
InferDB: In-Database Machine Learning Inference Using Indexes
Ricardo Salazar-Díaz
Hasso Plattner Institute
University of Potsdam

ricardo.salazardiaz@hpi.de

Boris Glavic
University of Illinois Chicago

bglavic@uic.edu

Tilmann Rabl
Hasso Plattner Institute
University of Potsdam
tilmann.rabl@hpi.de

ABSTRACT
The performance of inference with machine learning (ML) models
and its integration with analytical query processing have become
critical bottlenecks for data analysis in many organizations. An ML
inference pipeline typically consists of a preprocessing workflow
followed by prediction with an ML model. Current approaches for
in-database inference implement preprocessing operators and ML
algorithms in the database either natively, by transpiling code to
SQL, or by executing user-defined functions in guest languages such
as Python. In this work, we present a radically different approach
that approximates an end-to-end inference pipeline (preprocessing
plus prediction) using a light-weight embedding that discretizes
a carefully selected subset of the input features and an index that
maps data points in the embedding space to aggregated predictions
of an ML model. We replace a complex preprocessing workflow and
model-based inference with a simple feature transformation and
an index lookup. Our framework improves inference latency by
several orders of magnitude while maintaining similar prediction
accuracy compared to the pipeline it approximates.

PVLDB Reference Format:
Ricardo Salazar-Díaz, Boris Glavic, and Tilmann Rabl. InferDB: In-Database
Machine Learning Inference Using Indexes. PVLDB, 17(8): 1830 - 1842,
2024.
doi:10.14778/3659437.3659441

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/hpides/inferdb.

1 INTRODUCTION
Machine learning models are deployed in a wide variety of applica-
tions, e.g., customer segmentation, recommender systems, process
automation [47]. While training a model can be expensive, a single
model is often used to make many predictions. Thus, the perfor-
mance of inference has become a critical bottleneck for these appli-
cations. For instance, cloud vendors report that inference workloads
are responsible for 90% of all ML infrastructure costs [19]. As the
data that is the input for inference is often managed using database
systems, inference functionality needs to be tightly integrated into
DBMS, e.g., Zhang et al. [53] report around 25% of the Greenplum
customers use ML alongside SQL analytics.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 17, No. 8 ISSN 2150-8097.
doi:10.14778/3659437.3659441

The need for preprocessing and inference inside DBMSs has
led to significant interest in the database community. Prior work
either (i) implements preprocessing and ML operators inside the
DBMS or (ii) provides access to ML runtimes from within the data-
base. Work that falls within the first category translates operators
into SQL or user-defined functions [1, 26, 37, 46, 48, 50], or imple-
ments new operators within the database engine [4, 11, 53]. Recent
work [39, 43] has shown that the number of operators per pipeline
ranges from tens to more than a thousand, with many operators
being custom transformations highly specific to particular tasks
and datasets. Either the operators are treated as black boxes during
query optimization, or the system’s optimizer has to be extended
to support the new operators. Approaches for (ii) integrate ML
runtimes into the DBMS to access ML operators from within the
database [28, 39, 45]. This reuses existing ML operator implementa-
tions but has to move data between the database and ML runtime. It
also lacks integration with the query optimizer. In summary, exist-
ing approaches either result in large development efforts or require
extensive data movement and are often not integrated well with
the DBMS optimizer and execution engine.

In this work, we present InferDB, which approximates preprocess-
ing steps (e.g., data transformation, missing value imputation) and
model-based prediction using a lightweight embedding and a tradi-
tional index structure.We demonstrate that significant performance
improvements for inference can be achieved when our approach is
deployed within a DBMS or as a standalone application. By relying
on existing infrastructure and extensibility mechanisms available
in every DBMS, our approach enables the seamless integration of
inference into SQL queries without requiring any changes to the
database. InferDB is based on the assumption that the predictions
for a data point can be feasibly approximated using predictions for
similar data points. A straightforward way to realize this is to index
the prediction for all training data points (before preprocessing)
and, at inference time, approximate the prediction for a test data
point 𝑥 by aggregating the predictions for a sufficiently large set of
nearest neighbors (k-NN) of 𝑥 in the training data. This approach
has several drawbacks as the size of the index is linear in the size
of the training data, and while there is a lot of work optimizing
k-NN search, it is not as performant as a simple index lookup and
less integrated with most DBMS. InferDB learns a lightweight em-
bedding that discretizes the input features and selects the most
relevant discretized features to build the index on. This has the
important advantage of having a single index entry for all training
data points equal in the embedding space (reducing index size), and
that inference is a point lookup.

Example 1. Figure 1 shows an example of predicting real estate

prices for a test data point 𝑥 with an inference pipeline (Figure 1a)

and with InferDB (Figure 1b). In Figure 1a, the preprocessing workflow

1830

https://doi.org/10.14778/3659437.3659441
https://github.com/hpides/inferdb
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3659437.3659441
https://www.acm.org/publications/policies/artifact-review-and-badging-current

Preprocess = {
sqm: 100,
bathrooms: 3,
balcony: NaN,
city: "Berlin",
type: "Altbau"
}

Impute
Scale

Encode Feature
Engineering

Predict

(a) Inference pipeline: preprocessing and prediction
 = {

sqm: 100
bathrooms: 3
balcony: NaN,
city: "Berlin",
type: "Altbau"
}

Translate Lookup

(b) InferDB inference pipeline: translation and lookup

Figure 1: Inference pipeline (Figure 1a) and index-based in-
ference (Figure 1b) for predicting property prices.

is applied to 𝑥 to transform it into the numerical format. The pre-

processing pipeline imputes missing values, scales numerical values,

and applies one-hot encoding for categorical values. New features

are constructed by combining the values of the original features. The

transformed data point 𝑥𝑡 is passed to a regressor to predict the price

𝑦. In contrast, our approach (Figure 1b) maps 𝑥 into an embedding

space consisting of a carefully selected set of discretized features. A

single lookup in the index storing aggregated predictions of the model

returns a prediction for the discretized data point 𝑥∗.

Important factors for the accuracy and performance of InferDB
are (i) the right choice of embedding space (binning) and (ii) the
selection of discretized features to build the index on. As we are
aggregating predictions of the model for all data points that share
the same representation in the embedding space, it is critical for
the accuracy of our approach that the predictions of the model
are well preserved in the embedding space. Towards this goal, we
rely on existing supervised discretization techniques (we use the
OptBinning [34] framework).We present a greedy heuristic to select
a subset X∗ of the discretized features X̃ by repeatedly selecting
a feature that results in the largest improvement in prediction
performance compared to the set selected so far.

Our approach is agnostic to the index structures that store the
predictions for discretized training data points. An important ad-
vantage of using a standard index structure is that, in contrast to the
alternatives discussed above, our approach synergizes well with the
query optimizer and execution engine of the DBMS. This enables
efficient evaluation of queries that combine prediction with rela-
tional operators. As we demonstrate in our experimental evaluation,
replacing costly preprocessing steps and prediction using a model
with a lightweight embedding and index lookup can significantly
improve the performance of queries involving inference.

InferDB’s current implementation focuses on classic in-DB ML
tasks such as regression, binary classification, and multi-label clas-
sification on structured data, typically stored in DBMS relations. In
our experiments, we report InferDB results for an image recognition
task and discuss the challenges and ideas to support unstructured
data workloads in the future. Our main contributions are:

• We present InferDB, a framework for approximating ML infer-
ence pipelines using index structures available in DBMS.

• We exploit discretization techniques that take a model’s pre-
dictions into account to bin features such that predictions are
mostly preserved in the embedding space and present a greedy
heuristic for selecting binned features for indexing.

• We implement InferDB as a standalone index and in Postgres
using standard database index structures.

• We experimentally compare InferDB against state-of-the-art
standalone techniques and other frameworks for in-DBMS ML
inference. InferDB achieves competitive accuracy and reduces
inference latency by up to two orders of magnitude.

Outline: In Section 2, we introduce relevant background on ML
training and inference. Section 3 provides an overview of InferDB.
In Section 4, we discuss supervised discretization and describe
how to build an index that approximates an end-to-end inference
pipeline. Then, we explain how to perform inference using InferDB
in Section 5. We discuss related work in Section 6, experimentally
evaluate our framework in Section 7, and conclude in Section 8.

2 BACKGROUND

ML Training. Consider a training dataset 𝐷𝑡𝑟𝑎𝑖𝑛 = {(𝑥𝑖 , 𝑦𝑖)} over
a set of features X and an outcome Y (e.g., Y = {0, 1} for binary
classification), where a data point 𝑥𝑖 is a vector of values (one for
each feature in X) and 𝑦𝑖 ∈ Y. In ML training, a preprocessing
workflow P is a graph of preprocessing operators. We treat this
workflow as a black box function that, given𝐷𝑡𝑟𝑎𝑖𝑛 as input, outputs
a dataset P(𝐷𝑡𝑟𝑎𝑖𝑛) with features X𝑝𝑟𝑒 and outcome Y. Typically,
P will preserve the outcome for each training data point.

InferDB is agnostic to the operations applied by P. Dataset P
(𝐷𝑡𝑟𝑎𝑖𝑛) is then the input to the learning phase, which trains an ML
model 𝑓 : X𝑝𝑟𝑒 → Y. The model 𝑓 maps preprocessed data points
to predictions from Y. We use 𝑦𝑖 to denote the predicted outcome
produced by 𝑓 for data point 𝑥𝑖 , i.e., 𝑓 (P(𝑥𝑖)) = 𝑦𝑖 . We briefly
review a few common preprocessing operators in the following.

Example 2. Figure 3 shows a typical training pipeline. Most ML

algorithms expect training data to be numerical. The training data

must be preprocessed before training a model (6). Missing values

and outliers may be fixed using an imputer (1). Imputers can be

the mean value for numerical features and the most frequent value

for categorical features, trained classifiers, or regressors to impute

missing values [30]. Some data types require preprocessing to extract

numerical features (2). Distance-based and gradient-descent-based
ML algorithms are sensitive to unscaled data, so numerical features

are often scaled (3), e.g., using min-max (normalization) and Z-score

(standardization) [43]. Categorical features are transformed into a nu-

merical representation using one-hot coding (4). Feature engineering
operators are applied during preprocessing (5) to increase the predic-
tive power of the features [17, 43]. Feature construction combines the

values of two or more features with linear and nonlinear operators to

generate new features with higher predictive power [24].

Inference Pipelines. To use a model 𝑓 for inference on a test
dataset 𝐷𝑡𝑒𝑠𝑡 = {𝑥𝑖 } with features X, the test data passes through

1831

Dtrain

Dtrf

Preprocessing
Pipeline

Learning Algorithm

Learn Discretization

Ddisc

Feature Selection

Index Population

Dtest
Index Training

Inference

Figure 2: Overview of the InferDB framework: A regular training pipeline is used for model training. A subset of discretized
features is selected, forming the keys for the populated index. At inference time, a data point 𝑥 is mapped into the embedding
space to retrieve its prediction I(𝛿∗ (𝑥)) using the index / prediction table.

Preprocessing

Dtrain

Numerical
Imputer

Categorical
Imputer

Scaler

Encoder

Feature
Engineering

Training

ML
AlgorithmFeaturizer

Numerical features

Categorical features

1

2
3

4

5 6

Figure 3: Example of a training pipeline comprising a pre-
processing workflow and training.

the same preprocessing pipeline P used during training1 to gen-
erate the input data P(𝐷𝑡𝑒𝑠𝑡) for prediction with the model. Af-
terwards, the model 𝑓 is used to compute a prediction 𝑦 for each
𝑥 ∈ 𝐷𝑡𝑒𝑠𝑡 :

𝑦 = 𝑓 (P(𝑥))
In this work, we are mainly concerned with improving the run-

time of inference. We use 𝑡𝑝𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠 to denote the time for apply-
ing P to transform a test data point (or set of test data points) and
𝑡𝑝𝑟𝑒𝑑𝑖𝑐𝑡 to denote the time for making a prediction using 𝑓 for the
transformed data point (set of points). Our goal is to minimize the
end-to-end latency 𝑡𝑖𝑛𝑓 𝑒𝑟𝑒𝑛𝑐𝑒 for inference observed by the user:

𝑡𝑖𝑛𝑓 𝑒𝑟𝑒𝑛𝑐𝑒 = 𝑡𝑝𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠 + 𝑡𝑝𝑟𝑒𝑑𝑖𝑐𝑡

3 SYSTEM OVERVIEW
In this section, we provide an overview of our InferDB framework.
Figure 2 shows the three main steps in building and deploying an
index approximating an inference pipeline: training, index training,
and inference. First, a training pipeline consisting of a preprocessing
workflow and a training step generates a model 𝑓 as discussed in
Section 2.
Index Training & Population. Based on the output of the training
pipeline, InferDB learns a discretized embedding 𝛿 and then selects
a subset of the discretized features to build the index on. We learn
the embedding 𝛿 by binning each input feature 𝑋 ∈ X such that
the predictions of the model 𝑓 are preserved. We use X̃ to denote
the discretized features. Afterwards, we select a subset X∗ ⊆ X̃
to build the index. We use 𝛿∗ : X × Y → X∗ × Y to denote the
transformation that maps a data point in the original feature space

1Some preprocessing operators require training an ML model or require the tuning of
parameters. For our work, it is irrelevant how the preprocessing pipeline was produced,
and we consider only the version of the preprocessing pipeline that was used to train
the model we want to use for inference.

X into the embedding spaceX∗. This step aims to reduce the size of
the index structure we will build over the training data and exclude
less relevant features for prediction.

We then create an indexI that maps each training data point 𝑥 ∈
𝐷𝑡𝑟𝑎𝑖𝑛 into the embedding space using 𝛿∗. Each distinct data point
𝑥∗ is then used as an index key and associated with an aggregated
prediction generated from the predictions made by the model over
all data points that are equal in the embedding space using an
aggregation function 𝛼 . We use majority vote for binary and multi-
label classification and average for regression.

The index I produced by this process encodes an approximation
of the predictions made by the inference pipeline; all data points
that are equal in the embedding space receive the same prediction.
I is either implemented as a standalone index structure, or we
create a table in a DBMS (which we refer to as a prediction table) to
store the predictions and create standard indexes on this table.

Index-Based Inference. During inference, the index replaces the
end-to-end inference pipeline. Each test data point 𝑥 ∈ 𝐷𝑡𝑒𝑠𝑡 is
mapped into the embedding space, resulting in a data point 𝑥∗ =
𝛿∗ (𝑥). The prediction for 𝑥 is retrieved using a lookup: 𝑦∗ = I(𝑥∗).

4 PREDICTION TABLE AND INDEX CREATION
In this section, we describe how to generate an indexed database
table (prediction table) or standalone index that approximates an
inference pipeline. The preprocessing pipeline P, raw input data
𝐷𝑡𝑟𝑎𝑖𝑛 , and model 𝑓 trained over the output of P on 𝐷𝑡𝑟𝑎𝑖𝑛 are
given as input. To build the index, we first learn an embedding
space by creating discretized features X̃ from the features X of
𝐷𝑡𝑟𝑎𝑖𝑛 such that the labels of training data points are preserved in
the discretized space as much as possible (Section 4.1). Then, we
select a subsetX∗ of the discretized features X̃ as keys for the index.
The goal of this step is to identify a small set of features (to reduce
index size) that are relevant for prediction (Section 4.2). To build
the prediction table and index structure (Section 4.3) we map the
training data 𝐷𝑡𝑟𝑎𝑖𝑛 into the embedding space X∗ and aggregate
the predictions for all training data points that are mapped to the
same point 𝑥∗ in X∗ as the prediction for 𝑥∗. The overall goal is to
build a prediction table of reasonable size that provides a robust
approximation of the predictions made by the inference pipeline.
In Section 4.4, we discuss using a standalone trie index instead
of a DBMS. We use 𝑡𝑙𝑒𝑎𝑟𝑛−𝑒𝑚𝑏𝑒𝑑 to denote the time for learning

1832

𝑋1

𝑋2

0 1

0

1

Figure 4: Example illustrating discretizing 𝐷𝑡𝑟𝑎𝑖𝑛 with two
features 𝑋1 and 𝑋2 for a binary classification problem.

the embedding X̃ for all features in X, 𝑡𝑓 𝑒𝑎𝑡𝑢𝑟𝑒−𝑠𝑒𝑙 for selecting
a subset of features X∗ to build the index on, and 𝑡𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑒 for
populating the index. Thus, 𝑡𝑏𝑢𝑖𝑙𝑑−𝑖𝑛𝑑𝑒𝑥 , the runtime overhead for
the training pipeline incurred by our approach is:

𝑡𝑏𝑢𝑖𝑙𝑑−𝑖𝑛𝑑𝑒𝑥 = 𝑡𝑙𝑒𝑎𝑟𝑛−𝑒𝑚𝑏𝑒𝑑 + 𝑡𝑓 𝑒𝑎𝑡𝑢𝑟𝑒−𝑠𝑒𝑙 + 𝑡𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑒

4.1 Discretization
The first step towards approximating inference using our frame-
work is to learn an embedding of the input space X by discretizing
each input feature 𝑋 ∈ X. We use X̃ to denote the discretized fea-
tures and �̃� to denote the discretized version of feature 𝑋 ∈ X. The
domain of each feature (whether numerical or categorical) will be
partitioned into a small number of bins. For this approximation
to be accurate, the model’s predictions must be preserved to the
maximum degree possible in the embedding space.

Example 3 (Discretization). Figure 4 shows an example dis-

cretization for a binary classification. The training data has two

features X = {𝑋1, 𝑋2}. The class assigned by the model is shown

as the color of the training data point. Both features have been split

into two bins. The bins are mostly homogenous, i.e., training data

points with the same label are grouped into bins, and there is little

uncertainty about the predictions for a bin.

Discretization Techniques.Discretization has been studied exten-
sively by the ML community [9, 10, 31]. As our goal is to preserve
the predictions of the model 𝑓 , we employ a supervised discretiza-
tion technique, which groups values considering the mutual in-
formation between the bins and the predictions of the model 𝑓
(called the target feature in this context). For each numerical fea-
ture 𝑋𝑖 ∈ X with domain D𝑖 we want to generate a set of #𝐵𝑖 bins
with lower and upper bounds 𝐵𝑖 = {𝑏𝑖 𝑗 = [𝑙𝑖 𝑗 , 𝑢𝑖 𝑗]} such that 𝐵𝑖
is a partitioning of the domain of 𝑋𝑖 , i.e., the bins are pairwise
disjoint and the union of these ranges covers the domain of 𝑋𝑖 .
For any categorical feature 𝑋𝑖 with domain D = {𝑐𝑖 }, each bin
is a subset of D, and again, the bins are disjoint, and their union
covers D. 𝛿 : X × Y → X̃ × Y denotes the function that takes a
data point in the original feature space X and maps this data point
into the discretized space X̃ and 𝐷𝑑𝑖𝑠𝑐 = 𝛿 (𝐷𝑡𝑟𝑎𝑖𝑛) denotes the dis-
cretized version of the training dataset. 𝐷 [𝑋] and 𝑥 [𝑋] denote the
projection of datasets/data points onto a feature or set of features.
Information Value:Measuring DiscretizationQuality. Jeffrey’s
divergence [20], also known as information value (IV), is widely em-
ployed [34] as a measure for the quality of a discretization, i.e., the
uncertainty about the model’s prediction within each bin. In the
following, consider a single feature 𝑋 and the discrete version �̃�
of this feature with bins 𝐵 produced by a discretization technique.

For binary classification (Y = {0, 1}), let 𝑃 be the probability dis-
tribution of the Class 1 over 𝐷𝑑𝑖𝑠𝑐 [�̃� ,Y], i.e., over the discretized
training dataset projected on �̃� and the prediction of the model 𝑓 .
Let 𝐷𝑖 denote the subset of the training data points whose value in
feature 𝑋 falls within bin 𝑏𝑖 :

𝐷𝑖 = {𝑥 | 𝑥 ∈ 𝐷𝑡𝑟𝑎𝑖𝑛 ∧ 𝛿 (𝑥) [�̃�] ∈ 𝑏𝑖 }
For a bin𝑏𝑖 ∈ 𝐵, let 𝑝𝑖 denote the probability of predicting Class 1 for
training data points in 𝑏𝑖 . That is, 𝑝𝑖 is the fraction of training data
points whose value in 𝑋 is in 𝑏𝑖 and which receive the prediction
of 1 by the model (after preprocessing):

𝑝𝑖 =

∑
𝑥 𝑗 ∈𝐷𝑖

1[𝑦 𝑗 = 1]
𝑁𝑖

for 𝑁𝑖 = |𝐷𝑖 |

We use 𝑄 (and 𝑞𝑖) to denote the analog concepts for Class 0 (as
𝑝𝑖 + 𝑞𝑖 = 1, we have 𝑞𝑖 = 1 − 𝑝𝑖). Following a one-vs-all approach,
we can compute 𝑝𝑖 and 𝑞𝑖 for the multi-label classification case.
The formulas for computing the information value for binary and
multi-label classification tasks of a discretized feature �̃� with bins
𝐵 and labels 𝐿 (for the multi-label case) are shown below. The main
goal of discretization is to choose bins so that IV(�̃�) is maximized,
maximizing the expected difference between the probabilities 𝑝𝑖
and 𝑞𝑖 . This is equivalent to minimizing the uncertainty about the
model’s prediction per bin, as one class will have a high probability
of being predicted for data points in the bin, and the probability of
the other class is low within the bin.

IV(�̃�) =
|𝐵 |∑︁
𝑖=1
(𝑝𝑖 − 𝑞𝑖) log

𝑝𝑖

𝑞𝑖
(binary classification)

IV(�̃�) =
|𝐿 |∑︁
𝑘=1

|𝐵 |∑︁
𝑖=1
(𝑝𝑖𝑘 − 𝑞𝑖𝑘) log

𝑝𝑖𝑘

𝑞𝑖𝑘
(multi-label classification)

Equation (1) shows the formula for computing IV for the case
where Y is continuous, i.e., regression tasks. A good binning so-
lution for regression maximizes the divergence between the local
mean `𝑖 of bin 𝑏𝑖 and the global mean `, let 𝑁 = |𝐷𝑡𝑟𝑎𝑖𝑛 |.

IV(�̃�) =
|𝐵 |∑︁
𝑖=1
|` − `𝑖 |

𝑁𝑖

𝑁

for ` =

∑
𝑥 𝑗 ∈𝐷𝑡𝑟𝑎𝑖𝑛

𝑦 𝑗

𝑁
and `𝑖 =

∑
𝑥 𝑗 ∈𝐷𝑖

𝑦 𝑗

𝑁𝑖

(1)

OptBinning. We use the open-source Python package OptBin-

ning [34] for discretization as it optimizes for IV(X̃), is reasonably
efficient, supports both categorical (classification) and continuous
(regression) target features, and supports additional constraints on
the solution such as a maximum number of bins per feature.

4.2 Feature Selection
The discretized feature space X̃ has the same number of features as
the original feature space X. As models are often built over 10s of
features or more, building a prediction table over X̃ directly would
result in a sparsely filled index where for most data points 𝑥 in
𝐷𝑑𝑖𝑠𝑐 there will be no training data point or only a small number of
training data points that are equal to 𝑥 when mapped into the em-
bedding space. This means insufficient information to approximate

1833

Algorithm 1 Greedy Feature Selection

Input: discretized training dataset 𝐷𝑑𝑖𝑠𝑐 , discretized features X̃, bins {𝐵𝑖 }
Output: Sorted list X̄∗ of selected discretized features.
1: 𝐿X̃ ← sortDesc(X̃, IV) ⊲ features X̃ sorted descending on IV
2: X∗ ← ∅ ⊲ selected features
3: for �̃� 𝑖𝑛 𝐿X̃ do ⊲ feature Selection
4: if IV(𝐷𝑑𝑖𝑠𝑐 [X∗ ∪ {�̃� }, ,Y]) > IV(𝐷𝑑𝑖𝑠𝑐 [X∗,Y]) then
5: X∗ ← X∗ ∪ {�̃� }
6: X̄∗ ← sortDesc(X∗, #𝐵) ⊲ sort X∗ in descending order on #𝐵
7: return X̄∗

the model based on the training data. More features also result in
a larger index size (number of attributes for the prediction table),
which affects lookup performance and storage size. To address this
problem, we select only the most significant features X∗ for inclu-
sion in the prediction table / index, optimizing for the predictive
power of the selected set X∗. We use information value (IV) as
a metric for measuring the predictive power of a set of features.
Once a set of features X∗ has been selected, we determine the sort
order for these features to be used in the index / prediction table.
This step aims to reduce the index size as the sort order X̄∗ for the
selected features X∗ can affect the index size.
Feature Selection. The naive approach for selecting a set of fea-
tures is to enumerate all 2 | X̃ | subsets of X̃, compute the information
value IV(𝐷𝑑𝑖𝑠𝑐 [X̃′]) of the projection of the discretized training
data for each subset X̃′, and then select a subset of features with
the highest information value. While this guarantees that an opti-
mal subset of features will be selected, the exponential number of
queries (in |X̃ |) required is prohibitive. We opt for a linear greedy
heuristic (Algorithm 1) that iterates over the features sorted de-
creasingly on their IV value. Starting from an empty set of features,
for each feature �̃� ∈ X̃, the algorithm tests whether the informa-
tion value for the set of features selected so far will be improved
by including �̃� in the selection (Line 4). In this case, the algorithm
adds �̃� to the set of selected features X∗.
Sorting Features. The quality of the approximation of the pre-
dictions of model 𝑓 provided by our approach and the size of the
prediction table only depends on the set of selected features. How-
ever, the size of an index built on top of the prediction table and
the size of the index for the standalone version of our approach can
be affected by the ordering of features in the index key.

Example 4 (FeatureOrderAffects Index Size). Figure 5 shows
an example of two trie indexes built over different sort orders for

the same set of discretized features X∗ = {𝑋1, 𝑋2} (same IV score).

Feature 𝑋1 has five bins and 𝑋2 has two bins. Assume for the sake of

the example that all combinations of bins exist in 𝐷𝑡𝑟𝑎𝑖𝑛 . If we put

𝑋1 first in the ordering, we get a root node with five elements, each of

which points to a node with two elements (for 𝑋2). Building an index

with this ordering requires six nodes and 15 values. If we first put

𝑋2, we get three nodes and 12 values. This difference in size increases

when there is a more significant disparity between the number of bins.

In Algorithm 1 (Line 6), we use a greedy heuristic to determine
the sort order X̄∗ to be used in the prediction table and index by
sorting the features in X∗ in decreasing order by their number of
bins (recall that #𝐵 denotes the number of bins).

0 1 2 3 4

0 1 0 1 0 1 0 1 0 1

0 1

0 1 2 3 4 0 1 2 3 4

Figure 5: Two tries of different sizes over the same features.

4.3 Prediction Table and Index Population
Once we have determined the ordered list of features X̄∗ used as
keys for prediction, we create the prediction table with schema
(X∗,Y) and an index over this table using a standard index struc-
ture.We discuss our implementation of the standalone index version
of our approach in Python in Section 4.4.
Key Creation.We map each data point 𝑥 ∈ 𝐷𝑡𝑟𝑎𝑖𝑛 and its predic-
tion 𝑦 into the embedding space by determining to which bin each
selected feature 𝑋 ∗ in 𝑥 belongs. Recall that we use 𝛿∗ to denote
the mapping function. InferDB uses 𝛿∗ during inference, and we
describe how to implement it in SQL in Section 5.1.
Aggregation. Next, we determine the prediction associated with
each key 𝑥∗ over X∗ for which at least one training data point 𝑥
exists such that 𝛿∗ (𝑥) = 𝑥∗. For that, we aggregate the predictions
of all training data points 𝐷𝑥∗ with the same key 𝑥∗

𝐷𝑥∗ = {𝑥 | 𝛿∗ (𝑥) = 𝑥∗}

using an aggregation function 𝛼 suitable for the prediction task.
We show definitions for three possible versions of 𝛼 below. For
regression tasks, 𝛼 computes the mean prediction for all these train-
ing data points. For classification tasks, the predicted probabilities
(picking the class with the highest sum of probabilities across these
training data points) or the majority class among the predictions for
the training data points will be used, as shown below.We use 𝑝 (𝑥,𝑦)
for data point 𝑥 and class 𝑦 to denote the probability assigned by
the model for 𝑥 to belong to class 𝑦.

𝛼 (𝐷𝑥∗) =
∑
𝑥∈𝐷𝑥∗ 𝑦

|𝐷𝑥∗ |
(regression)

𝛼 (𝐷𝑥∗) = argmax
𝑦∈Y

|{𝑥 | 𝑥 ∈ 𝐷𝑥∗ ∧ 𝑦 = 𝑦}| (majority vote)

𝛼 (𝐷𝑥∗) = argmax
𝑦∈Y

∑︁
𝑥∈𝐷𝑥∗

𝑝 (𝑥,𝑦) (maximum probability class)

Insertion.We create the prediction table𝐷𝑃𝑇 with schema (X̄∗,Y):

𝐷𝑃𝑇 = {(𝑥∗, 𝛼 (𝐷𝑥∗)) | ∃𝑥 ∈ 𝐷𝑡𝑟𝑎𝑖𝑛 : 𝛿∗ (𝑥) = 𝑥∗}

Example 5 (Prediction Table). Figure 6 shows the process of
creating a prediction table by first embedding each data point in

𝐷𝑡𝑟𝑎𝑖𝑛 into X∗ using 𝛿∗ and then inserting a new record with the

aggregated prediction for 𝐷𝑥∗ into the table.

Runtime Complexity. Creating the prediction table is linear in
the size of the training data. For each training data point 𝑥 , we
can compute 𝑥∗ = 𝛿∗ (𝑥) in linear time in the number of features
in X∗ and constant time in the maximum number of bins for the

1834

Translate

sqm bathrooms balcony city type
100 3 NaN Berlin Altbau 300,000
90 4 F Berlin Altbau 250,000

Insert
balcony* bathrooms* sqm* city*

...
0 2 3 1 275,000

Figure 6: Building a prediction table for a regressor that pre-
dicts property price. Predictions for data points with the
same discretization are aggregated and inserted into 𝐷𝑃𝑇 .

features in X∗.2 Furthermore, we must aggregate the predictions
for each generated key 𝑥∗. The mean value for regression can be
computed in linear time in |𝐷𝑥∗ |. The same applies to the majority
vote and maximum total probability computation (by maintaining a
hashmap from the values of the categorical feature to a count/sum).
As each training data point exists in exactly one subset 𝐷𝑥∗ , the
total runtime of aggregating predictions is linear in |𝐷𝑡𝑟𝑎𝑖𝑛 |. As
we assume the predictions of the model on the training data to
be available as inputs, the overall runtime of creating a prediction
table is in𝑂 (𝑘 · 𝑁) where 𝑘 = |X∗ | and 𝑁 = |𝐷𝑡𝑟𝑎𝑖𝑛 |. Furthermore,
note that 𝑘 is typically a small constant. The runtime of building
an index over the prediction table depends on the type of index
structure we use, e.g., 𝑂 (𝑘 · 𝑁) for a hash index.

4.4 Standalone Index in Python
While there are many benefits to storing our data structure in a
database and using query processing for inference, our approach
can also be implemented using a standalone index structure. As
a proof of concept, we implement a trie data structure in Python
to record the aggregated prediction for every discretized training
data point. The nodes of the trie are implemented as dictionaries
mapping discretized values for one or more features (tries use prefix
compression) to a child node (intermediate nodes) or aggregated
prediction (leaf nodes). Implementing our index structure in a more
efficient language like C++ would be possible. Still, we choose
Python here for a more fair comparison as Python frameworks are
widely used for prediction and preprocessing [39, 43]. Our choice
of a trie data structure is based on the fact that lookup in a trie
is 𝑂 (𝑘) (for 𝑘 = |X∗ |) independent of the size of 𝐷𝑡𝑟𝑎𝑖𝑛 and that
common prefixes are compressed in a trie which is beneficial for
sparse indexes (Section 5.3).

5 INDEX-BASED INFERENCE
This section presents how to use a prediction table for inference.
In Section 5.1, we discuss transforming test data points into the
embedding space (features X∗) using SQL. Afterward, we demon-
strate how to predict the transformed test data points by joining
them with the prediction table in Section 5.2. Finally, we discuss
how to deal with sparsity in the prediction table, i.e., how to use
the prediction table for predictions for test data points 𝑥 for which
their key 𝑥∗ in X∗ after embedding does not exist in the prediction
table.
2For categorical features, we use a hashmap to store the mapping between categorical
values and bins.

 = {
sqm: 100,
bathrooms: 3,
balcony: NaN,
city: "Berlin",
type: "Altbau"
}

 = [25, 60, 85, 110, 180]
 = [1, 3]
 = [{F, NaN}, {T}]
 = [{"Bogotá", "Aachen"...}, {Berlin...},...]

balcony* bathrooms* sqm* city*
0 2 3 1

Figure 7: Embedding a test data point using 𝛿∗ using the bins
for each discretized feature in X∗.

Analog to the inference pipeline we are approximating with the
prediction table, we assume as input a set of test data points 𝐷𝑡𝑒𝑠𝑡 ,
which are stored in a database table. We are interested in optimizing
the inference latency 𝑡𝑖𝑛𝑑𝑒𝑥 using the prediction table, which is the
sum of the runtime for computing the embedding for the test data
points (𝑡𝑒𝑚𝑏𝑒𝑑) and the runtime of the join between the test data
and the prediction table (𝑡𝑙𝑜𝑜𝑘𝑢𝑝): 𝑡𝑖𝑛𝑑𝑒𝑥 = 𝑡𝑒𝑚𝑏𝑒𝑑 + 𝑡𝑙𝑜𝑜𝑘𝑢𝑝 .

5.1 Embedding Test Data Points
Consider the example from Figure 1 again. We want to predict the
price of a single test data point 𝑥 with features X. To embed 𝑥 , we
must implement 𝛿∗ to bin the values for each feature 𝑋 ∈ X for
which the corresponding discretized feature 𝑋 ∗ is in X∗.

Example 6. Figure 7 shows how data point 𝑥 is mapped into the

embedding space using 𝛿∗. For each feature𝑋 ∈ X such that𝑋 ∗ ∈ X∗,
we use the bins for 𝑋 to compute 𝑥∗ [𝑋 ∗]. For instance, 𝑥 [𝑠𝑞𝑚] = 100
is in the fourth bin for this feature ([85, 110]) and, thus, 𝑥∗ [𝑠𝑞𝑚∗] = 3.

Numerical Features. For a numerical feature 𝑋 , discretization
partitions the domain of the feature X𝑖 into 𝑘 = #𝐵𝑖 bins with
lower and upper bounds {𝑏𝑖 𝑗 = [𝑙𝑖 𝑗 , 𝑢𝑖 𝑗]}. To discretize a value 𝑣
of feature 𝑋 , we have to determine 𝑟 such that 𝑣 ∈ 𝑏𝑖𝑟 (as the bins
form a partitioning of the domain of𝑋 there exists exactly one 𝑟 for
any 𝑣). There are several options for how to implement this in SQL,
e.g., storing the bin boundaries sorted on their bounds in an array
and implementing a UDF that does a binary search over this sorted
array, creating a mapping table 𝑣 → 𝑟 (only feasible if the number
of distinct values of 𝑋 is low, e.g., exam grades), or using SQL’s CASE
statement to search through the bins linearly. As #𝐵𝑖 is typically
small (often less than 10 bins are sufficient), we implemented the
last option as it avoids the overhead of a UDF call and a join with a
mapping table. As the bin boundaries are contiguous, it is sufficient
to compare the value 𝑣 against each bin’s upper bounds (inclusive)
when the bins are sorted in ascending order of their upper (or
equivalently lower) bounds. The code generated for feature X𝑖 is:
CASE WHEN 𝑋𝑖 <= 𝑢𝑖1 THEN 1 ... WHEN 𝑋𝑖 <= 𝑢𝑖𝑘−1 THEN k-1

ELSE k END AS 𝑋𝑖

Categorical Features. For categorical features 𝑋𝑖 , each bin 𝑏𝑖 𝑗 is
a set of values. We store the bin membership in a mapping table
𝑣 → 𝑟 for features with many distinct values. Otherwise, we use
CASE statements using IN instead of inequalities:
CASE WHEN 𝑋𝑖 IN 𝑏𝑖1 THEN 1 ... WHEN 𝑋𝑖 IN 𝑏𝑖𝑘−1 THEN k-1

ELSE k END AS 𝑋𝑖

1835

balcony* bathrooms* sqm* city*
...
0 0 0 5 120,000
...
1 1 4 0 200,000
...

sqm bathrooms balcony city type
150 2 T Bogotá Apt
20 1 F Chicago Apt

balcony* bathrooms* sqm* city*
1 1 4 0
0 0 0 5

balcony* bathrooms* sqm* city*
1 1 4 0 200,000
0 0 0 5 120,000

=

Figure 8: Predicting the price of a property using the dis-
cretized data point and a prediction table.

Example 7 (Implementing 𝛿∗ in SQL). Consider X∗ = {𝑎, 𝑏}
where feature 𝑎 is numerical (domain [1, 20]) and and 𝑏 is categorical
(domain {𝑟𝑒𝑑, 𝑔𝑟𝑒𝑒𝑛, 𝑏𝑙𝑢𝑒}) and the bins for these features are:
𝐵𝑎 = {[1, 4], [5, 9], [10, 20]} 𝐵𝑏 = {{𝑟𝑒𝑑, 𝑔𝑟𝑒𝑒𝑛}, {𝑏𝑟𝑜𝑤𝑛}}

The SQL query for embedding the test data points is shown below.

SELECT CASE WHEN a < 5 THEN 0 WHEN a < 10 THEN 1 ELSE 2

END AS a,

CASE WHEN b IN ['red','green '] THEN 0 ELSE 1

END AS b

FROM dbtest;

Runtime Complexity. Assuming that the maximum number of
bins 𝑏 for each feature in X∗ and the number of selected features
𝑘 = |X∗ | is bounded by some constant, the cost of embedding is in
𝑂 (1) for each data point. Thus, the overall runtime of embedding a
test dataset with 𝑁 = |𝐷𝑡𝑒𝑠𝑡 | is linear (𝑂 (𝑁)). If we consider 𝑏 and
𝑘 as inputs, we get an overall runtime of 𝑂 (𝑘 · 𝑏 · 𝑁).

5.2 Inference as Join
Given 𝐷𝑡𝑒𝑠𝑡 stored as a table in the database, inference with the
prediction table amounts to an equi-join on X∗ between 𝐷𝑡𝑒𝑠𝑡 after
discretization and the prediction table.

Example 8 (Inference with Joins). Figure 8 shows the inference
process for two test data points using 𝛿∗ and the prediction table 𝐷𝑃𝑇

for the example introduced in Figure 1. First, the tuples are discretized

using 𝛿∗. Then, the discretized test table is joined with the prediction

table 𝐷𝑃𝑇 on X∗ to compute the predictions.

Runtime Complexity. Let𝑀 = |{𝑥∗ | ∃𝑥 ∈ 𝐷𝑡𝑟𝑎𝑖𝑛 : 𝛿∗ (𝑥) = 𝑥∗}|,
i.e.,𝑀 is the number of distinct points generated by embedding all
training data points or equivalently the size of prediction table. As
before, let𝑁 = |𝐷𝑡𝑒𝑠𝑡 |. Then, the inference runtime after embedding
is the cost of an equi-join on X∗ over two tables of size 𝑁 and𝑀
where X∗ is a key in prediction table. Thus, the size of the join
result is bound by𝑚𝑎𝑥 (𝑁,𝑀). If the smaller of the two tables fits
into memory, then the DBMS will most likely use a hash join with
runtime 𝑂 (𝑁 +𝑀). That is, unless 𝑁 is sufficiently small such that
an index nested-loop join with runtime 𝑂 (𝑁 · log𝐵 𝑀) (assuming
a B-tree with branching factor 𝐵) or 𝑂 (𝑁) (assuming a hash index)
is more efficient (the better asymptotic behavior outweighs the
significantly higher constant factor of an index lookup). If both
tables do not fit into memory, then we get another multiplicative

logarithmic factor using a partition hash-join or merge join with
multiple merge phases. So far we assume that every lookup in
prediction table is successful. We defer the discussion on how to
deal with failed lookups caused by sparsity to the next subsection.

5.3 Dealing With Sparsity
One potential issue with our approach is the sparsity of the predic-
tion table, i.e., if there are many data points in the selected feature
space X∗ that are insufficiently covered by training data. For such
a data point 𝑥∗, we have no (or very few) training data points 𝑥
for which 𝛿∗ (𝑥) = 𝑥∗ and, thus, have insufficient information to
make an informed prediction for 𝑥∗. However, the discretization
technique we employ tries to ensure that each bin of a discretized
feature covers at least a certain fraction of training data points.
Additionally, we do not use all discretized features but select a
subset X∗ that is predictive. It is unlikely that features in X∗ are
highly correlated with each other as once our heuristic has chosen
a feature 𝑋𝑖 , we are unlikely to include a feature 𝑋 𝑗 that is highly
correlated with 𝑋𝑖 as this would not lead to a significant improve-
ment in prediction quality (IV). Furthermore, sparsity is only a
problem if the test data covers a lot of sparse regions. This is only
possible if a significant difference exists between the training and
test data distributions. However, most ML models perform poorly
when there is a significant distribution shift, i.e., it is likely that
the original model we are approximating would already perform
poorly on this test data.

Dealing with sparsity through aggregation. Even though spar-
sity is unlikely to be a problem, we developed a technique for mak-
ing predictions on sparse regions should the need arise. To compute
a prediction for a data point 𝑥 over X for which 𝑥∗ = 𝛿∗ (𝑥) does
not exist in our data structure, we aggregate the predictions of data
points 𝑥∗

𝑘
that agree with 𝑥∗ on a prefix of the selected features.

We use X∗ [𝑖] to denote the first 𝑖 features in X∗. Recall that 𝑥 [X]
denotes the projection of 𝑥 on X. We use I(𝑥∗) = ⊥ to denote that
𝑥∗ is not in the prediction table. If I(𝑥∗) = ⊥, then we identify
the largest 𝑖 such that there exists at least one data point 𝑥∗

𝑘
with

I(𝑥∗
𝑘
) ≠ ⊥ and 𝑥∗

𝑘
[X∗ [𝑖]] = 𝑥∗ [X∗ [𝑖]]. As shown below, we then

aggregate (using 𝛼 as during prediction table construction) the pre-
dictions for all keys in the prediction table that match this prefix
to compute the prediction 𝑦∗ for 𝑥∗. That is, we further aggregate
the approximated predictions over a larger region of the feature
space X∗ using the same rationale that underlies our approach for
approximating models.

𝑦∗ = 𝛼 ({𝑥∗
𝑘
| 𝑥∗

𝑘
[X∗ [𝑖]] = 𝑥∗ [X∗ [𝑖]]})

for 𝑖 = argmax
𝑗

∃𝑥∗
𝑘

: 𝑥∗
𝑘
[X∗ [𝑗]] = 𝑥∗ [X∗ [𝑗]] ∧ I(𝑥∗

𝑘
) ≠ ⊥

Alternatively, to create a prediction for 𝑥∗, we could generate
synthetic training data points 𝑥 such that 𝛿∗ (𝑥) = 𝑥∗ and create a
new entry for 𝑥∗ by aggregating the predictions of the model 𝑓 for
these data points on the fly. Note that this would require several
calls to the model 𝑓 , which only pays off if we reuse the prediction
for 𝑥∗ in the future.

1836

6 RELATEDWORK
This section presents related work on in-DBMS machine learning
(ML). Earlier studies coupled DBMSs with data-mining UDFs [1, 37,
46, 48]. Recent research improved UDF performance using column
stores and vectorized operations [44]. Another line of work tran-
spiles Python code to SQL to create a relational representation of
ML pipelines [26, 27, 50]. In contrast, InferDB replaces complex in-
ference pipelines with a lightweight embedding and index lookup,
resulting in significant performance benefits and tighter DBMS
integration.

Another important line of work extends the DBMS with native
operators for training and inference [4, 11, 14, 53]. These approaches
need more support for complex customized ML transformations
as they require implementing new operators in the DBMS. Similar
to these approaches, InferDB leverages native database operations.
However, InferDB only uses technology that is readily available
in all DBMS, i.e., it does not require new operators to be imple-
mented inside the database, which is an essential advantage given
the prevalence of one-off transformations in preprocessing [43]
and the constant evolution of learning algorithms. Furthermore, in
InferDB, users can write their processing, training, and inference
pipelines using the tools they are already familiar with.

Approaches collocate DBMS engines and ML runtimes, e.g., Mi-
crosoft SQL Server/ONNX Runtime [33], Google BigQuery/Ten-
sorFlow [15], Amazon Redshift/SageMaker [2], and PostgresML
Postgres/Scikit-learn [41]. This approach enables relational and ML
operators to integrate into complex predictive analytics pipelines.
Recent work explores cross-optimization opportunities in such
pipelines [39]. Similarly, InferDB leverages optimization opportuni-
ties involving predictions in analytical pipelines such as predicate
and aggregate push-downs and index/table scans.

Recently, there has been work on enhancing inference perfor-
mance for XGBoost [6], LightGBM [25], and Scikit-learn [51] by
rewriting pipeline code to use vector instructions. Recent research
[21] in the brain-computer interface community has reported im-
provements of around 12x when using Intel’s oneAPI data analytics
library (oneDAL) [36] that uses AVX-512 instructions on Intel’s
hardware to optimize ML pipelines.

Our work resembles similarity (nearest-neighbor) search queries
and k-nearest-neighbor (kNN) classification and regression [7, 16].
At inference time, kNN methods find the 𝑘 nearest neighbors based
on a similarity score. Then, a majority vote (classification) or other
aggregate of the target feature (regression) determines the predic-
tion. To accelerate neighbor search, kNN models build k-d trees [3]
or ball trees [35] to organize the dimensions of the training in-
stances. The number of training instances, 𝑁 , dominates the com-
plexity of querying a k-d tree 𝑂 (𝑁 𝑙𝑜𝑔 𝑁) [7]. More efficient (ap-
proximate) methods are known, e.g., many approximate kNN ap-
proaches utilize locality-sensitive hashing [8, 18, 38, 40]. The right
choice of 𝑘 determines the generalization ability of kNN meth-
ods [52]. For small 𝑘 , kNN methods tend to overfit the training
data [52]. InferDB uses similarity-based predictions, but instead
of storing training data and finding neighbors at inference time,
it discretizes the feature space and creates an index with the |X∗ |
most relevant features, storing aggregate predictions for |𝑥∗ | unique
combinations of X∗ selected features. Querying InferDB’s index

has a complexity of 𝑂 (|X∗ |) if using a trie, 𝑂 (𝑙𝑜𝑔 |X∗ |) if using a
b-tree or𝑂 (1) if using a hash index. Since, typically,𝑁 >> |X∗ | and
𝑁 >> |𝑥∗ |, having a structure independent of the number of train-
ing instances is very beneficial for performance. With this, InferDB
avoids neighbor search at runtime and, even more importantly,
leverages the generalization ability of more complex preprocess-
ing pipelines to prevent overfitting to the training data. As we
demonstrate in Section 7.6, this, in combination with the feature
selection and discretization techniques employed by InferDB, leads
to significant improvements in prediction accuracy compared to
kNN.

7 EXPERIMENTAL EVALUATION
Wenow evaluate the performance of InferDB and compare it against
baselines considering different setups, tasks, datasets, and models.

Setup & Workloads. We evaluate InferDB on a server with an
AMD-EPYC-7742 2.25GHz CPU (10 cores used), 80 GiB RAM, and
8x3.2 TB SAS SSDs (RAID5). We use two datasets per task (re-
gression, classification, multi-label classification), have designed
pipelines, and have performed hyperparameter tuning for each. For
all tasks, we evaluate common [43] types of models: linear regres-
sion models (LR), neural networks (NN), nearest neighbor (k-NN)
models, and decision tree-based models, including gradient boost-
ing frameworks XGboost [6] and LightGBM [25]). We measure the
error using root mean squared log error (RMSLE) [23] for regression
tasks and recall, precision, and F1 scores for classification tasks.
New York City Taxi Trip Duration (NYC-rides) [22] contains
1.5 million taxi rides with 10 categorical and numerical features.
Based on a Kaggle competition [22], we predict the trip duration (re-
gression task). We design a pipeline based on the competition’s top-
performing solutions. PM2.5 Concentrations (Pollution) [12]
is a time series dataset with 106 million records (daily pollution
estimates) and 9 features. We use lagged and moving average fea-
tures to predict the mean concentration (regression task). We use
different train/test splits to evaluate the scalability of our solution
(Section 7.6). Credit Card Fraud (Fraud) [42] contains 284, 807
credit card transactions. The task is to predict fraudulent transac-
tions (binary classification). Only 0.172% of the instances are fraud-
ulent, making the classification problem challenging. The dataset
contains 29 numerical features. Hit Songs (Hits) [32] contains
142, 963 songs. The task is to predict if a song is a hit based on play
count (classification task). The dataset contains 413 numerical and
categorical features from acoustic properties and song metadata.
Rice Varieties (Rice) [5] contains 75, 000 images of rice (106 nu-
merical features). The task is to classify the rice type (multi-label
classification, 5 classes). MNIST (Digits) [29] contains 70, 000 im-
ages of handwritten digits (multi-label classification, 10 classes).
The images are 28x28 pixels (784 features). We use 70% of the data
for training for all data sets unless stated otherwise.

7.1 Evaluated Systems
We compare the standalone version of InferDB with an inference
pipeline using Scikit’s implementations of preprocessing and learn-
ing algorithms. For the in-database version, we deploy InferDB in
Postgres and compare it against a pure SQL implementation of the

1837

Table 1: Average training and single instance inference latencywith stddev. (5 runs) for theML pipeline and InferDB (standalone).

Dataset Model ML Training Runtime [s] ML Pipeline InferDB Training Runtime [s] InferDB
Preprocessing Learning End-to-End 𝑡𝑖𝑛𝑓 𝑒𝑟𝑒𝑛𝑐𝑒 [ms] 𝑡𝑙𝑒𝑎𝑟𝑛−𝑒𝑚𝑏𝑒𝑑 𝑡𝑓 𝑒𝑎𝑡𝑢𝑟𝑒−𝑠𝑒𝑙 𝑡𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑒 𝑡𝑏𝑢𝑖𝑙𝑑−𝑖𝑛𝑑𝑒𝑥 𝑡𝑖𝑛𝑑𝑒𝑥 [ms]

NYC-rides
LR 998 ± 10 1.0k ±13 2.0k ±10 621 ±479 1.00 ± 0.2 2.0 ± 0.1 14.0 ± 2.0 17.0 ± 2.0 8.4 ± 0.04
NN 996 ± 14 1.4k ±80 2.4k ±10 597 ±472 0.90 ± 0.2 2.8 ± 0.2 14.3 ± 0.8 18.0 ± 1.0 8.4 ± 0.04
LGBM 998 ± 13 1.0k ±70 2.0k ±10 617 ±479 0.98 ± 0.2 4.6 ± 0.1 17.0 ± 0.5 22.5 ± 0.6 8.3 ± 0.00

Fraud
LR 0.4 ± 0.01 4 ± 0.1 4.4 ± 0.1 13 ± 1 0.6 ± 0.1 1.2 ± 0.2 13 ± 1 15 ± 1.3 0.02 ± 0
NN 0.4 ± 0.00 9 ± 0.5 9.3 ± 0.4 20 ± 1 0.6 ± 0.2 3.0 ± 1.7 14 ± 2 18 ± 4.0 0.02 ± 0
LGBM 0.3 ± 0.00 7 ± 5.0 7.0 ± 5.0 50 ± 1 0.6 ± 0.2 4.3 ± 0.3 17 ± 1 22 ± 1.2 0.02 ± 0

Hits
LR 78 ± 0.7 079 ± 0.7 156 ± 01.5 40 ± 2 7 ± 0 404 ± 3 524 ± 4.0 935 ± 6.0 0.27 ± 0
NN 80 ± 4.0 101 ± 9.0 181 ± 11.0 42 ± 1 7 ± 0 403 ± 1 524 ± 3.0 934 ± 4.0 0.27 ± 0
LGBM 6 ± 1.0 026 ± 3.0 032 ± 03.0 51 ± 7 7 ± 1 407 ± 2 527 ± 0.6 941 ± 1.7 0.28 ± 0

Digits
LR 2.4 ± 0.3 1.8𝑘 ± 025 1.8𝑘 ± 025 18 ± 0.1 1.9 ± 0.2 717 ± 04 795 ± 08 1.5k ±11 0.18 ± 0
NN 2.3 ± 0.1 0590 ± 155 0592 ± 155 20 ± 2.0 2.0 ± 0.4 718 ± 14 799 ± 16 1.5k ±30 0.19 ± 0
LGBM 2.1 ± 0.1 0099 ± 008 0101 ± 008 14 ± 3.0 2.0 ± 0.2 712 ± 05 790 ± 05 1.5k ±10 0.17 ± 0

inference pipeline, an implementation using PostgresML (PGML
2.0) [41] a machine learning extension for Postgres.

Prediction Table and Index.We store the prediction table in Post-
gres, and, unless stated otherwise, we use trie indexes. In Section 7.6
we compare several index structures.
SQLModel Following [26, 50], we generate SQL code for the prepro-
cessing operators. We create a table storing the model’s parameters.
For LR, the parameter table has two columns: an id for the feature
(primary key) and the feature’s weight. For the NN, we use the
approach of Schüle et al. [49] to transform the weight matrix of
each layer into a relational representation. We create a table with
four columns: a layer identifier 𝑙 , an identifier 𝑖 for a neuron (unique
within the layer), an identifier 𝑗 for a neuron in the next layer, and
the weight𝑤𝑖 𝑗 of the connection between two neurons 𝑖 (at layer
𝑙) and 𝑗 (at layer 𝑙 + 1). We use id 𝑖 = −1 to store the biases. The
primary key of this table is (𝑙, 𝑖, 𝑗). To compute a prediction for LR,
we join the preprocessed data with the parameter table to perform
the dot product between the data point features and the weights.
For NNs, we join the preprocessed data with the NN’s parameter
table and perform the subsequent activations.
PGML integrates Scikit’s preprocessing operators and algorithms
into Postgres. PGML reduces data transfer and duplication between
the database and ML runtime operating on a shared memory space.

7.2 End-to-End Training Runtimes
Table 1 shows the breakdown of the training runtime for the ML
pipelines and InferDB on four datasets. InferDB’s time to create an
index (𝑡𝑏𝑢𝑖𝑙𝑑−𝑖𝑛𝑑𝑒𝑥) is dominated by 𝑡𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑒 , which, in turn, is af-
fected by three factors: the number of selected features, the number
of unique keys after discretization, and the number of data points
to aggregate. For the Digits dataset, the runtime for 𝑡𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑒 and
𝑡𝑓 𝑒𝑎𝑡𝑢𝑟𝑒−𝑠𝑒𝑙 is almost the same. This is because the Digits dataset
has many features (780), and InferDB selects a relatively large num-
ber of features (32), resulting in many unique keys. For Fraud,
InferDB creates less than 8 bins for each of the selected features.
Thus, the index population only requires aggregating around 140k
predictions by the distinct observed combinations (∼200) of the
selected featuresX∗ in 𝐷𝑑𝑖𝑠𝑐 . The classes in Fraud are highly imbal-
anced, resulting in few distinct combinations representing changes
in the prediction function 𝑓 .

Table 2: F1, Recall (R), Precision (P), RMSLE (Err) of InferDB
and top-3 most effective ML models across different datasets

Dataset Model ML Pipeline InferDB
F1 R P Err F1 R P Err

NYC-rides
LGBM - - - 0.37 - - - 0.46
XGB - - - 0.38 - - - 0.45
NN - - - 0.40 - - - 0.45

Pollution
XGB - - - 0.27 - - - 0.27
LGBM - - - 0.27 - - - 0.28
DT - - - 0.42 - - - 0.58

Fraud
XGB 0.94 0.91 0.98 - 0.90 0.90 0.90 -
LGBM 0.94 0.93 0.94 - 0.90 0.90 0.90 -
NN 0.92 0.90 0.93 - 0.90 0.90 0.90 -

Hits
XGB 0.98 0.98 0.98 - 0.97 0.97 0.97 -
LGBM 0.98 0.98 0.98 - 0.97 0.97 0.97 -
DT 0.97 0.97 0.97 - 0.97 0.97 0.97 -

Digits
XGB 0.98 0.98 0.98 - 0.70 0.70 0.70 -
LGBM 0.98 0.98 0.98 - 0.70 0.70 0.70 -
LR 0.91 0.91 0.91 - 0.70 0.70 0.70 -

Rice
XGB 0.99 0.99 0.99 - 0.94 0.94 0.94 -
LGBM 0.99 0.99 0.99 - 0.94 0.94 0.94 -
LR 0.99 0.99 0.99 - 0.94 0.94 0.94 -

7.3 Standalone Index Inference Runtime
Table 1 also shows the average inference latency for a single data
point for the inference pipeline and InferDB. InferDB (𝑡𝑖𝑛𝑑𝑒𝑥) out-
performs the inference pipeline (𝑡𝑖𝑛𝑓 𝑒𝑟𝑒𝑛𝑐𝑒) by ∼ 2, ∼ 3, and ∼ 2
orders of magnitude for NYC-rides, Fraud, and Digits, respectively.
Because of the complex preprocessing pipeline, The inference la-
tency for the ML pipeline for the NYC-rides dataset is significantly
higher than for Fraud and Digits.

7.4 Effectiveness
Table 2 shows the prediction accuracy achieved by the competi-
tors. InferDB achieves nearly equivalent accuracy to the three most
accurate ML pipelines for the Pollution, Hits, and Rice datasets.
For Fraud and NYC-rides, InferDB’s results are competitive with
a slight loss in accuracy compared to the ML pipelines. However,
InferDB is significantly less accurate for the Digits dataset. This is
because InferDB selects 32 features to create the index, leading to a
sparse embedding space. When no match for a datapoint is found,

1838

Table 3: Average inference latency and size of InferDB and most effective ML model for different datasets in Postgres (5 runs)

Dataset 𝐷𝑡𝑒𝑠𝑡 Model ML Inference Latency Breakdown[ms] ML InferDB Inference Latency Breakdown[ms] InferDB
𝑡𝑝𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑡𝑝𝑟𝑒𝑑𝑖𝑐𝑡 𝑡𝑖𝑛𝑓 𝑒𝑟𝑒𝑛𝑐𝑒 Size[MB] 𝑡𝑒𝑚𝑏𝑒𝑑 𝑡𝑙𝑜𝑜𝑘𝑢𝑝 𝑡𝑖𝑛𝑑𝑒𝑥 Size[MB]

NYC-rides 438k LGBM 11k ±119.00 26k ±05k 38k ±05k 13.00 450 ±28.0 2k ±43.00 2.5k ±33.0 13.00
Pollution 13M XGB 12.6k ±146.00 473k ±06k 486k ±06k 01.08 4k ±87.0 4k ±53.00 8k ±75.0 0.07
Fraud 85k XGB 70 ±000.86 4k ±005 4k ±005 00.61 65 ±19.0 42 ±13.00 108 ±32.0 0.21
Hits 14k XGB 183 ±017.00 1.2k ±318 1.4k ±335 05.50 42 ±00.5 7.8 ±00.25 50 ±00.7 0.04
Digits 7k XGB 93 ±021.00 2k ±065 2.1k ±084 07.60 25 ±01.0 3.8k ±08.00 3.8k ±09.0 9.12
Rice 22k XGB 124 ±002.00 1.3k ±004 1.4k ±005 00.60 28 ±00.4 82 ±00.20 110 ±00.6 0.40

predictions are aggregated on-demand as explained in Section 5.3.
The sparse index also affects InferDB’s performance, as will be dis-
cussed in Section 7.6. We elaborate on InferDB’s current limitations
to support sparse unstructured data tasks in Section 7.7.

7.5 Database Implementation

Storage Size. Table 3 reports the sizes of InferDB’s prediction
table (and its index) and the most effective ML pipelines. InferDB’s
prediction table consumes less space than the ML pipelines except
for the XGBoost model for the Digits dataset and the LightGBM
model for the NYC-rides, which have similar storage consumption
to InferDB. This is because for the sparse input of Digits (28x28
pixels/784 features), InferDB selects 32 features to create the index.
This results in over fifty million keys in InferDB’s prediction table.
On the other hand, for the Hits dataset, where InferDB selects only
two features out of 413, the prediction table and its index consume
only 0.05 MB. In comparison, the LightGBM ML pipeline uses ∼
140x more storage due to the large number of estimators (decision
trees) required to achieve high effectiveness.

Batch Inference. Table 3 shows a breakdown of batch inference
latency for InferDB and the most effective ML pipelines. InferDB
consistently outperforms the competitors on all evaluated datasets
except for Digits. This is because of the additional aggregation
cost for on-demand predictions for data points not in prediction
table. When InferDB chooses a small subset of features to create the
index, the embedding dominates the end-to-end inference latency,
as is the case for the Hits and Fraud datasets where InferDB selects
only 2 out of 413 and 4 out of 30 features, respectively. For the
ML pipelines, latency is dominated by the prediction step. This
is because of the relatively large number of estimators for the
XGBoost and LightGBM models. InferDB predicts 13M records in
approximately 8 seconds while XGboost takes around 500 seconds.
More importantly, as shown in Table 2, InferDB achieves almost
the same accuracy as the best model for the Pollution dataset. In
summary, InferDB consistently outperforms the competitors except
when the prediction table is too sparse.

7.6 Micro-Benchmarks

Sparsity Analysis. We next analyze the impact of sparsity on the
performance of InferDB. The volume of the embedding space grows
exponentially in the number of features in X∗. Thus, adding more
features to the index introduces sparse regions, i.e., data points 𝑥∗
where I(𝑥∗) = ⊥. Sparsity can affect the performance of InferDB
when the index misses the keys of test data points. Consider a test
data point 𝑥 with 𝑥∗ = 𝛿∗ (𝑥). As explained in Section 5.3, when

I(𝑥∗) = ⊥, we fall back to compute predictions on demand. For
that, we perform a prefix search to find all keys that share the
longest prefix with 𝑥∗ that exists in the index and then compute
the prediction for 𝑥∗ on the fly using the aggregating function 𝛼 .

Figure 9 shows the impact of adding more features to the index
for the NYC-rides dataset. For this experiment, we added features
based on IV. As more features are added to the index, the size of
the embedded space grows exponentially (limited by the training
data size). To measure the sparsity of the index and its impact on
prediction over the test data, we define the fill-factor (out of all
possible data points in the embedding space how many are covered
by the index) and the test-miss-rate (the fraction of test data points
𝑥 such that I(𝛿∗ (𝑥)) = ⊥) as:

fill-factor =
#𝐾𝑒𝑦𝑠 𝑖𝑛 𝑖𝑛𝑑𝑒𝑥
𝑃𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑘𝑒𝑦𝑠

test-miss-rate =

∑
𝑥∈𝐷𝑡𝑒𝑠𝑡

1[I(𝛿∗ (𝑥)) = ⊥]
|𝐷𝑡𝑒𝑠𝑡 |

The fill-factor decreases as the embedded space size increases,
and a smaller fraction of all possible data points in the embedding
space are observed during training. Note the drop in fill-factor when
adding a fourth feature to the index. This is because the features
with higher predictive power (IV) also have more bins.

The test-miss-rate remains low until 7 features are added. Al-
though the fill-factor is low with six features in the index, the sparse
regions are rarely queried, confirming our suspicion that sparsity
is less of a problem if training and test distributions are similar. In
summary, InferDB’s discretization and careful selection of features
create a compact index where sparse regions are rarely queried.
Nonetheless, even if sparsity becomes an issue, we can gracefully
switch to prefix search to provide on-the-fly predictions for keys
not in the index.

Index Type Selection. We measure inference latency for index
types natively supported by Postgres: B-tree, hash index, and tries
using SP-GiST [13]. We vary the size of the prediction table and the
size of the test dataset 𝐷𝑡𝑒𝑠𝑡 . The index types have no significant
performance difference if the prediction table is not too sparse
(Section 5.3). Figure 9.b shows the prediction latency (only the
prediction step) for 1,000 test data points using different index types
varying the size of the prediction table. The choice of index is only
relevant if the test-miss-rate is high, as the index can perform the
prefix search and return a prediction by aggregating the predictions
of data points that share the same prefix. As shown in Figure 9.a, the
trie index performs better than the B-tree and hash index for prefix
search. The trie’s page layout optimizes key collocation of keys with

1839

Table 4: Avg. prediction latency (± standard deviation) vary-
ing test/prediction table size and join algorithms (5 runs)

Features in index |𝐷𝑡𝑒𝑠𝑡 | Hash join Index-nested loop join
(|𝐷𝑃𝑇 |) (% of |𝐷𝑃𝑇 |) P.latency [ms] P.latency [ms]

1 (< 0.001%) – 0.06 ± 0.004
6 10 (< 0.01%) – 0.41 ± 0.05

(13, 853 paths) 100 (0.7%) 4.01 ± 1.21 3.37 ± 0.69
1, 000 (7%) 21.12 ± 6.1 19.08 ± 3.2
1 (< 0.001%) – 0.32 ± 0.04

10 100 (0.04%) – 3.2 ± 0.12
(217, 929 paths) 10, 000 (4.6%) 2.8k ± 152 2.7k ± 18

100, 000 (46%) 27k ± 340 26k ± 180

the same prefix, making it efficient to fetch all instances that share
the same prefix. On the other hand, a prefix search with a B-tree
can span several pages because its page layout is not optimized for
prefix search. If the sparsity is high, i.e., low fill-factor and high
test-miss-rate, a prefix search may span several pages, resulting in
lower performance as shown in Figure 9.

1 2 3 4 5 6 7 8 9 10
Features in Index

0

50

100
a) Sparsity

Fill-factor [%]
Miss-rate [%]

1 2 3 4 5 6 7 8 9 10
Features in Index

101

103

105

Pr
ed

ic
ti

on
La

te
nc

y
[m

s]

b) Index performance - 1k instances

B-tree
Hash
Trie

Figure 9: Fill-factor and test-miss-rate for an increasing num-
ber of features in the index and average prediction latency
for 1,000 instances using different indexes.

Prediction Table and Test Table Sizes. We test the performance
and usage of the index on prediction table compared to a full table
scan on 𝐷𝑃𝑇 by varying the sizes of 𝐷𝑡𝑒𝑠𝑡 and 𝐷𝑃𝑇 for the NYC-
rides dataset. Table 4 shows the average inference latency under
different query plans. Even if 𝐷𝑃𝑇 is small (∼10𝑘 records), the index
is only used when 𝐷𝑡𝑒𝑠𝑡 ’s size is less than 1% of 𝐷𝑃𝑇 because of the
higher per tuple cost of index lookup compared to a full table scan.
To compare the performance of a full table scan with an index scan
when 𝐷𝑡𝑒𝑠𝑡 is large and 𝐷𝑃𝑇 is small, we forced the use of the index
(Postgres’s CPU index tuple cost and random page cost parameters).
As shown in Table 4, the performance ranges overlap, but the mean
inference latency when scanning the index is slightly better than
when scanning 𝐷𝑃𝑇 . If 𝐷𝑃𝑇 is large enough, an index scan is used
when 𝐷𝑡𝑒𝑠𝑡 ’s size is 5% of 𝐷𝑃𝑇 ’s size or less. As shown in Table 4,
even when 𝐷𝑡𝑒𝑠𝑡 is around 50% of 𝐷𝑃𝑇 , the performance is better
when using the index. In summary, the index-nested loop join plan
is faster even for small prediction and test tables.
Feature Selection. We compared our greedy search feature selec-
tion solution with a brute-force search on the Fraud dataset, which
has 29 numerical features. The sizeΩ of the search space for possible
candidates forX∗ consists of all possible permutations of 𝑘 features
(index depth is 𝑘) for 𝑘 ∈ [1, |X|]. Thus, Ω =

∑29
𝑘=1

29!
(29−𝑘)! > 1030 .

Table 5: Feature selection strategy performance

Search Selected IV Size [B] Runtime [s]strategy features

Greedy {3, 9, 15, 16} 7.7 63, 516 0.8
Brute-force {3, 15, 16, 2} 7.9 50, 868 13.4k

Table 6: Avg. inference latency, std. dev. and error for InferDB
and LightGBM for different 𝐷𝑡𝑒𝑠𝑡 in Postgres (5 runs)

𝐷𝑡𝑒𝑠𝑡 Method Inference Latency[s] RMSLE

13M PGML-LightGBM 484 ± 6 0.27
InferDB 8.5 ± 0.04 0.28

26M PGML-LightGBM 985 ± 16 0.26
InferDB 20 ± 0.6 0.28

Therefore, we constrained the search space to the maximum index
depth found by the greedy search algorithm, which resulted in a
constrained search space of Ω𝑘 =

∑4
𝑘=1

29!
(29−𝑘)! = 592, 789 permu-

tations. The table shows the solutions’ time (in seconds) and quality
(IV score) for the two search strategies. Both select the third feature
as the root for the index, but the greedy search finds a competitive
solution at a significantly lower cost than the brute-force search.
The solutions share 3 out of 4 selected features, explaining their
similar IV values. The difference in storage consumption is due to
the greedy solution including a feature with four bins (feature 9),
while the brute force includes one with only two bins (feature 2).
The greedy search shows a good tradeoff between predictive power
and feature selection time.
Using Inference in Analytical Queries.We analyze InferDB’s
integration with inference-based queries using a query that filters
prediction results for the NYC-rides dataset using a threshold on
the trip duration (prediction result) on the NYC-rides dataset. This
kind of query can be relevant when investigating the outcomes
of a model for a specific subset of the data, e.g., For which records

in NYC-rides’s 𝐷𝑡𝑒𝑠𝑡 does the model predict a trip duration of less

than 𝑥 seconds. Pushing down filters on database predicates can
benefit query plans involving join-based inference in InferDB. This
is impossible when using a model for predictions since we need to
compute the predictions before filtering them. In Figure 10, the aver-
age inference latency for predicting 350k instances in the NYC-rides
dataset is shown, with varying selectivity on 𝐷𝑃𝑇 by changing the
threshold on the predicted trip duration. Competitors that compute
predictions for all data points and filter afterward do not benefit
from a more restrictive filter. Thanks to predicate push-down, when
the selectivity of 𝐷𝑃𝑇 is around 1%, InferDB shows a 15% decrease
in inference latency compared to a selectivity of 99%. In summary,
InferDB enables analytical queries that involve prediction to benefit
from standard query optimization techniques.
Scalability. In this experiment, we varied the size of 𝐷𝑡𝑒𝑠𝑡 . We
measured the inference latency and error for the Pollution dataset
to evaluate InferDB’s performance and effectiveness in handling
large data volumes. We used one year’s (2016) worth of data (around
26 million records) to train the model. Then, we measured inference
latency and error on datasets containing six months’ worth of data
(13million records) and one year’s worth of data (26million records).

1840

1 25 50 75 99
102

103

104

I.
La

te
nc

y
[m

s]

LR
PGML SQL Model InferDB

1 25 50 75 99
102

103

106

NN

Selectivity [%]

Figure 10: Average inference latency (± standard deviation)
for predicting 350k instances of the NYC-rides dataset vary-
ing the query’s selectivity on 𝐷𝑃𝑇 (3 runs)

Table 7: RMSLE of InferDB, kNN and LightGBM for the NYC-
rides dataset

LightGBM InferDB InferDB-training-labels kNN kNN-sel

RMSLE 0.38 0.46 0.6 0.69 0.57

The results shown in Table 6 demonstrate that InferDB achieves
almost the same accuracy as a complexMLmodel (LightGBM)while
delivering two orders of magnitude better performance.
Generalization. We compare InferDB against a version of our sys-
tem that stores training labels instead ofmodel predictions (InferDB-
training-labels) and kNN using all features or the same features
selected by our approach (kNN-sel). The idea is to evaluate the im-
pact of storing a model’s predictions in the prediction table rather
than directly using the training data labels. We use the NYC-rides
dataset, known for containing outliers in the trip distances and
duration and missing values in the augmented traffic features. We
report the RMSLE for a complex ML pipeline with the LightGBM
regressor as a baseline. As shown in Table 7, InferDB outperforms
kNN. This is due to InferDB’s feature discretization and selection,
which effectively groups similar data points for more accurate and
stable prediction outcomes. InferDB is most effective when aggre-
gating predictions made by a model on preprocessed data. This
takes advantage of complex ML pipelines that generalize and avoid
overfitting. Incorporating a preprocessing pipeline and a model
reduces the impact of outliers and low-quality data on InferDB’s
predictions.

7.7 Discussion
InferDB consistently outperforms ML pipelines for regression, bi-
nary classification, and multi-label classification tasks. It achieves
two orders of magnitude improvement in inference latency on aver-
age compared to state-of-the-art ML runtimes such as XGboost [6]
and LightGBM [25] while preserving the ability to approximate
the predictions of complex ML models with a low loss in accu-
racy. However, as demonstrated in Table 2 and Table 3, InferDB’s
performance and effectiveness are affected by sparsity. A larger em-
bedding space can decrease performance and prediction accuracy

by reducing the chances of finding an index entry for a test data
point. This is especially problematic for computer vision tasks and
high-dimensional text embeddings. In our tests, InferDB had the
most significant accuracy drop in the digit recognition task. We
also do not consider feature correlations, resulting in suboptimal
selection when highly correlated features have high IV values.

In future work, we will rethink important aspects of InferDB to
address these challenges. For instance, we may allow for a certain
amount of feature engineering in the feature selection step, e.g.,
allow polynomial feature transforms. We could also generate syn-
thetic training data points on the fly using the model’s predictions
as labels to create prediction table entries for missing keys when
requested. This would allow our index to adapt to user requests
over time.

InferDB’s current design does not exploit that pipelines and
prediction tasks may share common data or preprocessing steps.
To exploit inter-index preprocessing, the discretization of features
involved in different pipelines needs to consider the correlations
of the involved features with the different targets. Finding an ap-
propriate discretization that can be shared across multiple indexes
can be difficult. To reduce storage consumption, InferDB’s design
should consider feature transformations, as mentioned above, that
effectively preserve predictions in the discretized space.

We defer maintenance of our data structures under updates to
future work. We envision three scenarios requiring different update
strategies: (1) If the ranges of the bins remain the same, we can
maintain aggregates incrementally and monitor distribution drift.
(2) If the bin ranges change, we must invalidate affected entries
and recompute the aggregates, but we can do so on a partial copy
to reduce downtime. (3) If there’s a significant data drift, we must
retrain the model from scratch.

8 CONCLUSIONS
We present InferDB, a novel framework for approximating an end-
to-end inference pipeline using a lightweight transformation of the
data into an embedding space and indexing an approximation of
predictions using standard index structures. This approach is easy
to integrate into database systems such as Postgres, enabling the
seamless combination of SQL queries with inference. Our approach
significantly improves inference performance without significant
accuracy loss. Future work includes maintaining structures un-
der distribution shifts, adaptive index construction (the index is
populated over time based on inference requests), and feature trans-
formations in feature selection.

ACKNOWLEDGMENTS
This work was partially funded by the German Research Foundation (ref.
414984028), the European Union’s Horizon 2020 research and innovation
programme (ref. 957407), and is in part supported by NSF awards IIS-1956123
and IIS-2107107.

1841

REFERENCES
[1] Rakesh Agrawal and Kyuseok Shim. 1996. Developing Tightly-Coupled Data

Mining Applications on a Relational Database System. In SIGKDD. 287–290.
[2] Amazon. 2020. Create, train, and deploy machine learning models in Amazon

Redshift using SQL with Amazon Redshift ML. Retrieved April 11, 2024 from
https://aws.amazon.com/de/blogs/big-data/create-train-and-deploy-machine-
learning-models-in-amazon-redshift-using-sql-with-amazon-redshift-ml/

[3] Jon Louis Bentley. 1975. Multidimensional binary search trees used for associative
searching. Commun. ACM 18, 9 (1975), 509–517.

[4] Matthias Boehm, Michael W. Dusenberry, Deron Eriksson, Alexandre V. Ev-
fimievski, Faraz Makari Manshadi, Niketan Pansare, Berthold Reinwald, Fred-
erick R. Reiss, Prithviraj Sen, Arvind C. Surve, and Shirish Tatikonda. 2016.
SystemML: Declarative Machine Learning on Spark. PVLDB 9, 13 (2016), 1425–
1436.

[5] İlkay Çınar andMurat Koklu. 2022. Identification of Rice Varieties UsingMachine
Learning Algorithms. Journal of Agricultural Sciences 28, 2 (2022), 307 – 325.
https://doi.org/10.15832/ankutbd.862482

[6] Tianqi Chen and Carlos Guestrin. 2016. XGBoost: A Scalable Tree Boosting
System. In SIGKDD (San Francisco, California, USA) (KDD ’16). Association for
Computing Machinery, New York, NY, USA, 785–794. https://doi.org/10.1145/
2939672.2939785

[7] T. Cover and P. Hart. 1967. Nearest neighbor pattern classification. IEEE Trans-

actions on Information Theory 13, 1 (1967), 21–27.
[8] Anirban Dasgupta, Ravi Kumar, and Tamás Sarlós. 2011. Fast locality-sensitive

hashing. In SIGKDD. 1073–1081.
[9] James Dougherty, Ron Kohavi, and Mehran Sahami. 1995. Supervised and

Unsupervised Discretization of Continuous Features. In ICML. 194–202.
[10] Usama M. Fayyad and Keki B. Irani. 1993. Multi-Interval Discretization of

Continuous-Valued Attributes for Classification Learning. In IJCAI. 1022–1029.
[11] Xixuan Feng, Arun Kumar, Benjamin Recht, and Christopher Ré. 2012. Towards

a Unified Architecture for In-RDBMS Analytics. In SIGMOD. 325–336.
[12] Centers for Disease Control and Prevention. 2023. Daily Census

Tract-level PM2.5 concentrations, 2016-2020. Retrieved April 11,
2024 from https://healthdata.gov/dataset/Daily-Census-Tract-Level-PM2-5-
Concentrations-2016/k9st-jhz8/data

[13] Walid G. and Ihab F. Ilyas. 2001. SP-GIST: An extensible database index for
supporting Space Partitioning Trees. Journal of Intelligent Information Systems,
215–240.

[14] Apurva Gandhi, Yuki Asada, Victor Fu, Advitya Gemawat, Lihao Zhang, Rathijit
Sen, Carlo Curino, Jesus Camacho-Rodriguez, and Matteo Interlandi. 2023. The
Tensor Data Platform: Towards an AI-centric Database System. CIDR (2023).

[15] Google. 2023. Make predictions with imported TensorFlow models. Retrieved
April 11, 2024 from https://cloud.google.com/bigquery/docs/making-predictions-
with-imported-tensorflow-models?hl=de

[16] Gongde Guo, Hui Wang, David Bell, Yaxin Bi, and Kieran Greer. 2003. KNN
model-based approach in classification. In On The Move to Meaningful Internet

Systems 2003: CoopIS, DOA, and ODBASE. Springer Berlin Heidelberg, 986–996.
https://link.springer.com/chapter/10.1007/978-3-540-39964-3_62#citeas

[17] Isabelle Guyon and André Elisseeff. 2003. An Introduction to Variable and Feature
Selection. J. Mach. Learn. Res. 3, null (2003), 1157–1182.

[18] Omid Jafari and Parth Nagarkar. 2021. Experimental Analysis of Locality Sensi-
tive Hashing Techniques for High-Dimensional Approximate Nearest Neighbor
Searches. In ADC, Vol. 12610. 62–73.

[19] Andy Jassy. 2018. AWS re:Invent 2018 keynote. Video. Retrieved April 11, 2024
from https://www.youtube.com/watch?v=ZOIkOnW640A

[20] Harold Jeffreys. 1946. An invariant form for the prior probability in estimation
problems. In Proceedings of the Royal Society A. Royal Society. https://doi.org/10.
1098/rspa.1946.0056

[21] Kannadasan K, Haresh M V, Ambati Rami Reddy, and B. Shameedha Begum.
2023. BCIRecog: An Optimized BCI System for Imagined Speech Recognition. In
ICCCNT. 1–7. https://doi.org/10.1109/ICCCNT56998.2023.10308091

[22] Kaggle. 2017. New York City taxi trip duration. Retrieved April 11, 2024 from
https://www.kaggle.com/c/nyc-taxi-trip-duration

[23] Kaggle. 2017. New York City taxi trip duration evaluation. Retrieved April
11, 2024 from https://www.kaggle.com/competitions/nyc-taxi-trip-duration/
overview/evaluation

[24] Gilad Katz, Eui Chul Richard Shin, and Dawn Song. 2016. ExploreKit: Automatic
Feature Generation and Selection. In ICDM. 979–984.

[25] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma,
Qiwei Ye, and Tie-Yan Liu. 2017. LightGBM: A Highly Efficient Gradient Boosting
Decision Tree. InNIPS (Long Beach, California, USA) (NIPS’17). CurranAssociates
Inc., Red Hook, NY, USA, 3149–3157.

[26] Steffen Kläbe and Stefan Hagedorn. 2021. Applying Machine Learning Models
to Scalable DataFrames with Grizzly. BTW 2021. , 195–214 pages. https://doi.
org/10.18420/btw2021-10

[27] Steffen Kläbe, Stefan Hagedorn, and Kai-Uwe Sattler. 2022. Exploration of
Approaches for In-Database ML. In EDBT. OpenProceedings.org, 311–323. https:
//openproceedings.org/2023/conf/edbt/paper-7.pdf

[28] Andreas Kunft, Asterios Katsifodimos, Sebastian Schelter, Sebastian Breß,
Tilmann Rabl, and Volker Markl. 2019. An Intermediate Representation for
Optimizing Machine Learning Pipelines. PVLDB 12, 11 (2019), 1553–1567.

[29] Yann LeCun, Corinna Cortes, and CJ Burges. 2010. MNIST handwritten digit
database. ATT Labs [Online]. Available: http://yann.lecun.com/exdb/mnist 2 (2010).

[30] Wei-Chao Lin and Chih-Fong Tsai. 2020. Missing value imputation: a review and
analysis of the literature (2006–2017). Artif. Intell. Rev. 53, 2 (feb 2020), 1487–1509.
https://doi.org/10.1007/s10462-019-09709-4

[31] Huan Liu, Farhad Hussain, Chew Lim Tan, and Manoranjan Dash. 2002. Dis-
cretization: An Enabling Technique. Data Min. Knowl. Discov. 6, 4 (oct 2002),
393–423. https://doi.org/10.1023/A:1016304305535

[32] Maximilian Mayerl, Michael Vötter, Günther Specht, and Eva Zangerle. 2023.
Pairwise Learning to Rank for Hit Song Prediction. In BTW 2023. Gesellschaft
für Informatik e.V., Bonn, 555–565. https://doi.org/10.18420/BTW2023-26

[33] Microsoft. 2023. Predict (transact-SQL) - SQL machine learning. Retrieved
April 11, 2024 from https://learn.microsoft.com/en-us/sql/t-sql/queries/predict-
transact-sql?view=sql-server-ver15

[34] Guillermo Navas-Palencia. 2020. Optimal binning: mathematical programming
formulation. abs/2001.08025 (2020). arXiv:2001.08025 [cs.LG]

[35] Stephen M Omohundro. 1989. Five balltree construction algorithms. International
Computer Science Institute Berkeley. https://omohundro.files.wordpress.com/
2009/03/omohundro89_five_balltree_construction_algorithms.pdf

[36] Intel Oneapi-Src. 2020. Oneapi-src/onedal: Oneapi data analytics library
(onedal). Retrieved April 11, 2024 from https://github.com/oneapi-src/oneDAL?
tab=readme-ov-file

[37] C. Ordonez. 2006. Integrating K-means clustering with a relational DBMS using
SQL. TKDE 18, 2 (2006), 188–201.

[38] Jia Pan and Dinesh Manocha. 2011. Fast GPU-based locality sensitive hashing
for k-nearest neighbor computation. In SIGSPATIAL. 211–220.

[39] Kwanghyun Park, Karla Saur, Dalitso Banda, Rathijit Sen, Matteo Interlandi, and
Konstantinos Karanasos. 2022. End-to-End Optimization of Machine Learning
Prediction Queries. In SIGMOD. 587–601.

[40] Yongjoo Park, Michael J. Cafarella, and Barzan Mozafari. 2015. Neighbor-
Sensitive Hashing. PVLDB 9, 3 (2015), 144–155.

[41] Postgresml. 2022. Postgresml/postgresml: PostgresML is an AI application data-
base. Download open source models from Huggingface, or train your own, to
create and index LLM embeddings, generate text, or make online predictions
using only SQL. Retrieved April 11, 2024 from https://github.com/postgresml/
postgresml

[42] Andrea Dal Pozzolo, Olivier Caelen, Reid A. Johnson, and Gianluca Bontempi.
2015. Calibrating Probability with Undersampling for Unbalanced Classification.
In SSCI. 159–166.

[43] Fotis Psallidas, Yiwen Zhu, Bojan Karlas, Jordan Henkel, Matteo Interlandi,
Subru Krishnan, Brian Kroth, Venkatesh Emani, Wentao Wu, Ce Zhang, Markus
Weimer, Avrilia Floratou, Carlo Curino, and Konstantinos Karanasos. 2022. Data
Science Through the Looking Glass: Analysis of Millions of GitHub Notebooks
and ML.NET Pipelines. SIGMOD Rec. 51, 2 (2022), 30–37.

[44] Mark Raasveldt, Pedro Holanda, Hannes Mühleisen, and Stefan Manegold. 2018.
Deep Integration of Machine Learning Into Column Stores. In EDBT. OpenPro-
ceedings.org, 473–476. https://doi.org/10.5441/002/EDBT.2018.50

[45] Maximilian Rieger, Moritz Sichert, and Thomas Neumann. 2022. Integrating
deep learning frameworks into main-memory databases. In Proceedings of the

VLDB 2022 Applied AI for Database Systems and Applications Workshop co-located

with (VLDB 2022) (AIDB Workshop Proceedings). https://drive.google.com/file/d/
1GfZH3Y1sQKgplnnpTEM_E4skWdhmyrfe/edit

[46] Sunita Sarawagi, Shiby Thomas, and Rakesh Agrawal. 1998. Integrating Associa-
tion Rule Mining with Relational Database Systems: Alternatives and Implica-
tions. In SIGMOD. 343–354.

[47] Iqbal H. Sarker. 2021. Machine Learning: Algorithms, Real-World Applications
and Research Directions. SN Comput. Sci. 2, 3 (mar 2021), 21. https://doi.org/10.
1007/s42979-021-00592-x

[48] Kai-Uwe Sattler and Oliver Dunemann. 2001. SQL Database Primitives for
Decision Tree Classifiers. In CIKM. 379–386.

[49] Maximilian Emanuel Schüle, Alfons Kemper, and Thomas Neumann. 2023.
NN2SQL: Let SQL Think for Neural Networks. In BTW, Vol. P-331. 183–194.

[50] Maximilian E. Schüle, Luca Scalerandi, Alfons Kemper, and Thomas Neumann.
2023. Blue Elephants Inspecting Pandas: Inspection and Execution of Machine
Learning Pipelines in SQL. In EDBT. 40–52.

[51] Scikit-learn. [n.d.]. 8.2. computational performance. Retrieved
April 11, 2024 from https://scikit-learn.org/stable/computing/computational_
performance.html

[52] Shichao Zhang, Xuelong Li, Ming Zong, Xiaofeng Zhu, and Debo Cheng. 2017.
Learning k for KNN Classification. ACM Trans. Intell. Syst. Technol. 8, 3, Article
43 (jan 2017), 19 pages. https://doi.org/10.1145/2990508

[53] Yuhao Zhang, Frank McQuillan, Nandish Jayaram, Nikhil Kak, Ekta Khanna,
Orhan Kislal, Domino Valdano, and Arun Kumar. 2021. Distributed Deep Learn-
ing on Data Systems: A Comparative Analysis of Approaches. PVLDB 14, 10
(2021), 1769–1782.

1842

https://aws.amazon.com/de/blogs/big-data/create-train-and-deploy-machine-learning-models-in-amazon-redshift-using-sql-with-amazon-redshift-ml/
https://aws.amazon.com/de/blogs/big-data/create-train-and-deploy-machine-learning-models-in-amazon-redshift-using-sql-with-amazon-redshift-ml/
https://doi.org/10.15832/ankutbd.862482
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/2939672.2939785
https://healthdata.gov/dataset/Daily-Census-Tract-Level-PM2-5-Concentrations-2016/k9st-jhz8/data
https://healthdata.gov/dataset/Daily-Census-Tract-Level-PM2-5-Concentrations-2016/k9st-jhz8/data
https://cloud.google.com/bigquery/docs/making-predictions-with-imported-tensorflow-models?hl=de
https://cloud.google.com/bigquery/docs/making-predictions-with-imported-tensorflow-models?hl=de
https://link.springer.com/chapter/10.1007/978-3-540-39964-3_62#citeas
https://www.youtube.com/watch?v=ZOIkOnW640A
https://doi.org/10.1098/rspa.1946.0056
https://doi.org/10.1098/rspa.1946.0056
https://doi.org/10.1109/ICCCNT56998.2023.10308091
https://www.kaggle.com/c/nyc-taxi-trip-duration
https://www.kaggle.com/competitions/nyc-taxi-trip-duration/overview/evaluation
https://www.kaggle.com/competitions/nyc-taxi-trip-duration/overview/evaluation
https://doi.org/10.18420/btw2021-10
https://doi.org/10.18420/btw2021-10
https://openproceedings.org/2023/conf/edbt/paper-7.pdf
https://openproceedings.org/2023/conf/edbt/paper-7.pdf
https://doi.org/10.1007/s10462-019-09709-4
https://doi.org/10.1023/A:1016304305535
https://doi.org/10.18420/BTW2023-26
https://learn.microsoft.com/en-us/sql/t-sql/queries/predict-transact-sql?view=sql-server-ver15
https://learn.microsoft.com/en-us/sql/t-sql/queries/predict-transact-sql?view=sql-server-ver15
https://arxiv.org/abs/2001.08025
https://omohundro.files.wordpress.com/2009/03/omohundro89_five_balltree_construction_algorithms.pdf
https://omohundro.files.wordpress.com/2009/03/omohundro89_five_balltree_construction_algorithms.pdf
https://github.com/oneapi-src/oneDAL?tab=readme-ov-file
https://github.com/oneapi-src/oneDAL?tab=readme-ov-file
https://github.com/postgresml/postgresml
https://github.com/postgresml/postgresml
https://doi.org/10.5441/002/EDBT.2018.50
https://drive.google.com/file/d/1GfZH3Y1sQKgplnnpTEM_E4skWdhmyrfe/edit
https://drive.google.com/file/d/1GfZH3Y1sQKgplnnpTEM_E4skWdhmyrfe/edit
https://doi.org/10.1007/s42979-021-00592-x
https://doi.org/10.1007/s42979-021-00592-x
https://scikit-learn.org/stable/computing/computational_performance.html
https://scikit-learn.org/stable/computing/computational_performance.html
https://doi.org/10.1145/2990508

	Abstract
	1 Introduction
	2 Background
	3 System Overview
	4 Prediction Table and Index Creation
	4.1 Discretization
	4.2 Feature Selection
	4.3 Prediction Table and Index Population
	4.4 Standalone Index in Python

	5 Index-based Inference
	5.1 Embedding Test Data Points
	5.2 Inference as Join
	5.3 Dealing With Sparsity

	6 Related Work
	7 Experimental Evaluation
	7.1 Evaluated Systems
	7.2 End-to-End Training Runtimes
	7.3 Standalone Index Inference Runtime
	7.4 Effectiveness
	7.5 Database Implementation
	7.6 Micro-Benchmarks
	7.7 Discussion

	8 Conclusions
	References

