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ABSTRACT

Community search aims to retrieve dense subgraphs that contain
the query vertices. While many effective community models and al-
gorithms have been proposed in the literature, none of them address
the unique challenges posed by streaming graphs, where edges are
continuously generated over time. In this paper, we investigate the
problem of truss-based community search over streaming directed
graphs. To address this problem, we first present a peeling-based
algorithm that iteratively removes edges that do not meet the sup-
port constraints. To improve the efficiency of the peeling-based
algorithm, we propose three optimizations that leverage the time
information of the streaming graph and the structural information
of trusses. As the peeling-based algorithm may suffer from ineffi-
ciency when the input peeling graph is large, we further propose
a novel order-based algorithm that preserves the community by
maintaining the deletion order of edges in the peeling algorithm.
Extensive experimental results on real-world datasets show that
our proposed algorithms outperform the baseline by up to two
orders of magnitude in terms of throughput.
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1 INTRODUCTION

In real-world applications, numerous relationships can be rep-
resented as directed graphs, such as online social networks, e-
commerce networks, and financial networks. A common task in
such graphs is to explore communities within them [2, 42]. Re-
cently, researchers have been investigating the problem of com-
munity search over directed graphs [21, 43]. The objective is to
identify a dense subgraph that contains a specified set of query
vertices. To achieve this, several dense subgraph models have been
proposed, such as D-core [10, 20, 21] and D-truss [43, 50]. In this
paper, we focus on the D-truss model, as it excels in discovering
communities with distinctive structures. Specifically, the D-truss
model, also denoted as (k, kf)—truss, considers the cycle triangle
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Figure 1: Examples of directed graph and D-truss

and flow triangle (as shown in Figure 1(a)) and posits that each
edge is within k cycle triangles and k¢ flow triangles, respectively.
Figure 1(b) shows two D-trusses with different structures. In the
(1,0)-truss, the vertices are strongly connected and all have equal
status within the community. On the other hand, the (0, 1)-truss
exhibits weak connections among its vertices, with some vertices
acting as authorities and leaders (e.g., v7) while others functioning
as hubs and followers (e.g., vg).

The D-truss model has numerous real-world applications [3, 32,
33, 43, 50]. For example, in social networks like Twitter and Face-
book, D-truss community search can be used to identify friendship
communities with key opinion leaders. The D-truss model can also
be applied to fraud detection in financial networks, where vertices
represent financial entities (e.g., banks, firms) and directed edges
represent fund transfers between entities. By leveraging the D-
truss model, we can detect fraud rings composed of kingpins and
minions.

So far, the community search over directed graphs has focused
primarily on static graphs. However, many applications involve
continuously generated streaming graphs with an unbounded se-
quence of edges arriving at a high speed. For example, social media
platforms can represent users as vertices and their interactions
(such as retweets, comments, and votes) as edges, forming an un-
bounded sequence of edges over time. To address the dynamic
nature of such data, this paper studies the problem of community
search over streaming directed graphs, which has a wide range
of applications in social networks, e-commerce networks, and fi-
nancial networks. Community search in streaming social networks
can track users’ up-to-date communities, allowing more effective
friendship recommendations. Community search in streaming fi-
nancial networks can help identify the communities of suspicious
accounts by analyzing recent fund transfer transactions, enabling
the timely detection of potential money laundering and fraud ac-
tivities. Community search in streaming e-commerce networks can
help find the latest customer groups with the same interests for
real-time advertisement.

However, due to the unbounded and high-velocity nature of
graph streams, searching for communities over streaming directed
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Figure 2: A streaming graph

graphs poses additional challenges. First, the sheer size of the stream
makes it infeasible to retrieve a community from the entire stream.
Therefore, an appropriate model for community search over stream-
ing directed graphs should be employed. Second, as the edges arrive
at a high rate, high-throughput algorithms are essential to handle
incoming edges in a timely manner. Previous work has consid-
ered the problem of truss-based community search over dynamic
graphs [50]. Even though both dynamic and streaming graphs con-
sider the graph’s updates over time, dynamic graphs only consider
the insertion and deletion of conventional edges [44, 49], while
streaming graphs consist of an unbounded sequence of edges ar-
riving at a high speed. Consequently, previous index-query-based
algorithms cannot satisfy the high-throughput requirement in the
streaming setting, and specialized algorithms for community search
over streaming graphs are thus needed.

To address the first issue, we resort to the sliding window model,
which is widely used and forms the basis of many representative
streaming graph analytics algorithms [22, 34, 46, 52]. Specifically,
we use a sliding window approach to model recent edges and limit
our consideration to communities within those edges to avoid high
storage overhead, which provides more valuable and insightful in-
formation compared to out-of-date edges [13, 22]. For example, in
Figure 2, let k. = k¢ = 1, and consider a query vertex set Q = {v2}.
We continuously monitor communities in a streaming graph using
a sliding window of 16-edge duration. Figures 2(b) and 2(c) show
the snapshot graphs at time points ¢t = 16 and t = 17, respectively.
These two snapshot graphs return two different communities of v,
highlighted by the shaded areas. To retrieve communities contin-
uously from t = 16 to t = 17, a naive approach would perform
D-truss community searches over two snapshot graphs at t = 16
and t = 17 from scratch, respectively. This approach is inefficient
and computationally expensive. To overcome this limitation, we
develop two efficient algorithms that can handle high-throughput
edge updates: the peeling-based algorithm and the order-based
algorithm.

Specifically, the peeling-based algorithm iteratively removes the
edges without enough support to retrieve the communities. This
process is facilitated by three optimizations that significantly re-
duce the search space, namely OPT-1-upper bounds based pruning,
OPT-2-BFS-based update, and OPT-3-lifetime support prediction. The
first optimization devises upper bounds ¢, and f;, of cycle and flow
trussnesses for every edge. Based on ¢, and fr,, we can directly
prune all disqualified edges whose cycle and flow upper bounds
are less than the input parameters k. and k. The second optimiza-
tion is to shrink the peeling graph to subgraphs, where edges are
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triangle connected to the new coming edges, and their cycle and
flow supports are greater than k¢ and k¢, respectively. The third
optimization utilizes the edge’s arrival time and the window size to
predict its lifetime supports, which track the supports of the edge in
a series of future windows over incoming streams. Then, we use
the lifetime supports to prune unqualified edges directly, thereby
improving efficiency.

Furthermore, we propose an order-based algorithm that employs
an auxiliary structure called D-truss peeling order. Specifically, the D-
truss peeling order records the sequence of edge removals during
the D-truss peeling process, and is divided into different layers.
Based on the D-truss peeling order, we can easily obtain the D-
truss without peeling the graph from scratch. When the query
window slides, we only need to maintain the D-truss peeling order
to update the D-truss community.

We summarize the main contributions of this paper as follows:

e We study a novel problem of D-truss community search

over streaming graphs, which continuously identifies query-
dependent D-truss communities within a sliding window.

e We propose a peeling-based algorithm to address the D-

truss community search over streaming graphs, which in-
corporates three optimizations to reduce the graph for peel-
ing.

e We introduce the D-truss peeling order to maintain the peel-
ing order of edges, based on which an efficient order-based
algorithm is designed to handle the D-truss community
search over streaming graphs
Both theoretical analysis and empirical studies demonstrate
the effectiveness and efficiency of our proposed model and
algorithms. Our proposed solutions outperform the baseline
by several orders of magnitude.

The rest of this paper is organized as follows. Section 2 reviews
related works. Section 3 presents the formal definition of the studied
problem. Section 4 and 5 propose the peeling-based algorithm and
the order-based algorithm, respectively. Experimental results are
reported in Section 6. Finally, Section 7 concludes the paper.

2 RELATED WORK

In this section, we review the related work from two aspects, i.e.,
community detection over streaming graphs and community search.

Community Detection over Streaming Graphs. Community
detection over streaming graphs has been a subject of significant
research interest over the years, as it facilitates the understanding of
community structures in graph streams. Wang et al. [51] introduced



a novel local pattern structure called local weighted-edge-based
pattern summary and developed efficient algorithms to tackle the
problem of dynamic community detection in locally heterogeneous
weighted graph streams. Ding et al. [15] devised a pruning-based
graph stream community detection algorithm, which identifies
unimportant nodes based on their degree of centrality in graph
streams. Hollocou et al. [25] investigated an edge streaming setting
and proposed a method to construct communities by detecting local
changes at each edge arrival. Liakos et al. [41] employed seed-set
expansion approaches to identify communities over a graph stream,
which is designed to use space sublinear to the number of edges
and does not impose any restrictions on the order of the edges in
the stream. Note that community detection over streaming graphs
aims to identify all communities, whereas the objective of our work
is to return the community of query vertices over streaming graphs.

Community Search. The concept of community search was first
introduced in [48]. Subsequently, numerous efforts have been de-
voted to exploring community search based on various models [18,
30], including k-core, k-truss, k-clique, k-edge connected compo-
nent (k-ECC), and so on. To be specific, the k-core model requires ev-
ery vertex in a community to have at least k neighbors [4, 5, 12, 48].
The k-truss model requires every edge in a community to be con-
tained within at least k — 2 triangles [1, 28, 31]. The clique model
ensures that any two vertices in a community are connected to
each other [11, 54]. On the other hand, the k-ECC-based commu-
nity search defines a community as a steiner maximum-connected
subgraph [7, 26, 27]. Besides simple graphs, community search
has also been widely studied for complex graphs, such as directed
graphs [10, 20, 43], temporal graphs [40], weighted graphs [9, 23,37—
39], attributed graphs [16, 29, 45], and spatial graphs [8, 17, 19].
More recently, an indexing method has been proposed for maximal
D-truss searches over dynamic directed graphs [50]. However, [50]
requires maintaining the skyline trussness for fully dynamic D-truss
queries, which is not suitable for the streaming scenario. Despite
these extensive studies, no previous work has explored the problem
of community search in a streaming scenario, which inspires us to
explore community search over streaming directed graphs.

3 PROBLEM FORMULATION

We consider a directed, unweighted simple graph, denoted as G =
(Vi, Eg). For brevity, we refer to a directed graph as a digraph.
Each directed edge e = (u,v) € Eg represents a connection from
vertex u to vertex v. If the edge (u,v) exists, u is an in-neighbor of
v and v is an out-neighbor of u. For a vertex v, we denote all of its
in-neighbors and out-neighbors in G by Ng(v) ={u: (u,0) € Eg}
and Nj; (v) = {u : (v,u) € Eg}, respectively. The neighbors of
vertex v is defined as Ng (v) = Ng(v) U Ng; (v). Based on the above
notions, we introduce the streaming digraph model used in this
paper as follows.

DEFINITION 3.1. Streaming Digraph. A streaming digraph is a
continually growing sequence of items denoted as S = (e, ez, €3, ...),
where each item e; = ((u,v), t;) signifies that a directed edge from
vertex u to vertex v arrives at time point t;, where t; < t; fori < j.

Due to the ever-increasing volume of the streaming graph, we
focus on the most recent edges using the time-based sliding window
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model [47].

DEFINITION 3.2. Time-based Window. A time-based window
W with a length of t contains edges with timestamps within the
interval (t — 7,t], where t is the current clock time of the system. The
time-based window is denoted by W*.

DEFINITION 3.3. Time-based Sliding Window. A time-based
sliding window W with a slide interval of § is a time-based window
that slides every f time units. The slide interval f is also referred to
as the stride [35, 46, 53].

DEFINITION 3.4. Snapshot Digraph. A snapshot digraph G at
time point t is a digraph induced by all the edges in the time-based
window W,

In this paper, we focus on an append-only steaming digraph,
where edge expiration occurs only when the time-based window
slides [46]. Figure 2(a) illustrates an example of a streaming digraph,
where 7 = 16 and § = 1. Figures 2(b) and 2(c) show the snapshot
digraph at time point 16 ant time point 17, respectively. When
the context is clear, we refer to the time-based window simply as
"window" and omit ¢ for G.

Next, we introduce the D-truss model for community search.

DEFINITION 3.5. Cycle Support, Flow Support [43]. Given a
digraph G and an edge e, the cycle support of e in G, denoted by
csupg (e), represents the number of vertices that can form cycle tri-
angles with e in G. The flow support of e in G, denoted by fsups(e),
denotes the number of vertices that can form flow triangles with e
inG.

We call the vertices that form cycle triangles with e the cycle
neighbors of e, and the vertices that form flow triangles as the
flow neighbors. We also denote cycle triangle as (Af,:1 0y05) and flow
trianle as (Afj1 v,05)- Given the definitions of cycle support and flow

support, we now introduce the definition of D-truss.

DEFINITION 3.6. D-truss [43]. Given a digraph G and two in-
tegers k¢ and kg, a subgraph H € G is a D-truss, also denoted as
(ke, kg)-truss, if Ve € Epy, csupg(e) = ke and fsupg(e) = k.

A D-truss H is a maximal D-truss if there does not exist any
other D-truss H” C G such that H' > H.

PrROBLEM 1. Given a streaming graph G, a sliding window with
length t, a stride B, two integers ke and k¢, and a set of query vertices
Q, the D-truss community search over the streaming digraph is to
continuously return the maximal D-truss that contains Q from the
snapshot digraph G* at time point t, wheret = i - B and i € N.

ExAMPLE 3.1. Consider the streaming digraph in Figure 2(a). Let
ke = kf =1,Q = vy, 7 = 16, and f = 1. At time point 16, the
snapshot digraph is Figure 2(b). The D-truss community is Hy. At
time point 17, the window slides, and the corresponding snapshot
digraph is Figure 2(c). Then, the D-truss community is updated to Hy.

4 PEELING-BASED ALGORITHM

In this section, we propose a peeling-based algorithm to handle
D-truss community search over streaming digraphs.



Algorithm 1: D-truss Peeling Algorithm

Input: a digraph G = (V5, Eg), two non-negative integers
ke and k¢, query vertices Q
Output: (k¢, kf)-truss containing Q

1 Let L, be an empty queue;

2 fore; € Eg do

3 compute csupg (e;) and fsupg(e;);

4 if csupg(e;) < ke or fsupg(ei) < ky then
5 | Le < Le U{ei};

¢ while L, # 0 do

7 Pop out an edge e; = (u,v) from Lg;

Delete e; from G;

N(u) < NE(u) UN; (u); N(0) = Nt (v) UN (v);

for each vertex w € N(u) N N(v) do

for ¢’ € {(u,w), (v, w), {(w,u), (w,0)} N Eg do
Update csupg(e’) and fsupg (e’) accordingly;
if csupg(e’) < ke or fsupg(e’) < ky then
L Le — Le U{e'};

8

9
10
11
12
13
14

if O C Vg then
|_ Return G;

17 Return 0;

15
16

4.1 Basic Peeling-based Algorithm

Given a digraph, a common approach (known as the peeling al-
gorithm) to retrieve the D-truss community is through iterative
deletion of edges whose cycle and flow supports are smaller than
ke and k¢, respectively. The pseudocode of the peeling algorithm is
provided in Algorithm 1. Specifically, it first computes the cycle and
flow supports for each edge and identifies the edges whose cycle
and flow supports are smaller than k. and k¢, respectively (lines
2-5). These edges are considered unqualified and are subsequently
deleted from the graph (lines 7-8). The supports of their neigh-
boring edges are updated correspondingly, and the neighboring
edges with cycle and flow supports smaller than k¢ and k¢ will be
removed in the subsequent round of edge deletions (lines 9-14). The
process of deletions continues until all edges in the graph satisfy
the support constraints. Finally, the remaining graph is returned
as the D-truss community. Based on Algorithm 1, a basic method,
called the peeling-based algorithm, for D-truss community search
over streaming digraphs is as follows: whenever the window slides,
we employ Algorithm 1 to peel the updated snapshot digraph and
retrieve the D-truss community.

THEOREM 4.1. (Time and Space Complexities) Let G* be the
dirgraph in the window W*. The time and space complexities of the
peeling-based algorithm for each window W are O(m}f’) and O(my),
respectively, where m; denotes the number of edges in G*.

Proor. The support for each edge can be computed in O(m}'s)
by utilizing the triangle listing algorithm in [36]. The edge dele-
tion and support maintenance take O(m}'S) time. So the total time

complexity is O(m}'s). The space complexity is O(my). O

The peeling-based algorithm is primarily designed for static
graphs and may not be well-suited to high-speed streaming graphs
where real-time community updates are required. Therefore, in the
following subsections, we propose three optimizations to improve
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Figure 3: An illustrative example of OPT-1

the efficiency of the peeling-based algorithm.

4.2 OPT-1: Upper-bounds-based Pruning

In the first optimization, referred to as upper-bounds-based pruning,
we propose novel notations ¢, () and f;,(e) for each edge e, based
on which we shrink the digraph for the peeling process. To begin,
we provide the formal definitions of ¢, (e) and f, (e).

DEFINITION 4.1. Given a directed edge e = (u,v) in digraph G,
cm(e) is the maximum integer k[* such that there is a (k[", 0)-truss
C G containing e. Similarly, fin(e) is the maximum integer k' such

f

that there is a (0, k}")-truss C G containing e.

Note that ¢, (€)/fm (e) of an edge e considers only the cycle/flow
triangles that contain e. If e is in a (k¢, kp)-truss, it holds that
ke < cm(e) and kr < fin(e). Next, we introduce how to employ
cm(e)/ fin(e) to shrink the digraph for peeling.

THEOREM 4.2. Given two integers k¢ and kg, and an edge e, if
ke > cm(e) orks > fin(e), e cannot be in a (ke, kg)-truss.

Proor. We prove this theorem by contradiction. Assume that
the edge e is contained in a (kc, k7)-truss, where ke > ¢ (e) or
k¢ > fm(e). However, according to the definitions of ¢/, (e) and
fm(e), they are the maximal integers such that there is a (¢, (e), 0)-
truss or (0, fm (e))-truss containing e, which leads to a contradiction.

[m}

Based on Theorem 4.2, if we prune the edges whose ¢, and
fm are less than the parameters k¢ and ky respectively, we can
reduce the digraph significantly while not affecting the correctness
of query results. However, computing exact ¢,;; and f, for an edge
is time-consuming. To tackle this issue, we resort to the H-index
method to estimate c¢,,(e) and fr,(e) in an efficient way. To be
specific, the H-index of an integer set S is the maximum integer h
such that there are at least h integer elements in S whose values are
no less than h [24]. For example, if S = {2,3, 4,4, 5, 6}, the H-index
of S is 4 since there are four integers in S whose values are no
less than 4. Based on H-index, we introduce the cycle-h-index and
flow-h-index for an edge.

DEFINITION 4.2. Cycle-H-Index, Flow-H-Index. The cycle-h-
index of an edge e in a digraph G is the H-index of an integer set S,
where S = {min(csupg(e”), csupg(e’’)): Ve', e’ that can form cycle
triangles with e}. The flow-h-index of an edge e in a digraph G is the
H-index of an integer set S’, where S’ = {min(fsupg (¢’), fsups (e’’)):
Ve', e’ that can form flow triangles with e}.

It is worth noting that given a vertex w and an edge e = (u,v),
w, 4, and v may form multiple flow triangles. We only choose
the smallest min(fsupg(e’), fsupg(e’’)) among all flow triangles



formed by w, u, and v. The pair of cycle-h-index and ¢, (e) and the
pair of flow-h-index and f;;(e) have the following relationships.

THEOREM 4.3. Given an edge e, the cycle-h-index and flow-h-index
of e are no smaller than cp, (e) and fr, (e), respectively.

Proor. We prove this theorem by contradiction. Assume that
the cycle-h-index of the edge e, denoted as c, is less than cp,(e).
However, according to the definition of ¢, (e), we can identify
at least ¢, (e) vertices that are capable of forming cycle triangles
with e. Moreover, each edge within these triangles also possesses a
cycle support that is not less than ¢, (e). With these ¢y, (e) vertices,
we can deduce that the cycle-h-index of e is at least ¢, (e), which
leads to a contradiction. The case for the flow-h-index can be proven
in a similar manner. ]

THEOREM 4.4. Given two integers k¢ and kg, and an edge e, if
the cycle-h-index of e is smaller than k., or the flow-h-index of e is
smaller than kf, e cannot be in a (ke, kf) -truss.

ProorF. Building upon Theorem 4.3, we can derive that the cycle-
h-index and flow-h-index of an edge e serve as an upper bound
for ¢, (e) and fi,(e), respectively. Hence, Theorem 4.4 holds by
following from Theorem 4.2. O

Theorem 4.4 indicates that if the cycle-h-index of e is smaller
than k¢, or the flow-h-index of e is smaller than kf, e cannot be in
the final results and can be safely pruned. Based on Theorem 4.4,
the basic idea of our first optimization is as follows. When the
window slides to get a new snapshot digraph, we first compute the
cycle-h-index and flow-h-index for each edge. Then, we delete the
edges using Theorem 4.4. Finally, the remaining digraph is taken
as the input digraph for peeling in Algorithm 1.

EXAMPLE 4.1. Suppose we want to retrieve a (2,0)-truss from the
digraph in Figure 3. The number along an edge is the cycle-h-index
of the corresponding edge. As shown in the figure, since the cycle-
h-indexes of all edges are smaller than 2, we can safely prune all
edges.

THEOREM 4.5. (Time and Space Complexities) Let G* be the
digraph in the window W' If we denote the number of edges in G* as
my, the time and space complexities of calculating the cycle-h-index
and flow-h-index for each window W are O(ZueVC, (IN(w)|?)) and
O(my), respectively. ’

Proor. For an edge e = (u,v), the calculation of its cycle-h-
index or flow-h-index takes O(csup(e)) / O(fsup(e)) time and the
collection of the corresponding set takes O(|N(u)| + |N(v)|) time.
Hence, the calculation on the h-index values for all the edges in
G! is bounded by O(ZuEVG: (IN(©)]?)). The space complexity is
bounded by O(my). O

4.3 OPT-2: BFS-based Update

The first optimization employs the cycle-h-index and flow-h-index
to prune unqualified edges. In the second optimization, we focus
on smaller subgraphs to retrieve the D-truss community based on
the following two observations. (1) When edges are deleted from
the digraph, the new D-truss must be contained in the original D-
truss. Thus, we can peel the original D-truss to obtain the updated
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Algorithm 2: Peeling Algorithm with OPT-2

Input: a snapshot graph G = (V, Eg), a batch of deleted
edge &, a batch of inserted edge &;, original
D-truss DT, parameters k. and k¢, query vertices Q

Output: updated (k, ky)-truss containing Q

1 fore; € §; do

2 | G—G\{eh

3 if all edges in &4 are not in DT then
4 | D1« DT;

5 else

6 ‘ Dy « Peeling(DT, ke, ke, 0);

7 fore; € &; do

8 | G GU{el;

9 Let queue P «— 0, S « 0;

10 fore; € &; do

11 if csupg(ei) > ke and fsupg(ei) > k¢ then
12 | P« PU{e};

while P # 0 do
Pop an edge ¢’ from P;
if csupg(e’) 2 ke and fsupg(e’) = ky then
| S—Su{e};
for e; that can form a triangle with ¢’ do
if ej ¢ Pande; ¢ S then
| P—PuU{e};
Dy « Peeling(S, ke, k¢, 0);
DT « D, U Dy;
if Q ¢ DT then
| Return DT;
Return 0;

<
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D-truss. (2) When new edges are inserted into the digraph, the
new D-truss (if exists) must be contained within a subgraph S
where edges are triangle-connected to the inserted edges. Thus,
we only need to peel S instead of the entire digraph. Based on the
above observations, the basic idea of the second optimization is as
follows. When the window slides, we first delete the expired edges
and maintain D-truss D;. Then, we insert new edges and form
a subgraph S where edges are triangle-connected to the inserted
edges, and their cycle and flow supports are greater than k. and
kg, respectively. Afterwards, we peel S to get D-truss D;. Finally,
D; U D; is the final D-truss community. Algorithm 2 describes the
peeling algorithm with the second optimization.

For edge deletions, there are two cases. If the deleted edge is
within the original D-truss community, we remove the edge from
the D-truss and use Algorithm 1 to peel the remaining subgraph
to obtain an updated D-truss (lines 5-6). Otherwise, no updates are
made to the original D-truss (lines 3-4).

For edge insertions, we first update the snapshot graph with
newly inserted edges (lines 7-8). Then, we identify the new edges
that have sufficient supports and treat them as seeds (lines 10-12).
Next, we perform a BFS search to get the graph S induced by the
edges that (1) have supports of csup;(e) > ke and fsupg(e) = kr,
and (2) are triangle-connected to the new edges, i.e., reachable
through a set of triangles starting from the newly inserted edges
(lines 13-19). Finally, the algorithm continues to invoke Algorithm 1
to peel the subgraph S (line 20). The final community answer is
updated as D; U Dy (line 21).

Exampre 4.2. Consider the example in Figure 2. Let ke = kg = 1,
7 =16, and = 1. We assume that the window slides from t = 16 to
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Figure 4: An illustrative example of lifetime support-based algorithm (r = 16 and f = 2)

t = 17. Then, the edge (v1,v2) is deleted from the digraph and the edge
(v9, vs) is inserted into the digraph. First, we handle (v1,v2), which is
within the original (1, 1)-truss Hy shown in Figure 2(b). We directly
peel Hy to get the updated (1, 1)-truss Hz, as shown in Figure 2(c).
Next, we handle (v, vs). Since none of the edges are triangle connected
with (v9, vs), we do not need to peel the digraph. Thus, Hy is the final
D-truss community.

THEOREM 4.6. (Time and Space Complexities) Let G* be the
digraph in the window W*, m; be the number of edges in G, Algo-
rithm 2 takes O(m}'s) time and O(my;) space.

Proor. The time cost for edge deletions is determined by the
peeling process in line 6, which has a time complexity bounded by
O(m}‘s). The collection of the peeling input, i.e., S, requires O(m;)
time, and the peeling process in line 20 takes O(|S|'*) time. Thus,
the overall time complexity for edge insertions is O(|S|'> + m;).
Consequently, the running time of Algorithm 2 is O(m}'s). The
space complexity is O(m;). O

4.4 OPT-3: Lifetime Support Prediction

OPT-1 and OPT-2 mainly reduce the size of the digraph for peeling
to improve efficiency. However, both of them overlook the temporal
information of edges in the streaming digraph, which provides
insight into future changes. Specifically, when a new edge e arrives,
we can record its arrival time. Additionally, by utilizing the sliding
window size, we can easily determine e’s expired time, which allows
us to predict its cycle and flow supports in future windows by
considering only the edges in the current window. Thus, we propose
the third optimization, namely lifetime support prediction.

We start by introducing the concept of lifetime support of an
edge before presenting the details of OPT-3.

DEFINITION 4.3. Lifetime Support. Given a sliding window size
and a stride B, assume that an edge e = (u, v) arrives at the time point
ti. The lifetime supports of e consist of the cycle and flow supports of
e for all time points t; + j - , where j € [0, [%] -1].

By tracking the lifetime supports of each edge, we can predict the
cycle and flow supports for a series of future windows. The input
digraph for the peeling algorithm consists of the edges whose cycle
and flow supports are greater than k. and k¢ in future windows.
Besides, since no updates are needed to handle expired edges, the
efficiency of the peeling-based algorithm can be improved.

Based on the concept of lifetime support, the third optimization
OPT-3 works as follows. We maintain the lifetime supports for each
edge in the window. As the window slides, we update the lifetime
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Algorithm 3: Peeling Algorithm with OPT-3

Input: a snapshot digraph G, current window W7, inserted
edges &, parameters k¢ and k¢, query vertices Q

Output: updated (kc, kr)-truss containing Q
1 Let S « 0;
2 fore;j € E do
3 | initialize e;.lifetime_supports;
1 G—GUE;
5 fore; € & do
6 for (e, e1) forms cycle triangles with e; do
csup(ep) < csup(eo) + 1, csup(er) « csup(er) +1;
update lifetime_supports for ey, e1 and e;;
for (eq, e1) forms flow triangles with e; do
Jsup(eo) — fsup(eo) +1, fsup(er) < fsup(er) +1;
update lifetime_supports for ey, e1 and e;;
for e; € Eg do

je 5 - TR

if e; lifetime_supports| jl.first > k; and
ej.lifetime_supports| j].second > kg then
| S« Su{e};

16 DT  Peeling(S, ke, k. Q);

17 Return DT;

7
8

9
10
11
12
13

14

15

supports based on the inserted new edges. Specifically, for each
new edge and its neighboring edges, we increment their cycle and
flow supports for all future time points where those edges can still
exist. The principle for the support update is that when calculating
the supports for a future time point, we consider only the edges
that are present in the current window and still exist at that future
time point. Based on the lifetime supports, we identify the edges
with supports greater than k. and kg. These identified edges serve
as the input for Algorithm 1.

Based on the above discussion, we outline the peeling-based
algorithm with OPT-3 in Algorithm 3. Given a set of newly inserted
edges &, we first initialize the lifetime supports for each edge e;
(lines 2-3). Then, for all newly inserted edges and the edges that
form triangles with them, we update their lifetime supports (lines 5-
11). Based on edges’ lifetime supports, we find the subgraph S whose
cycle and flow supports are greater than k. and k¢, respectively,
and take S as the input digraph for peeling (lines 12-15).

ExAMPLE 4.3. Figure 4 illustrates the lifetime support-based al-
gorithm. Suppose we want to update the lifetime supports of edge
(v4,v1) and update the community from time point 16 to 18 with
the streaming graph given in Figure 4(a). Figures 4(b) and 4(c) show



the snapshot graph taken at time points 16 and 18, respectively. The
lifetime supports for (vs,v1) are shown under each snapshot graph,
and the tuples in the first row represent (cycle support, flow support)
of (vs,v1). With newly inserted edges (v2,v1) and (v3,v2), the life-
time supports of (v4,v1) are updated. The cycle and flow supports
of (v4,v1) in the snapshot graphs at time points 16 and 18 can be
obtained directly from the corresponding lifetime supports. All the
edges whose cycle and flow supports are greater than k¢ and k¢ form
the subgraph for peeling in Algorithm 1.

THEOREM 4.7. (Time and Space Complexities) Let G' be the
digraph in the window W', § be the maximal cycle support/flow
support of an edge in &, S be the subgraph where each edge satisfies
csupge (€) > ke and fsupg: (e) > ky, the time and space complexities
of Algorithm 3 for each window W' are O(|E| - § - f%] + 8|1 and

O( [%] - my), respectively, where m; is the number of edges in G.

Proor. The update of lifetime supports takes O(|&E] - 6 - f%])

time, and the peeling process takes O(|S|!-) time. So the total time
complexity is O(|&] -5 - f%] +|S|1-5). Since each edge takes O( f%])
space to store their lifetime supports, the total space complexity is
(51 my). 0

5 ORDER-BASED ALGORITHM

The peeling-based algorithm needs to iteratively delete edges to
obtain the community. Although we have proposed three optimiza-
tions to reduce the size of the digraph for the peeling algorithm,
the resulting graph may still be quite large. This can potentially
impact the performance of the peeling algorithm. In this section,
we propose an order-based D-truss community search algorithm.
The rationale behind this approach is that a streaming graph can
be viewed as a sequence of ordered edges based on their time in-
formation. By leveraging the properties of D-truss, we can devise
a rule to re-order the streaming graph. This allows us to directly
identify the D-truss from the order itself, eliminating the need to
peel the digraph from scratch, which can improve efficiency.

5.1 D-truss Peeling Order and Layers

We first introduce the concept of D-truss peeling order.

DEFINITION 5.1. D-truss Peeling Order. The D-truss peeling
order of G, denoted by E< = (ey, €2, .. ., e|E‘), is identical to the order
of edges’ deletions in the D-truss peeling algorithm. That is, for any
two edges e and ¢’ of G, if e precedes e’ in E<, denoted bye < ¢’, ¢ is
deleted before ¢’ in the peeling process.

In essence, the D-truss peeling order E< records the process
of (kc, kf)-truss computation. Note that there may be multiple
orders of edge deletions in the peeling process, and any one of
them can be used as the D-truss peeling order. For convenience,
we use E_ to denote the set of edges appearing after e in E<, i.e.,
E..={e'|exe}.

It is worth mentioning that the D-truss peeling order can be
generated by invoking the peeling algorithm. Our order is differ-
ent from the cycle decomposition order proposed in the previous
work [50]. In [50], the order-based D-index uses the cycle decompo-
sition order (i.e., CD order), which is the sequence of deleting edges
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based on the cycle truss number for a (0, kf,)-truss. The D-index
in [50] consists of multiple CD orders for all possible kg, values.
Each order considers the two types of trussness separately during
maintenance. In contrast, our proposed order is a one-dimensional
index that considers both cycle support and flow support simulta-
neously. Specifically, an edge is removed if it fails to meet either
the cycle support or flow support criterion, and its position in the
order is identified. Nevertheless, it is non-trivial to retrieve the
community structure with the order directly. Inspired by the fact
that edges are usually peeled in batches during the peeling process,
we present two concepts of layers in D-truss peeling order and layer
number.

DEFINITION 5.2. Layers in D-truss peeling order. Given a D-
truss peeling order E< for a digraph G and the community query
parameters ke and kg, the edges in Eg can be uniquely accommo-
dated in different layers {L1, Ly, ..., Ly,}. The j-th layer is the set of
edges satisfying L;j = {e € Eg | {csuij (e) < ke Vv fsuij(e) <
key A {csuij_l (e) = ke A fsuij_l(e) > k¢}t}t, where Hj =
Eg \ U{z_ll Li. The initial layer is L1 = {e € Eg | csupg(e) <
ke Vv fsupg(e) < kr}.

DEFINITION 5.3. Layer number L. Given an edge e, the layer
number of e is defined as L(e) = I, wheree € L;.

The layer number £(e) represents the number of the round in
which e is peeled from the original digraph during the community
finding process. For two edges e; and ej with L(e;) < L(ej), we
have e; < e;. Based on the D-truss peeling order, the concept of
layers provides a more coarse-grained way to record the sequence of
the edge removals in the peeling algorithm while still ensuring the
correctness of the retrieved community. With the layers introduced,
an order E< can be represented as {L1, L2, - -, L,}. The edges in
the same layer can have an arbitrary order, i.e., if e and e’ both
belong to L; for Vi(1 < i < ), then both e < e’ and ¢’ < e hold.

EXAMPLE 5.1. We use Figure 5(a) to illustrate the D-truss peeling
order. Assume that k. = kf = 1. The red dashed line indicates the
edge to be inserted. The layers of G without considering edge e; are
shown at the top of Figure 5(a). Initially, we have ez, e, €7, €9, €12, €13
with cycle/flow support values smaller than parameters ke =k = 1.
These edges are peeled first and placed in L1, which is marked in
the first row of the table in Figure 5(a). The deletion of these edges
subsequently leads to e3, eq, eg violating the support constraints, and
they are placed in Ly. Finally, the remaining subgraph satisfies the
support constraints and is kept in Ls. Therefore, the D-truss peeling
order is E< = {L1, Ly, L3}, and the maximum layer number is u = 3.

5.2 Property Analysis of Layers in Streaming
Graphs

We present the properties of layers in streaming updates of edge

insertions/deletions, which are the basis of designing efficient D-

truss community search algorithms.
PROPERTY 5.1. Given an order E< for digraph G with u layers,

if we denote Hj = Eg \ U{z_ll L; and Hy = Eg, then the following
properties hold:
(1) Foranedgee € Lj, it holds that: {csuij (e) < ke stuij (e)
<kg}na{ csupyy, (e) = ke /\fsupHﬁ1 (e) > kr}.
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Figure 5: An illustrative example of the order-based algorithm (the edges being processed are highlighted in blue)

(2) Ly is the D-truss community. Specifically, for edges e in L,
we have csupy,, (e) > ke andfsupLy (e) = ky, and we cannot
find another L, witha < p1.

ProoOF. Property 5.1(1) is obvious based on Definition 5.2. We
prove Property 5.1(2) in the following. For a digraph G, if there
is a D-truss in G, then according to the peeling algorithm, all the
edges with enough cycle and flow supports will be returned as the
community. If we denote the returned community as G, then for the
edges in G, we have csupg > ke and fsupg > k. Also, according
to the peeling algorithm, as long as we cannot find edges violating
the support constraints, the whole algorithm will terminate and the
remaining graph will be returned. Hence, only one layer satisfying
Property 5.1(2) will be generated. ]

Property 5.1(1) can help us update the edges during the order
maintenance. Note that Property 5.1(2) is based on the assumption
that there are some edges in graph G satisfying the support con-
straints. Since examining whether L, is the community incurs a
very light cost, we focus on how to maintain the layers and retrieve
L,. The main idea of the order maintenance algorithm is to put
edges into the layer that satisfies Property 5.1(1) until all edges are
updated. The last layer of the updated order is ultimately retrieved
as the D-truss community based on Property 5.1(2). Take the edge
insertion as an example. When a new edge is inserted, we place
the edge into a layer initially and adjust the layers for all of its
neighboring edges. Specifically, at the beginning of processing, we
place the new edge into the layer such that Property 5.1(1) is sat-
isfied. Here, a special case may happen, that is, the new edge has
supports in L, greater than the query parameters. In this case, we
directly place it at the beginning of L,,. Note that we should always
consider all the neighboring edges of the newly inserted edge in
the subsequent processing, regardless of whether this special case
occurs or not. There is a key challenge, i.e., finding neighboring
edges that may have their layers adjusted. We have the following
theorems to assist in identifying the affected edges.

THEOREM 5.1. All the neighboring edges of the newly inserted/deleted
edge should be considered and processed in Algorithm 4.

Proor. The proof of Theorem 5.1 is straightforward. Since all
the neighbors of the newly inserted edge have their supports incre-
mented by 1, they may be accommodated to different layers. Hence,

all of them should be taken into consideration when we maintain
the layers. O

THEOREM 5.2. Given an edge e;, if its layer is recently incremented
from Ly to Ly, (Lo < Ly), then only the edges in Ly+1 to L, may have
their layers incremented.

ProoOF. We consider two types of edges: those in the layers pre-
ceding Lo+1 and those preceded by Ly,. Let Ly be a layer preceding
Lo+1. Then, for edges contained in Ly, their supports in Hy are not
affected by the increment of the layer of e;, as e; is always a part
of Hy. Therefore, the layers of those edges cannot be incremented.
Similarly, let L, be a layer preceded by L. For those edges in Ly,
their supports in H, remain unaffected, and their layers remain the
same. Hence, Theorem 5.2 holds. m]

5.3 Order-based Maintenance Algorithms for
D-truss Community Search

In this subsection, we first propose the order maintenance algo-
rithms for streaming digraphs and then develop the corresponding
techniques for D-truss community search. We handle both edge
insertions and edge deletions in the order maintenance process.
Therefore, we first present the order maintenance algorithm for an
edge insertion.

The procedure for order maintenance with an edge insertion
is presented in Algorithm 4. We introduce the notation H; =

Eg \ U?:_II L;, where Hj is Eg, for the ease of presentation. It is
worth noting that the operations of removing an edge from an order,
inserting an edge into an order, and determining the precedence
of edges can be performed in constant time [6, 14]. The algorithm
works as follows. First, a new layer is created (lines 1-4) or the
newly inserted edge e is placed in layer L; based on Property 5.1(1)
(lines 5-6). Second, all neighboring edges of e are added to a queue
(lines 7-10). Third, for each edge in the queue, it is either placed into
a layer that satisfies Property 5.1(1) (lines 20-21), or a new layer is
generated to accommodate it (lines 15-17). After placing an edge
into a new layer, it is removed from the queue, and all its neigh-
boring edges satisfying Theorem 5.2 are added to the queue (lines
22-24). This process is repeated until the queue becomes empty. It
is important to note that the edges in the queue are processed from
left to right. Some corner cases may arise during the execution
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Algorithm 4: Order Insertion Maintenance Algorithm

Algorithm 5: Order-based D-truss Community Search

Input: a snapshot graph G, inserted edge e; = (u,v),
parameters k and ky, original order
E<=Lily---L,

Output: updated order E, = L{Lj -
1 Let a priority queue Q « 0 and graph G « G U {e;};
2 if {csupHﬂ_l(ei) > ke andfsupHﬂ_l(ei) > kr}and
{csupH” (e;) < ke orfsupH”(ei) < kr}then

insert a new layer L’ between Ly-1and Ly;
insert e; to L’;
else
insert edge e; into L; such that {csupy, , (e;) = ke A
fsupHiil(el—) > kf} A {csupHi(el—) <ke V
fsupg, (i) < ks

7 N(u) & NS (u) UNG (u); N(0) « N5 () UNG (v);

8 for each vertexw € N(u) N N(v) do

9 for ¢’ € {(u,w), (v, w), (w,u), (w,0)} N Eg do

10 | Q.enqueue(e’);
u if all edges in Q are in L, then

12 | return;

13 while Q # 0 do
// € is the leftmost edge among egdes in Q

e’ «— Q.dequeue();

if fesupy, , (¢') 2 ke and fsupy,_ (¢') 2 k¢} and
{csupH”(e,-) < ke orfsupHﬂ (i) < kp}then

insert a new layer L’ between Ly-1 and Ly;

insert e’ to L’;

if all edges in L' U Ly, satisfying support constraint

then
| append L’ to Ly;

- T N

14
15

16
17
18

19

20
21

else

move e’ right from original layer L; to Ly such that
{esupg,, (¢') 2 ke A foupyy,  (¢)) 2 g} A
fesupgy, () < ke V' foupg, () < gk

if L; # Ly then

for e; and ey that form triangles with ¢’ and both in
layers preceded by L; and precedes L] and not in L,
do

21 | Q.enqueue(e;), Q.enqueue(es);

25 Return Updated E< as E”;

22
23

of the algorithm. First, certain layers may be merged with L[’l and
subsequently removed from E<, resulting in a decrease in the total
number of layers in the new order E< (lines 18-19). Specifically,
if all edges in a layer L, satisfy csupy > ke and fsupy > k¢, all
layers Lo - -+ L1 can be combined with L,. Second, new layers
may be generated (lines 2-3, 15-16). This is due to the adjustment
of the edges’ layer numbers, during which some edges have suffi-
cient supports in L,—1 U L, but lack the necessary supports in Lj,.
Consequently, a new layer is created "between" the original L,,—1
and L, to satisfy Property 5.1(1).

The order maintenance algorithm for edge deletions is similar
to that of the insertion case, but with a few differences. In specific,
given an edge e;, if its layer is recently decremented from L, to L,
(Ln < L), then only the edges in L, to Lo+1 may have their layers
decremented. Note that if Ly+1 happens to be L, the range becomes
L, to L. The proof for the edge deletion can be done similarly to
Theorem 5.2.
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Input: snapshot graph G, inserted edges &;, deleted edges
&, parameters k and ky, original order
E< =1L1Ly--- Ly, query vertices Q
Output: updated (kc, kr)-truss for all the edges in updated
GI
1 fore; € &5 do
2 E</ < Apply the order deletion maintenance algorithm
similar to the order insertion maintenance in
Algorithm 4(G, eg, ke, kf, E<);
3 fore; € E; do
4 ‘ E</ « Algorithm 4(G, e;, ke, kf, E<);
5 if edges in L;’l satisfy the support constraint then
6 DT « the last layer L), of E</;
7 if Q € DT then
8 | Return DT;
9 Return 0;

Equipped with the order maintenance algorithms for edge in-
sertions/deletions, we now present the order-based community
search algorithm, as outlined in Algorithm 5. We maintain the lay-
ers with edge deletions and insertions, respectively (lines 2 and 4),
and then directly output ;. Example 5.2 illustrates the case of an
edge insertion. The case for an edge deletion is similar. Note that
the peeling-based algorithm and the order-based algorithm cannot
be combined. Specifically, the peeling-based algorithm iteratively
removes edges that violate the flow and cycle support constraints.
This removal process naturally generates an order that represents
the sequence of edge removal. On the other hand, the order-based
algorithm is designed to maintain and simulate the order generated
by the peeling process. In essence, these two algorithms share the
same underlying principle but have different implementations.

ExXAMPLE 5.2. We use the digraph in Figure 5 to illustrate Al-
gorithm 4. Let ke = kg = 1. Figures 5(b) and 5(c) show the order
maintenance process after the edge e; (marked as red) is inserted.
Note that the edges in the current queue Q are shown on the left
of each order, and the edge to be processed is marked as blue. The
original layers are shown at the top of Figure 5(a). Note that after we
insert edge eg into L3 from Ly, the condition in line 18 of Algorithm 4
is fulfilled and this layer is appended to L,'J. The updated layers are
shown in Figure 5(c).

THEOREM 5.3. (Time and Space Complexities) Let G' be the
digraph in window W', C be the number of edges that have their
layers changed, m; be the number of edges in G?, § be the maximal
cycle support/flow support in G, and 1 be the total number of layers.
Algorithm 4 takes O(C * 1% 8) time and O(m;) space for each window
wt.

PrROOF. An edge can have its layer changed at most y times.
As each layer changes costs § time, the total time complexity is
O(C * p * ). The space complexity is O(m;). O

6 PERFORMANCE EVALUATION

In this section, we evaluate the efficiency of our proposed algo-
rithms through extensive experiments on real-world datasets. All
experiments are conducted on a Linux server with an Intel Xeon
Gold 6230R 2.1GHz CPU and 128 GB of memory, running Oracle



Table 1: Statistics of the datasets (K = 10> and M = 10°)

Dataset ‘Abbr.‘ VeI ‘ |Eg| ‘degm,g kX ‘ krrax ‘
College-Msg MSG 19K | 59.8K | 63.0 6 8
Sx-Mathoverflow| SX 24.8K | 506.5K | 40.8 7 6
Ask-Ubuntu UT |159.3K|964.4K | 12.1 2 3
Amazon AM |3348K| 1.9M 11.1 2 2
DBLP DP |317.1K| 2.1M 13.2 10 10
Flickr FC 23M | 33.1M | 28.8 3 2
Stack-Overflow SO 2.6M | 63.5M | 48.8 1 4
UK-2002 UK2 | 18.5M |298.1M | 32.2 7 5

Linux 8.6. Our algorithms were implemented in C++.

Datasets. We use six real-world directed networks in our exper-
iments. Table 1 summarizes the statistics of these graphs. Note
that k' and kJ’me are the maximum parameters for which a non-

k™4X)-truss can be obtained with the

f
default window size for each dataset. Specifically, College-Msg!

is a private message graph; Amazon! is a product co-purchasing
network; DBLP! is a co-authorship network ; Flickr? is a social
graph; Sx-Mathoverflow!, Ask-Ubuntu!, and Stack-Overflow!
are internet interaction graphs; UK-20023 is a web graph. Note that
UK-2002, Amazon, and DBLP do not come with timestamps. Thus,
we generated random timestamps for each edge in them.

empty (k***,0)-truss or (0,

Algorithms. We compare several algorithms in our experiments.

e DYNAMIC: [50] proposes batch insertion and deletion
algorithms for D-truss retrieval in dynamic graphs. We
adapted these algorithms to solve our problem.

REPEEL: The basic peeling-based algorithm that peels the
directed networks whenever the window slides.

REPEEL + OPT1, REPEEL + OPT2, and REPEEL + OPT3:
The peeling-based algorithm with optimizations OPT-1,
OPT-2, and OPT-3, respectively.

REPEEL+: The peeling-based algorithm with all three op-
timizations.

ORDER: The order-based algorithm.

Parameters and Metrics. The parameters tested in the experi-
ments include k. and kf, the window size 7, and the stride size f.
For each dataset, the settings for k¢ and kf are determined based
on the intrinsic characteristics of the graph. They are set to be no
larger than k*** and k**¥, respectively, while ensuring that the

resulting community is not empty. Table 2 summarizes the default
parameter settings. For each experiment, we report the throughput,
which represents the number of incoming edges processed per sec-
ond. In each experiment, we run 100 queries and report the average
throughput. If an algorithm cannot be completed within 10 days, it
is denoted by INF.

6.1 Efficiency Evaluation

Exp-1: Effect of window size. In the first experiment, we evaluate
the performance of our proposed algorithms by varying the window
size. The results are shown in Figure 6. As expected, the throughput

!http://snap.stanford.edu/data/index.html
Zhttp://konect.cc
3http://law.di.unimi.it/datasets.php
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Table 2: Default parameter settings

‘ Dataset ‘ |Window| ‘ |Stride| ‘kc ‘ kf ‘

College-Msg 9K 900 111
Sx-Mathoverflow 6K 600 01
Ask-Ubuntu 11K 1.1K 0|1
Amazon 19K 1.9K 111
DBLP 21K 2.1K 8|8
Flickr 115K 11.5K 2|2
Stack-Overflow 160K 16K 01
UK-2002 700K 70K 4 | 4
DYNAMIC = REPEEL+ EEEEE  ORDER C—3
107 107
90° 210°
210t 510’1
108 108
2.75K 5.5K 11K 22K 44K 28.8K 57.5K 115K 230K 460K
[Window Window|
(a) UT (b) FC
107 p105
%10? %01
103 2
40K 80K 160K 320K 640K 0.18M 0.35M 0.7M 1.4M 2.8M
Window [Window |
(c) SO (d) UK2
Figure 6: Effect of window size
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of all algorithms decreases when the window size increases. This
is because a larger window size induces a larger directed graph,
which takes more time to process. In addition, we observe that both
REPEEL+ and ORDER are two orders of magnitude faster than DY-
NAMIC. This is because REPEEL+ integrates all three optimizations
we proposed, which reduce the size of the peeling input, resulting in
higher efficiency. Moreover, ORDER is more efficient than REPEEL+
because it does not require peeling the graph from scratch.

Exp-2: Effect of stride size. We next evaluate the impact of stride
size on our proposed algorithms by varying the stride size on SX and
FC. As shown in Figure 7, larger strides result in higher throughput.
This is because larger strides mean that fewer community searches
need to be performed, leading to higher throughput. In all cases,
both REPEEL+ and ORDER outperform DYNAMIC. Additionally,
it is worth noting that although both REPEEL+ and ORDER ex-
hibit an improvement in throughput as the stride size increases, the
magnitude of this improvement is larger for REPEEL+ compared
to ORDER. Consequently, when the stride size is larger than 80%
and 35% of the window size (i.e., 4.8K and 40.3K edges, respec-
tively), REPEEL+ outperforms ORDER in terms of efficiency. This
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phenomenon can be attributed to the fact that it takes more time
for ORDER to maintain a community compared to REPEEL+ when
there are a larger number of edge insertions or deletions. The main
overhead arises from the higher time cost required by ORDER to
adjust the layers of edges. In contrast, the time cost for REPEEL+
to process a single community remains relatively stable, regardless
of the number of edge modifications.

Exp-3: Effect of query parameters k. and ky. We also evaluate
the impact of parameters k; and ky on the performance of our
proposed algorithms using the MSG dataset. To do so, we fix one
parameter and vary the other. The results are presented in Fig-
ure 8. We can see that the throughput of the algorithms gradually
increases as k¢ and k¢ grow. As the query parameters increase, the
search space becomes smaller, resulting in higher throughput.

Exp-4: Effect of |Q|. To examine the impact of the number of query
vertices on our algorithms, we vary |Q| from 1 to 8. The results in
Figure 9 show that as |Q| increases, the throughput of all algorithms
decreases slightly. The reason behind this is that the running time
overhead is dominated by the maintenance of the community, and
checking whether the query vertices are contained in the commu-
nity incurs only a slight overhead. As a result, the change of |Q|
does not significantly impact the throughput. However, it is worth
noting that ORDER consistently outperforms the other algorithms.

Exp-5: Effect of the optimizations. Next, we evaluate the effec-
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tiveness of our proposed optimizations for REPEEL, and the results
are shown in Figure 10. It is clear that the algorithm with all op-
timizations has the best performance, followed by the algorithms
with only one optimization. The basic peeling-based algorithm
without any optimization has the worst performance, demonstrat-
ing the effectiveness of our proposed optimizations. Furthermore,
REPEEL+ consistently outperforms REPEEL by one to two orders
of magnitude over all datasets. For example, REPEEL+ is 96 times
faster than REPEEL on UK2. On average, the optimizations boost
the algorithm by 44 times. Additionally, the efficiency of the op-
timizations varies across different datasets. For instance, OPT-1
outperforms OPT-2 on MSG, SX, UT, FC, and SO, while OPT-2 has a
better performance on UK2 compared to OPT-1.

Exp-6: Effect of concurrent queries. In practical applications,
there are scenarios where simultaneous queries are performed for
different parameter combinations. Therefore, we evaluate the per-
formance of our proposed algorithms compared to DYNAMIC when
processing multiple queries simultaneously. Our proposed algo-
rithms can support multiple queries as follows. Specifically, for
REPEEL+, we can re-peel the directed graph for each pair of k. and
kf to obtain different communities; for ORDER, we can maintain
a separate order for each pair of k. and k¢, and as the window
slides, we can update each order to return different communities.
As for DYNAMIC, which retains the entire trussness sets for each
edge, we maintain a D-index and execute all the queries based on
the updated index [50]. The results are shown in Figure 11. As the
number of queries increases from 8 to 128, the throughput of all
the algorithms decreases. However, the running time of DYNAMIC
remains relatively stable. This is because its primary overhead is
associated with index maintenance, which is a one-time task re-
gardless of the number of queries. Most of the increase in running
time is attributed to the execution of the queries themselves. In
contrast, for ORDER and REPEEL+, which involve order maintain-
ing or graph peeling for each query, the computational cost grows
linearly with the number of queries. Nevertheless, our algorithms
consistently outperform DYNAMIC in all cases.

Exp-7: Querying undirected graphs. This experiment validates
the efficiency of our algorithms when querying undirected graphs.



DYNAMIC Wmmmm REPEEL+ BB ORDER

107 107

106 106

él() élo

2100 2100

2 -

=101 =10

103 103

4.8 9.5K 19K 38K 76K 5.3K 10.5K 21K 42K 84K

|Window| Window|
(a) AM (b) DP

Figure 12: Querying undirected graphs

(S

(a) Streaming-1 (1 < ¢ < 20000) (b) Streaming-2 (5000 < ¢ < 25000)

1
£ = —guaac
pa __REPEEL+ _
£ ORDER 2, ORDER
g i patnophy| £ 10
. E
®10 5 g9 198 297 396 495 0 187 374 561 748 935
Time points (K) Time points (K)
(a) SX (b) UT

Figure 13: Response time variations

To handle k-truss community search on undirected graphs, we first
transform the undirected graph into a directed graph by replac-

ing each undirected edge with two bidirectional edges. During the (c) Streaming-3 (10000 < ¢ < 30000) (d) Non-streaming (1 < ¢ < 30000)
query, we set k¢ = k¢ = k and return the D-truss community. To

convert it back to the k-truss community, we replace the bidirec- Figure 14: Case study over Flickr

tional edges with undirected edges. We compare the performance the addition of new friends Max, Leo, and Ella. Subsequently, at
of our algorithms against the baseline across various window sizes. time point 30,000, Yee’s community shrinks as old friends Mia, Ben,
The results, shown in Figure 12, are consistent with our findings in Sam, Leo, and Ella are replaced by Lily and Finn. This community
Exp-1. Our algorithms consistently outperform the baseline by sev- evolution clearly shows the latest friendships of Yee at different
eral orders of magnitude, demonstrating the strong generalization periods. For example, in the time period [1, 20,000], Yee interacts
capability of our algorithms for undirected graphs. more frequently with Ben, Sam, Mia, and Zoe. However, in the time
Exp-8: Examination of response time variations. As the slid- period [25,000, 30,000], Yee communicates better with Finn, Lily,
ing window moves, the response time may exhibit fluctuations. To Max, and Zoe. In contrast, the static community in Figure 14(d) only
evaluate such fluctuations, we measure the query processing time shows a large community over the entire time period, which cannot
at each sliding window during the execution. The experimental capture the time-dependent information.

results are shown in Figure 13. It is observed that the response time
fluctuates as the window slides. However, DYNAMIC exhibits larger 7 CONCLUSION

performance fluctuations compared to the other two algorithms. In this paper, we have studied the problem of D-truss community
This can be attributed to the longer execution time of DYNAMIC, search over streaming directed graphs. To address the problem, we
which leads to greater variations in its performance. Overall, the have proposed two algorithms, i.e., the peeling-based algorithm
variations of all three algorithms remain relatively small, except for and the order-based algorithm. The peeling-based algorithm peels
some time points indicated by red rectangles, which show relatively the directed graph to obtain the community whenever the win-
significant fluctuations. These fluctuations occur because the up- dow slides. We have also devised three optimizations, including
dates to the edges at these time points result in substantial changes upper-bounds-based pruning, BFS-based update, and lifetime sup-
to the underlying graphs and communities, thereby causing larger port prediction, to improve the performance of the peeling-based
variations in the response time. algorithm. Moreover, we have introduced the D-truss peeling order

and layers in D-truss peeling order to devise the order-based algo-
6.2 Case Study rithm. Our theoretical analysis and empirical evaluations confirm
In this subsection, we present a case study on Flickr to monitor the efficiency of our proposed algorithms. In the future, we plan to
the evolution of communities among users in real time. Specifi- develop efficient distributed algorithms with parallel strategies for
cally, Flickr contains 30,000 consecutive edges. In our case study, community search over multi-source streaming graphs.

we take the user Yee as the query vertex and set the parameters

as follows: kc=2, k=1, [Window] = 20,000, [Stride| = 5,000. Fig- ~ ACKNOWLEDGMENTS
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