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ABSTRACT
The shufflemodel of differential privacy provides promising privacy-

utility balances in decentralized, privacy-preserving data analysis.

However, the current analyses of privacy amplification via shuf-

fling lack both tightness and generality. To address this issue, we

propose the variation-ratio reduction as a comprehensive frame-

work for privacy amplification in both single-message and multi-

message shuffle protocols. It leverages two new parameterizations:

the total variation bounds of local messages and the probability

ratio bounds of blanket messages, to determine indistinguishability

levels. Our theoretical results demonstrate that our framework pro-

vides tighter bounds, especially for local randomizers with extremal

probability design, where our bounds are exactly tight. Addition-

ally, variation-ratio reduction complements parallel composition in

the shuffle model, yielding enhanced privacy accounting for pop-

ular sampling-based randomizers employed in statistical queries

(e.g., range queries, marginal queries, and frequent itemset mining).

Empirical findings demonstrate that our numerical amplification

bounds surpass existing ones, conserving up to 30% of the budget

for single-message protocols, 75% for multi-message ones, and a

striking 75%-95% for parallel composition. Our bounds also result

in a remarkably efficient 𝑂̃ (𝑛) algorithm that numerically amplifies

privacy in less than 10 seconds for 𝑛 = 10
8
users.
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1 INTRODUCTION
In our increasingly digital world, safeguarding data privacy has

become eminent, especially in sensitive sectors like census [46],

healthcare [67], and e-commerce [11]. As we gather data that con-

tain references to identifiable personal information, the risk of

privacy breaches emerges as a substantial threat to both individuals

and organizations [60, 67]. In response to this growing concern,

and in light of stringent data privacy regulations [16, 72], there is

an urgent need for robust privacy protection measures, particularly

in data analysis and learning. A promising answer lies in the con-

cept of differential privacy (DP) [27], a mathematical framework

ensuring data privacy while maintaining data utility.

DP traditionally operates in two models: the curator model

and the local model, each serving different types of data analy-

sis needs. The curator model, widely used for tasks like count

queries [18, 19, 56, 57], data mining [15, 47, 59], and general SQL

engines [49, 55], involves a trusted curator who applies privacy-

preserving mechanisms before releasing data. The local model, on

the other hand, offers privacy at the individual data source level, use-

ful for queries like histogram query [9, 50], range query [23, 25, 68],

marginal query [22, 90, 91], frequent itemset mining [82, 85] and

machine learning [26, 71, 73, 74]. Despite their extensive applica-

tions in database, both models encounter difficulties in striking the

balance between privacy and utility, particularly in decentralized

settings where data control and processing are distributed among

multiple participants.

The shuffle model of differential privacy [13, 30] emerges as

a better solution that provides more effective balance between

privacy protection and data utility in decentralized environments

(e.g., federated analytics [8, 21, 32, 38, 39] and federated machine

learning [35, 41, 42, 70]). In this model, taking the local 𝜖0-DP
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mechanisms [77, 80, 83] as an instance, each user first applies a

randomizer to transform their data into one or more messages.

These messages are then sent to and mixed up by a “shuffler” before

they being sent to the statistician (i.e., the server or the analyzer).

The shuffler is the key player who obscures the origins of each piece

of data. This process, known as privacy amplification via shuffling,
significantly enhances the effectiveness of differential privacy by

blocking the statistician from tracing data back to individual users.

Analyzing the level of privacy amplification is a critical step in

maintaining a balanced trade-off between privacy protection and

data utility. This analysis, however, faces significant challenges

due to the expansive message space involved and the complex,

non-linear nature of the shuffling operations on 𝑛 messages. This

complexity stands in contrast to simpler operations like summation

in traditional DP approaches [14, 63].

To address these challenges, there has been considerable re-

search effort. A notable research by Erlingsson et al. [30] demon-

strated when each of the 𝑛 shuffled messages is randomized using

𝜖0-LDP, they collectively maintain differential privacy at a level

of 𝑂 (𝜖0

√︁
log(1/𝛿)/𝑛), with a high probability of 1 − 𝛿 , given that

𝜖0 is of order 𝑂 (1). For the more practical case of 𝜖0 = Θ(1), an-
other research [7] proposed viewing messages from other users

as a “privacy blanket” that conceals each user’s sensitive informa-

tion. This approach showed that the shuffled messages preserve

(𝑂 (min{𝜖0, 1}𝑒𝜖0

√︁
log(1/𝛿)/𝑛), 𝛿)-DP. Recent research [32, 33] in-

troduced a “clone” concept to examine the indistinguishability of-

fered by messages from other users, achieving an amplification

bound of (𝑂 (𝑒𝜖0/2
√︁

log(1/𝛿)/𝑛), 𝛿)-DP for 𝜖0 = Θ(1).
While these analyses are significant, they have limitations in

tightness and generality. The “privacy blanket” framework [7], for

example, provides tighter parameters for specific 𝜖0-LDP randomiz-

ers. However, it is less precise in tail-bounding privacy loss variables,

even when using their Ω(𝑛)-complexity numerical bounds. Simi-

larly, the recent “clone” reduction [33] achieves nearly optimal am-

plification bounds for general 𝜖-LDP randomizers. Yet, it falls short

in offering precise amplification for common LDP mechanisms,

such as Hadamard response [1], subset selection [77], and PrivUnit

[14]. Consequently, these approaches do not fully assist practition-

ers in setting optimal privacy parameters to maximize data utility.

Additionally, their results are only applicable to (single-message)

shuffle protocols with LDP randomizers, which face intrinsic utility

drawbacks [36]. Such drawbacks are not as pronounced in protocols

that utilize the metric DP notion [17], or multi-message protocols

where each user contributes multiple messages [8].

In the context of multi-message shuffle model, current works

leverage random numerical shares [37, 38] or categorical shares

[8, 58, 61] to collaboratively preserve privacy post-shuffling. Nev-

ertheless, these protocols, including those in [21, 58, 61, 81], ana-

lyze DP guarantees on a case-by-case basis, offering only approx-

imate/loose analytic bounds. This hampers their generalizability

across different protocols and leads to undesirable practical utility.

1.1 Our Contributions
Recognizing the aforementioned limitations, our research intro-

duces two advancements in analyzing the privacy amplification of

differentially private data processing.

First, we designed a unified, tight, and scalable framework for

analyzing privacy amplification within the shuffle model that sup-

ports simutaneously LDP randomizers, metric LDP randomizers,

and various multi-message protocols. This framework, which we

term the variation-ratio reduction, innovatively links DP levels to

two novel yet intuitive parametrizations: the pairwise total varia-

tion and the one-direction probability ratio of local randomizers. It

demonstrates exact tightness for an extensive family of randomizers

that exhibit extremal properties. This includes a variety of state-of-

the-art 𝜖0-LDP randomizers like local hash [83], Hadamard response

[1], the PrivUnit mechanism [12], and several multi-message proto-

cols [5, 21, 58, 61]. Moreover, our framework offers precise bounds

with a computational complexity of 𝑂̃ (𝑛), making it highly effec-

tive for large-scale data analyses, such as telemetry data involving

millions or billions of users.

Second, we derived tight privacy amplification bounds for paral-

lel local randomizers (i.e., sampling-based composite randomizers).

These types of randomizers are widely deployed by differentially

private protocols in user data collecting/queries, such as count

queries [24, 69, 84], heavy hitter identification [10, 66, 86], frequent

itemset mining [85], and machine learning [34, 48]. Within the

variation-ratio framwork, our analysis reveals that the pairwise

total variation bound of a parallel randomizer does not exceed the

expected bound of its individual base randomizers. This insight

forms the basis of our advanced parallel composition theorem in the

shuffle model, enabling much tighter amplification bounds com-

pared to straightforward approaches.

1.2 Organization
The remaining paper is organized as follows. Section 2 reviews

related works. Section 3 provides background knowledge. Section 4

presents main theoretical upper bounding results, the correspond-

ing proof sketch, and an efficient numerical bounding algorithm.

Section 5 establishes amplification lower bounds. Section 6 im-

proves bounding results for parallel randomizers. Section 7 shows

experimental results. Finally, Section 8 concludes the paper.

2 RELATEDWORK
Privacy amplification of LDP randomizers. The seminal work

[30] utilizes the privacy amplification via subsampling [6, 52] to

analyze the shuffling amplification, and shows 𝑛 shuffled messages

satisfies (𝜖0

√︁
144 log(1/𝛿)/𝑛, 𝛿)-DP. Latterly, the privacy blanket

[7] proposes extracting an input-independent part from the output

distribution, to work as a “blanket” to amplify privacy. For gen-

eral LDP randomizers, the [7] shows the input-independent part

is sampled by each user with probability at least 𝑒−𝜖0
(they term

it as total variation similarity). For specific LDP randomizers (e.g.,

Laplace [29] and generalized randomized response [88]), the total

variation similarity can be larger. Recently, the works [32] and [33]

decompose output distributions into mixture distributions with

3 options, and interprets messages from other users as clones of

victim user. This clone reduction is near-optimal w.r.t. the depen-

dence on 𝜖0 for general LDP randomizers. Meanwhile, in order

to derive tighter amplification bounds for specific randomizers, it

needs to explicitly construct mixture distributions and determine

the clone probabilities, which however is intractable for commonly
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deployed randomizers (e.g., Laplace mechanism, subset selection

mechanism [77, 92], PrivUnit mechanism [14], and sampling-based

composite randomizers). As comparision, our framework using a

new parametrization (i.e., pairwise total variation) of randomizers

to implicitly derive tighter clone probabilities. Besides, the clone re-

ductions in research [32, 33] are limited to LDP randomizers, while

our framework generalizes to metric-based LDP randomizers and

multi-message protocols. Even for LDP randomizers in the shuffle

model, our asymptotic amplification bounds are provably tighter

than existing results (see Table 1).

Privacy amplification of metric-based LDP randomizers.
The metric-based LDP [17] permits a flexible indistinguishable

level between any pair of inputs 𝑎, 𝑏 ∈ X (denoted as 𝑑X (𝑎, 𝑏)),
and is widely used for user data with a large domain range such

as location data [3] and unstructed data [94]. Previous work [78]

initiated the study of metric DP in the shuffle model and provided

several amplification bounds, which depend on max𝑐∈X 𝑒𝑑X (𝑎,𝑐 ) +
𝑒𝑑X (𝑏,𝑐 ) . In our work, we apply the proposed framework to metric

LDP randomizers and improve the dependence to (1 − 𝑒−𝑑X (𝑎,𝑏 ) ) ·
max𝑐∈Xmax[𝑒𝑑X (𝑎,𝑐 ) , 𝑒𝑑X (𝑏,𝑐 ) ] (a lower value indicates stronger

amplification effects, see Section 4.3 for detail).

Privacy amplification of multi-message randomizers. For

multi-message protocols in the shuffle model (e.g., [21, 58, 61]),

the local randomizer may neither satisfy LDP nor metric-based

LDP. Hence, designated analyses of privacy guarantees are often

conducted. Our proposed framework yields much tighter privacy

guarantees and reduces the budget by 70%-85% compared to these

designated analyses (see detail in Section 7).

Privacy amplification via shuffling under composition. To
analyze accumulated privacy loss under sequential composition

for the shuffle model [33, 40, 41, 43, 53], it is common to use an-

alytic/numerical tools from the centralized model of differential

privacy (e.g., strong composition theorem [28], Rényi differential

privacy [62], and Fourier accountant [54]). The [43] analyzes Rényi

differential privacy of shuffled messages, [40] further composes

privacy for the shuffle model with subsamplings. To the best of our

knowledge, we are the first to provide tight privacy amplification

results for prevalent parallel composition (see detail in Section 6).

3 PRELIMINARIES
Definition 3.1 (Hockey-stick divergence). The Hockey-stick diver-

gence (with parameter 𝑒𝜖 ) between two random variables 𝑃 and 𝑄

is defined by:

𝐷𝑒𝜖 (𝑃 ∥𝑄) =
∫

max{0, 𝑃 (𝑥) − 𝑒𝜖𝑄 (𝑥)}d𝑥,

where we use the notation 𝑃 and 𝑄 to refer to both the random

variables and their probability density functions.

Two variables 𝑃 and 𝑄 are (𝜖, 𝛿)-indistinguishable iff

max{𝐷𝑒𝜖 (𝑃 ∥𝑄), 𝐷𝑒𝜖 (𝑄 ∥𝑃)} ≤ 𝛿.

If two datasets have the same size and differ only by the data of

a single individual, they are referred to as neighboring datasets.

Differential privacy ensures that the divergence of query outputs on

neighboring datasets is constrained (see Definition 3.2). Similarly,

in the local setting where a single individual’s data is taken as input,

we present the definition of local (𝜖, 𝛿)-DP in Definition 3.3. The

notation 𝜖-LDP is used when the failure probability 𝛿 = 0.

Definition 3.2 (Differential privacy [29]). An algorithm R : X𝑛 ↦→
Z satisfies (𝜖, 𝛿)-differential privacy iff for all neighboring datasets

𝑋,𝑋 ′ ∈ X𝑛 , R(𝑋 ) and R(𝑋 ′) are (𝜖, 𝛿)-indistinguishable.
Definition 3.3 (Local differential privacy [52]). An algorithm R :

X ↦→ Y satisfies local (𝜖, 𝛿)-differential privacy iff for all 𝑥, 𝑥 ′ ∈ X,
R(𝑥) and R(𝑥 ′) are (𝜖, 𝛿)-indistinguishable.

Metric differential privacy. A distance measure 𝑑X : X×X ↦→
R over X characterizes the distances between any pair of elements

𝑎, 𝑏 ∈ X. For this measure to be deemed a metric, it must adhere to

the subsequent properties:

i. Self-identity: For any 𝑎 ∈ X, 𝑑X (𝑎, 𝑎) = 0.

ii. Positivity: For any 𝑎, 𝑏 ∈ X that 𝑎 ≠ 𝑏, 𝑑X (𝑎, 𝑏) > 0.

iii. Symmetry: For any 𝑎, 𝑏 ∈ X, 𝑑X (𝑎, 𝑏) = 𝑑X (𝑏, 𝑎).
iv. Triangle inequality: For any 𝑎, 𝑏, 𝑐 ∈ X,𝑑X (𝑎, 𝑏)+𝑑X (𝑏, 𝑐) ≥

𝑑X (𝑎, 𝑐).
The concept of metric differential privacy expands upon the

traditional differential privacy, enabling the calibration of indistin-

guishability constraints to element dissimilarity.

Definition 3.4 (Metric (𝑑X, 𝛿)-differential privacy [17]). A random-

ized mechanism R satisfies (𝑑X, 𝛿)-differential privacy iff for any

neighboring datasets 𝑋,𝑋 ′ ∈ X𝑛 (i.e., 𝑥𝑖 = 𝑎 in 𝑋 and 𝑥𝑖 = 𝑏 in 𝑋 ′),
R(𝑋 ) and R(𝑋 ′) are (𝑑X (𝑎, 𝑏), 𝛿)-indistinguishable.

In the local setting, each user sanitizes their data on their own

locally. Substituting the dataset 𝑆 in Definition 3.4with an individual

data item, the definition of metric LDP is as follows:

Definition 3.5 (Local metric 𝑑X-differential privacy [2, 3]). Let DR
denote the output domain, a randomized mechanism R satisfies

local metric 𝑑X-privacy iff for any 𝑎, 𝑏 ∈ X, R(𝑎) and R(𝑏) are
(𝑑X (𝑎, 𝑏), 0)-indistinguishable.

3.1 The Shuffle Model of Differential Privacy
We use [𝑛] to denote {1, ..., 𝑛} and [𝑖 : 𝑗] to denote {𝑖, 𝑖 + 1, ..., 𝑗}.
Follow conventions in the shuffle model based on randomize-then-

shuffle [7, 20], we define a single-message protocol P to be a list

of algorithms P = ({R𝑖 }𝑖∈[𝑛] ,A), where R𝑖 : X → Y is the

local randomizer of user 𝑖 , and A : Y𝑛 → Z the analyzer in the

data collector’s side. The overall protocol implements a mechanism

P : X𝑛 → Z as follows. Each user 𝑖 holds a data record 𝑥𝑖 and a local
randomizerR𝑖 , then computes amessage𝑦𝑖 = R𝑖 (𝑥𝑖 ). Themessages

𝑦1, ..., 𝑦𝑛 are then shuffled and submitted to the analyzer. We write

S(𝑦1, . . . , 𝑦𝑛) to denote the random shuffling step, whereS : Y𝑛 →
Y𝑛 is a shuffler that applies a uniform-random permutation to

its inputs. In summary, the output of P(𝑥1, . . . , 𝑥𝑛) is denoted by

A ◦ S ◦ R [𝑛] (𝑋 ) = A(S(R1 (𝑥1), . . . ,R𝑛 (𝑥𝑛))).
The shuffle model assumed that all parties involved in the pro-

tocol follow it faithfully and there is no collusion between them.

From a privacy perspective, the goal is to ensure the differential

privacy of the output P(𝑥1, . . . , 𝑥𝑛) for any analyzer A. By lever-

aging the post-processing property of the Hockey-stick divergence,

it suffices to ensure that the shuffled messages S ◦ R [𝑛] (𝑋 ) =

S(R1 (𝑥1), . . . ,R𝑛 (𝑥𝑛)) are differentially private. We formally de-

fine differential privacy in the shuffle model in Definition 3.6.
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Definition 3.6 (Differential privacy in the shuffle model). A pro-

tocol P = ({R𝑖 }𝑖∈[𝑛] ,A) satisfies (𝜖, 𝛿)-differential privacy in

the shuffle model iff for all neighboring datasets 𝑋,𝑋 ′ ∈ X𝑛 , the
S ◦ R [𝑛] (𝑋 ) and S ◦ R [𝑛] (𝑋 ′) are (𝜖, 𝛿)-indistinguishable.

In multi-message shuffle protocols, which offer greater utility

potential than single-message counterparts [36], each user can

submit multiple messages. These messages from all users are then

randomly shuffled. The differential privacy applied in this context is

determined w.r.t. a single alteration in the input dataset, analogous

to the approach in single-message protocols.

4 THE VARIATION-RATIO FRAMEWORK
In this section, we introduce our variation-ratio reduction frame-

work for privacy amplification via shuffling. Our approach leverages

the mixture decomposition of local randomizers, as introduced in

the privacy blanket [7] and clone reduction [32, 33] literature. The

mixture decomposition of local randomizers reveal two important

facts: (1) randomized and anonymously shuffled messages from

other users can mimic as the message from a particular (victim)

user with some probability, which are termed as blanket messages

in [7] and clones in [32, 33] and can thus amplify privacy; (2) for the

local randomizer of the victim user that pertain to some properties

(e.g., (𝜖, 0)-LDP), the probability distribution of outputs given arbi-

trary inputs share some resemblance. The key to analyzing tighter

shuffle privacy amplification would be characterizing more concise

mimic probability from other users and the probability resemblance

of the victim’s outputs. Compared to existing results, our frame-

work achieves a highly precise mixture decomposition by utilizing

both (0, 𝛿)-LDP and (𝜖0, 0)-LDP properties of local randomizers to

capture the the probability resemblance of victim’s outputs (over

differed inputs), and introduces the probability ratio as simple yet

effective indicates to the mimic power from other users.

To establish our approach, without loss of generality, we consider

two neighboring datasets 𝑋 and 𝑋 ′ that differ only in the first

user’s data (i.e. the first user is considered as the victim in DP),

i.e., 𝑋 = {𝑥1 = 𝑥0

1
, 𝑥2, . . . , 𝑥𝑛} and 𝑋 ′ = {𝑥1 = 𝑥1

1
, 𝑥2, . . . , 𝑥𝑛},

where 𝑥0

1
, 𝑥1

1
, 𝑥2, . . . , 𝑥𝑛 ∈ X. We define the following properties on

(independent) local randomizers {R𝑖 }𝑖∈[𝑛] with some parameters

𝑝 > 1, 𝛽 ∈ [0, 𝑝−1

𝑝+1 ], and 𝑞 ≥ 1:

I. (𝑝, 𝛽)-variation property: we say that the (𝑝, 𝛽)-variation
property holds if𝐷𝑝 (R1 (𝑥0

1
)∥R1 (𝑥1

1
)) = 0 and𝐷𝑒0 (R1 (𝑥0

1
)∥

R1 (𝑥1

1
)) ≤ 𝛽 for all possible 𝑥0

1
, 𝑥1

1
∈ X.

II. 𝑞-ratio property: we say that the 𝑞-ratio property holds if

𝐷𝑞 (R1 (𝑥1)∥R𝑖 (𝑥𝑖 )) = 0 for all possible 𝑥1, . . . , 𝑥𝑛 ∈ X and

all {R𝑖 }𝑖∈[2:𝑛] .

The parameter 𝛽 corresponds to the pairwise total variation dis-

tance and serves as an indicator of the degree to which R1 satisfies

(0, 𝛽)-LDP. Conversely, the parameter 𝑝 relates to the divergence

ratio and serves as an indicator of the (log 𝑝, 0)-LDP property sat-

isfied by R1. Meanwhile, the parameter 𝑞 captures the ability of

R𝑖 (𝑥𝑖 ) to mimic R1 (𝑥1). For any randomizer R1, there exists a

dominating pair of distributions [95, Proposition 8], such that the

divergence upper bound (including the (𝑝, 𝛽) parameters) can be

directly derived upon. Specificlly, in case the randomizer R1 satisfy

𝜖0-LDP, we always have 𝑝 ≤ exp(𝜖0) and 𝛽 ≤ 𝑒𝜖0−1

𝑒𝜖0+1 [51]. Most

commonly-used 𝜖0-LDP randomizers have a lower total variation

bound 𝛽 than the worst-case
𝑒𝜖0−1

𝑒𝜖0+1 (see Tables 2), thus permits a

tighter mixture decomposition of their shuffled outputs.

4.1 Main Results
Our objective is to establish an upper bound on the divergence

between the shuffled messages resulting from two independent

protocol runs: S(R1 (𝑥0

1
), . . . ,R𝑛 (𝑥𝑛)) and S(R1 (𝑥1

1
), . . . ,R𝑛 (𝑥𝑛)),

where the local randomizers {R𝑖 }𝑖∈[𝑛] satisfy the properties men-

tioned earlier. We accomplish this through an implicit analysis of

the mixture decomposition of these local randomizers, then uti-

lizing the data processing inequality to obtain a dominating pair

of binomial counts. Subsequently, we represent the Hockey-stick

divergence as an expectation of cumulative probabilities over a bi-

nomial variable 𝑐 (see Theorem 4.1), exploiting the monotone of the

integral in Hockey-stick divergence. The notation CDF𝑐,1/2 [𝑐1, 𝑐2]
represents the cumulative probability

∑︁
𝑖∈[𝑐1,𝑐2 ]

(︁𝑐
𝑖

)︁
/2𝑐 , which can

be quickly computed using two calls to the regularized incomplete

beta function [65]. Therefore, Theorem 4.1 directly implies an effi-

cient algorithm for numerically compute Hockey-stick divergence

within 𝑂̃ (𝑛) complexity (see Section 4.4 for detail).

Theorem 4.1 (Divergence upper bound). For 𝑝 > 1, 𝛽 ∈ [0, 𝑝−1

𝑝+1 ],
𝑞 ≥ 1, if randomizers {R𝑖 }𝑖∈[𝑛] satisfy the (𝑝, 𝛽)-variation property
and the 𝑞-ratio property, then for any 𝑥0

1
, 𝑥1

1
, 𝑥2, ..., 𝑥𝑛 ∈ X:

𝐷𝑒𝜖 (S(R1 (𝑥0

1
), . . . ,R𝑛 (𝑥𝑛)) ∥ S(R1 (𝑥1

1
), . . . ,R𝑛 (𝑥𝑛)))

≤ E
𝑐∼𝐵𝑖𝑛𝑜𝑚 (𝑛−1,2𝑟 )

[︂
(𝑝 − 𝑒𝜖 )𝛼 · CDF

𝑐,1/2
[⌈𝑙𝑜𝑤𝑐+1 − 1⌉, 𝑐]

+ (1 − 𝑝𝑒𝜖 )𝛼 · CDF
𝑐,1/2
[⌈𝑙𝑜𝑤𝑐+1⌉, 𝑐]

+ (1 − 𝑒𝜖 ) (1 − 𝛼 − 𝑝𝛼) · CDF
𝑐,1/2
[⌈𝑙𝑜𝑤𝑐 ⌉, 𝑐]

]︂
,

where 𝛼 =
𝛽
𝑝−1

, 𝑟 = 𝛼𝑝
𝑞 , 𝑙𝑜𝑤𝑐 =

(𝑒𝜖𝑝−1)𝛼𝑐+(𝑒𝜖−1) (1−𝛼−𝛼𝑝 ) · (𝑛−𝑐 )𝑟
1−2𝑟

𝛼 (𝑒𝜖+1) (𝑝−1) .

Asymptotically, when 𝑛 is sufficiently large, we present two

analytical amplification bounds: one that is sophisticated, and the

other that is more concise but less tight. Specifically, we derive the

former bound in Theorem 4.2. To achieve this, we tail bound the

variable 𝑐 (i.e. number of clones in the former theorem), and exploit

the fact that the statistical divergence monotonically non-increases

with 𝑐 . The resulting bound is satisfactorily tight for a wide range

of variation-ratio parameters (see Section 7.2 for comparison with

numerical upper bounds). To tail bound 𝑐 , we use multiplicative

Chernoff bounds and Hoeffding’s inequality, which induce tighter

bounds for small clone probability 2𝑟 (in local 𝑑X-DP randomizers)

and for large 2𝑟 (in multi-message protocols), respectively.

Theorem 4.2 (Analytic privacy amplification bounds). For
𝑝 > 1, 𝛽 ∈ [0, 𝑝−1

𝑝+1 ], and 𝑞 ≥ 1, the 𝑃𝑞
𝑝,𝛽

and 𝑄𝑞
𝑝,𝛽

are (𝜖, 𝛿)-
indistinguishable with

𝜖 = log

(︄
1 +

𝛽 (2
√︂
Ω log( 4

𝛿
)/2 + 1) + 𝛽 (Ω/2 −

√︂
Ω log( 4

𝛿
)/2)

𝛼Ω

+ (1 − 𝛼 − 𝛼𝑝 ) (𝑛 − 1 − Ω)𝑟
(1 − 2𝑟 )𝛼Ω

)︄
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when (𝑝 + 1)𝛼/2 − (1 − 𝛼 − 𝛼𝑝)𝑟/(1 − 2𝑟 ) ≥ 0 and Ω = 2𝑟 (𝑛 −
1) −

√︂
min(6𝑟, 1

2
) (𝑛 − 1) log( 4

𝛿
) ≥ 2𝑝 (𝛽+1+(𝛽−1)𝑝 ) (𝑛−1)+𝛽

𝑞+𝑝 (𝛽−1+(𝛽+1)𝑝 )−𝑝𝑞 , where
𝛼 = 𝛽/(𝑝 − 1) and 𝑟 = 𝑝𝛼/𝑞.

We also derive a succinct formula in Theorem 4.3 by further tail

bounding the number of clones 𝑐 .

Theorem 4.3 (Asymptotic privacy amplification bounds).

For 𝑝 > 1, 𝛽 ∈ [0, 𝑝−1

𝑝+1 ], 𝑞 ≥ 1, when 𝑛 ≥ 8 log(2/𝛿 ) (𝑝−1)𝑞
𝛽𝑝

, the 𝑃𝑞
𝑝,𝛽

and 𝑄𝑞
𝑝,𝛽

are (𝜖, 𝛿)-indistinguishable with

𝜖 = log

(︄
1+ 𝛽

(1 − 𝑣) (1 + 𝑝)𝛽/(𝑝 − 1) + 𝑣

(︂√︄
32 log( 4

𝛿
)

𝑟 (𝑛 − 1) +
4

𝑟𝑛

)︂)︄
,

where 𝑟 = 𝑝𝛽

(𝑝−1)𝑞 and 𝑣 = max{0, 4

9

1−3𝑟
1−2𝑟 }.

When 𝑛 is sufficiently large and a mild condition 𝑟 =
𝑝𝛽

(𝑝−1)𝑞 ≤
1/4 holds, we have the 𝑣 in Theorem 4.3 no less than a constant

value 2/9, thus the privacy can be amplified to:

𝑂̃
(︁√︁
𝛽 (𝑝 − 1)𝑞/(𝑝𝑛)

)︁
.

Therefore, when 𝛽 and 𝑞 are relatively small, there are strong pri-

vacy amplification effects. This corresponds to qualitative interpre-

tation about 𝛽 and 𝑞: the parameter 𝛽 indicates the total variation

distance between 𝑅1 (𝑥0

1
) and 𝑅1 (𝑥1

1
), so when 𝛽 is relatively low,

the statistical distance of shuffled messages would also be low; a

lower 𝑞 indicates that messages from other users (i.e. users [2 : 𝑛])
can better mimic 𝑅1 (𝑥0

1
) and 𝑅1 (𝑥1

1
), thus reduces the chance an

adversary can disguise between 𝑥0

1
and 𝑥1

1
from shuffled messages.

Specifically, for randomizers satisfying 𝜖0-LDP, we have 𝑞 = 𝑝 =

exp(𝜖0), thus the asymptotic amplified DP level becomes:

𝑂̃ (
√︁
𝛽 (exp(𝜖0) − 1)/𝑛).

In Table 1, we compare our asymptotic bound with existing asymp-

totic bounds found in research [7, 30, 32, 33], under the practical

setting where 𝜖0 = Θ(1). Since the total variation bound 𝛽 is often

significantly lower than the worst-case value of
𝑒𝜖0−1

𝑒𝜖0+1 , our amplifi-

cation bound is provably tighter than previously known bounds.

Table 1: Comparison of privacy amplification bound on shuf-
fled 𝜖0-LDP messages when 𝜖0 = Θ(1) and 𝑛 ≥ Ω̃(exp(𝜖0)).

Method Asymptotic Amplification Bound

EFMRTT19 [30] 𝑂 (
√︁

exp(3𝜖0) log(1/𝛿)/𝑛)
privacy blanket [7] 𝑂 (

√︁
exp(2𝜖0) log(1/𝛿)/𝑛)

clone [32] 𝑂

(︂
exp(𝜖0 )−1

exp(𝜖0 )+1

√︂
exp(𝜖0 ) log(1/𝛿 )

𝑛

)︂
stronger clone [33] 𝑂

(︂√︃ (exp(𝜖0 )−1)2 log(1/𝛿 )
𝑛 (exp(𝜖0 )+1)

)︂
variation ratio [this work] 𝑂

(︂√︂
𝛽 (exp(𝜖0 )−1) log(1/𝛿 )

𝑛

)︂
Discussion on differences with stronger clone reduction.

For 𝜖0-LDP randomizers where 𝑝 ≡ 𝑞 = exp(𝜖0), our intermediate

result presented in Theorem 4.7 yields a divergence upper bound

analogous to the one found in the state-of-the-art stronger clone

by [33]. Our framework offers three primary advantages: (i) Our

bound is tighter than [33] as long as the newly introduced total

variation parameter 𝛽 is not the worst-case (𝑝 − 1)/(𝑝 + 1). Notably,
commonly-used randomizers exhibit much lower 𝛽 values, and

computing 𝛽 is straightforward. (ii) While [33] handles only LDP

randomizers that 𝑞 ≡ 𝑝 , our reduction is versatile, accommodating

also cases where 𝑝 < 𝑞 (e.g., for metric local randomizers) and 𝑝 > 𝑞

(e.g., for multi-message randomizers). (iii) Our method entails a

𝑂̃ (𝑛)-time algorithm for numerically determining the Hockey-stick

divergence, offering a much more efficient solution compared to

prevailing algorithms [32, 53], being about 10 times faster than

their documented execution times.

4.2 Proof Sketch
Our proof for Theorem 4.1 follows three steps: (i) utilizing the

(𝑝, 𝛽)-variation and 𝑞-ratio properties to obtain mixture decompo-

sition of local randomizers; (ii) motivated by the clone reduction

[32, 33], we succinctly reduce the mixture decomposition as several

binomial counts, which serve as the dominating pair of distribu-

tion for privacy analyses [95]; (iii) delving into the Hockey-stick

divergence of the dominating binomial counts, we utilize the mono-

tonicness of the Hockey-stick divergence to derive the final results

of expectation on cumulative probabilities.

We first consider fixed 𝑥0

1
and 𝑥1

1
, and show that R1 (𝑥0

1
),R1 (𝑥1

1
),

and R𝑖 (𝑥𝑖 ) can be interpreted as mixture distributions (as elabo-

rated in Lemma 4.4) with parameters related to 𝑝 , 𝑞, and the total

variation 𝛽′ = 𝐷1 (R1 (𝑥0

1
)∥R1 (𝑥1

1
)). The core idea is to concentrate

on elements where the distributions R1 (𝑥0

1
) and R1 (𝑥1

1
) differ, and

bound the total differing probability using parameters 𝑝 and 𝛽 . For

messages from other users, the parameter 𝑞 is used to compute

their likelihood of appearing as a message from user 1.

Lemma 4.4 (Mixture decompositions). Given 𝑥0

1
, 𝑥1

1
, ..., 𝑥𝑛 ∈ X,

if algorithms {R𝑖 }𝑖∈[𝑛] satisfy the (𝑝, 𝛽′)-variation property and the
𝑞-ratio property with some 𝑝 > 1, 𝑞 ≥ 1 and 𝛽′ = 𝐷1 (R1 (𝑥0

1
)∥R1 (𝑥1

1
)),

then there exists distributions Q0

1
,Q1

1
,Q1,Q2, ...,Q𝑛 such that

R1 (𝑥0

1
) = 𝑝𝛼Q0

1
+ 𝛼Q1

1
+ (1 − 𝛼 − 𝑝𝛼)Q1 (1)

R1 (𝑥1

1
) = 𝛼Q0

1
+ 𝑝𝛼Q1

1
+ (1 − 𝛼 − 𝑝𝛼)Q1 (2)

∀𝑖 ∈ [2, 𝑛], R𝑖 (𝑥𝑖 ) = 𝑟Q0

1
+ 𝑟Q1

1
+ (1 − 2𝑟 )Q𝑖 (3)

where 𝛼 =
𝛽 ′

𝑝−1
and 𝑟 = 𝛼𝑝

𝑞 .

Next, we generalize the clone reduction technique [33] by lever-

aging the data processing inequality to relate mixture parameters

to the level of divergence (as demonstrated in Lemma 4.5). Specifi-

cally, this generalized reduction lemma implies that the statistical

distance between shuffled messages

𝐷 (S(R1 (𝑥0

1
), . . . ,R𝑛 (𝑥𝑛)) ∥ S(R1 (𝑥1

1
), . . . ,R𝑛 (𝑥𝑛)))

is bounded by the one between binomial counts: 𝐷 (𝑃𝑞
𝑝,𝛽 ′
∥𝑄𝑞

𝑝,𝛽 ′
).

Lemma 4.5 (Divergence reduction via mixture). Given any
𝑛+1 inputs 𝑥0

1
, 𝑥1

1
, 𝑥2, ..., 𝑥𝑛 ∈ X, consider algorithms {R𝑖 }𝑖∈[𝑛] such
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that the output domain is finite and

R1 (𝑥0

1
) = 𝑝𝛼Q0

1
+ 𝛼Q1

1
+ (1 − 𝛼 − 𝑝𝛼)Q1,

R1 (𝑥1

1
) = 𝛼Q0

1
+ 𝑝𝛼Q1

1
+ (1 − 𝛼 − 𝑝𝛼)Q1,

∀𝑖 ∈ [2, 𝑛], R𝑖 (𝑥𝑖 ) = 𝑟Q0

1
+ 𝑟Q1

1
+ (1 − 2𝑟 )Q𝑖

holds for some 𝑝 ≥ 1, 𝑞 > 1, 𝛼 = 𝛽′/(𝑝 − 1) ∈ [0, 1/(𝑝 + 1)], 𝑟 ∈
[0, 1/2] and some probability distributions Q0

1
,Q1

1
,Q1,Q2, ...,Q𝑛 . Let

𝐶 ∼ 𝐵𝑖𝑛𝑜𝑚(𝑛 − 1, 2𝑟 ), 𝐴 ∼ 𝐵𝑖𝑛𝑜𝑚(𝐶, 1/2), and Δ1 = 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 (𝑝𝛼)
and Δ2 = 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 (1 − Δ1, 𝛼/(1 − 𝑝𝛼)); let 𝑃𝑞𝑝,𝛽 ′ = (𝐴 + Δ1,𝐶 −
𝐴 + Δ2) and 𝑄𝑞𝑝,𝛽 ′ = (𝐴 + Δ2,𝐶 − 𝐴 + Δ1). Then for any distance
measure 𝐷 that satisfies the data processing inequality,

𝐷 (S(R1 (𝑥0

1
), ..,R𝑛 (𝑥𝑛))∥S(R1 (𝑥1

1
), ..,R𝑛 (𝑥𝑛))) ≤ 𝐷 (𝑃𝑞𝑝,𝛽 ′ ∥𝑄

𝑞

𝑝,𝛽 ′
) .

Then, we utilize the fact that the statistical distance𝐷 (𝑃𝑞
𝑝,𝛽 ′
∥𝑄𝑞

𝑝,𝛽 ′
)

is monotonically non-decreasing with 𝛽′. For any arbitrary 𝑥0

1
and

𝑥1

1
, the total variation is upper bounded by 𝛽 . Thus, we conclude

that for all possible neighboring datasets, the statistical distance

between the shuffled messages is upper bounded by 𝐷 (𝑃𝑞
𝑝,𝛽
∥𝑄𝑞

𝑝,𝛽
).

Lemma 4.6 (Non-decreasing of divergence). For any 𝑝 >

1, 𝑞 ≥ 1 and 𝛽, 𝛽′ ∈ [0, 𝑝−1

𝑝+1 ], if 𝛽 > 𝛽′, then for any distance
measure 𝐷 that satisfies data processing inequality,

𝐷 (𝑃𝑞
𝑝,𝛽
∥𝑄𝑞

𝑝,𝛽
) ≥ 𝐷 (𝑃𝑞

𝑝,𝛽 ′
∥𝑄𝑞

𝑝,𝛽 ′
).

Use the fact that 𝛽′ is upper bounded by 𝛽 , the results of previous
steps can be summarized in in Theorem 4.7. It is applicable to any

divergence measures that satisfy the data-processing inequality,

such as Rényi divergences [62].

Theorem 4.7 (Variation-ratio reduction). For 𝑝 > 1, 𝛽 ∈
[0, 𝑝−1

𝑝+1 ], 𝑞 ≥ 1, let 𝐶 ∼ 𝐵𝑖𝑛𝑜𝑚(𝑛 − 1,
2𝛽𝑝

(𝑝−1)𝑞 ), 𝐴 ∼ 𝐵𝑖𝑛𝑜𝑚(𝐶, 1/2)

and Δ1 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 ( 𝛽𝑝𝑝−1
) and Δ2 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 (1−Δ1,

𝛽

𝑝−1−𝛽𝑝 ); let
𝑃
𝑞

𝑝,𝛽
denote (𝐴 + Δ1,𝐶 −𝐴 + Δ2) and 𝑄𝑞𝑝,𝛽 denote (𝐴 + Δ2,𝐶 −𝐴 +

Δ1). If randomizers {R𝑖 }𝑖∈[𝑛] satisfy the (𝑝, 𝛽)-variation property
and the 𝑞-ratio property, then for any 𝑥0

1
, 𝑥1

1
, 𝑥2, ..., 𝑥𝑛 ∈ X and any

measurement 𝐷 satisfying the data-processing inequality:

𝐷 (S (R1 (𝑥0

1
), . . . , R𝑛 (𝑥𝑛 ) ) ∥S(R1 (𝑥1

1
), . . . , R𝑛 (𝑥𝑛 ) ) ) ≤𝐷 (𝑃𝑞𝑝,𝛽 ∥𝑄

𝑞

𝑝,𝛽
) .

Theorem 4.8 (Divergence bound as an expectation). For
𝑝 > 1, 𝛽 ∈ [0, 𝑝−1

𝑝+1 ], 𝑞 ≥ 1, let 𝛼 = 𝛽/(𝑝 − 1) and 𝑟 = 𝛼𝑝/𝑞, then for
any 𝜖 ∈ R, the following two equations hold:

𝐷𝑒𝜖 (𝑃𝑞𝑝,𝛽 ∥𝑄
𝑞

𝑝,𝛽
) = E

𝑐∼𝐵𝑖𝑛𝑜𝑚 (𝑛−1,2𝑟 )

[︂
(𝑝 − 𝑒𝜖 )𝛼 · CDF

𝑐,1/2
[ ⌈𝑙𝑜𝑤𝑐+1 − 1⌉, 𝑐 ]

+ (1 − 𝑝𝑒𝜖 )𝛼 · CDF
𝑐,1/2
[ ⌈𝑙𝑜𝑤𝑐+1 ⌉, 𝑐 ]

+ (1 − 𝑒𝜖 ) (1 − 𝛼 − 𝑝𝛼 ) · CDF
𝑐,1/2
[ ⌈𝑙𝑜𝑤𝑐 ⌉, 𝑐 ]

]︂
,

where 𝑙𝑜𝑤𝑐 =
(𝑒𝜖′𝑝−1)𝛼𝑐+(𝑒𝜖′−1) (1−𝛼−𝛼𝑝 ) (𝑛−𝑐 ) · 𝑟

1−2𝑟

𝛼 (𝑒𝜖′+1) (𝑝−1) .

Finally, we show an efficient way to computing (the upper bound

of) 𝐷𝑒𝜖′ (𝑃
𝑞

𝑝,𝛽
∥𝑄𝑞

𝑝,𝛽
). A straight-forward approach is enumerating

the output space (𝑎, 𝑏) ∈ [0, 𝑛]2 using the definition of the diver-

gence. However, this method has a high computational cost of

𝑂 (𝑛2) and may suffer from numerical underflow issues. To avoid

these issues, we exploit the monotonicity of the probability ra-

tio

P[𝑃𝑞
𝑝,𝛽

=(𝑎,𝑏 ) ]
P[𝑄𝑞

𝑝,𝛽
=(𝑎,𝑏 ) ] with respect to 𝑎 when 𝑎 + 𝑏 is fixed. Thus, the

maximum operation in the Hockey-stick divergence can be safely

removed by carefully tracking the range of 𝑎, and the overall diver-

gence can be expressed as an expectation over 𝑐 ∼ 𝐵𝑖𝑛𝑜𝑚(𝑛− 1, 2𝑟 )
that follows binomial distribution (see Theorem 4.8). To track the

range of 𝑎, we introduce the notation CDF𝑐,1/2 [𝑐1, 𝑐2] to represent

the cumulative probability

∑︁
𝑖∈[𝑐1,𝑐2 ]

(︁𝑐
𝑖

)︁
/2𝑐 , which can be com-

puted using two calls to the regularized incomplete beta function

[65]. As a result, the computational complexity is reduced to 𝑂̃ (𝑛).

4.3 Amplification Parameters of Randomizers
To demonstrate the broad applicability of our proposed framework

for privacy amplification analysis in the shuffle model, we provide

amplification parameters for a wide range of local randomizers,

including prevalent 𝜖0-LDP randomizers, local metric 𝑑X-DP ran-

domizers, and multi-message randomizers.

LDP randomizers. We summarize the variation-ratio parame-

ters of 𝜖-LDP randomizers in Table 2. The worst-case total variation

bound 𝛽 = 𝑒𝜖−1

𝑒𝜖+1 for general mechanisms is derived from [51],

which proves that randomized response maximizes it. This worst-

case bound is equivalent to the asymptotically optimal stronger

clone reduction in research [33]. For commonly used mechanisms,

such as mean estimationmechanisms [26, 29, 64, 75], distribution es-

timation mechanisms [1, 26, 31, 50, 77, 83, 92], and mechanisms for

complicated data [45, 66, 76, 79], we exploit their specific structures

to derive tighter total variation bounds, which can lead to stronger

amplification effects (see Lemma 4.6 for qualitative analyses and

Section 7 for numerical results).

Local metric DP radomizers. Regarding local metric DP mech-

anisms, we study the indistinguishability level between shuffled

messages generated by a metric locally 𝑑X-private mechanism R,
where 𝐷

exp(𝑑X (𝑥,𝑥 ′ ) ) (R(𝑥)∥R(𝑥 ′)) = 0 holds for all 𝑥, 𝑥 ′ ∈ X.
Specifically, we aim to analyze the indistinguishable level between

S(R(𝑥0

1
), ...,R(𝑥𝑛)) and S(R(𝑥1

1
), ...,R(𝑥𝑛))), which is also cap-

tured by Theorem 4.7 with 𝑝 ≤ exp(𝑑01) and 𝑞 ≤ exp(𝑑𝑚𝑎𝑥 ). Here,
𝑑01 denotes the local indistinguishable level 𝑑X (𝑥0

1
, 𝑥1

1
), and 𝑑𝑚𝑎𝑥

denotes the maximum indistinguishable level

max

𝑥∈X
max{𝑑X (𝑥, 𝑥0

1
), 𝑑X (𝑥, 𝑥1

1
)}

w.r.t. 𝑥0

1
and 𝑥1

1
. We summarize the variation-ratio parameters

for S(R(𝑥0

1
), ...,R(𝑥𝑛)) and S(R(𝑥1

1
), ...,R(𝑥𝑛))) in Table 3. For

general local 𝑑X-DP mechanisms, the amplification parameters

𝑝 = 𝑒𝑑01 , 𝛽 = 𝑒𝑑01−1

𝑒𝑑01+1 come directly from 𝑑01-LDP properties of

R on 𝑥1 ∈ {𝑥0

1
, 𝑥1

1
}, the parameter 𝑞 = 𝑒𝑑𝑚𝑎𝑥 comes from the

metric privacy constraints that R(𝑥𝑖 ) and R(𝑥1) are (𝑑X (𝑥𝑖 , 𝑥1))-
indistinguishable and 𝑑X (𝑥𝑖 , 𝑥1) ≤ 𝑑𝑚𝑎𝑥 . Compared with the am-

plification upper bound for general mechanisms proved by [78],

where the clone probability 2𝑟 = 2/(max𝑥∈X 𝑒𝑑X (𝑥,𝑥
0

1
) + 𝑒𝑑X (𝑥,𝑥1

1
) ),

our clone probability 2
𝛽𝑝

(𝑝−1)𝑞 = 2/(𝑒𝑑𝑚𝑎𝑥 + 𝑒𝑑𝑚𝑎𝑥−𝑑01 ) is at least
not smaller than theirs (due to the triangle inequality property

of 𝑑X). For Laplace mechanism with ℓ1-norm metric privacy on

one-dimensional numerical values, the total variation bound 𝛽 is:

𝐷1 (𝐿𝑎𝑝𝑙𝑎𝑐𝑒 (0, 1)∥𝐿𝑎𝑝𝑙𝑎𝑐𝑒 (𝑑01, 1)) = 1 − 𝑒−𝑑01/2 .
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Table 2: A summary of variation-ratio parameters of 𝜖-LDP randomizers. A lower 𝛽 means a stronger amplification effect.

randomizer parameter 𝑝 parameter 𝛽 parameter 𝑞
general mechanisms 𝑒𝜖 𝑒𝜖−1

𝑒𝜖+1 𝑒𝜖

Laplace mechanism for [0, 1] [29] 𝑒𝜖 1 − 𝑒−𝜖/2 𝑒𝜖

PrivUnit mechanism with cap area 𝑐 [14] 𝑒𝜖
𝑐 · (𝑒𝜖−1)
𝑐 ·𝑒𝜖+1−𝑐 𝑒𝜖

general randomized response (GRR) on 𝑑 options [50] 𝑒𝜖 𝑒𝜖−1

𝑒𝜖+𝑑−1
𝑒𝜖

binary RR on 𝑑 options [26] 𝑒𝜖 𝑒𝜖/2−1

𝑒𝜖/2+1 𝑒𝜖

𝑘-subset on 𝑑 options [77, 92] 𝑒𝜖
(𝑒𝜖−1) ((𝑑−1

𝑘−1
)−(𝑑−2

𝑘−2
) )

𝑒𝜖 (𝑑−1

𝑘−1
)+(𝑑−1

𝑘 )
𝑒𝜖

local hash with length 𝑙 [83] 𝑒𝜖 𝑒𝜖−1

𝑒𝜖+𝑙−1
𝑒𝜖

Hadamard response (𝐾, 𝑠, 𝐵 = 1) [1] 𝑒𝜖
𝑠 (𝑒𝜖−1)/2
𝑠𝑒𝜖+𝐾−𝑠 𝑒𝜖

Hadamard response (𝐾, 𝑠, 𝐵 > 1) [1] 𝑒𝜖
𝑠 (𝑒𝜖−1)
𝑠𝑒𝜖+𝐾−𝑠 𝑒𝜖

sampling RAPPOR on 𝑠 in 𝑑 options [66] 𝑒𝜖
𝑠 (𝑒𝜖/2−1)
𝑑 (𝑒𝜖/2+1) 𝑒𝜖

Wheel on 𝑠 in 𝑑 options with length 𝑝 [82] 𝑒𝜖
𝑠𝑝 (𝑒𝜖−1)

𝑠𝑝𝑒𝜖+(1−𝑠𝑝 ) 𝑒𝜖

Table 3: A summary of amplification parameters of S(R(𝑥0

1
), ...,R(𝑥𝑛)) and S(R(𝑥1

1
), ...,R(𝑥𝑛))) for local 𝑑X-DP randomizers,

𝑑01 = 𝑑X (𝑥0

1
, 𝑥1

1
) and 𝑑𝑚𝑎𝑥 = max𝑥∈Xmax{𝑑X (𝑥0

1
, 𝑥), 𝑑X (𝑥1

1
, 𝑥)}.

randomizer parameter 𝑝 parameter 𝛽 parameter 𝑞

general mechanisms 𝑒𝑑01
𝑒𝑑01−1

𝑒𝑑01+1 𝑒𝑑𝑚𝑎𝑥

Laplace mechanism [2], ℓ1-norm on R 𝑒𝑑01
1 − 𝑒−𝑑01/2 𝑒𝑑𝑚𝑎𝑥

planar Laplace [3], ℓ2-norm on R2 𝑒𝑑01
2

∫ 𝑑
01

2

0

∫ +∞
−∞

𝑒
−
√︃
(𝑥− 𝑑01

2
)2+𝑦2

2𝜋 d𝑦d𝑥 𝑒𝑑𝑚𝑎𝑥

Table 4: A summary of amplification parameters of some multi-message shuffle private protocols.

randomizer parameter 𝑝 parameter 𝛽 parameter 𝑞
Balcer et al. [4] with coin prob. 𝑝 for binary summation +∞ 1 max{ 1

𝑝 ,
1

1−𝑝 }
Balcer et al. [5] with uniform coin for binary summation +∞ 1 2

Cheu et al. [21] with flip prob. 𝑓 ∈ [0, 0.5] on {0, 1}𝑑 (1−𝑓 )2
𝑓 2

1 − 2𝑓
1−𝑓
𝑓

Balls-into-bins [61] with 𝑑 bins (and 𝑠 special bins) +∞ 1
𝑑
𝑠

mixDUMP [58] with flip prob. 𝑓 ∈ [0, 𝑑−1

𝑑
] on 𝑑 bins

(1−𝑓 ) (𝑑−1)
𝑓

(1−𝑓 ) (𝑑−1)−𝑓
𝑑−1

(1 − 𝑓 )𝑑

For the location randomization mechanism with ℓ2-norm metric

privacy over two-dimensional domains, such as the planar Laplace

mechanism [3], the probability density P[𝑃𝑙𝑎𝑛𝑎𝑟𝐿𝑎𝑝𝑙𝑎𝑐𝑒 (𝑢, 1) =
𝑥] = 𝑒−∥𝑥−𝑢∥2

2𝜋 for 𝑢, 𝑥 ∈ R2
, and the total variation bound 𝛽 is:

2

∫ 𝑑01/2

0

∫ +∞

−∞
(𝑒−
√
(𝑥−𝑑01/2)2+𝑦2 )/(2𝜋)d𝑦d𝑥 .

Multi-message protocols. For multi-message protocols in the

literature, we revisit their actual variation-ratio parameters in Table

4. Typically, in these protocols, messages sent by a user can be clas-

sified as input-dependent or input-independent, with only one of

them being input-dependent. For example, for the user 1 among 𝑛′

users in [21],R1 (𝑥1) is produced by binary randomized response on

𝑥𝑖 , while other𝑚 − 1 messages (i.e. R𝑛′+1 (∗), . . . ,R (𝑚−1) ·𝑛′+1 (∗))
are independently produced by binary randomized response on

a zero vector {0}𝑑 with a flip probability of 𝑓 ∈ [0, 0.5]. Simi-

larly, in protocols for binary summation (𝑥𝑖 ∈ {0, 1}), the input-
independent/blanket message can be a Bernoulli variable with bi-

ased coin [4] or uniform coin [5]. In balls-into-bins [61], pureDUMP,

and mixDUMP [58], each blanket message is a uniform-random

category in [𝑑]. The parameters 𝑝 and 𝛽 are computed from the

input-dependent message R1 (𝑥1), while the parameter 𝑞 is derived

from input-independent messages contributed by both user 1 and

other users, referred to as blanket messages in [7]. It is important

to emphasize that, within these multi-message shuffle protocols,

input-independent blanket messages can be viewed as if they were

generated by dummy users. Consequently, the number of messages

in which an input-dependent message can blend is equivalent to the

total count of input-independent messages. For instance, assuming

𝑛′ users with each user contributing𝑚 − 1 input-independent mes-

sages, the term 𝑛−1 in Theorem 4.7 effectively becomes 𝑛′ · (𝑚−1).
Compared to the privacy guarantees in the original works, our am-

plification bound for these protocols offers a more than 70% budget

savings, as demonstrated by the numerical results in Section 7.2.

Discussion on the generality of our framework for multi-
message protocols. We note that our framework applies to all

single-message shuffle protocols using local 𝜖-DP or metric DP ran-

domizers. While for multi-message protocols in the shuffle model,
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based on the correlation between outputted messages, they can be

primarily categorized into three main types:

I. The first type of multi-message shuffle protocols is achieved

by invoking multiple single-message protocols. This is seen

as in the Recursive protocol in [8] and the utility-complexity

balanced protocol in [44].

II. The second type involves sending one input-dependent

message and multiple independent blanket messages, as

seen in [4, 5, 21, 58, 61].

III. The third type involves sending multiple correlated mes-

sages per user. Protocols falling in this category include

[37, 38] and the secret-sharing-style IKOS protocol in [8].

We also envision that there can be multi-message protocols that

combines Types I and II, by invoking several protocols each is a

multi-message one. Our variation-ratio framework is compatible

with protocols categorized under Type I and/or Type II. However,

Type III protocols, wherein messages from a single user are corre-

lated, breach the independence assumption of each randomizer R𝑖
within our framework.

Discussion on variation-ratio parameters. The research on

parameters 𝑝 , 𝛽 , and 𝑞 shows patterns that help design protocols

for the shuffle model. Single-message shuffle protocols that utilize

𝜖0-LDP randomizers are limited to 𝑞 = 𝑝 = 𝑒𝜖0
. Therefore, the clone

probability 2𝑟 = 2𝛽𝑝/((𝑝 −1)𝑞) decreases significantly with 𝜖0, and

larger population are required to achieve global (𝜖, 𝛿)-DP. Random-

ization mechanisms with better utility in the local model often fully

exploit privacy constraints and have larger total variation bounds

𝛽 , resulting in weaker privacy amplification effects (e.g., comparing

randomized response with binary RR on 2 options). Multi-message

shuffle protocols typically set 𝑞 < 𝑝 or even 𝑞 ≪ 𝑝 to increase the

clone probability and reduce the number of messages transmitted

per user. For local metric 𝑑X-DP randomizers that handle large

data domains, 𝑑𝑚𝑎𝑥 is often set relatively high, and thus 𝑞 ≥ 𝑝 .

When a global privacy target is given, they need to strike a balance

between local data utility (which increases with 𝑑𝑚𝑎𝑥 ) and privacy

amplification effects (which decrease with 𝑑𝑚𝑎𝑥 ).

4.4 Numerical Method for Upper Bounds
This part is dedicated to numerically computing the indistinguish-

able level between two shuffledmessage setsS(R1 (𝑥0

1
), . . . ,R𝑛 (𝑥𝑛))

and S(R1 (𝑥1

1
), . . . ,R𝑛 (𝑥𝑛)), within a given privacy failure proba-

bility 𝛿 ∈ [0, 1]. According to Theorem 4.7, the indistinguishable

level is upper bounded by the one between binomial counts 𝑃
𝑞

𝑝,𝛽

and 𝑄
𝑞

𝑝,𝛽
. Our aim is then to find the smallest 𝜖 ∈ [0, log𝑝] that

the corresponding Hockey-stick divergence is no more than the

privacy failure parameter:

arg min

𝜖∈[0,log𝑝 ]
max

[︂
𝐷𝑒𝜖 (𝑃𝑞𝑝,𝛽 ∥𝑄

𝑞

𝑝,𝛽
), 𝐷𝑒𝜖 (𝑄𝑞𝑝,𝛽 ∥𝑃

𝑞

𝑝,𝛽
)
]︂
≤ 𝛿. (4)

Solving this problem directly is infeasible. Fortunately, the diver-

gence monotonically non-increases with 𝜖 , so one can binary search

on 𝜖 . Plugging in the results from Theorems 4.1 and 4.8, we compute

the Hockey-stick divergence given the temporary level 𝜖 as an ex-

pectation of cumulative probabilities. The complete implementation

for solving problem (4) is provided Algorithm 1.

Algorithm 1: Efficient search of indistinguishable upper

bound of 𝑃
𝑞

𝑝,𝛽
and 𝑄

𝑞

𝑝,𝛽

Input: parameter 𝛿 ∈ [0, 1], number of users 𝑛, parameters

𝑝 > 1, 𝑞 ≥ 1, 𝛽 ∈ [0, 𝑝−1

𝑝+1 ], number of iterations𝑇 .

Output: An upper bound of 𝜖′𝑐 that
max

[︁
𝐷𝜖′𝑐 (𝑃

𝑞

𝑝,𝛽
∥𝑄𝑞

𝑝,𝛽
), 𝐷𝜖′𝑐 (𝑄

𝑞

𝑝,𝛽
∥𝑃𝑞
𝑝,𝛽
)
]︁
≤ 𝛿 holds.

1 𝛼 =
𝛽

𝑝−1
, 𝑟 =

𝛼𝑝

𝑞

2 Procedure Delta(𝜖′)
3 𝛿 ′ ← 0

4 𝑤𝑐 =
(︁𝑛−1

𝑐

)︁
(2𝑟 )𝑐 (1 − 2𝑟 )𝑛−1−𝑐

5 𝑙𝑜𝑤𝑐 =
(𝑒𝜖′𝑝−1)𝛼𝑐+(𝑒𝜖′ −1) 𝑓

𝛼 (𝑒𝜖′+1) (𝑝−1)
6 for 𝑐 ∈ [0, 𝑛] do
7 𝛿 ′ ← 𝛿 ′+𝑤𝑐 ( (𝑝−𝑒𝜖 )𝛼 ·CDF

𝑐,1/2
[ ⌈𝑙𝑜𝑤𝑐+1−1⌉, 𝑐 ]+(1−𝑝𝑒𝜖 )𝛼 ·

CDF
𝑐,1/2
[ ⌈𝑙𝑜𝑤𝑐+1 ⌉, 𝑐 ]+ (1−𝑒𝜖 ) (1−𝛼−𝑝𝛼 ) ·CDF

𝑐,1/2
[ ⌈𝑙𝑜𝑤𝑐 ⌉, 𝑐 ] )

8 end
9 return 𝛿 ′

10 𝜖𝐿 ← 0, 𝜖𝐻 ← log(𝑝 )
11 for 𝑡 ∈ [𝑇 ] do
12 𝜖𝑡 ← 𝜖𝐿+𝜖𝐻

2

13 if Delta(𝜖𝑡 ) > 𝛿 then
14 𝜖𝐿 ← 𝜖𝑡

15 else
16 𝜖𝐻 ← 𝜖𝑡

17 end
18 end
19 return 𝜖𝐻

Due to symmetry, the divergence𝐷𝑒𝜖 (𝑃𝑞𝑝,𝛽 ∥𝑄
𝑞

𝑝,𝛽
) is always equal

to 𝐷𝑒𝜖 (𝑄𝑞𝑝,𝛽 ∥𝑃
𝑞

𝑝,𝛽
). Thus, Algorithm 1 only needs to compute one

of them. We set the binary search upper bound, 𝜖𝐻 , to log(𝑝), given
that the differing data item 𝑥1 is at least protected by R1 with

an indistinguishability level of log(𝑝). The algorithm includes a

sub-procedure, Delta(𝜖), computing 𝐷𝑒𝜖 (𝑃𝑞𝑝,𝛽 ∥𝑄
𝑞

𝑝,𝛽
) in 𝑂̃ (𝑛) time.

Hence, the total computational complexity is 𝑂̃ (𝑛 ·𝑇 ), with𝑇 being

the number of binary search iterations, influencing the precision of

the numerical indistinguishability level.

5 AMPLIFICATION LOWER BOUNDS
In this section, we aim to establish lower bounds for privacy am-

plification via shuffling. These bounds serve to demonstrate the

tightness of the upper bounds derived in the preceding sections.

Aiming at maximizing the divergence in observable shuffled mes-

sages given two neighboring datasets, our approach involves select-

ing elements 𝑦 ∈ Y in the message space where the probabilities

P[R(𝑥0

1
) = 𝑦] and P[R(𝑥1

1
) = 𝑦] differ. We then choose the worst-

case data 𝑥∗ ∈ X for other users to maximize the expected probabil-

ity ratio over differed elements, and finally, we observe the number

of occurrences of these differing elements in shuffled messages. For

succinctness, we summarize the occurrences of these elements and

summarize them into two binomial counts, similar to the technique

used in Theorem 4.7. The resulting amplification lower bound is

presented in Theorem 5.1, indicating the (worst-case) divergence
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of shuffled messages is lower bounded by the divergence between

two binomial counts 𝑃
𝑞0,𝑞1

𝑝0,𝛽
and 𝑄

𝑞0,𝑞1

𝑝0,𝛽
.

Theorem 5.1 (Privacy amplification lower bounds). Given
𝑥0

1
, 𝑥1

1
∈ X and local randomizers {R1,R2} that have finite output do-

main Y, let 𝑝0 denote
∑︁
𝑦∈YJP[R1 (𝑥1

1
)=𝑦 ]>P[R1 (𝑥0

1
)=𝑦 ]K·P[R1 (𝑥1

1
)=𝑦 ]∑︁

𝑦∈YJP[R1 (𝑥1

1
)=𝑦 ]>P[R1 (𝑥0

1
)=𝑦 ]K·P[R1 (𝑥0

1
)=𝑦 ] ,

let 𝛽 denote 𝐷𝜖0 (R1 (𝑥1

1
)∥R1 (𝑥0

1
)). Find an 𝑥∗ ∈ X such that:

𝑥∗ = arg max

𝑥 ∈X
min{︄∑︁

𝑦∈Y
[︁
P[R1 (𝑥1

1
) = 𝑦 ] > P[R1 (𝑥0

1
) = 𝑦 ]

]︁
· P[R1 (𝑥1

1
) = 𝑦 ]∑︁

𝑦∈Y
[︁
P[R1 (𝑥1

1
) = 𝑦 ] > P[R1 (𝑥0

1
) = 𝑦 ]

]︁
· P[R2 (𝑥 ) = 𝑦 ]

,∑︁
𝑦∈Y

[︁
P[R1 (𝑥1

1
) = 𝑦 ] < P[R1 (𝑥0

1
) = 𝑦 ]

]︁
· P[R1 (𝑥0

1
) = 𝑦 ]∑︁

𝑦∈Y
[︁
P[R1 (𝑥1

1
) = 𝑦 ] < P[R1 (𝑥0

1
) = 𝑦 ]

]︁
· P[R2 (𝑥 ) = 𝑦 ]

}︄
,

let 𝑞1 denote
∑︁
𝑦∈YJP[R1 (𝑥1

1
)=𝑦 ]>P[R1 (𝑥0

1
)=𝑦 ]K·P[R1 (𝑥1

1
)=𝑦 ]∑︁

𝑦∈YJP[R1 (𝑥1

1
)=𝑦 ]>P[R1 (𝑥0

1
)=𝑦 ]K·P[R2 (𝑥∗ )=𝑦 ]

and 𝑞0

denote
∑︁
𝑦∈YJP[R1 (𝑥1

1
)=𝑦 ]<P[R1 (𝑥0

1
)=𝑦 ]K·P[R1 (𝑥0

1
)=𝑦 ]∑︁

𝑦∈YJP[R1 (𝑥1

1
)=𝑦 ]<P[R1 (𝑥0

1
)=𝑦 ]K·P[R2 (𝑥∗ )=𝑦 ]

. Let 𝛼 =
𝛽 ′

(𝑝−1) ,

𝑟0 =
𝛼𝑝0

𝑞0

and 𝑟1 =
𝛼𝑝0

𝑞1

, and 𝐶 ∼ 𝐵𝑖𝑛𝑜𝑚(𝑛 − 1, 𝑟0 + 𝑟1), 𝐴 ∼
𝐵𝑖𝑛𝑜𝑚(𝐶, 𝑟0/(𝑟0+𝑟1)), andΔ1 = 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 (𝑝0𝛼),Δ2 = 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 (1−
Δ1, 𝛼/(1−𝑝0𝛼)). Let 𝑃𝑞0,𝑞1

𝑝0,𝛽
denote (𝐴+Δ1,𝐶−𝐴+Δ2),𝑄𝑞0,𝑞1

𝑝0,𝛽
denote

(𝐴 + Δ2,𝐶 −𝐴 + Δ1), then there exists 𝑥2, ..., 𝑥𝑛 ∈ X such that:

𝐷 (S (R1 (𝑥0

1
), ..., R2 (𝑥𝑛 ) ) ∥S(R1 (𝑥1

1
), ..., R2 (𝑥𝑛 ) ) ) ≥𝐷 (𝑃𝑞0,𝑞1

𝑝0,𝛽
∥𝑄𝑞0,𝑞1

𝑝0,𝛽
) .

According to the definition of binomial counts 𝑃
𝑞0,𝑞1

𝑝0,𝛽
, 𝑄
𝑞0,𝑞1

𝑝0,𝛽
in

the lower bounding Theorem 5.1 and 𝑃
𝑞

𝑝,𝛽
, 𝑄
𝑞

𝑝,𝛽
in the upper bound-

ing Theorem 4.7, when 𝑝0 = 𝑝 and 𝑞0 = 𝑞1 = 𝑞, the upper bound

matches lower bound and is thus exactly tight. This requires that

the expected probability ratio 𝑝0 equals to the maximum ratio 𝑝 .

This can be met by randomizers that employ an extremal probability

design [51] that probability ratio P[R(𝑥𝑖 ) = 𝑦]/P[R(𝑥𝑖′ ) = 𝑦] must

belongs to {1, 𝑒𝜖 , 𝑒−𝜖 } for all 𝑖, 𝑖′ ∈ [𝑛], 𝑥𝑖 , 𝑥𝑖′ ∈ X, and 𝑦 ∈ Y. Be-
sides, the matching condition requires that the expected probability

ratios 𝑞0 and 𝑞1 equal to the maximum ratio 𝑞.

Most state-of-the-art 𝜖-LDP randomizers adhere to the men-

tioned criteria. Notable examples include the generalized random-

ized response [50] for more than 2 options, the 𝑘-subset mecha-

nism [77] with cardinality 𝑘 ≤ 2, local hash [83] with length 𝑙 ≥ 3,

Hardamard response [1], PrivUnit [14] with cap area 𝑐 ≤ 1/2, PCKV-
GRR [45], and Wheel mechanism [82] with length 𝑝 ≥ 1/(2𝑠). As a
result, the amplification upper bounds for these randomizers match

the lower bounds and are precisely tight. In a similar vein, the pri-

vacy amplification upper bounds for several recent multi-message

protocols are also exactly tight. Examples include Cheu et al. [21]
with 𝑑 ≥ 3, Balls-into-bins [61] with 𝑑 ≥ 3𝑠 , pureDUMP and mix-

DUMP [58] with 𝑑 ≥ 3 (listed in Table 4). Similar to the upper

bound, there exists 𝑂̃ (𝑛)-complexity algorithms to compute the

numerical value of the lower bound. For other randomizers that

fail to meet the aforementioned criteria, such as the Laplace and

𝑘-subset mechanism [77] with cardinality 𝑘 ≥ 3, the expected ratios

𝑝0 and 𝑞0, 𝑞1 are close to the maximum ratio 𝑝 and 𝑞 respectively.

Consequently, the upper bound remains roughly tight.

6 PARALLEL COMPOSITION IN THE SHUFFLE
MODEL

Most data analysis tasks involve multiple estimation targets. In the

local setting of DP, it is common practice to partition the entire user

population into multiple non-overlapping subsets and allow each

subset to handle one estimation query with full budget 𝜖0. This

technique is used to achieve better utility compared to dividing

the privacy budget 𝜖0. Examples of tasks that utilize this approach

include heavy hitter estimation [10, 66, 86], multi-dimensional data

publication [69, 75, 84], frequent itemset mining [85], range queries

[24], marginal queries [22], data synthesis [87, 93], and machine

learning [34, 48, 89]. This technique aligns with the parallel com-

position theorem of DP in the centralized setting [27].

In the shuffle model of DP, a naive approach to handling multiple

queries is to divide the population into 𝐾 cohorts and separately

amplify privacy with about 𝑛/𝐾 users for each query. A more effec-

tive approach is to allow each user to randomly select one query

from all 𝐾 queries using a common distribution 𝑃𝑘 ∈ Δ𝐾 , and to

contribute to the selected query in parallel. We illustrate this par-

allel approach in Algorithm 2. Since all base mechanismsM𝑘 (for

𝑘 ∈ [𝐾]) satisfy 𝜖0-LDP, the overall algorithm satisfies 𝜖0-LDP.

Algorithm 2: Parallel local randomizer

Params :Number of queries 𝐾 , a probability distribution

𝑃𝑘 : [𝐾] ↦→ [0, 1], local base randomizers

{M𝑘 : X ↦→ Y𝑘 }𝑘∈[𝐾 ] each satisfies 𝜖0-LDP and

corresponds to one query.

Input: An input 𝑥 ∈ X.
Output: An output 𝑧 satisfies 𝜖0-LDP.

1 sample 𝑘 ∼ 𝑃𝑘
2 𝑦 ←M𝑘 (𝑥)
3 return 𝑦

In light of the fact that each user draws a sample 𝑘 from the

identical query distribution 𝑃𝑘 , all users adopt the same random-

ization algorithm (Algorithm 2) that satisfies 𝜖0-LDP. As a result,

the privacy amplification via shuffling discussed in the previous

sections remains valid with 𝑛 users amplify privacy together. We

refer to Algorithm 2 as R. Drawing on the (𝑒𝜖0 , 𝑒
𝜖

0−1

𝑒𝜖0+1 )-variation
property and the 𝑒𝜖0

-ratio property of arbitrary identical 𝜖0-LDP

randomizers, we can straightforwardly conclude that:

𝐷 (S (R (𝑥0

1
), ..., R(𝑥𝑛 ) ) ∥ S(R (𝑥1

1
), ..., R(𝑥𝑛 ) ) )

≤𝐷
(︂
𝑃𝑒
𝜖

0

𝑒𝜖0 , 𝑒
𝜖

0 −1

𝑒𝜖0 +1
∥𝑄𝑒𝜖0

𝑒𝜖0 , 𝑒
𝜖

0 −1

𝑒𝜖0 +1

)︂
,

which we refer to as the basic parallel composition theorem.

By exploiting the connection between total variation bounds and

indistinguishable levels established in this study, we can derive a

stronger privacy guarantee for Algorithm 2. Specifically, the total

variation bound of the parallel local randomizer is bounded by the

expectation of the base randomizers’ total variation bound. We

present this improved result in Theorem 6.1 and refer to it as the

advanced parallel composition in the shuffle model.

Theorem 6.1 (Advanced parallel composition in the shuffle

model). AssumeM𝑘 satisfy the (𝑒𝜖0 , 𝛽𝑘 )-variation property, and let
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R denote the Algorithm 2, then for any inputs 𝑥0

1
, 𝑥1

1
, 𝑥2, ..., 𝑥𝑛 ∈ X:

𝐷 (S(R(𝑥0

1
), ...,R(𝑥𝑛))∥S(R(𝑥1

1
), ...,R(𝑥𝑛))) ≤ 𝐷

(︁
𝑃𝑒

𝜖
0

𝑒𝜖0 ,𝛽¯
∥𝑄𝑒

𝜖
0

𝑒𝜖0 ,𝛽¯

)︁
where 𝛽¯ =

∑︁
𝑘 ′∈[𝐾 ] 𝛽𝑘 ′ · P[𝑃𝑘 = 𝑘′].

Proof. To establish the theorem, it is sufficient to demonstrate

that R satisfies the (𝑒𝜖0 , 𝛽¯)-variation property. The fact that R satis-

fies 𝐷𝑒𝜖0 (R(𝑥0

1
)∥R(𝑥1

1
)) = 0 is a direct consequence of the 𝜖0-LDP

guarantee of R. Moreover, applying the definition of the total vari-

ation (or Hockey-stick divergence), we obtain:

𝐷1 (R (𝑥0

1
) ∥R (𝑥1

1
) ) ≤

∑︂
𝑘′∈ [𝐾 ]

P[𝑃𝑘 = 𝑘 ′ ] · 𝐷1 (M𝑘′ (𝑥0

1
) ∥M𝑘′ (𝑥1

1
) )

≤
∑︂

𝑘′∈ [𝐾 ] P[𝑃𝑘 = 𝑘 ′ ] · 𝛽𝑘′ .

□

7 NUMERICAL RESULTS
In this section, we present evaluations of the proposed variation-

ratio framework for both single-message and multi-message pro-

tocols in the shuffle model. Our main focus is to demonstrate the

effectiveness and efficiency of numerical upper bounds. We also

validate the effectiveness of the closed-form bounds presented in

Theorems 4.2 and 4.3. Additionally, we demonstrate the perfor-

mance improvements achieved through the advanced parallel com-

position presented in Theorem 6.1, taking private range queries in

the shuffle model as a concrete example.

7.1 On Single-message Protocols
To evaluate the effectiveness of the proposed variation-ratio frame-

work for privacy amplification on LDP randomizers, we compare

it with existing amplification bounds such as the privacy blanket

[7], clone reduction [32], and the stronger clone reduction [33].

We specifically consider two state-of-the-art LDP randomizers for

discrete distribution estimation: the subset selection mechanism

[77, 92] and the optimal local hash [83]. For the privacy blanket

method, we present the tighter bound between the upper bounds

given by “Hoeffding, Generic” and “Bennett, Generic” for general

LDP randomizers, denoted as 𝑝𝑟𝑖𝑣𝑎𝑐𝑦-𝑏𝑙𝑎𝑛𝑘𝑒𝑡, 𝑔𝑒𝑛𝑒𝑟𝑎𝑙 . We also

present the tighter bound between the upper bounds given by “Ho-

effding” and “Bennett” with randomizer-specific parameters, i.e.,

with total variation similarity 𝛾 =
(︁𝑑
𝑘

)︁
/(𝑒𝜖0

(︁𝑑−1

𝑘−1

)︁
+

(︁𝑑−1

𝑘

)︁
) for the

subset mechanism and total variation similarity 𝛾 = 𝑙
𝑒𝜖0+𝑙−1

for

the optimal local hash, denoted as 𝑝𝑟𝑖𝑣𝑎𝑐𝑦-𝑏𝑙𝑎𝑛𝑘𝑒𝑡, 𝑠𝑝𝑒𝑐𝑖 𝑓 𝑖𝑐 . All

presented results are numerical amplification upper bounds (except

the classical EFMRTT19 [30] providing only closed-form bounds).

We use amplification ratio to measure the effectiveness of privacy

amplification. It is defined as the ratio of the local budget 𝜖0 to the

amplified privacy budget 𝜖 :

amplification ratio = 𝜖0/𝜖.
We present the amplification ratio results for the subset and optimal

local hash mechanisms in Figures 1 and 2, respectively. The results

demonstrate that our variation-ratio analyses can save about 30% of

the privacy budget for both mechanisms when compared with the

best existing bounds. Notably, in the optimal local hash mechanism,

when 𝑙 = 𝑒𝜖0 + 1 is greater than 2, the amplification upper bounds

obtained from our variation-ratio framework are tight, matching

the lower bounds presented in Section 5.

7.2 On Multi-message Protocols
To assess the efficacy of variation-ratio analyses for multi-message

protocols, we apply it to two state-of-the-art histogram estimation

protocols, namely Cheu et al. [21] and balls-into-bins [61]. We

compare the amplified privacy provided by the original works,

denoted as 𝜖′, with that given by variation-ratio analyses, denoted

as 𝜖 . To measure the additional privacy amplification offered by our

analyses, we use the extra amplification ratio, defined as:

extra amplification ratio = 𝜖′/𝜖.

As depicted in Figures 3 and 4, our numerical bounds, denoted

as 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛-𝑟𝑎𝑡𝑖𝑜 , are significantly tighter and result in a pri-

vacy budget savings of approximately 75%. Moreover, we present

closed-form bounds from Theorem 4.2 and Theorem 4.3, denoted as

𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛-𝑟𝑎𝑡𝑖𝑜, 𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐 and 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛-𝑟𝑎𝑡𝑖𝑜, 𝑎𝑠𝑦𝑚𝑝𝑡𝑜𝑡𝑖𝑐 , respec-

tively. Both bounds are tighter than those obtained from the orig-

inal works, and the closed-form bounds from Theorem 4.2 yield

more than 50% budget savings.

7.3 On Advanced Parallel Composition
This part evaluates the privacy amplification effects provided by

the advanced parallel composition in Theorem 6.1. To illustrate the

effectiveness of this technique, we consider range queries over a

categorical domain [1 : 𝑑], a well-studied problem in the literature

[24, 30]. To avoid Θ(𝑑) errors in estimators, a common practice

is to represent categories in a hierarchical form and let each user

report one hierarchy level. For categorical domains of size 𝑑 = 2
𝐻
,

the 𝑘-th value in the ℎ-th hierarchy is given by:

𝑉ℎ,𝑘 = J 𝑗 ∈ [(𝑘 − 1) · 2ℎ : 𝑘 · 2ℎ]K,

where ℎ ∈ [0 : 𝐻 − 1], 𝑘 ∈ [1 : 𝑑/2ℎ], and J K is the Iverson bracket.

Follow the approach suggested in [24], we assume each user

uniformly selects one hierarchy level ℎ ∈ [0 : 𝐻 − 1] and uses

the generalized randomized response mechanism with full budget

𝜖0 to report the one-hot vector 𝑉ℎ,∗ (the generalized randomized

response is optimal in the low local privacy regime [92]). Using the

basic parallel composition theorem, this parallel local randomizer

with 𝐻 queries implies the following variation-ratio parameters:

𝑝 = 𝑒𝜖0
, 𝛽 = 𝑒𝜖0−1

𝑒𝜖0+1 , and 𝑞 = 𝑒𝜖0
. In contrast, according to Table 2

and the advanced parallel composition in Theorem 6.1, the tighter

variation-ratio parameters can be computed as follows: 𝑝 = 𝑒𝜖0
,

𝑞 = 𝑒𝜖0
, and 𝛽 =

∑︁
ℎ∈[0:𝐻−1]

1

𝐻
𝑒𝜖0−1

𝑒𝜖0+𝑑/2ℎ−1

.

We present a comparative analysis of the numerical privacy am-

plification achieved through advanced parallel composition and

basic parallel composition in Figure 5, for the following settings:

𝑑 = 64 or 2048, and 𝑛 = 10
4
or 10

5
. Our findings demonstrate that

the use of advanced parallel composition results in a reduction

of the privacy budget by approximately 75%. Moreover, we inves-

tigate the privacy amplification effects of the separate approach

wherein non-overlapping users report each hierarchy level sepa-

rately. We present the amplification results for 𝑛/𝐻 users using

the best-possible parameters: 𝑝 = 𝑒𝜖0
, 𝑞 = 𝑒𝜖0

, and 𝛽 = 𝑒𝜖0−1

𝑒𝜖0+𝑑−1

(denoted as 𝑠𝑒𝑝𝑎𝑟𝑎𝑡𝑒, 𝑏𝑒𝑠𝑡 in Figure 5) or the worst-possible param-

eters: 𝑝 = 𝑒𝜖0
, 𝑞 = 𝑒𝜖0

, and 𝛽 = 𝑒𝜖0−1

𝑒𝜖0+1 (denoted as 𝑠𝑒𝑝𝑎𝑟𝑎𝑡𝑒,𝑤𝑜𝑟𝑠𝑡 ).

Our results show that the advanced parallel composition saves

budget by 80%-95% when compared to the separated approach.
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Figure 1: Numerical comparison of amplification effects (base 2 logarithm of amplification ratio) of subset selection mechanism
with 𝑛 = 10

4 or 10
5, domain size 𝑑 = 16 or 128, and varying local budget 𝜖0 ∈ [0.1, 5.0].
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Figure 2: Numerical comparison of amplification effects (base 2 logarithm of amplification ratio) of optimal local hash
mechanism with 𝑛 = 10

4 or 10
5, domain size 𝑑 = 16 or 128, and local budget 𝜖0 ∈ [0.1, 5.0].
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Figure 3: Numerical comparison of amplification effects (base 2 logarithm of extra amplification ratio) of the Cheu et al. [21]
multi-message protocol with 𝑛 = 10

4 or 10
5, domain size 𝑑 = 16 or 128, and varying global budget 𝜖′ ∈ [0.01, 1.5].

7.4 Efficiency Evaluation
We implement Theorem 4.1 and Algorithm 1 in Python 3.8 and exe-

cute it on a desktop computer with Intel Core i7-10700KF @3.8GHz

and 32GB memory. In Table 5, we present the results for 𝑇 = 20 or

𝑇 = 10 (𝑇 is the number of binary search iterations on amplified

level 𝜖 , see Section 4.4), where we vary the local budget 𝜖0 and

number of users 𝑛. The numerical privacy amplification bounds

presented in the table correspond to general LDPmechanisms (refer

to Table 2 for variation-ratio parameters). Our results demonstrate

that the running time of the implementation is less sensitive to

the local budget 𝜖0, and mainly depends on the population size 𝑛

and number of iterations 𝑇 . Furthermore, the running time grows

linearly with 𝑛, and we can obtain tight numerical privacy amplifi-

cation bounds within a dozen seconds even when 𝑛 is extremely

large (e.g., 𝑛 = 10
8
). Our results also show that one can trade tight-

ness for computational efficiency by choosing a smaller value for

𝑇 . Specifically, comparing the results obtained for 𝑇 = 10 with

those for𝑇 = 20, we observe that the latter provides slightly tighter

bounds, but at the cost of much longer running time.

8 CONCLUSION
This work has presented a unified, tight, easy-to-use, and efficient

framework for analyzing privacy amplification within the emerg-

ing shuffle model. The framework has been shown to provide tight
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Figure 4: Numerical comparison of amplification effects (base 2 logarithm of extra amplification ratio) of the balls-into-bins
multi-message protocol with 𝑛 =

32 log(2/𝛿 )𝑑
𝜖 ′2𝑠

[61] and varying global budget 𝜖′ ∈ [0.01, 1.5].
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Figure 5: Numerical comparison of amplification effects (base 2 logarithm of amplification ratio) of separated approach, basic
parallel composition, and advanced parallel composition.

Table 5: Amplification bounds (w.r.t. 𝛿 = 0.01/𝑛) and running time comparison for general 𝜖0-LDP randomizers with iterations
𝑇 = 20 or 𝑇 = 10 and varying number of users.

𝑇 = 20 𝑇 = 10

number of users 𝑛 amplified privacy 𝜖 time (seconds) amplified privacy 𝜖 time (seconds)

𝜖0 = 1.0

10
4

0.0433 0.45 0.0440 2.3

10
6

0.00503 16.7 0.00586 4.7

10
8

0.000566 106.2 0.000977 0.43

𝜖0 = 3.0

10
4

0.227 3.8 0.229 1.5

10
6

0.0255 13.9 0.0264 2.8

10
8

0.00283 117.5 0.00293 5.2

𝜖0 = 5.0

10
4

0.743 2.4 0.743 0.9

10
6

0.0778 9.3 0.0782 3.1

10
8

0.00853 44.6 0.00977 7.9

𝜖0 = 7.0

10
4

6.99 0.24 6.99 0.31

10
6

0.224 2.8 0.225 1.2

10
8

0.0242 17.9 0.0273 5.1

bounds for a wide range of state-of-the-art single-message/multi-

message protocols, by translating two novel yet intuitive parameter-

izations (namely, total variation and probability ratio) about local

randomizers into differential privacy levels. Additionally, the frame-

work has induced an advanced parallel composition theorem in the

shuffle model, widely applicable to count queries, data synthesis,

data mining, and machine learning. Our framework also leads to a

fast 𝑂̃ (𝑛)-complexity procedure for numerical privacy amplifica-

tion analyses. Comprehensive experiments affirm the effectiveness

and efficiency of the proposed framework.
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