set of tasks, a thread block pro-
cesses them by organizing its threads into different-level samplers
(i.e., samplers with different threads) to handle variant workloads.
Moreover, we design an effective scheduling mechanism based on
multi-level task pools to keep load balance among workers. In the
following, wewill introduce the computation in a thread block, and
then we will elaborate on the scheduling mechanism. Finally, the
time and memory cost will be discussed.

5.1 Computation
To address workload imbalance, we can organize thread blocks to
warp and block samplers and assign tasks to different thread blocks
based on their degrees. However, under the query-centric model,
a query needs to move between different thread blocks frequently.
As the communication and synchronization cost among blocks is
very expensive in GPUs, this approach can incur significant over-
head. Therefore, instead of moving queries among different blocks,
FlowWalker sticks a query to a thread block and processes tasks
with variant workloads.

Figure 4 presents the computation in thread blocks. Each thread
block has a local task pool 𝑃𝐿 that maintains the queries assigned
to it. An element in 𝑃𝐿 stores the status of a query 𝑄 , which has
the current residing vertex 𝑣 , the degree 𝑑 (𝑣), the location of 𝑁 (𝑣),
the location of the result sequence𝑄.𝑠𝑒𝑞, and the length |𝑄.𝑠𝑒𝑞 | of
the sequence. 𝑃𝐿 resides in shared memory because it is frequently
accessed, while 𝑁 (𝑣) and 𝑄.𝑠𝑒𝑞 are stored in the global memory.

At the first stage, the thread block forms |𝑇 |32 warp samplers to
process the small tasks, the degrees 𝑑 (𝑣) of which are no greater
than a threshold 𝑑𝑡 . |𝑇 | denotes the number of threads in a block.

Stream 1

Stream 2

time

Batch ①
Batch ②

Batch ③

I/OI/O Compute

Global
Task Pool

…

h

fetched
tasks

fetch

Block①
Local Task Pool (full)

Block②
Local Task Pool (not full)

Block③
Local Task Pool (not full)

Figure 5: Queries are grouped into batches which execute
alternatively in two CUDA streams. ℎ refers to the head
pointer of the global task pool. Thread blocks fetch tasks in
a preemptive way if they have empty slots.
As the warp is the basic scheduling unit in GPUs and executes inde-
pendently, these samplers process small tasks in 𝑃𝐿 concurrently.
Note that for the cases where the number of small tasks is less than
warp samplers, the strategy still works well in modern GPUs be-
cause 1) the idle samplers incur a negligible cost, and 2) multiple
thread blocks run concurrently on an SM to fully utilize hardware
resources. After completing small tasks, the thread block forms a
block sampler to process the remaining tasks one by one.

After the two stages, we store sampling results in the global
memory and update the query status in 𝑃𝐿 . If a query stops, we
will get a new query from the global task pool, which will be in-
troduced in the next subsection. In summary, queries in 𝑃𝐿 are
processed iteratively and move one step at one iteration. A query
will be processed in a specific block once it is fetched into the lo-
cal task pool. This can eliminate the communication and synchro-
nization costs among blocks. Moreover, the two-stage execution
scheme processes tasks with variant workloads efficiently.

5.2 Scheduling
A simple method to handle massive queries is to evenly assign
queries among workers (i.e., thread blocks). The static scheduling
method works well on CPUs [36, 46]. However, we find that it can
incur performance issues on modern GPUs because 1) GPUs have
much higher parallelism than CPUs; and 2) thread block schedul-
ing is transparent to users and certain thread blocks can start much
later than others. To address this issue, we design a simple and ef-
fective dynamic scheduling method that cooperates with the two-
stage computation scheme.

Figure 5 describes the dynamic scheduling strategy. We have
a global task pool 𝑃𝐺 , which keeps all queries in the device. Par-
ticularly, 𝑃𝐺 is an array where an element is the start vertex of
a query. Correspondingly, the result pool is the array storing the
query sequencewith the size as |𝑃𝐺 |×𝐿𝑚𝑎𝑥 where 𝐿𝑚𝑎𝑥 is themax-
imum length of a query. The result sequence of a query is stored
continuously. As discussed in Section 5.1, thread blocks execute in-
dependently. Upon finding that there are empty slots in the local
task pool, they will fetch queries from the global task pool to fill

1795

these empty slots. The thread blocks fetch tasks from the head of
𝑃𝐺 in a preemptive manner.The concurrent accesses are supported
by an atomic integer pointing to the first available queries in the
pool. A thread block gets a query by increasing the integer atomi-
cally.The local task pool size is very small compared with the num-
ber of queries. Therefore, fine-grained scheduling can keep load
balance among thread blocks to fully utilize computing resources.
We do not adopt any work-stealing techniques because a query
takes a short time and the communication and synchronization
cost among thread blocks is expensive.

The number of queries residing on GPU is constrained by the
result pool size. For the cases where the results exceed the result
pool size, we process them in multiple batches. Specifically, we di-
vide queries into multiple batches such that the result sequences
of each batch can be held by the result pool. To overlap the GPU
I/O time with computation time, we adopt the classical ping-pong
buffer technique and process batches alternatively with two CUDA
streams. The number of queries in a batch is determined by Equa-
tion 3 where 𝑀 represents the total GPU memory size and 𝑀𝐺 is
the memory allocated for the graph.𝑀𝑣 is the memory required to
store a single vertex. The overarching strategy aims to fully utilize
available GPU memory for the result pool to minimize batch pro-
cessing. Notice that: 1) the equation includes a division by two as a
ping-pong buffer employs two alternating buffers; and 2) 𝐿𝑚𝑎𝑥 + 1
includes the memory allocated for the start vertex for each query
(i.e., the global task pool 𝑃𝐺). In summary, FlowWalker is capable
of handling scenarios where the result sequence exceeds the avail-
able GPU memory.

|𝑃𝐺 | = ⌊
𝑀 −𝑀𝐺

2 × (𝐿𝑚𝑎𝑥 + 1) ×𝑀𝑣
⌋ (3)

5.3 Analysis and Comparison
In the following, we analyze the cost of FlowWalker and compare
it with C-SAW and Skywalker, two GPU-based systems.

Memory Consumption. The input is a graph 𝐺 and start ver-
tices of queries Q, and the output is the result sequence for each
query. Their memory consumption is compulsory for all compet-
ing frameworks. Thus, we focus on the memory consumption for
auxiliary data structures. The global task pool of FlowWalker is
based on the array storing start vertices of walkers, which has no
extra memory consumption, and the local task pool resides in the
shared memory. Moreover, both warp and block samplers do not
consume any global memory. Therefore, FlowWalker has no auxil-
iary data structures consuming the global memory.

In contrast, both C-SAW and Skywalker need an auxiliary data
structure with 𝑂 (𝑑𝑚𝑎𝑥) to serve one query. This incurs expensive
memory overhead for large graphs. Additionally, Skywalker uses
a task pool with the memory consumption of 𝑂 (𝐿𝑚𝑎𝑥 × |Q|) to
keep load balance among thread blocks. In summary, FlowWalker
is memory-efficient, which brings two advantages: 1) FlowWalker
can support larger graphs; and 2) the number of queries that can
be processed simultaneously by FlowWalker is determined by com-
puting resources, whereas that of C-SAW and Skywalker is limited
by the available memory space.

Time.Wefirst compare the time cost of processing one step of a
query. As analyzed in Section 4, the time complexity of moving one

step of a query using ZPRS is𝑂 (𝑑𝑘 + log𝑘), while that of C-SAW is
𝑂 (𝑑𝑘 × log𝑘+ log𝑑) where 𝑑 is the degree of𝑄.𝑐𝑢𝑟 . Skywalker uses
the alias table sampling method to perform sampling. Although its
time complexity is𝑂 (𝑑𝑘 + log𝑘), the practical performance is slow
due to the complex alias table building process.

Next, we compare their techniques for keeping load balance.
C-SAW can process a query with a warp only and uses a static
scheduling method, which ignores both the load imbalance among
tasks and thread blocks. Skywalker can adopt the parallelism based
on degrees. However, Skywalker schedules queries among thread
blocks with a global queue at each step. Consequently, each step
requires a pop and a push operation, which incurs expensive over-
head. And the queue consumes a large amount of memory space
as discussed above. NextDoor assigns a single thread to a sampling
function. This design ignores the variance of neighbor set sizes.
Moreover, NextDoor operates in a BSP manner [5], advancing all
queries by one step per iteration.This approach, however, may lead
to two issues: 1) overhead from global synchronization, especially
with queries of varying lengths such as PPR; and 2) the necessity
to materialize all query results.

Under the sampler-centric model, FlowWalker handles variant
tasks with different samplers and uses the multi-level task pool
based scheduling strategy to keep load balance efficiently and ef-
fectively. Particularly, thread blocks can fetch a query by an atomic
incremental operation, and a query sticks to the block until it is
completed, which requires no communication and synchroniza-
tion overhead among blocks. In our experiments, we show that
FlowWalker runs much faster than its counterparts. Additionally,
FlowWalker stands out as the only solution capable of handling
cases where the result sequence exceeds available GPU memory.

6 EXPERIMENTS
In this section, we conduct extensive experiments to evaluate the
performance of FlowWalker.

6.1 Experimental Setup
We study five frameworks in the experiments.DGL 1[43] is awidely
used GNN framework. LightRW2 [38] (LRW) is a FPGA-based
DGRW framework.ThunderRW3 [36] (TRW), which is the state-
of-the-art CPU-based framework, Skywalker4 [44] (SW), which
is a GPU-based framework, and FlowWalker (FW), which is the
GPU framework proposed in this paper.ThunderRW executes with
the ITS samplingmethod, which achieves the optimal performance
in the online computation mode. We also contemplated using C-
SAW 5. However, it encountersmemory issueswhen handlingmore
than 105 queries. Therefore we exclude it from our experimental
baselines. We do not involve NextDoor because it can only support
the offline computation mode as discussed in Section 2.3.

Implementation and Experiment Environments. FW is im-
plemented with ∼6000 lines of CUDA code. The experiments of
DGL, SW, and FW are conducted on a Linux server equipped with

1https://github.com/junyimei/dgl
2https://github.com/Xtra-Computing/LightRW
3https://github.com/Xtra-Computing/ThunderRW
4https://github.com/wpybtw/Skywalker
5https://github.com/concept-inversion/C-SAW

1796

Table 1: The detailed statistics of graphs.
Dataset Name |𝑉 | |𝐸 | 𝑑𝑚𝑎𝑥 Size(GB)

com-youtube YT 1.1 M 6 M 28K 0.05
cit-patents CP 3.8 M 33 M 793 0.26
Livejournal LJ 4.8 M 86 M 20K 0.66

Orkut OK 3.1 M 234 M 33K 1.76
EU-2015 EU 11 M 522M 399K 3.93

Arabic-2005 AB 23 M 1.1B 576K 8.34
UK-2005 UK 39 M 1.6B 1.7M 11.82
Twitter TW 42 M 2.4 B 3M 18.08

Friendster FS 66 M 3.6 B 5K 27.16
SK-2005 SK 51 M 3.6 B 8.5M 27.16

the 40 GB A100 GPU. It contains 108 streaming multiprocessors
(SMs) each of which has 64 FP32 cores. The shared memory size of
each SM is configured to 100 KB. The PCIe type is PCI-E 4.0 × 16,
and the maximum bandwidth is 31.5GB/s. The server is equipped
with one Intel(R) Xeon(R) Silver 4310 CPU and 256GB host RAM.
We test TRW on a Linux server equipped with one Intel Xeon
Platinum 8336C CPU, which has 16 physical cores with hyper-
threading enabled. The size of the host RAM is 128 GB. LRW is
tested on HACC@NUS6 with an AMD Alveo U250 FPGA. We use
NVCC of version 11.6, g++ of version 9.4.0 and the optimization
flag -O3 for compilation.

Datasets and Workloads. We select a variety of real-world
graphs from different fields such as social networks, citations, and
websites. The detailed statistics are listed in Table 1. YT, CP, LJ,
OK, and FS are downloaded from Stanford SNAP [20], and EU, AB,
UK, TW, and SK are from LAW [2, 3]. We have data sizes ranging
from tens of megabytes to tens of gigabytes (with weight). To keep
consistent with previous work [36, 50], we generate a real number
randomly from an interval [1, 5) as the edge weight and an integer
from the interval [0, 4] as the edge label.

We study DeepWalk, PPR, Node2Vec, and MetaPath in the ex-
periments. For DeepWalk, we set the target depth to 80. For PPR,
we set the stop probability to 0.2. For Node2Vec, we set the target
length to 80, 𝑎 = 2.0 and 𝑏 = 0.5. For MetaPath, we set the schema
to (0, 1, 2, 3, 4). We issue a query from every vertex in the graph
for DeepWalk, Node2Vec, and MetaPath. For PPR, |𝑉 | queries start
from the same vertex. We set the vertex to that with the maximum
degree in𝐺 . In detailed evaluation, we follow the settings of Deep-
Walk and set the number of queries to 106 because SW frequently
encounters performance issues and has no valid experiment results
for comparison. For the comparison purpose, all applications, in-
cluding SGRW are executed in the dynamic manner. As a result,
the results on SGRWmay diverge from those reported in previous
papers [36, 44], which are obtained with static mode.

FW executes Node2Vec with DPRS, while the other three ap-
plications with ZPRS. DGL implements Node2Vec on CPUs, while
the other three applications on GPUs. SW does not support MetaP-
ath because it cannot handle labeled graphs. LRW, the FPGA-based
framework, currently supports Node2Vec andMetaPath only. TRW
and FW implement all these four applications.

6https://xacchead.d2.comp.nus.edu.sg/

Metrics.The execution time refers to the total time required for
computation, excluding the time spent on loading the graph data
into GPUs.The results are averaged through three runs.OOT signi-
fies that the method exceeds the time limit, which is set as 8 hours
for our experiments, while OOM indicates a memory overflow. For
a more comprehensive analysis, we employ NVIDIA Nsight Com-
pute to profile GPU memory consumption.

Parameters. FW requires two hyperparameters: the local task
pool size |𝑃𝐿 |, and the degree threshold𝑑𝑡 . |𝑃𝐿 | dictates the number
of queries that a thread block can hold, and 𝑑𝑡 serves as the thresh-
old for selecting between the warp sampler and block sampler. We
empirically tune their values and set |𝑃𝐿 | and 𝑑𝑡 to 64 and 1024,
respectively, across our experiments. FW achieves a good perfor-
mance on the settings. Due to space limits, we include a detailed
evaluation of hyperparameter impacts in the technical report [24].

6.2 Overall Comparison
Table 2 showcases the overall comparison of execution times across
different frameworks. Notably, FW is the only method capable of
completing all test cases. In contrast, DGL, LRW, TRW, and SW
struggle with larger graphs, encountering either time-out (OOT)
or memory overflows (OOM). Specifically, FW finishes all cases
within merely 2.2 hours. Among scenarios where all five frame-
works succeed, FW achieves remarkable speedups. Comparedwith
DGL on GPU, the maximum speedup is 92.2×, while this number
is 315.8× for DGL on CPU (executing Node2Vec). FW reaches up
to 16.4×, 752.2× and 72.1× speedup compared to LRW, TRW and
SW respectively, underscoring its superior performance.

FW takes considerably longer time to process the UK, TW, and
SK graphs compared to other datasets, while DGL, LRW, TRW, and
SW often fail to complete within the time limit for these graphs.
This increased time is attributed to the high degree of skewness
in these graphs, as indicated in Table 1. High-degree vertices are
visited more frequently, thereby dominating the processing time.
These results underscore the importance of employing different
levels of samplers for vertices with varying degrees. Despite its
large size, the FS graph is processed relatively quickly due to its
sparsity. Although both DeepWalk and Node2Vec have the same
target length, the execution time on Node2Vec is longer than that
on DeepWalk because the cost of calculating the transition proba-
bility of Node2Vec is higher than that of DeepWalk.

FW eliminates the need for auxiliary data structures for each
query’s sampling, thereby reducing the space cost per query from
𝑂 (𝑑max) to 𝑂 (1), where 𝑑max is the maximum degree of a graph.
This efficiency enables FW to support large graphs and a substan-
tial number of concurrent queries. FW also exhibits superior per-
formance on smaller graphs due to the improvement of scheduling
and samplingmethods.We evaluate these techniques in Section 6.3.
In summary, FW surpasses existing CPU, GPU, and FPGA frame-
works in DGRWperformance and is capable of efficiently handling
large graphs.

6.3 Detailed Evaluation
In this subsection, we have a detailed evaluation of the perfor-
mance of FW. Due to space limitations, some evaluations such as

1797

Table 2: The overall comparison on execution time (seconds).
Dataset YT CP LJ OK EU AB UK TW FS SK

DeepWalk

DGL 0.93 0.30 1.25 1.84 68.11 3492.19 OOM OOM OOM OOM
TRW 6.90 3.81 14.28 20.86 739.97 3298.71 OOT OOT 496.52 OOT
SW 7.82 3.20 21.89 28.88 431.61 1410.01 OOT OOT OOM OOT
FW 0.45 0.42 0.95 0.99 17.40 59.86 736.52 2674.25 24.26 1509.83

PPR

DGL 1.03 0.29 2.76 2.91 138.20 7728.80 OOM OOM OOM OOM
TRW 7.50 0.52 20.17 21.66 1900.78 3591.19 OOT OOT 56.67 OOT
SW 4.10 0.85 10.85 11.70 690.55 1763.33 OOT OOT OOM OOT
FW 0.23 0.10 0.74 0.69 32.60 82.29 1041.55 897.61 3.83 2797.56

Node2Vec

DGL 273.71 132.65 428.92 583.50 15988.82 OOT OOT OOM OOM OOM
TRW 66.69 28.65 260.63 553.65 5936.80 23042.37 OOT OOT 27329.18 OOT
SW 40.39 12.07 134.23 130.38 1065.75 2498.27 OOT OOT OOM OOT
LRW 12.68 7.13 18.16 24.70 758.57 2771.56 OOM OOM OOM OOM
FW 0.89 0.44 1.86 2.60 50.64 192.31 2044.09 7514.67 65.51 4688.86

MetaPath

DGL 0.04 0.09 0.13 0.10 1.67 35.17 376.55 OOM OOM OOM
TRW 0.22 0.42 2.43 13.32 121.96 2144.53 OOT OOT 202.27 OOT
LRW 0.11 0.19 0.36 0.61 9.13 40.24 422.24 OOM OOM OOM
FW 0.01 0.02 0.05 0.07 0.65 2.85 37.45 132.62 0.98 74.36

the comprehensive ablation study are provided in the technical re-
port [24].

MemoryConsumption.Table 3 presents a comparison ofmem-
ory consumption between FW and SW across different datasets,
with query sizes |Q| = 106 and |Q| = 107. SW can exceed GPU
memory capacity due to its use of unified virtual memory (UVM).
The “extra” memory usage (E) is calculated by subtracting the data-
set size from the total memory consumption.

Remarkably, the extramemory consumption of FW remains con-
sistent across all graph sizes, whereas SW exhibits a marked in-
crease in memory use for larger graphs. This stability is attribut-
able to the design of FW. FW minimizes per-query memory usage
from𝑂 (𝑑) to𝑂 (1), which is independent of graph size. It requires
no auxiliary data structures in the global memory to support the
execution. In contrast, SW requires a buffer of size 𝑂 (𝑑𝑚𝑎𝑥) for
each query and has a large task queue for load balance.

For |Q| = 106, query sequences occupy approximately 309 MB
of memory, with a 32-bit integer representation for each vertex.
For |Q| = 107, this figure rises to 3090 MB. Beyond storing query
sequences, FW uses no additional memory for auxiliary data struc-
tures.These findings confirm two key points: 1) existingGPU frame-
works struggle with significant memory consumption issues, and
2) FW excels in memory efficiency.

Evaluation of SamplingMethods.Weassess the performance
of ZPRS, ITS, andALS onGPUs by sampling a cumulative 2GB of el-
ements, partitioned into tasks of varying sampling sizes. “Sampling
size” refers to the number of elements involved in a single sampling
operation, and all tasks within a single workload share the same
sampling size. Figure 6a reveals that ITS on warp performs compa-
rably to ZPRS, while ZPRS on block outperforms ITS on block.This
discrepancy arises because ITS necessitates frequent collective op-
erations, which are more efficiently executed on warps than on
blocks. ALS lags behind its counterparts due to the complex alias ta-
ble construction. Recall that ZPRS has a space complexity of𝑂 (1),
while ITS has a space complexity of𝑂 (𝑑). Our results demonstrate

Table 3: Memory usage (GB). T refers to the total memory
consumption, and E refers to the extra memory consump-
tion (subtracting the size of dataset from T).

Data-
set

|Q| = 106 |Q| = 107

FW SW FW SW
T E T E T E T E

YT 0.35 0.31 2.07 2.02 3.10 3.05 18.41 18.36
CP 0.57 0.30 2.08 1.81 3.31 3.05 18.42 18.15
LJ 0.96 0.30 2.62 1.95 3.71 3.05 18.96 18.29
OK 2.06 0.30 3.81 2.04 4.81 3.05 20.15 18.38
EU 4.24 0.31 8.63 4.66 6.99 3.06 24.97 21.00
AB 8.64 0.30 14.32 5.90 11.39 3.05 30.66 22.24
UK 12.12 0.30 26.50 14.5 14.87 3.05 42.83 30.87
TW 18.38 0.30 41.60 23.4 21.13 3.05 57.93 39.70
FS 27.46 0.30 29.01 1.61 30.21 3.05 45.35 17.95
SK 27.47 0.31 90.99 63.6 30.22 3.06 107.3 79.98

that ZPRS outperforms existing samplers without auxiliary data
structures.

Unlike ITS, ALS, and RS, the performance of Rejection Sampling
(RJS) depends on the underlying probability distribution. We ob-
serve that on less biased distributions, RJS can surpass RS at some
sampling sizes due to its lower initialization cost. However, as the
distribution growsmore biased, RJS’s performance significantly de-
teriorates. This variability can impact the stability of performance.
Detailed results are presented in the technical report [24].

Figure 6b illustrates the execution time of ZPRS and DPRS un-
der different sampling sizes. Due to the fact that small tasks do
not fully utilize the hardware capabilities, performance on warps
is limited for large sampling sizes. Processing extended sequences
onwarps does notmaximizememory bandwidth utilization.There-
fore, both ZPRS and DPRS on warps run faster than on blocks
for small sampling sizes but slower for large sizes in Figure 6b.
When the sampling size is larger than 29, DPRS lags behind ZPRS
for both warp and block samplers due to communication costs be-
tween threads.

1798

4

8

16

32

64

128

256

512

2⁸ 2¹⁰ 2¹² 2¹⁴ 2¹⁶ 2¹⁸ 2²⁰

E
xe

cu
tio

n
Ti

m
e

(m
s)

Sampling Size

ZPRS (warp) ZPRS (block)
ITS (warp) ITS (block)
ALS (warp) ALS (block)

(a) Comparison of ZPRS, ITS, and ALS.

0

5

10

15

20

25

30

35

2⁸ 2¹⁰ 2¹² 2¹⁴ 2¹⁶ 2¹⁸ 2²⁰

E
x
e

c
u
ti
o

n
 T

im
e
 (

m
s
)

Sampling Size

ZPRS (warp) ZPRS (block)
DPRS (warp) DPRS (block)

(b) Comparison of ZPRS and DPRS.

1 1 1

6.1

2.1
4.0

15.3

5.0

17.4 16.3

10.1

25.5
26.9

23.4

27.2

0

10

20

30

40

LJ EU TW

S
p
e
e
d
u
p

Dataset

SW FW FW+RNG FW+ZPRS FW+DS

(c) Ablation Study on DeepWalk.

Figure 6: Detailed evaluation, including sampler evaluation and speedup breakdown.

Ablation Study. We conduct an ablation study to analyze the
contributions of each individual technique to the overall speedup.
Initially, we implement a baseline version of FW with DPRS, RNGs
stored in global memory, and a basic static scheduler. This setup is
referred to as FW. Subsequently, we enhance FW by optimizing
RNG, which we denote as FW + RNG. Following this, we replace
DPRS with ZPRS, marked as FW + ZPRS. Finally, we integrate
dynamic scheduling, labeled as FW + DS.

The speedup of SW on DeepWalk with 106 queries against LJ,
EU, and TW is illustrated in Figure 6c. The data indicates that FW
achieves a speedup range of 2.1× to 6.1× over SW without any
optimizations. The optimized shared-memory RNG contributes an
additional 2.5× to 4.4× speedup. The adoption of ZPRS further
results in a speedup of 1.1× to 2.0×. Lastly, the implementation
of dynamic scheduling offers an additional 1.1× to 2.3× speedup.
These findings affirm the efficacy of each technique introduced in
our paper. It is noteworthy that ZPRS, despite being a basic oper-
ator, contributes a significant 1.1× to 2.0× speedup to the overall
system performance. The effect of dynamic scheduling is relevant
to the degree skewness of the graph. This is the reason that the
speedup of FW + DS on TW is smaller than EU and LJ. We will
elaborate on this in the technical report [24], as well as the ablation
study results of all datasets and applications.

6.4 Case Study
GNNs are important for ByteDance operations, spanning video
recommendations, friend suggestions, and fraud detection. In this
case study, we focus on Douyin friend recommendation scenarios.
The utilized framework is a business-specific adaptation of Graph-
Learn [53], running on a CPU-only cluster of 20 machines with
560 cores. The RW phase in the training is to perform DeepWalk
where Graph-Learn executes in the dynamic mode. The test graph
comprises 227 million vertices and 2.71 billion edges.

Figure 7 breaks down the execution time for a single training
epoch. The process is composed of several key components: data
loading, random walk generation, and embedding learning. Com-
pleting one epoch takes nearly 10 hours, subdivided into data load-
ing (0.25 hours), random walk (RW) generation (3.49 hours), and
network training (6.32 hours). RW occupies 35% of the total pro-
cessing time. If more advanced RW algorithms like Node2Vec are

used, RW can consume much more time, as evidenced by Deep-
Walk vs. Node2Vec in Table 2. We do not include Node2Vec in the
case study since Graph-Learn cannot support it.

As shown in Figure 7, FlowWalker reduces the RW time tomerely
13 minutes (3% of the total cycle time), offering significant effi-
ciency gains. On the other hand, ThunderRW requires more than
10 hours on a single machine. Skywalker is omitted from the com-
parison because it encounters a memory failure. These findings
highlight the compelling performance advantages of FlowWalker.

0 1 2 3 4 5 6 7 8 9 10

Graph-
Learn

ThunderRW

FlowWalker

Time (h)

Load
RW
Train

35%

3%

Figure 7: Time breakdown of training one epoch.

7 CONCLUSION
In this paper, we propose FlowWalker, amemory-efficient and high-
performance GPU-based framework for dynamic graph random
walks. We develop DPRS and ZPRS, two parallel reservoir sam-
pling algorithms to perform fast sampling with no extra global
memory and pre-processing cost. We implement a GPU walking
engine to process a massive number of walking queries based on
the sampler-centric paradigm. The effectiveness of FlowWalker is
evaluated through a variety of datasets, and the results show that
FlowWalker achieves up to 752.2× speedup on four representa-
tive random walk applications. At last, the case study reveals that
FlowWalker can reduce the time cost of dynamic random walk
from 35% to 3% of the GNN training pipeline.

ACKNOWLEDGMENTS
We sincerely thank all the anonymous reviewers for their valuable
comments. This work is supported in part by the National Natural
Science Foundation of China (No.62122053), and a ByteDance Re-
search Grant (CT20230525001744). The corresponding authors are
Shixuan Sun and Chao Li.

1799

REFERENCES
[1] Paolo Boldi and Marco Rosa. 2012. Arc-community detection via triangular

random walks. In 2012 Eighth Latin American Web Congress. IEEE, 48–56.
[2] Paolo Boldi, Marco Rosa, Massimo Santini, and Sebastiano Vigna. 2011. Lay-

ered Label Propagation: A MultiResolution Coordinate-Free Ordering for Com-
pressing Social Networks. In Proceedings of the 20th international conference
on World Wide Web, Sadagopan Srinivasan, Krithi Ramamritham, Arun Kumar,
M. P. Ravindra, Elisa Bertino, and Ravi Kumar (Eds.). ACM Press, 587–596.

[3] Paolo Boldi and Sebastiano Vigna. 2004. The WebGraph Framework I: Com-
pression Techniques. In Proc. of the Thirteenth International World Wide Web
Conference (WWW 2004). ACM Press, Manhattan, USA, 595–601.

[4] Min-Te Chao. 1982. A general purpose unequal probability sampling plan.
Biometrika 69, 3 (1982), 653–656.

[5] Thomas H Cormen and Michael T Goodrich. 1996. A bridging model for parallel
computation, communication, and I/O. ACM Computing Surveys (CSUR) 28, 4es
(1996), 208–es.

[6] Xiaoheng Deng, Genghao Li, Mianxiong Dong, and Kaoru Ota. 2017. Finding
overlapping communities based on Markov chain and link clustering. Peer-to-
peer Networking and Applications 10 (2017), 411–420.

[7] Yuxiao Dong, Nitesh V Chawla, and Ananthram Swami. 2017. metapath2vec:
Scalable representation learning for heterogeneous networks. In Proceedings of
the 23rd ACM SIGKDD international conference on knowledge discovery and data
mining. 135–144.

[8] Dániel Fogaras, Balázs Rácz, Károly Csalogány, and Tamás Sarlós. 2005. To-
wards scaling fully personalized pagerank: Algorithms, lower bounds, and ex-
periments. Internet Mathematics 2, 3 (2005), 333–358.

[9] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature learning for
networks. In Proceedings of the 22nd ACM SIGKDD international conference on
Knowledge discovery and data mining. 855–864.

[10] Yu He, Yangqiu Song, Jianxin Li, Cheng Ji, Jian Peng, and Hao Peng. 2019. Het-
eSpaceyWalk: A Heterogeneous Spacey RandomWalk for Heterogeneous Infor-
mation Network Embedding. In Proceedings of the 28th ACM International Con-
ference on Information and Knowledge Management (Beijing, China) (CIKM ’19).
Association for Computing Machinery, New York, NY, USA, 639–648. https:
//doi.org/10.1145/3357384.3358061

[11] W. Daniel Hillis and Guy L. Steele. 1986. Data Parallel Algorithms. Commun.
ACM 29, 12 (dec 1986), 1170–1183. https://doi.org/10.1145/7902.7903

[12] Lorenz Hübschle-Schneider and Peter Sanders. 2022. Parallel weighted random
sampling. ACM Transactions on Mathematical Software (TOMS) 48, 3 (2022), 1–
40.

[13] Abhinav Jangda, Sandeep Polisetty, Arjun Guha, and Marco Serafini. 2021. Ac-
celerating graph sampling for graph machine learning using GPUs. In Proceed-
ings of the Sixteenth European Conference on Computer Systems. 311–326.

[14] Yong-Yeon Jo, Myung-Hwan Jang, Hyungsoo Jung, and Sang-Wook Kim. 2018.
A High-Performance Graph Engine for Efficient Social Network Analysis. In
Companion of the The Web Conference 2018 on The Web Conference 2018, WWW
2018, Lyon , France, April 23-27, 2018, Pierre-Antoine Champin, Fabien Gandon,
Mounia Lalmas, and Panagiotis G. Ipeirotis (Eds.). ACM, 61–62. https://doi.org/
10.1145/3184558.3186929

[15] Peter M Kogge and Harold S Stone. 1973. A parallel algorithm for the efficient
solution of a general class of recurrence equations. IEEE transactions on comput-
ers 100, 8 (1973), 786–793.

[16] Aapo Kyrola. 2013. DrunkardMob: billions of random walks on just a PC. Pro-
ceedings of the 7th ACM conference on Recommender systems (2013).

[17] Aapo Kyrola. 2013. Drunkardmob: billions of random walks on just a pc. In
Proceedings of the 7th ACM conference on Recommender systems. 257–264.

[18] Aapo Kyrola, Guy E. Blelloch, and Carlos Guestrin. 2012. GraphChi: Large-
Scale Graph Computation on Just a PC. In 10th USENIX Symposium on Oper-
ating Systems Design and Implementation, OSDI 2012, Hollywood, CA, USA, Oc-
tober 8-10, 2012. 31–46. https://www.usenix.org/conference/osdi12/technical-
sessions/presentation/kyrola

[19] Ni Lao and WilliamW Cohen. 2010. Relational retrieval using a combination of
path-constrained random walks. Machine learning 81 (2010), 53–67.

[20] Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large Network
Dataset Collection. http://snap.stanford.edu/data.

[21] Xueting Liao, Yubao Wu, and Xiaojun Cao. 2019. Second-Order CoSimRank
for Similarity Measures in Social Networks. In ICC 2019 - 2019 IEEE Interna-
tional Conference on Communications (ICC). 1–6. https://doi.org/10.1109/ICC.
2019.8761899

[22] Xin Lv, Yuxian Gu, Xu Han, Lei Hou, Juanzi Li, and Zhiyuan Liu. 2019. Adapting
Meta Knowledge Graph Information for Multi-Hop Reasoning over Few-Shot
Relations. In Proceedings of the 2019 Conference on Empirical Methods in Natural
Language Processing and the 9th International Joint Conference on Natural Lan-
guage Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019,
Kentaro Inui, Jing Jiang, Vincent Ng, and Xiaojun Wan (Eds.). Association for
Computational Linguistics, 3374–3379. https://doi.org/10.18653/v1/D19-1334

[23] Pedro J. Martín, Luis F. Ayuso, Roberto Torres, and Antonio Gavilanes. 2012.
Algorithmic strategies for optimizing the parallel reduction primitive in CUDA.
In 2012 International Conference on High Performance Computing & Simulation
(HPCS). 511–519. https://doi.org/10.1109/HPCSim.2012.6266966

[24] Junyi Mei, Shixuan Sun, Chao Li, Cheng Xu, Cheng Chen, Yibo Liu, Jing Wang,
Cheng Zhao, Xiaofeng Hou, Minyi Guo, Bingsheng He, and Xiaoliang Cong.
2024. FlowWalker: A Memory-efficient and High-performance GPU-based Dy-
namic Graph Random Walk Framework. arXiv:2404.08364 [cs.DC]

[25] NVIDIA. 2022. CUB Documentation. https://nvlabs.github.io/cub/index.html,
Last accessed on 2023-6-25.

[26] NVIDIA. 2023. CUDA Toolkit Documentation, cuRAND. https://docs.nvidia.
com/cuda/curand/index.html, Last accessed on 2023-6-25.

[27] S. Olver and A. Townsend. 2013. Fast inverse transform sampling in one and
two dimensions. arXiv: Numerical Analysis (2013).

[28] Santosh Pandey, Lingda Li, Adolfy Hoisie, Xiaoye S Li, and Hang Liu. 2020. C-
SAW: A framework for graph sampling and random walk on GPUs. In SC20:
International Conference for High Performance Computing, Networking, Storage
and Analysis. IEEE, 1–15.

[29] Serafeim Papadias, Zoi Kaoudi, Jorge-Arnulfo Quiané-Ruiz, and Volker Markl.
2022. Space-efficient random walks on streaming graphs. Proceedings of the
VLDB Endowment 16, 2 (2022), 356–368.

[30] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. Deepwalk: Online learn-
ing of social representations. In Proceedings of the 20th ACM SIGKDD interna-
tional conference on Knowledge discovery and data mining. 701–710.

[31] Christian Robert and George Casella. 2013. Monte Carlo statistical methods. In
Springer Science & Business Media.

[32] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and
Gabriele Monfardini. 2009. The Graph Neural Network Model. IEEE Transac-
tions on Neural Networks 20, 1 (2009), 61–80. https://doi.org/10.1109/TNN.2008.
2005605

[33] Shubhabrata Sengupta, Aaron Lefohn, and John D Owens. 2006. A work-
efficient step-efficient prefix sum algorithm. (2006).

[34] Yingxia Shao, Shiyue Huang, Xupeng Miao, Bin Cui, and Lei Chen. 2020.
Memory-aware framework for efficient second-order random walk on large
graphs. In Proceedings of the 2020 ACM SIGMOD international conference on man-
agement of data. 1797–1812.

[35] Baoxu Shi and Tim Weninger. 2016. Discriminative predicate path mining for
fact checking in knowledge graphs. Knowledge-based systems 104 (2016), 123–
133.

[36] Shixuan Sun, Yuhang Chen, Shengliang Lu, Bingsheng He, and Yuchen Li. 2021.
ThunderRW: An In-Memory Graph Random Walk Engine. Proc. VLDB Endow.
14, 11 (2021), 1992–2005. http://www.vldb.org/pvldb/vol14/p1992-sun.pdf

[37] Yizhou Sun and Jiawei Han. 2012. Mining heterogeneous information networks:
a structural analysis approach. SIGKDD Explor. 14, 2 (2012), 20–28. https://doi.
org/10.1145/2481244.2481248

[38] Hongshi Tan, Xinyu Chen, Yao Chen, Bingsheng He, and Weng-Fai Wong. 2023.
LightRW: FPGAAccelerated Graph Dynamic RandomWalks. Proc. ACMManag.
Data 1, 1, Article 90 (may 2023), 27 pages. https://doi.org/10.1145/3588944

[39] Alok Tripathy, Katherine Yelick, and Aydin Buluc. 2023. Distributed
Matrix-Based Sampling for Graph Neural Network Training. arXiv preprint
arXiv:2311.02909 (2023).

[40] Jeffrey S Vitter. 1985. Random sampling with a reservoir. ACM Transactions on
Mathematical Software (TOMS) 11, 1 (1985), 37–57.

[41] Alastair J. Walker. 1977. An Efficient Method for Generating Discrete Random
Variables with General Distributions. ACM Trans. Math. Softw. 3, 3 (1977), 253–
256. https://doi.org/10.1145/355744.355749

[42] Jizhe Wang, Pipei Huang, Huan Zhao, Zhibo Zhang, B. Zhao, and D. Lee. 2018.
Billion-scale Commodity Embedding for E-commerce Recommendation in Al-
ibaba. Proceedings of the 24th ACM SIGKDD International Conference on Knowl-
edge Discovery & Data Mining (2018).

[43] Minjie Wang, Lingfan Yu, Da Zheng, Quan Gan, Yu Gai, Zihao Ye, Mufei Li,
Jinjing Zhou, Qi Huang, Chao Ma, et al. 2019. Deep graph library: Towards
efficient and scalable deep learning on graphs. arXiv preprint arXiv:1909.01315
(2019).

[44] PengyuWang, Chao Li, JingWang, TaoleiWang, Lu Zhang, Jingwen Leng,Quan
Chen, and Minyi Guo. 2021. Skywalker: Efficient Alias-Method-Based Graph
Sampling and Random Walk on GPUs. In 30th International Conference on Par-
allel Architectures and Compilation Techniques, PACT 2021, Atlanta, GA, USA,
September 26-29, 2021. IEEE, 304–317. https://doi.org/10.1109/PACT52795.2021.
00029

[45] PengyuWang, Cheng Xu, Chao Li, JingWang, TaoleiWang, Lu Zhang, Xiaofeng
Hou, and Minyi Guo. 2023. Optimizing GPU-based Graph Sampling and Ran-
dom Walk for Efficiency and Scalability. IEEE Trans. Comput. (2023).

[46] Rui Wang, Yongkun Li, Hong Xie, Yinlong Xu, and John CS Lui. 2020.
{GraphWalker}: An {I/O-Efficient} and {Resource-Friendly} Graph Analytic
System for Fast and Scalable Random Walks. In 2020 USENIX Annual Technical
Conference (USENIX ATC 20). 559–571.

1800

https://doi.org/10.1145/3357384.3358061
https://doi.org/10.1145/3357384.3358061
https://doi.org/10.1145/7902.7903
https://doi.org/10.1145/3184558.3186929
https://doi.org/10.1145/3184558.3186929
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/kyrola
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/kyrola
http://snap.stanford.edu/data
https://doi.org/10.1109/ICC.2019.8761899
https://doi.org/10.1109/ICC.2019.8761899
https://doi.org/10.18653/v1/D19-1334
https://doi.org/10.1109/HPCSim.2012.6266966
https://arxiv.org/abs/2404.08364
https://nvlabs.github.io/cub/index.html
https://docs.nvidia.com/cuda/curand/index.html
https://docs.nvidia.com/cuda/curand/index.html
https://doi.org/10.1109/TNN.2008.2005605
https://doi.org/10.1109/TNN.2008.2005605
http://www.vldb.org/pvldb/vol14/p1992-sun.pdf
https://doi.org/10.1145/2481244.2481248
https://doi.org/10.1145/2481244.2481248
https://doi.org/10.1145/3588944
https://doi.org/10.1145/355744.355749
https://doi.org/10.1109/PACT52795.2021.00029
https://doi.org/10.1109/PACT52795.2021.00029

[47] Shuke Wang, Mingxing Zhang, Ke Yang, Kang Chen, Shaonan Ma, Jinlei Jiang,
and Yongwei Wu. 2023. NosWalker: A Decoupled Architecture for Out-of-Core
Random Walk Processing. In Proceedings of the 28th ACM International Confer-
ence on Architectural Support for Programming Languages and Operating Systems,
Volume 3. 466–482.

[48] Yubao Wu, Yuchen Bian, and Xiang Zhang. 2016. Remember where you came
from: on the second-order random walk based proximity measures. Proceedings
of the VLDB Endowment 10, 1 (2016), 13–24.

[49] Ke Yang, Xiaosong Ma, Saravanan Thirumuruganathan, Kang Chen, and Yong-
wei Wu. 2021. Random walks on huge graphs at cache efficiency. In Proceedings
of the ACM SIGOPS 28th Symposium on Operating Systems Principles. 311–326.

[50] Ke Yang, Mingxing Zhang, Kang Chen, Xiaosong Ma, Yang Bai, and Yong Jiang.
2019. KnightKing: a fast distributed graph randomwalk engine. In Proceedings of
the 27th ACM Symposium on Operating Systems Principles, SOSP 2019, Huntsville,

ON, Canada, October 27-30, 2019, Tim Brecht and CareyWilliamson (Eds.). ACM,
524–537. https://doi.org/10.1145/3341301.3359634

[51] Hongbo Yin, Yingxia Shao, Xupeng Miao, Yawen Li, and Bin Cui. 2022. Scal-
able Graph Sampling on GPUs with Compressed Graph. In Proceedings of the
31st ACM International Conference on Information&KnowledgeManagement (At-
lanta, GA, USA) (CIKM ’22). Association for Computing Machinery, New York,
NY, USA, 2383–2392. https://doi.org/10.1145/3511808.3557443

[52] Dalong Zhang, Xin Huang, Ziqi Liu, Jun Zhou, Zhiyang Hu, Xianzheng Song,
Zhibang Ge, Lin Wang, Zhiqiang Zhang, and Yuan Qi. 2020. AGL: A Scalable
System for Industrial-Purpose Graph Machine Learning. Proc. VLDB Endow. 13,
12 (aug 2020), 3125–3137. https://doi.org/10.14778/3415478.3415539

[53] Rong Zhu, Kun Zhao, Hongxia Yang, Wei Lin, Chang Zhou, Baole Ai, Yong Li,
and Jingren Zhou. 2019. AliGraph: a comprehensive graph neural network plat-
form. Proceedings of the VLDB Endowment 12, 12 (2019), 2094–2105.

1801

https://doi.org/10.1145/3341301.3359634
https://doi.org/10.1145/3511808.3557443
https://doi.org/10.14778/3415478.3415539

	Abstract
	1 Introduction
	2 Background
	2.1 Graph Random Walk
	2.2 Sampling Methods
	2.3 GPU-based Random Walk Frameworks
	2.4 Other Related Works

	3 An Overview of FlowWalker
	4 Sampling Method
	4.1 Direct Parallel Reservoir Sampling
	4.2 Zig-Zag Parallel Reservoir Sampling
	4.3 Implementation

	5 FlowWalker Engine
	5.1 Computation
	5.2 Scheduling
	5.3 Analysis and Comparison

	6 Experiments
	6.1 Experimental Setup
	6.2 Overall Comparison
	6.3 Detailed Evaluation
	6.4 Case Study

	7 Conclusion
	Acknowledgments
	References

