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ABSTRACT
We study local subgraph counting queries,𝑄 = (𝑝, 𝑜), to count how
many times a given 𝑘-node pattern graph 𝑝 appears around every
node 𝑣 in a data graph𝐺 when the given center node𝑜 in 𝑝 maps to 𝑣 .
Such local subgraph counting becomes important in GNNs (Graph
Neural Networks), where incorporating such counts for every node
in 𝐺 into the GNN architecture enhances the model’s ability to
capture complex relationships within the graph𝐺 . It is challenging
to count by subgraph isomorphism, which is known to be NP-hard.
In this paper, we propose a novel approach by tree-decomposition-
based counting. For a complex pattern graph 𝑝 in𝑄 , we find its best
tree decomposition 𝑇 , where a node in 𝑇 represents a subgraph
of 𝑝 , and a node in 𝑝 may appear in multiple nodes in 𝑇 . Let 𝑝 (𝑇 )
be the pattern represented by 𝑇 . Our approach is to count 𝑝 (𝑇 ) by
homomorphism with a constraint to count the subgraph in every
tree node by subgraph isomorphism. We apply symmetry-breaking
rules to reduce the cost of counting by subgraph isomorphism for
every node in 𝑇 , and we develop a new multi-join algorithm to
compute such counts. We confirm that our approach on a single
machine using a single core can outperform the others significantly.
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1 INTRODUCTION
A graph is a complex structure that has been widely used to sup-
port various real-world applications such as social network analy-
sis. Given a large data graph 𝐺 , a local subgraph counting query
𝑄 = (𝑝, 𝑜) is to count howmany times a given 𝑘-node pattern graph
𝑝 that appears around every node 𝑣 in 𝐺 when the center node 𝑜
in 𝑝 maps to 𝑣 . Local subgraph counting has many applications in
data mining, such as community detection, graph clustering, net-
work comparison and alignment, anomaly detection, and detecting
strong ties in social networks [80, 101], and becomes important
in GNNs (Graph Neural Networks), as it provides a large number
of topological features. For example, when 𝑘 = 5, 6 and 7, there
are 58, 407 and 4, 306 such pattern graphs respectively. Such local
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WS BY CA SG WW∑
𝑣 |HOM𝑝,𝑜 (𝑣) | 86.7 1,767 3,949 1,839 23,936∑
𝑣 |tISO𝑝,𝑜,𝑇 (𝑣) | 78.3 1,620 3,817 1,584 16,461∑
𝑣 |ISO𝑝,𝑜 (𝑣) | 70.0 1,491 3,547 1,426 14,899

#enumerated match 0.6 6.7 8.1 12.9 232

(b) number of matches(×108) of the pattern 𝑝 in Fig. 4

Figure 1: Comparing three types of matches

subgraph counts infuse GNNs with higher-order graph structural
information. This is useful in tasks where the presence of specific
subgraph patterns is indicative of certain properties or labels. In [9],
Barceló et al. propose local graph parameter enabled GNNs, and
in [76], Qian et al. further study subgraph-enhanced GNNs.

Local subgraph counting is challenging, particularly when it is to
count by subgraph isomorphism, which is known to be NP-hard. To
compute local subgraph counting queries, there are enumeration-
based [72, 96], matrix-based [23, 41, 42, 63–65], and decomposition-
based [73, 101] approaches. A survey can be found in [80]. Among
the three categories, the state-of-the-art is the decomposition ap-
proach (e.g., EVOKE [73] and DISC [101]), which decomposes 𝑝
into smaller pattern graphs to count. Here, EVOKE can only support
pattern graphs up to 5 nodes [73], whereasDISC is an approach that
can handle any 𝑘-node pattern graphs. In brief, DISC is to compute
local subgraph counting queries under subgraph isomorphism by
homomorphism counting [5, 13, 20, 22, 25, 28, 34, 40]. It computes
a query by eliminating homomorphism counts for those that are
not subgraph matches from the total homomorphism count for any
possible homomorphism matches [101]. As shown in Fig. 1(a), to
count by subgraph isomorphism or iso-match (the innermost cir-
cle), it counts by homomorphism or homo-matches (the outermost
circle) and substrates the counts of the homo-matches between
the innermost and outermost circles. The hardness of counting by
homomorphism is the same as counting by subgraph isomorphism
in general. But, homomorphism can be done efficiently as there
are less constraints to check. However, DISC is inefficient in prac-
tice. It can only process some selected 6-node pattern graphs in
a batch [101]. To the best of our knowledge, there is no reported
result that can compute all 407 6-node pattern graphs in a batch
together over real large graphs in a reasonable time.

In this paper, we propose a new decomposition approach, called
tree-decomposition-based counting, to compute local subgraph count-
ing queries for any 𝑘-node pattern graph 𝑝 in a novel way. For
a complex pattern 𝑝 , we find its tree-shaped pattern, 𝑇 , by tree
decomposition [32], where a node in 𝑇 represents a subgraph of
𝑝 , and a node in 𝑝 may appear in multiple nodes in 𝑇 . By tree-
decomposition-based counting, we count the entire tree𝑇 by homo-
morphism counting, where every node in 𝑝 that appears in different
nodes in 𝑇 must map to the same node in the data graph 𝐺 , and
that every subgraph 𝑝 ′ of 𝑝 represented by a node in 𝑇 is counted
by subgraph isomorphism. We call it tiso-match and illustrate it
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by the middle circle in Fig. 1(a). We subtract the counts of the tiso-
matches between the innermost and the middle circle. To show
the performance achievement, we show the number of matches for
a local subgraph counting query 𝑄 = (𝑝, 𝑜), where 𝑝 is a 6-node
pattern 𝑝 in Fig. 4 and 𝑜 = 𝑢1 in 𝑝 , using five datasets (Table 2) in
Fig. 1(b). In Fig. 1(b), the first three rows are the total number of
homo-matches, tiso-matches, and iso-matches, to be enumerated
for the pattern 𝑝 . We get such numbers using an enumeration-
based approach. The number of enumerations by tiso-matches is
significantly less than that by homo-matches since tiso-matches
have more constraints than homo-matches. The actual number of
enumerations by our approach is given in the last row in Fig. 1(b).
We reduce the unnecessary enumerations significantly since we
only enumerate subgraphs represented by tree nodes instead of
𝑝 , and we apply symmetry-breaking rules to further reduce the
enumeration of these subgraphs.
MainContributions: First, we propose a novel tree decomposition-
based counting and prove its correctness. Second, we explore auto-
morphism orbits (structurally equivalent nodes) with symmetry-
breaking rules to reduce the cost of finding iso-matches. Symmetry-
breaking is an efficient technique for enumerating the iso-matches
of an entire pattern graph. Different from existing works, we give a
solution that can apply symmetry-breaking rules for tree nodes in
a tree decomposition to compute aggregations. In addition, we pro-
pose an optimization technique to further reduce the cost. Third, we
propose a new multi-join algorithm to compute each tree. Fourth,
we have implemented our approach on a single machine, and we
confirm that our approach SCOPE can outperform the state-of-the-
art approach DISC significantly. We can compute the batch of all
407 6-node queries over real large graphs.
Organizations. We give preliminaries and the problem statement
in Section 2, and discuss the existing homomorphism-based ap-
proach in Section 3. We propose a new decomposition-based ap-
proach in Section 4, discuss the new counting in Section 5, and
introduce a new multi-join algorithm in Section 6. We discuss re-
lated works in Section 7, and confirm the efficiency of our approach
in Section 8. We conclude our work in Section 9.

2 PRELIMINARIES
Following the notations in [101], we model a simple undirected
graph as 𝐺 = (𝑉 , 𝐸), where 𝑉 and 𝐸 are the sets of nodes and
edges in𝐺 , respectively. A graph𝐺 ′ = (𝑉 ′, 𝐸 ′) is a subgraph of𝐺 if
𝑉 ′ ⊆ 𝑉 and 𝐸 ′ ⊆ 𝐸, and is an induced subgraph of 𝐺 if 𝐸 ′ contains
all the edges in𝐺 such that both endpoints belonging to𝑉 ′. We call
a graph a 𝑘-node graph (or 𝑘-graph) if it has 𝑘 nodes. The number of
nodes and the number of edges are denoted as 𝑛 = |𝑉 | and𝑚 = |𝐸 |.
Homomorphism & Subgraph Isomorphism: Let 𝐺 = (𝑉 , 𝐸)
be a data graph and 𝑝 = (𝑉𝑝 , 𝐸𝑝 ) be a pattern graph. A function
𝑓 : 𝑉𝑝 ↦→ 𝑉 is called a homomorphism of 𝑝 if for each edge (𝑢,𝑢 ′) ∈
𝐸𝑝 , we have (𝑓 (𝑢), 𝑓 (𝑢 ′)) ∈ 𝐸, and a homomorphism 𝑓 of 𝑝 is
called a subgraph isomorphism of 𝑝 if 𝑓 is injective. A subgraph
𝐺 𝑓 = (𝑉𝑓 , 𝐸𝑓 ) in a data graph 𝐺 is an iso-match (hom-match) of a
pattern graph 𝑝 if 𝑓 is a subgraph isomorphism (homomorphism).
Automorphism Orbit: For a given graph 𝐺 = (𝑉 , 𝐸), an automor-
phism is a bijective function 𝛾 : 𝑉 ↦→ 𝑉 such that (𝑣, 𝑣 ′) ∈ 𝐸 iff
(𝛾 (𝑣), 𝛾 (𝑣 ′)) ∈ 𝐸. Here, an automorphism 𝛾 maps 𝐺 to itself in a
structure-preserving manner. The set of automorphisms, denoted
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Figure 2: An Example of 𝑄 = (𝑝, 𝑜) for 𝑜 = 𝑢1

as Aut(𝐺), forms a group called the automorphism group of 𝐺 .
With Aut(𝐺), two nodes 𝑣, 𝑣 ′ ∈ 𝑉 are in an equivalence relation
iff there exists an automorphism 𝛾 such that 𝛾 (𝑣) = 𝑣 ′ (or 𝑣 → 𝑣 ′)
for 𝛾 ∈ Aut(𝐺). Such equivalence relations partition nodes into
equivalence classes, where an equivalence class is called an auto-
morphism orbit, and is denoted as 𝜗 . Below, we use 𝑜 to denote a
representative node in 𝜗 , which we call an orbit.
Problem Statement: In this work, we study local subgraph count-
ing queries by subgraph isomorphism. Here, a local subgraph count-
ing query𝑄 is defined as𝑄 = (𝑝, 𝑜), where 𝑝 is a connected pattern
graph and 𝑜 is an orbit of 𝑝 . The local subgraph count for a specific
node 𝑣 in a data graph𝐺 , denoted as |SubG𝑝,𝑜 (𝑣) |, is the count of
all iso-matches of 𝑝 that match 𝑣 to 𝑜 such that 𝑓 (𝑜) = 𝑣 , where it
only counts one for the iso-matches of 𝑝 that are induced from the
same edges. We compute |SubG𝑝,𝑜 (𝑣) | for every node 𝑣 in 𝐺 .

It is known that |SubG𝑝,𝑜 (𝑣) | can be processed by local subgraph
isomorphism counting (|ISO𝑝,𝑜 (𝑣) |) or local homomorphism counting
(|HOM𝑝,𝑜 (𝑣) |), where ISO𝑝,𝑜 (𝑣) and HOM𝑝,𝑜 (𝑣) = {𝑓 | 𝑓 are sub-
graph isomorphism and homomorphism of 𝑝 with 𝑓 (𝑜) = 𝑣}, respec-
tively. It is important to mention that |SubG𝑝,𝑜 (𝑣) | = |ISO𝑝,𝑜 (𝑣) | ·
|𝜗 |/|Aut(𝑝) |, as shown in [101]. We explain it in Example 2.1.
Example 2.1: Fig. 2 shows an example with a pattern graph 𝑝 =

(𝑉𝑝 , 𝐸𝑝 ), a data graph𝐺 = (𝑉 , 𝐸), and the SubG𝑝,𝑜 (𝑣𝑖 ) for every 𝑣𝑖
in 𝐺 for a given subgraph counting query 𝑄 = (𝑝, 𝑜), where 𝑜 = 𝑢1.
The following two mappings, 𝑓𝑖 and 𝑓𝑗 from 𝑉𝑝 to 𝑉 , 𝑓𝑖 = {𝑢1 →
𝑣1, 𝑢2 → 𝑣2, 𝑢3 → 𝑣3, 𝑢4 → 𝑣4, 𝑢5 → 𝑣5} and 𝑓𝑗 = {𝑢1 → 𝑣1, 𝑢2 →
𝑣2, 𝑢3 → 𝑣3, 𝑢4 → 𝑣4, 𝑢5 → 𝑣1}, are homomorphisms, and only
𝑓𝑖 is subgraph isomorphism, as both 𝑢1 and 𝑢5 in 𝑓𝑗 map to the
same node 𝑣1 in𝐺 . With 𝑓𝑖 and 𝑓𝑗 , there is an iso-match,𝐺 𝑓𝑖 , and a
homo-match, 𝐺 𝑓𝑗 , in 𝐺 .

The automorphism group of 𝑝 , Aut(𝑝), is in size of |Aut(𝑝) | = 12.
As an example, one automorphism 𝛾 is (𝑢1, 𝑢5) (𝑢2, 𝑢3, 𝑢4) based on
the representation of the product of disjoint cycles regarding per-
mutation. For example, consider the disjoint cycle of (𝑢2, 𝑢3, 𝑢4), it
refers to 𝑢2 → 𝑢3, 𝑢3 → 𝑢4, and 𝑢4 → 𝑢2. Some other examples are
(𝑢1) (𝑢2) (𝑢3) (𝑢4) (𝑢5) and (𝑢1, 𝑢5) (𝑢2) (𝑢3) (𝑢4), where the former
is an identity automorphism (or trivial automorphism) by which
𝑢𝑖 → 𝑢𝑖 for every 𝑢𝑖 . By Aut(𝑝), we have two automorphism orbits,
𝜗1 = {𝑢1, 𝑢5} and 𝜗2 = {𝑢2, 𝑢3, 𝑢4}.

There are 6 iso-matches,𝐺 𝑓𝑘 of 𝑝 in𝐺 that map𝑢1 to 𝑣1 based on
6 subgraph isomorphisms, 𝑓𝑘 , for 1 ≤ 𝑘 ≤ 6, in which𝑢1 maps to 𝑣1,
𝑢5 maps to 𝑣5, 𝑢2 maps to any of the 3 nodes in {𝑣2, 𝑣3, 𝑣4}, 𝑢3 maps
to any of the 2 nodes in {𝑣2, 𝑣3, 𝑣4} that 𝑢2 does not map to, and
𝑢4 maps to one left that both 𝑢2 and 𝑢3 do not map to. Therefore,
|ISO𝑝,𝑜 (𝑣1) | = 6, where the 6 iso-matches are induced from the
same node set {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5}. As observed in Fig. 2, we have
|SubG𝑝,𝑜 (𝑣1) | = 1 by |SubG𝑝,𝑜 (𝑣1) | = |ISO𝑝,𝑜 (𝑣1) | · |𝜗 |/|Aut(𝑝) |.
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Here, |ISO𝑝,𝑜 (𝑣1) | = 6, |𝜗 | = 2 for 𝜗 = {𝑢1, 𝑢5} where 𝑜 = 𝑢1 is an
orbit that maps to 𝑣1, and |Aut(𝑝) | = 12. □

3 AN APPROACH BY HOMOMORPHISM
HOM queries are considered faster to process than ISO queries due
to the fact that homomorphisms are not required to be injective. In
[101], it shows that, for a pattern graph 𝑝 and a node orbit 𝑜 of 𝑝 ,
an ISO query 𝑄 can be systematically divided into a set of HOM
queries (𝑝 ′ = (𝑉𝑝′, 𝐸𝑝′), 𝑜 ′) with |𝑉𝑝′ | ≤ |𝑉𝑝 | to process.

We present DISC [101], which is a general approach by homo-
morphism to compute SubG queries in brief. First, the count of
ISO𝑝,𝑜 (𝑣) is less than or equal to the count of HOM𝑝,𝑜 (𝑣), as HOM
is less restrictive than ISO. Hence, the count of HOM𝑝,𝑜 (𝑣) is equal
to the count of ISO𝑝,𝑜 (𝑣) plus the count of ∇𝑝,𝑜 (𝑣), where ∇𝑝,𝑜 (𝑣)
is the set of all non-injective homomorphisms 𝑓 of 𝑝 with 𝑓 (𝑜) = 𝑣 .
Note that by non-injective homomorphism, two nodes in 𝑝 map to
the same node in data graph 𝐺 . Second, it shows that |∇𝑝,𝑜 (𝑣) | is
the sum of |ISO𝑝′,𝑜 (𝑝′) (𝑣) | for any subpattern 𝑝 ′ of 𝑝 , where 𝑜 (𝑝 ′)
denotes the node in 𝑝 ′ that contains 𝑜 , as there is a 1:1 connection
between a subpattern 𝑝 ′ of 𝑝 and a non-injective homomorphism.
Third, the count of HOM𝑝,𝑜 (𝑣) is the sum of |ISO𝑝′,𝑜 (𝑝′) (𝑣) | for
any subpattern 𝑝 ′ of 𝑝 and 𝑝 itself.

|HOM𝑝,𝑜 (𝑣) | =
∑︁

𝑝′∈{𝑝 }∪Sub(𝑝)
|ISO𝑝′,𝑜 (𝑝′) (𝑣) | (1)

With the assistance of the Möbius inversion formula, |ISO| can be
computed by |HOM| as follows.

|ISO𝑝,𝑜 (𝑣) | =
∑︁

𝑝′∈{𝑝 }∪Sub(𝑝)
𝜇 (𝑝, 𝑝 ′) · |HOM𝑝′,𝑜 (𝑝′) (𝑣) | (2)

where 𝜇 (𝑝, 𝑝 ′) is the corresponding Möbius function and Sub(𝑝) is
the set of all subpatterns of 𝑝 .

The key idea behindDISC is to process |HOM𝑝,𝑜 (𝑣) | for a pattern
graph 𝑝 = (𝑉𝑝 , 𝐸𝑝 ) by relational algebra efficiently using database
techniques as follows, supposing that an undirected data graph 𝐺
is stored in an edge relation 𝑅𝐺 (𝑓 𝑟𝑜𝑚, 𝑡𝑜).

𝑜Υcount(∗) (𝑅1 Z 𝑅2 Z · · · Z 𝑅 |𝐸𝑝 |) (3)

In Eq. (3), 𝑅𝑖 is a renamed relation of 𝑅𝐺 for an edge 𝑒𝑖 ∈ 𝐸𝑝 of 𝑝 ,
for 1 ≤ 𝑖 ≤ |𝐸𝑝 |, and 𝑜Υ𝐹 (·) is to aggregate using the function 𝐹

over each group grouped by the group-by attribute 𝑜 .
To process Eq. (3) for a specific pattern graph 𝑝 by HOM, DISC

decomposes a complex cyclic join (𝑅1 Z 𝑅2 Z · · · Z 𝑅 |𝐸𝑝 | ) to a join
tree based on tree decomposition [32]. With the tree decomposition
𝑇 , DISC processes the complex joins (𝑅1 Z 𝑅2 Z · · · Z 𝑅 |𝐸𝑝 |) in
two steps. In the first step, it processes the joins for each node 𝜏 in
the join tree, which results in an intermediate relation rel(𝜏), and
in the second step it processes the joins over all the intermediate
relations. Following the 𝐴𝐺𝑀 bound [8], the size of the intermedi-
ate result (rel(𝜏)) for a node 𝜏 is bounded by |𝑅𝐺 |fhw, where fhw is
called the fractional hypertree width and is the minimum real num-
ber such that every node 𝜏 in the join tree 𝑇 has a fractional edge
cover of weight fhw. By pushing down group-by and aggregations,
the time complexity of processing 𝑇 is 𝑂 ( |𝑉𝑝 | · |𝑅𝐺 |fhw) in [101].

The workflow ofDISC [101] is depicted in the upper part in Fig. 3.
➊ The ISO count of 𝑝 equals to the HOM count of 𝑝 minus the
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Figure 3: An overview of DISC and SCOPE

ISO count of a set of subpatterns (Sub(𝑝)). ➋ The ISO count for a
subpattern, 𝑝 ′, in Sub(𝑝) is counted in a similar manner recursively.
Hence, ISO𝑝 (𝑜, 𝑣) becomes a linear combination of theHOM counts
of patterns. ➌ DISC uses tree decomposition [32] to computeHOM
count for each of such patterns with joins and aggregations. ➍

DISC proposes a multi-join algorithm Disc to compute joins and
aggregations for each tree decomposition.

4 A NEW APPROACH BY PARAMETERIZED
SUBGRAPH ISOMORPHISM

Subgraph isomorphism is studied in parameterized complexity [21,
61]. Here, a fixed-parameter algorithm is to deal with an NP-hard
problem in running time 𝑓 (𝜅) ·𝑛𝑐 where 𝜅 is a parameter or a set of
parameters, 𝑓 (·) is a computable function which can be exponential
on 𝜅, and 𝑐 is a constant which is independent of 𝜅 and 𝑛. Mark
and Phlipczuk in [61] investigate the different parameters on the
complexity of parameterized subgraph isomorphisms. In this paper,
we focus on a parameterized algorithm by treewidth based on tree
decomposition on the pattern graph 𝑝 for local subgraph counting.
Definition 4.1: (Tree Decomposition) Given an undirected pat-
tern graph 𝑝 = (𝑉𝑝 , 𝐸𝑝 ), a tree decomposition of 𝑝 is a tree 𝑇 =

(𝑉𝑇 , 𝐸𝑇 ). We use 𝜏𝑖 (simply 𝜏) to denote a node in 𝑉𝑇 , where 𝜏𝑖
maintains a nonempty subset of 𝑉𝑝 , denoted as 𝑉 (𝜏𝑖 ) (⊆ 𝑉𝑝 ), with
which an induced subgraph of 𝑝 can be constructed, denoted as
𝑝 (𝜏𝑖 ). We say a node 𝑣 in 𝑉𝑝 appears in 𝜏𝑖 if 𝑣 ∈ 𝑉 (𝜏𝑖 ). The three
conditions on 𝑇 are as follows. (1) Every node in 𝑝 is covered by 𝑇
such that 𝑉𝑝 =

⋃
𝜏𝑖 ∈𝑉𝑇 𝑉 (𝜏𝑖 ). (2) Every edge in 𝑝 is covered by 𝑇

such that for every edge (𝑢, 𝑣) ∈ 𝐸𝑝 , both 𝑢 and 𝑣 appear in at least
one 𝜏𝑖 . (3) Nodes in 𝑇 are connected if they all contain a pattern
node. That is, if a node 𝑣 ∈ 𝑉𝑝 appears in both 𝜏𝑖 and 𝜏 𝑗 , then 𝑣

appears in every 𝜏𝑘 on the path that connects 𝜏𝑖 and 𝜏 𝑗 in 𝑇 .
Given a tree decomposition 𝑇 for a query 𝑄 = (𝑝, 𝑜), the root

node of 𝑇 is selected from a node that contains 𝑜 . We denote a
subtree rooted at node 𝜏𝑖 as𝑇𝑖 . The subtree𝑇𝑖 represents a subgraph
of 𝑝 , denoted as 𝑝𝑖 (or 𝑝 (𝑇𝑖 )), which is an induced subgraph of 𝑝 over⋃

𝜏 𝑗 ∈𝑇𝑖 𝑉 (𝜏 𝑗 ). We also use parent(𝜏𝑖 ) to denote the parent node of
𝜏𝑖 in𝑇 , and𝑉𝐶 (𝜏𝑖 ) to denote the common nodes that appear in both
𝑉 (𝜏𝑖 ) and 𝑉 (parent(𝜏𝑖 )), for a node 𝜏𝑖 in 𝑇 . An induced subgraph
𝐺 (𝑉𝐶 (𝜏𝑖 )), denoted as 𝐺𝐶 (𝜏𝑖 ), can be constructed on 𝑉𝐶 (𝜏𝑖 ).
Treewidth: The width of a tree decomposition 𝑇 is the largest size
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Figure 4: A pattern 𝑝, a tree decomposition 𝑇 , and a graph 𝐺

of |𝑉 (𝜏𝑖 ) | minus 1. There are several other metrics defined, includ-
ing generalized hypertree width and fractional hypertree width
[32]. Our approach can use any width. The treewidth of 𝑝 , denoted
as tw(𝑝), is the smallest width over all possible tree decomposition
for𝐺 . Below, we use tw(𝑝) to denote a tree decomposition𝑇 whose
width is tw(𝑝). It is known that subgraph isomorphism for a pattern
graph 𝑝 = (𝑉𝑝 , 𝐸𝑝 ) and a data graph 𝐺 = (𝑉 , 𝐸) can be solved in
time 2𝑂 ( |𝑉𝑝 |) · |𝑉 |𝑂 (tw(𝑝)) in [31, 61].
Example 4.1: Consider ISO𝑝,𝑜 (𝑣) where 𝑝 is a 6-node pattern
shown in Fig. 4(a) and 𝑜 = 𝑢1. The tree decomposition 𝑇 for 𝑝 is
shown in Fig. 4(b). In 𝑇 , there are 3 nodes, 𝜏𝑖 , for 1 ≤ 𝑖 ≤ 3, that
represent three subgraphs, 𝑝 (𝜏𝑖 ). The root of 𝑇 is 𝜏3 as it contains
the orbit 𝑢1. The subtree 𝑇1 is 𝜏1, the subtree 𝑇2 is the subtree of
𝑇 rooted at 𝜏2, and the subtree 𝑇3 = 𝑇 . Here, parent(𝜏1) = 𝜏2,
parent(𝜏2) = 𝜏3. The common nodes of 𝜏3 and 𝜏2 with its parent
are 𝑉𝐶 (𝜏1) = {𝑢1, 𝑢4, 𝑢6}, and 𝑉𝐶 (𝜏2) = {𝑢1, 𝑢3, 𝑢6}, respectively;
and 𝐺𝐶 (𝜏1) and 𝐺𝐶 (𝜏2) are simple paths, 𝑢1−𝑢4−𝑢6 and 𝑢1−𝑢3−𝑢6,
respectively. The data graph 𝐺 is also shown in Fig. 4(c).
TISO-based counting: We propose tree-decomposition-based count-
ing. Let𝑇𝑖 be a subtree in a tree decomposition𝑇 for a pattern graph
𝑝 . A tiso-match over 𝑝 (𝑇𝑖 ) is a homo-match of 𝑝 (𝑇𝑖 ) in 𝐺 on the
condition that 𝑝 (𝜏 𝑗 ) are iso-matches for every 𝜏 𝑗 ∈ 𝑇𝑖 . Below, we
use |tISO𝑝,𝑜,𝑇 (𝑣) | to denote the number of tiso-matches that match
a node 𝑣 in 𝐺 to 𝑜 , given a tree decomposition 𝑇 .
Lemma 4.1: For a query 𝑄 = (𝑝, 𝑜), |ISO𝑝,𝑜 (𝑣) | ≤ |tISO𝑝,𝑜,𝑇 (𝑣) | ≤
|HOM𝑝,𝑜 (𝑣) | for every node 𝑣 in 𝐺 .

Proof Sketch: First, some nodes, 𝑢 and 𝑢 ′, in 𝑝 that map to the
same node in 𝐺 by HOM cannot map to the same node by tISO
if both appear in a node 𝜏 in 𝑇 due to iso-matches in 𝜏 . We have
|tISO𝑝,𝑜,𝑇 (𝑣) | ≤ |HOM𝑝,𝑜 (𝑣) |. Second, some nodes, 𝑢 and 𝑢 ′, that
do not appear in any node 𝜏 in 𝑇 together may map to the same
node in 𝐺 by tISO, which cannot happen by iso-matches. We have
|ISO𝑝,𝑜 (𝑣) | ≤ |tISO𝑝,𝑜,𝑇 (𝑣) |. □

Next, we discuss how to compute |tISO| by enumerating iso-
matches for every tree node 𝜏 in 𝑇 . Here, for every 𝜏 in 𝑇 , we find
iso-matches of 𝜏 in𝐺 , and maintain it in a relation R𝜏 = ISO(𝑝 (𝜏)).
For a leaf node 𝜏 in𝑇 , we keep the count of tiso-matches in a relation
X(𝑉𝐶 (𝜏),𝐶) as follows.

X𝜏 (𝑉𝐶 (𝜏),𝐶) = 𝑉𝐶 (𝜏)Υ𝑐𝑜𝑢𝑛𝑡 (∗)→𝐶 (R𝜏 ) (4)

Here 𝜈Υℎ→𝐴 (·) is to apply an aggregate function ℎ for a group 𝜈

and rename the output of ℎ as 𝐴. For a non-leaf node 𝜏 in 𝑇 , let J𝜏
be as follows.

J𝜏 = R𝜏 Z𝑉𝐶 (𝜏1) 𝜌𝐶→𝐶1 (X𝜏1 ) Z𝑉𝐶 (𝜏2) 𝜌𝐶→𝐶1 (X𝜏2 )
· · · Z𝑉𝐶 (𝜏𝑘 ) 𝜌𝐶→𝐶𝑘

(X𝜏𝑘 )) (5)
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Figure 5: tISO𝑝,𝑜,𝑇 |𝑣 | Computing

where 𝜏𝑖 for 1 ≤ 𝑖 ≤ 𝑘 is a child of 𝜏 such that 𝜏 = parent(𝜏𝑖 ), a
join is a join on the common nodes of 𝑉𝐶 (𝜏𝑖 ), and 𝜌𝐶→𝐶′ (𝑋 ) is a
rename operator to rename 𝐶 in 𝑋 to be 𝐶 ′. Then, for a non-leaf
node 𝜏 that is not the root of 𝑇 , we have

X𝜏 (𝑉𝐶 (𝜏),𝐶) = 𝑉𝐶 (𝜏)Υ𝑠𝑢𝑚 (𝐶1×𝐶2×···×𝐶𝑘 )→𝐶 (J𝜏 ) (6)

For the root 𝜏 of of 𝑇 , we have

X𝜏 (𝑜,𝐶) = 𝑜Υ𝑠𝑢𝑚 (𝐶1×𝐶2×···×𝐶𝑘 )→𝐶 (J𝜏 ) (7)

where 𝑜 is the orbit 𝑜 of the given query 𝑄 = (𝑝, 𝑜). It is important
to note that |tISO𝑝,𝑜,𝑇 (𝑣) | for every node 𝑣 in 𝐺 is the tuple in the
table X𝜏 (𝑜,𝐶) for 𝑣 = 𝑓 (𝑜) when 𝜏 is the root of 𝑇 . As a special
case, when there is only one node 𝜏 in𝑇 which is both the root and
the leaf, we compute it as X𝜏 (𝑜,𝐶) = 𝑜Υ𝑐𝑜𝑢𝑛𝑡 (∗)→𝐶 (R𝜏 ).
Example 4.2: Reconsider Example 4.1. We show |tISO𝑝,𝑜,𝑇 (𝑣) |
computing for every node 𝑣 in𝐺 in Fig. 5, focusing onwhen 𝑓 (𝑢1) =
𝑣8 or 𝑓 (𝑢1) = 𝑣9. ➀ For 𝜏1, R𝜏1 shows the iso-matches of 𝑉𝜏1 , X𝜏1
shows the tISO-counts of 𝑝 (𝜏1) that have the same matches to
𝑉𝐶 (𝜏1) = {𝑢1, 𝑢4, 𝑢6} based on Eq. (4) as 𝜏1 is the leaf node in 𝑇 .
For example, the 2nd tuple of (𝑣8, 𝑣10, 𝑣9, 2) in X𝜏1 shows that there
are 2 iso-matches of 𝑝 (𝜏1) that contain the same three nodes in 𝐺
by {𝑢1 → 𝑣8, 𝑢4 → 𝑣10, 𝑢6 → 𝑣9, 𝑢5 → 𝑣7} and {𝑢1 → 𝑣8, 𝑢4 →
𝑣10, 𝑢6 → 𝑣9, 𝑢5 → 𝑣12}. ➁ For 𝜏2, R𝜏2 shows the iso-matches of
𝑝 (𝜏2) in 𝐺 . In R𝜏2 , there are 8 iso-matches of 𝑝 (𝜏2) in 𝐺 when 𝑢1
matches either 𝑣8 or 𝑣9. Following Eq. (5), J𝜏2 = R𝜏2 Z X𝜏1 . In a
similar manner, X𝜏2 shows the tiso-counts of 𝑝 (𝑇2) grouped by
𝑉𝐶 (𝜏2) = {𝑢1, 𝑢3, 𝑢6} based on Eq. (6) as 𝜏2 is the non-root/non-leaf
node in 𝑇 . ➂ In a similar manner we can compute 𝜏3.

We discuss how to compute |ISO| by |tISO| given a tree decom-
position𝑇 for a pattern graph 𝑝 . As shown in Eq. (1), |HOM𝑝,𝑜 (𝑣) | is
the sum of |ISO𝑝,𝑜 (𝑣) | and |ISO𝑝′,𝑜 (𝑝′) (𝑣) | for any subpattern 𝑝 ′ of
𝑝 , where the set of subpatterns of 𝑝 , Sub(𝑝), is defined in [101] (Def-
inition 4.2). In brief, a subpattern of 𝑝 = (𝑉𝑝 , 𝐸𝑝 ), 𝑝 ′ = (𝑉𝑝′, 𝐸𝑝′),
is a pattern with less number of nodes (|𝑉𝑝′ | < |𝑉𝑝 |), due to the
reason that some nodes in 𝑝 map to the same node in 𝑝 ′ by ho-
momorphism. We follow [101] to describe such homomorphism
below. In [101], it specifies 𝑉𝑝′ by a partition of nodes in 𝑉𝑝 , de-
noted as I = {𝐼1, 𝐼2, . . . , 𝐼 |𝑉𝑝′ |}, where 𝐼𝑘 , for 1 ≤ 𝑘 ≤ |𝑉𝑝′ |, is an
independent subset of 𝑉𝑝 so that there are no edges in 𝑝 between
any two nodes in 𝐼𝑘 . In other words, all the nodes in an 𝐼𝑘 may map
to the same node by homomorphism. A node 𝑣𝑘 in𝑉𝑝′ corresponds
to one distinct 𝐼𝑘 . An edge (𝑣𝑖 , 𝑣 𝑗 ) exists in 𝑝 ′ if there is an edge
in 𝑝 between some node in 𝐼𝑖 and some node in 𝐼 𝑗 . As there is a
one-to-one connection between a subpattern 𝑝 ′ and a partition I, it
becomes possible to discuss subpatterns by such partitions. Below,
we use I = {I1,I2, · · · } to denote all subpatterns, 𝑝𝑖 , in Sub(𝑝).
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Figure 6: Cov and non-Cov of 𝑝 with 𝑇 in Fig. 4

Definition 4.2: Given a tree decomposition 𝑇 on 𝑝 , let 𝑝𝑖 be a sub-
pattern of 𝑝 , where its corresponding partition is I𝑖 = {𝐼1, 𝐼2, · · · }
in I. We say 𝑇 covers 𝑝𝑖 , if any two nodes, 𝑢 and 𝑣 , in the same 𝐼𝑘
do not appear together in any node 𝜏 in 𝑇 .

By Definition 4.2, the set of subpatterns of 𝑝 covered by 𝑇 is a
subset of Sub(𝑝), which we denote as Cov(𝑝,𝑇 ) (⊆ Sub(𝑝)).
Example 4.3: Given a pattern 𝑝 and its tree decomposition 𝑇 in
Fig. 4, the 9 subpatterns of 𝑝 , Sub(𝑝), are shown in Fig. 6, and the
first 4 subpatterns are covered by𝑇 such that Cov = {𝑝1, 𝑝2, 𝑝3, 𝑝4}.
Such 4 subpatterns covered by𝑇 are induced by the partitions I1 =
{{𝑢2, 𝑢4}, {𝑢1}, {𝑢3}, {𝑢5}, {𝑢6}}, I2 = {{𝑢2, 𝑢5}, {𝑢1}, {𝑢3}, {𝑢4},
{𝑢6}}, I3 = {{𝑢2}, {𝑢1}, {𝑢3, 𝑢5}, {𝑢4}, {𝑢6}}, I4 = {{𝑢2, 𝑢4}, {𝑢1},
{𝑢3, 𝑢5}, {𝑢6}}, respectively.

Proposition 4.1: For a given pattern graph 𝑝 , an orbit 𝑜 , and a tree
decomposition 𝑇 , we have

|HOM𝑝,𝑜 (𝑣) | − |tISO𝑝,𝑜,𝑇 (𝑣) | =
∑︁

𝑝′∈Sub(𝑝 )\Cov(𝑝,𝑇 )
|ISO𝑝′,𝑜 (𝑝′) (𝑣) | (8)

Proof Sketch: It can be proved in a similar way as to prove Propo-
sition 4.2 in [101]. We give the proof sketch below. To prove the ≤
part, we consider a homomorphism 𝑓 that is not by tISO. First, with
𝑓 , we can find a matching𝐺 𝑓 in𝐺 . By𝐺 𝑓 , we can find a subpattern
𝑝 ′ in Sub(𝑝) \Cov(𝑝,𝑇 ). Second, given 𝑝 ′, we can find an injective
homomorphism (or subgraph isomorphism) 𝑓 ′with whichwe find a
matching𝐺 𝑓 ′ that is isomorphic to𝐺 𝑓 . Hence, its count is included
on the right by subgraph isomorphism regarding 𝑝 ′. To prove the
≥ part, we consider an subgraph isomorphism 𝑓 ′ of a subpattern
𝑝 ′ ∈ Sub(𝑝) \ Cov(𝑝,𝑇 ), and we can find a homomorphism 𝑓 that
is not by tISO for the pattern 𝑝 . Hence its count is included on the
left. The proposition is proved by the two inequalities. □

By combing Eq. (1) and Eq. (8), we have

|tISO𝑝,𝑜,𝑇 (𝑣) | =
∑︁

𝑝′∈{𝑝 }∪Cov(𝑝,𝑇 )
|ISO𝑝′,𝑜 (𝑝′) (𝑣) | (9)

Based on Eq. (9), we can compute |ISO𝑝,𝑜 (𝑣) | by tISO using Algo-
rithm 1 with which we have the following formula.

|ISO𝑝,𝑜 (𝑣) | =
∑︁
𝑝𝑖 ∈P

𝜇𝑖 · |tISO𝑝𝑖 ,𝑜 (𝑝𝑖 ),𝑇𝑖 (𝑣) | (10)

Here, P is the set of all distinct patterns in Λ, 𝜇𝑖 =
∑
𝑥=𝑝𝑖 (−1)

𝑑𝑥+1,
𝑑𝑥 is the depth of 𝑥 in Λ, and the depth of the root is 1.

The workflow of our approach SCOPE is presented in the lower
part in Fig. 3. ➊ We first get the tree decomposition for a given
pattern 𝑝 . ➋ We show that ISO count of 𝑝 can be obtained by
subtracting the tISO count with the ISO count ofCov(𝑝,𝑇 ), a subset
of Sub(𝑝) (Eq. (9)).➌WithAlgorithm. 1, we recursively apply Eq. (9)
to compute ISO counts by tISO counts (Eq. (10)). ➍ We process tree
decompositions by symmetry-breaking rules (Section 5) and our

Algorithm 1: tISOToISO (𝑝)
Input: pattern graph 𝑝

Output: A formula to compute |ISO𝑝,𝑜 (𝑣) | by tISO
1 Λ← 𝑝 , push 𝑝 to𝑄 ;
2 while𝑄 ≠ ∅ do
3 pop𝑄 to 𝑝′; compute𝑇𝑝′ and Cov(𝑝′,𝑇𝑝′ ) ;
4 foreach 𝑝′′ ∈ Cov(𝑝′,𝑇𝑝′ ) do
5 add a node 𝑝′′ and an edge (𝑝′, 𝑝′′) into Λ; push 𝑝′′ to𝑄 ;
6 return GenEq(Λ.𝑟𝑜𝑜𝑡);
7 Procedure GenEq(𝑥)
8 return tISO𝑥,𝑜 (𝑥 ),𝑇𝑥 −

∑
𝑦∈𝑥.𝑐ℎ𝑖𝑙𝑑 GenEq(y);

new multi-join algorithm Scope (Section 6). Notably, symmetry-
breaking rules are exclusive to ISO with which we define tISO. In
particular, we use ISO for nodes in 𝑇 .

5 TISO-BASED COUNTING
As shown in Eq. (4)-Eq. (7), a main cost in tISO-based counting
is to compute ISO-matches (R𝜏 ) for every tree node 𝜏 in a tree
decomposition𝑇 . And the key issue is how to compute ISO-matches
R𝜏 using automorphism orbits. A common technique to compute
ISO for a given pattern graph 𝑝 is by symmetry-breaking, which is
used in subgraph enumeration to reduce the number of iso-matches
of 𝑝 in 𝐺 if there exist automorphism orbits in 𝑝 [33, 57, 77, 96].
This is due to the fact that a subgraph in 𝐺 can be iso-matched
multiple times given automorphism orbits. We introduce symmetry-
breaking rules below.
Symmetry-breaking rules: For a pattern graph 𝑝 with automor-
phisms Aut(𝑝), a symmetry-breaking is an automorphism orbit of
Aut(𝑝), namely, 𝜗 = {𝑢1, 𝑢2, · · · , 𝑢𝑘 }. For each pair (𝑢1, 𝑢𝑖 ) in 𝜗 ,
for 2 ≤ 𝑖 ≤ 𝑘 , a partial order ≺ is imposed such that 𝑢1 ≺ 𝑢𝑖 . A
symmetry-breaking rule (SymR) for a given 𝜗 is presented in the
form of 𝜃 = {𝑢1 ≺ 𝑢2, · · · , 𝑢1 ≺ 𝑢𝑘 }. Assume that there is a total
order (<) on nodes in the data graph 𝐺 . By a symmetry-breaking
rule, it enforces 𝑓 (𝑢1) < 𝑓 (𝑢𝑖 ) in the data graph 𝐺 , if 𝑢1 ≺ 𝑢𝑖 in 𝜃 .
In other words, An iso-match of 𝑝 in𝐺 is valid if 𝑓 [𝑢1] < 𝑓 [𝑢𝑖 ] for
all 𝑖 ∈ [2, 𝑘] in a SymR 𝜃 .

Existing works enumerate subgraphs using a set of SymRs [6,
26, 33, 35, 45, 57–59, 77, 79, 84, 96, 100] for a pattern graph without
tree decomposition. In this work, we study how to compute ISO for
every tree node 𝜏 using automorphism orbits and its SymRs, given
a tree decomposition. It is important to note that this technique
cannot be used for homomorphisms.

5.1 More about Automorphism Orbits
Given a pattern graph 𝑝 , consider an automorphism orbit 𝜗 =

{𝑢1, 𝑢2, · · · , 𝑢𝑘 } in Aut(𝑝) which can be represented by SymR 𝜃 =

{𝑢1 ≺ 𝑢2, · · · , 𝑢1 ≺ 𝑢𝑘 }. We define a stabilizer subgroup of Aut𝜗 (𝑝)
= {𝛾 |𝛾 (𝑢1) = 𝑢1 for 𝛾 ∈ Aut(𝑝)} [24]. Note that Aut𝜗 (𝑝) is defined
by fixing 𝑢1 in 𝜗 .

With the stabilizer, the (left) cosets ofAut𝜗 (𝑝) inAut(𝑝), denoted
as [Aut(𝑝) : Aut𝜗 (𝑝)], are disjoint and are in the same size obtained
by composing each automorphism of Aut𝜗 (𝑝) by a𝛾 in Aut(𝑝) such
as [Aut(𝑝) : Aut𝜗 (𝑝)] = ∪𝛾 ∈Aut(𝑝) {𝛾 ◦ 𝛾 ′ |𝛾 ′ ∈ Aut𝜗 (𝑝)}. By the
orbit-stabilizer theorem in group theory, the number of cosets is |𝜗 |
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Figure 7: automorphisms and the 𝜃 mapping set

and |Aut𝜗 (𝑝) | = |Aut(𝑝) |/𝑘 for 𝑘 = |𝜗 |. That is, there are 𝑘 disjoint
cosets in the same size, and in the 𝑖-th coset the automorphisms
send 𝑢1 to the same 𝑢𝑖 in 𝜗 .
Example 5.1: Consider the pattern graph 𝑝 in Fig. 2(a). Its Aut(𝑝) is
in Fig. 7(a) where |Aut(𝑝) | = 12. There is an automorphism orbit𝜗 =

{𝑢2, 𝑢3, 𝑢4} in 𝑝 , which can serve the role of stabilizer as Aut𝜗 (𝑝) =
{𝛾1, 𝛾6, 𝛾7, 𝛾12}. Here, |Aut𝜗 (𝑝) | = |Aut(𝑝) |/|𝜗 | = 12/3 = 4. We
explain how a coset in [Aut(𝑝) : Aut𝜗 (𝑝)] is constructed. Consider
𝛾6 ∈ Aut(𝑝). By composing 𝛾6 with each of Aut𝜗 (𝑝), we have
the first coset, {𝛾1, 𝛾6, 𝛾7, 𝛾12}. In detail, 𝛾6 ◦ 𝛾1 = 𝛾6, 𝛾6 ◦ 𝛾6 = 𝛾1,
𝛾6 ◦ 𝛾7 = 𝛾12, 𝛾6 ◦ 𝛾12 = 𝛾7. Hence 𝛾6 is one that produces the first
coset. Note that in the 1st coset all automorphisms send 𝑢2 to 𝑢2.
The 2nd coset sends 𝑢2 to 𝑢3, and the 3rd coset sends 𝑢2 to 𝑢4 for
𝜗 = {𝑢2, 𝑢3, 𝑢4}.

The stabilizer and the corresponding cosets are discussed regard-
ing a pattern graph 𝑝 . Given the 𝑘 cosets by the stabilizer Aut𝜗 (𝑝)
where |𝜗 | = 𝑘 , we define a set of iso-mappings from 𝑝 to 𝐺 called
an 𝜗 mapping set (𝜗-mapset).
Definition 5.1: (𝜗-mapset) For a stabilizer Aut𝜗 (𝑝) over 𝜗 = {𝑢1,
𝑢2, · · · , 𝑢𝑘 }, there are 𝑘 cosets. Let 𝛾𝑖 be the automorphism selected
from the 𝑖-th cosets for 1 ≤ 𝑖 ≤ 𝑘 . An 𝜗 mapping set (𝜗-mapset)
is a set of 𝑘 iso-mappings Φ = {𝜙1, 𝜙2, · · · , 𝜙𝑘 } where 𝜙𝑖 is an iso-
mapping by 𝛾𝑖 over the same set of nodes in 𝐺 . For the SymR 𝜃 =

{𝑢1 < 𝑢2, · · · , 𝑢1 < 𝑢𝑘 } over 𝜗 , 𝜙1 ∈ Φ is called the representative
of 𝜗-mapset (Φ), if it satisfies SymR 𝜃 .
Reconstruction of 𝜗 mapping set: It is obvious that 𝜙1 is the
only iso-mapping in Φ that satisfies SymR 𝜃 . Given 𝜙1 for 𝜗-mapset,
we can reconstruct iso-mappings 𝜙𝑖 as 𝜙𝑖 (𝑢 𝑗 ) = 𝜙1 (𝛾𝑖 (𝑢 𝑗 )) for
𝑢 𝑗 ∈ 𝑉𝑝 . It is important to note that we do not need to find other
iso-mappings if we find 𝜙1, we can reconstruct the other mappings.
Example 5.2: Reconsider Example 5.1. In Fig. 7(a), there are 3 cosets
for 𝜗 = {𝑢2, 𝑢3, 𝑢4} in Fig. 7(a), and we have 𝛾1 = 𝛾1, 𝛾2 = 𝛾2, and
𝛾3 = 𝛾3. Over 𝜗 , the SymR 𝜃 = {𝑢2 < 𝑢3, 𝑢2 < 𝑢4}. Given the data
graph 𝐺 in Fig. 2(b), we show two 𝜗-mapsets in Fig. 7(b) where
one is formed by the first 3 iso-mappings, and one is formed by the
second 3 iso-mappings. Consider the 2nd 𝜗-mapset in which 𝑓4 (𝜙1)
is the representative that satisfies the SymR, and we can construct
𝑓5 (𝜙2) and 𝑓6 (𝜙3) by composing 𝑓4 with 𝛾2 and 𝛾3, respectively.
Generating multiple SymRs: There are multiple sets of SymRs for
a pattern graph 𝑝 . An algorithm in [33] generates one set of SymRs
for 𝑝 randomly. Existing works show the efficiency of enumerating
subgraphs using such a set of SymRs [3, 6, 26, 33, 35, 45, 57–59, 77,
79, 84, 96, 100]. Different from the existing work, we explore how to
utilize SymRs for every tree node 𝜏 in a tree decomposition 𝑇 , and
we need to select SymRs for 𝜏 ’s and for the entire 𝑇 . There exists

Algorithm 2: GenAllRules (𝑝)
Input: a pattern graph 𝑝

Output: all sets of SymRs for 𝑝
1 𝐴← Aut(𝑝) ; R ← ∅;
2 GenRules (𝑝 , 𝐴, ∅, ∅);
3 return R;
4 Procedure GenRules(𝑝 , 𝐴, 𝐹 , 𝑅)
5 if |𝐴 | = 1 then R ← R ∪ {𝑅 };
6 else
7 Θ← the set of equivalent classes in 𝐴 constrained by 𝐹 ;
8 foreach 𝜗 ∈ Θ do
9 let 𝑢𝑖 be the one with the smallest id in 𝜗 ;

10 𝐹 ′ ← 𝐹 ∪ {𝑢𝑖 };
11 let 𝜃 be the set of SymRs by 𝜗 ;
12 𝑅′ ← 𝑅 ∪ {𝜃 };
13 𝐴′ ← 𝐴 constrained by 𝐹 ;
14 GenRules (𝑝 , 𝐴′, 𝐹 ′, 𝑅′);
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Figure 8: Generating SymRs

some SymR that cannot be efficiently used with 𝑇 , which we will
discuss later. Such an issue does not occur when applying SymRs
to 𝑝 without 𝑇 .

We give an algorithm GenAllRules (Algorithm 2) to generate all
sets of SymRs based on the algorithm given in [33]. We explain
GenAllRules using the pattern graph 𝑝 in Fig. 4(a) as an example,
where we consider 𝑝 as 𝜏 in 𝑇 . There are 4 automorphisms such
thatAut(𝑝) = {𝛾1, 𝛾2, 𝛾3, 𝛾4}, where𝛾1 = (𝑢1) (𝑢2) (𝑢3) (𝑢4) (𝑢5) (𝑢6),
𝛾2 = (𝑢1) (𝑢2𝑢5) (𝑢3𝑢4) (𝑢6), 𝛾3 = (𝑢1𝑢6) (𝑢2) (𝑢3) (𝑢4) (𝑢5), and 𝛾4 =
(𝑢1𝑢6) (𝑢2𝑢5) (𝑢3𝑢4). With Aut(𝑝), there are 3 symmetry-breakings,
𝜗1 = {𝑢1, 𝑢6}, 𝜗2 = {𝑢2, 𝑢5}, and 𝜗3 = {𝑢3, 𝑢4}. InGenAllRules, R is
the set of SymRs to be generated, which is initialized to be empty. It
initially calls the procedureGenRuleswith the inputs of the pattern
graph 𝑝 and𝐴 = Aut(𝑝). In the procedure, 𝐹 is the constraints when
selecting SymRs based on the automorphisms 𝐴, and 𝑅 is one set of
SymRs to be generated. Initially, there are no constraints, so 𝐹 = ∅,
Θ = {𝜗1, 𝜗2, 𝜗3} (line 7). Suppose that 𝜗1 = {𝑢1, 𝑢6} is selected
(line 8), 𝑢1 is added into 𝐹 ′ as a constraint, with which it constrains
that only an automorphism, 𝛾𝑖 , with (𝑢1) can be further explored
next. In other words, 𝑢1 is fixed. Here, the SymR 𝜃 = {𝑢1 ≺ 𝑢6}
is added into 𝑅′ (lines 11-12), the automorphism in 𝐴 constrained
by 𝐹 ′ is 𝐴′ = {𝛾1, 𝛾2} in which (𝑢1) appears as constrained. It
recursively calls GenRules. The procedure is illustrated in Fig. 8.
The output of GenAllRules is R = {R1,R2}, where R1 = {𝜃1, 𝜃2}
and R2 = {𝜃1, 𝜃3}. Below, we use R𝜏 to denote the set of sets of
SymRs for a tree node 𝜏 .
The 𝜗 independency: Let 𝜗 and 𝜗 ′ be any two automorphism
orbits in the same set of SymRs (e.g., R𝑖 ) generated by GenAllRules
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(a) 𝜗 ∩𝑉𝐶 (𝜏) = ∅

...

(b) 𝜗 ⊂ 𝑉𝐶 (𝜏)

Figure 9: SymR with 𝜏 and 𝑇
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Figure 10: Apply SymRs to 𝜏 ’s given 𝑝 and 𝑇 in Fig. 4(a)

(Algorithm 2). There are only two cases between 𝜗 and 𝜗 ′: one is
contained in another, and the other is the two are disjoint. 𝜗 and 𝜗 ′
are independent since 𝜗 ′ is an automorpihsm orbit when we fix a
node in 𝜗 or vice-versa. The corresponding 𝛾 of the 𝜗-mapsets are
independent. Therefore, any subset of a set of SymRs can be used.
We call this 𝜗 independency.

5.2 Automorphism Orbits in Tree Nodes
Following the discussion on automorphisms for a pattern graph,
with a tree decomposition 𝑇 , we compute iso-matches (R𝜏 ) for
each tree node 𝜏 ∈ 𝑇 using SymRs by considering 𝜏 as a pattern
graph. Here, a key issue is the relationship between SymR 𝜃 for
𝜏 and 𝑉𝐶 (𝜏). Note that 𝑉𝐶 (𝜏) is used as the group-by attributes
in Eq. (4) and Eq. (6) to compute tISO counts. We need to ensure
that the application of SymRs for a tree node 𝜏 does not affect the
aggregation by the group-by attributes 𝑉𝐶 (𝜏).

There are 4 cases for an automorphism 𝜗 (or its SymR 𝜃 ) regard-
ing a tree node 𝜏 , namely, ➊ 𝜗 ⊄ 𝜏 , ➋ 𝜗 ∩𝑉𝐶 (𝜏) = ∅, ➌ 𝜗 ⊂ 𝑉𝐶 (𝜏),
and ➍ 𝜗 ∩𝑉𝐶 (𝜏) ≠ ∅ and 𝜗 ⊄ 𝑉𝐶 (𝜏). The last 3 cases are the cases
when 𝜗 ⊂ 𝑉 (𝜏). Assume there is an iso-match 𝑓 of the entire 𝜏 such
that 𝑓 = 𝑓 ′∥ 𝑓 ′′∥ 𝑓 ′′′, where 𝑓 ′ is for the part of mapping by𝑉𝐶 \ 𝜗 ,
𝑓 ′′ is the part of mapping by 𝜗 , and 𝑓 ′′′ is for the part of mapping
by𝑉𝜏 \ (𝑉𝐶 ∪𝜗). By SymR 𝜃 for 𝜗 , it affects 𝑓 ′′, or more precisely, its
𝜗-mapset of size 𝑘 = |𝜗 |. For ➊, as 𝜗 ⊄ 𝜏 , 𝜗 has no impacts on 𝑉𝐶 .
For ➋, it only finds the representative 𝑓 ′′1 using SymR 𝜃 . As 𝜗 and
𝑉𝐶 (𝜏) is disjoint, its count without SymR 𝜃 is its count with SymR
𝜃 multiplied by 𝑘 . For ➌, it only finds the representative 𝑓 ′′1 using
SymR 𝜃 for 𝜗 . As 𝜗 is included in 𝑉𝐶 (𝜏), it needs to reconstruct
the other mappings, 𝑓 ′′

𝑖
, in the 𝜗-mapset. For ➍, it is prohibited

for the reason that there may exist two different 𝜗-mapsets whose
match to 𝑉𝐶 overlap but are not the same. The count by such 𝑉𝐶 is
incorrect. We show ➋ and ➌ in Fig. 9.
Example 5.3: Consider Example 5.2 where we take this pattern
graph 𝑝 as 𝜏 in a tree decomposition 𝑇 . As shown in Fig. 7(a), there
are 3 cosets for 𝜗 = {𝑢2, 𝑢3, 𝑢4} in Fig. 7(a), where 𝑘 = |𝜗 | = 3. Over
𝜗 , SymR 𝜃 = {𝑢2 < 𝑢3, 𝑢2 < 𝑢4}. For ➋, suppose 𝑉𝐶 (𝜏) = {𝑢1}, and
we only get 𝑓4 for the 2nd 𝜃 mapping set. There should be additional

𝑘 − 1 iso-mappings. The count for𝑉𝐶 = {𝑢1} needs to by multiplied
by 𝑘 for a 𝜗-mapset. For ➌, suppose 𝑉𝐶 (𝜏) = {𝑢1, 𝑢2, 𝑢3, 𝑢4}, and
we only get 𝑓4 for the 2nd 𝜗-mapset. There should be additional
𝑘 − 1 iso-mappings to be reconstructed.

We discuss how to do count-correction/reconstruction. Here, we
discuss it by assuming that R𝜏 is for a single 𝜗-mapset, which is
a set of 𝑘 iso-mappings Φ = {𝜙1, 𝜙2, · · · , 𝜙𝑘 } where 𝜙𝑖 is an iso-
mapping by 𝛾𝑖 over the same set of nodes in 𝐺 (Definition 5.1).
Among all in Φ, 𝜙1 is the one that satisfies the SymR 𝜃 .

First, for ➋, we only need to do count-correction, as illustrated
in Fig. 9(a). We give the details for a non-leaf node 𝜏 that is not the
root (Eq. (5) and Eq. (6)) regarding a given 𝜗 where 𝜗 ∩𝑉𝐶 (𝜏) = ∅.
The others can be dealt with in a similar manner. We show how we
correct it for a single 𝜗-mapset. If we can do it for a single 𝜗-mapset,
the overall sum in Eq. (6) is correct as it is the sum of the counts for
all 𝜗-mapsets by the group-by attributes 𝑉𝐶 (𝜏). It is worth noting
that the only place that changes is R𝜏 in Eq. (5) if we enforce SymR
𝜃 w.r.t 𝜗 , where every child X𝜏𝑖 remains unchanged. Without the
SymR 𝜃 , the size of R𝜏 is 𝑘 = |𝜗 |, and the size of the corresponding
J𝜏 is 𝑘 because it can only join one tuple from X𝜏𝑖 . By enforcing
SymR 𝜃 , the size of R𝜏 becomes 1 for the representative 𝜙1, and
its count 𝐶 in X𝜏 (𝑉𝐶 (𝜏),𝐶) in Eq. (6) becomes 𝐶/𝑘 . We correct its
count by multiplying it by 𝑘 . There is no need to do reconstruction.

Second, for➌, there is no need to do count-correction.We explain
it using Fig. 9(b). The count for 𝑓 , where 𝑓 ′′1 is the representative
of a 𝜗-mapset, is reduced by 1/𝑘 for 𝑘 = |𝜗 |. That is the correct
count of 𝑓 with 𝑓 ′′1 . We only need to reconstruct the other mappings
following the discussion of reconstruction given in Section 5.1. That
is, we reconstruct the other 𝑓 ′′

𝑖
in Φ by 𝑓 ′′1 .

Example 5.4: Consider Example 4.1 where its pattern graph 𝑝 ,
tree decomposition 𝑇 , and data graph 𝐺 are in Fig. 4. There are 3
tree nodes, 𝜏1, 𝜏2, and 𝜏3, and the root is 𝜏3. For the leaf node 𝜏1
with 𝑉𝐶 (𝜏1) = {𝑢1, 𝑢4, 𝑢6}, there are two SymRs 𝜃11 = {𝑢1 < 𝑢6}
over 𝜗11 = {𝑢1, 𝑢6}, and 𝜃12 = {𝑢4 < 𝑢5} over 𝜗12 = {𝑢4, 𝑢5}. Each
has 2 cosets. For 𝜃11, 𝛾1 (𝜃11) = (𝑢1) (𝑢4) (𝑢5) (𝑢6), and 𝛾2 (𝜃11) =
(𝑢1, 𝑢6) (𝑢4) (𝑢5). For𝜃12,𝛾1 (𝜃12) = (𝑢1) (𝑢4) (𝑢5) (𝑢6), and𝛾2 (𝜃12) =
(𝑢1) (𝑢6) (𝑢4, 𝑢5). We explain 𝜗11 which is the case ➌, because 𝜗11 ⊂
𝑉𝐶 (𝜏1), for the leaf node 𝜏1. For a leaf-node 𝜏1, J𝜏1 = R𝜏1 . First, R𝜏1
with X𝜏1 are shown in Fig. 5 without SymRs. Second, consider R𝜏1
with SymR 𝜃11 = {𝑢1 < 𝑢6}. One of its 𝜗-mapset is {𝑓1, 𝑓5}, where
for example 𝑓1 = {𝑢1 → 𝑣8, 𝑢4 → 𝑣7, 𝑢5 → 𝑣10, 𝑢6 → 𝑣9}, and the
other 𝜗-mapsets are {𝑓2, 𝑓6}, {𝑓3, 𝑓7}, and {𝑓4, 𝑓8}. Third, we have
R′𝜏1 by enforcing SymR 𝜃11 as shown in Fig. 10(a), where it only
keeps the representatives of 𝜗-mapsets, {𝑓1, 𝑓2, 𝑓3, 𝑓4}. The corre-
sponding X′𝜏1 is also shown in Fig. 10(a). Comparing R𝜏1 in Fig. 5,
the number of iso-mappings in R′𝜏1 in Fig. 10(a) is reduced by a
half as |𝜗11 | = 2. And X′𝜏1 is also reduced by a half comparing X𝜏1 .
We can reconstruct X𝜏1 from X′𝜏1 using the representatives {𝑓1, 𝑓2,
𝑓3, 𝑓4}. For example, with 𝑓1, we can get 𝑓5 (e.g., (𝑣9, 𝑣7, 𝑣8) from
(𝑣8, 𝑣7, 𝑣9)) by swapping the node mapped by 𝑢1 and 𝑢6, and keep
the count as the one in 𝑓1. □

The 𝜗 independency in a tree node 𝜏 : We have discussed the 𝜗
independency for a pattern graph in Section 5.1. We also need to
impose such dependency for a tree node 𝜏 in 𝑇 . We need certain
conditions regarding 𝑉𝐶 (𝜏) for 𝜏 and 𝑉𝐶 (𝜏𝑖 ) for each child 𝜏𝑖 of
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𝜏 in 𝑇 . First, for 𝑉𝐶 (𝜏), the condition is that for any single 𝜗 in
𝜏 , the automorphism 𝛾𝑙 selected from the 𝑙-th coset must satisfy
𝛾𝑙 (𝑢 𝑗 ) = 𝑢 𝑗 for any 𝑢 𝑗 ∈ 𝑉𝐶 (𝜏) \ 𝜗 . The main idea is to ensure
that group-by attributes not in 𝜗 are fixed when computing the
aggregation so that the aggregation result can be correctly used
in its parent. For example, in Fig. 7(a), 𝜗 = {𝑢2, 𝑢3, 𝑢4} for a 𝜏

over the set of nodes {𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5}. Suppose it is a leave node
𝜏 in 𝑇 , and 𝑉𝐶 (𝜏) = {𝑢2, 𝑢3, 𝑢4, 𝑢5}, we have 𝑉𝐶 (𝜏) \ 𝜗 = {𝑢5}.
Consider the 2nd coset, 𝛾2 can be 𝛾2 as 𝛾2 (𝑢5) = 𝑢5, and 𝛾8 cannot
be selected as 𝛾2. Second, for𝑉𝐶 (𝜏𝑖 ), we ensure that 𝛾𝑙 (𝑢 𝑗 ) = 𝑢 𝑗 for
any 𝑢 𝑗 ∈ 𝑉𝐶 (𝜏𝑖 ) \ 𝜗 , and that 𝜗 ∩𝑉𝐶 (𝜏𝑖 ) = ∅ or 𝜃 ⊂ R𝜏𝑖 . Note that
𝜃 ⊂ R𝜏𝑖 implies 𝜗 ⊂ 𝑉𝐶 (𝜏𝑖 ). These conditions ensure that in Eq. (5),
mappings in the same 𝜗-mapset of 𝜏 have the same 𝐶1, · · ·𝐶𝑤 ,
therefore establishing the correctness of computing aggregation
in 𝜏 . If such a 𝛾𝑖 does not exist, we do not use this 𝜗 . If two orbits
𝜗 and 𝜗 ′ both satisfy these conditions, they are independent and
both can be used.
The automorphism orbit at the root of 𝑇 : We discuss how we
use SymRs at the root node 𝜏 in 𝑇 , where its 𝑉𝐶 (𝜏) = ∅ as it does
not have any parent. The group-by attribute in the root is 𝑜 , a
single node, which is the orbit in a local subgraph counting query
𝑄 = (𝑝, 𝑜). There are two cases. One is 𝑜 ∉ 𝜗 , and one is 𝑜 ∈ 𝜗 . For
the former, it is a similar case that 𝜗 and 𝑉𝐶 (𝜏) are disjoint to be
dealt with. For the latter, for any SymR 𝜃 = (𝑜 < 𝑢𝑖 ), we only need
to reconstruct by swapping 𝑜 with 𝑢𝑖 w.r.t the mapping by SymR 𝜃 .

5.3 The Optimizations
We have discussed how to correct the count and reconstruct a single
𝜗-mapset for a tree node 𝜏𝑖 in 𝑇 . We can ensure all the counts are
correct if we do so for every 𝜏𝑖 in 𝑇 . We propose an optimization
technique in a way that we do not need to do so for every 𝜏𝑖 in 𝑇 ,
and we can delay it from 𝜏𝑖 to its parent 𝜏 under certain conditions.

First, consider the case ➋ for 𝜏𝑖 where 𝜗 ∩ 𝑉𝐶 (𝜏𝑖 ) = ∅, its par-
ent 𝜏 = parent(𝜏𝑖 ) must not have 𝜗 by tree decomposition. The
count-correction can be delayed from 𝜏𝑖 to 𝜏 . We explain it below.
Suppose we have to do count-correction by multiplying 𝑘 for a
𝜗-mapset in 𝜏𝑖 when a SymR 𝜃 is used. That is we have to correct
X𝜏𝑖 (𝑉𝐶 (𝜏𝑖 ),𝐶) with the 𝜗-mapset to be X𝜏𝑖 (𝑉𝐶 (𝜏𝑖 ),𝐶 ·𝑘) by Eq. (6).
Furthermore, consider 𝜏 which is the parent of 𝜏𝑖 . As shown in
Eq. (6), its𝐶𝑖 before correction under 𝜏𝑖 becomes𝐶𝑖 · 𝑘 after correc-
tion, for the parent 𝜏 . We have𝑉𝐶 (𝜏)Υ𝑠𝑢𝑚 (𝐶1×···×𝐶𝑖 ·𝑘×··· )→𝐶 =𝑉𝐶 (𝜏)
Υ𝑠𝑢𝑚 (𝐶1×···×𝐶𝑖×··· ) ·𝑘→𝐶 w.r.t Eq. (6),where 𝐶𝑖 is the count before
count-correction in 𝜏𝑖 . In other words, it is possible that we do not
do count-correction by multiplying 𝑘 in 𝜏𝑖 but do it in its parent 𝜏 .

Second, for the case ➌ where 𝜗 ⊂ 𝑉𝐶 (𝜏𝑖 ), its parent 𝜏 must have
the same 𝜗 . There are 3 sub-cases with 𝜏 , 𝜗 is an automorphism
orbit in 𝜏 (➋, ➌), and 𝜗 is not an automorphism orbit in 𝜏 . When 𝜗

is an automorphism in 𝜏 for the sub-cases ➋/➌, the counts by𝑉𝐶 (𝜏)
will not be affected by 𝜗-mapsets in 𝜏𝑖 , because, for any 𝜗-mapset
in 𝜏𝑖 , there will be one and only one 𝜗-mapset in 𝜏 that map to the
same nodes in 𝐺 by the same 𝜗 . This is similar to the discussion in
Section 5.2. We can delay reconstruction. Third, for the case that 𝜗
is not an automorphism orbit in 𝜏 , we have to do reconstruction
for 𝜏𝑖 , and we cannot delay it.
Example 5.5: Continue Example 5.4. As given in Example 5.4, for
the leaf node 𝜏1 with 𝑉𝐶 (𝜏1) = {𝑢1, 𝑢4, 𝑢6}, there are two SymRs

Table 1: Some statistics about SymRs

𝑘-node # of 𝑝 Symmetry(𝑝) All-in-𝑇 ≥ 1-in-𝑇 %
5 58 58 24 36 51.1%
6 407 359 144 238 53.1%
7 4,306 3,298 1,405 2,171 54.3%

𝜃11 = {𝑢1 < 𝑢6} over 𝜗11 = {𝑢1, 𝑢6}, and 𝜃12 = {𝑢4 < 𝑢5} over
𝜗12 = {𝑢4, 𝑢5}. For 𝜏2, the SymRs are 𝜃21 = {𝑢1 < 𝑢6} and 𝜃22 =

{𝑢3 < 𝑢4}. Here, 𝑉𝐶 (𝜏2) = {𝑢1, 𝑢3, 𝑢6}. For 𝜏3 (the root), the SymR
is 𝜃31 = {𝑢1 < 𝑢6}, and 𝑜 = 𝑢1 ∈ 𝜏3 where 𝑜 is the orbit of the given
query𝑄 = (𝑝, 𝑜). Note that 𝜃11 in 𝜏1, 𝜃21 in 𝜏2, and 𝜃31 are identical.

The results by count-correction/reconstruction for every tree
node are shown in Fig. 5. In Fig. 10(a), we show the result in X′𝜏1
by enforcing the SymR 𝜃11 in 𝜏1, together with its R′𝜏1 . Here, in
𝜏1, it is the case ➌, for 𝜗11 ⊂ 𝑉𝐶 (𝜏1), and in 𝜏 , it is the case of
➌ as well, such that 𝜗21 ⊂ 𝑉𝐶 (𝜏2). Note 𝜗21 = 𝜗11. We can delay
reconstruction from 𝜏1 to 𝜏2. The result is presented in Fig. 10(b).

We can also delay reconstruction to 𝜏3. Note that 𝜏3 is the root
of 𝑇 , which does not have 𝑉𝐶 (𝜏3), and we can treat it in a specific
way as discussed. That is, for the SymR 𝜃31, we reconstruct 𝜙2 (𝑢1)
from 𝜙1 (𝑢6) for each 𝜗-mapset. □

Selecting SymRs: We select SymRs for𝑇 as follows. First, we obtain
R𝜏 for each 𝜏 in 𝑇 by GenAllRules. Second, we check each combi-
nation of all rule sets in all tree nodes. Let R ′𝜏 ∈ R𝜏 be the selected
rule set of 𝜏 . We check the constraints for 𝜗-mapsets independency
and remove invalid rules in R ′𝜏 . Third, we use a simple cost function∑
𝜏 ∈𝑇,𝜃 ∈R′𝜏 |𝜃 | ∗ |𝑉𝜏 | to select one set of rules that maximizes this

function. Here, we prefer rules with larger |𝜃 | since they can reduce
more matches for a given tree node. Additionally, we prefer rules
applied to larger tree nodes because the induced subgraphs are
more challenging to enumerate.

We show some statistics about SymRs in Table 1. The 1st column
is 𝑘 for 𝑘-node pattern graph 𝑝 , the 2nd column is the total number
of pattern graphs with such 𝑘 , the 3rd column is the total number
of patterns that have SymRs, the 4th column is the number of tree
decompositions that can use all SymRs that appear in 𝑝 in their
nodes, the 5th column is the number of tree decompositions that
can use at least one SymR that appears in 𝑝 in their nodes, and the
last column is the percentage of SymRs that appear in 𝑝 to be used
in 𝑇 on average. A majority of pattern graphs are with SymRs with
tree decomposition.

6 MULTI-JOIN ALGORITHMS
In this section, we discuss how to process a pattern graph 𝑝 =

(𝑉𝑝 , 𝐸𝑝 ) given its tree decomposition 𝑇 based on the multi-join
algorithm Leapfrog [91], which is a state-of-the-art worst-case op-
timal algorithm that is also used in [101]. In brief, Leapfrog is to
process a join query over𝑚 relations based on the join attribute or-
der using iterators. To process it for 𝑝 by Leapfrog, we can represent
an edge 𝑒𝑖 ∈ 𝐸𝑝 as a relation for |𝐸𝑝 | =𝑚.

There are several ways to process the aggregations given𝑇 . First,
following Eq. (4)-Eq. (7), we can process every tree node 𝜏 ∈ 𝑇 using
Leapfrog, maintain its result in X𝜏 , and join all such X𝜏 relations.
As pointed out in [101], this approach cannot be taken when the
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sizes of such relations are too large to keep in the main memory.
For example, in Fig. 4(b), there are 3 tree nodes, and for 𝑖 = 1 or
𝑖 = 2, the relation X𝜏𝑖 (𝑉𝐶 (𝜏𝑖 ),𝐶) is a 4 attribute relation where
𝑉𝐶 (𝜏𝑖 ) is the group-by attributes and 𝐶 maintains its aggregation.
In this example, the size of X𝜏𝑖 (𝑉𝐶 (𝜏𝑖 ),𝐶) is𝑂 (𝑛𝑘 ) for 𝑘 = |𝑉𝐶 (𝜏𝑖 ) |
where 𝑛 is the number of nodes in the data graph 𝐺 . We call it an
𝑂 (𝑛𝑘 )-approach, which is related to the space complexity.

In [101], DISC proposed an 𝑂 (1)-approach regarding the mem-
ory, which we show in Algorithm 3. We call it Disc and explain it
using an example decomposition 𝑇 .
Example 6.1: Consider a tree decomposition 𝑇 for a pattern graph
𝑝 with 3 tree nodes, 𝜏1, 𝜏2, and 𝜏3, where 𝜏3 is the root as shown
at the top in Fig. 11. We assume that 𝜏1 is over two subgraphs 𝐵
and 𝐷 with𝑉𝐶 (𝜏1) = 𝐵, 𝜏2 is over three subgraphs 𝐴, 𝐸, and 𝐵 with
𝑉𝐶 (𝜏2) = 𝐴, and 𝜏3 is over two subgraphs 𝐹 and 𝐴. Furthermore,
we assume that 𝑉𝐶 (𝜏1) = 𝐵 can be divided into two disjoint sets,
𝑉 1
𝐶
(𝜏1) = 𝐵1 and 𝑉 2

𝐶
(𝜏1) = 𝐵2, and 𝑉𝐶 (𝜏2) = 𝐴 can be divided into

two disjoint sets, 𝑉 1
𝐶
(𝜏2) = 𝐴1 and 𝑉 2

𝐶
(𝜏2) = 𝐴2.

For 𝑇 in Example 6.1, Disc (Algorithm 3) processes it as follows
starting from the root 𝜏3 in𝑇 .❶ It finds a partial match 𝑓𝐴𝐵 = 𝑓𝐴∥ 𝑓𝐵
that matches 𝑉𝐶 (𝜏2) = 𝐴 in 𝜏2 and then 𝑉𝐶 (𝜏1) = 𝐵 in 𝜏1. ❷ Given
𝑓𝐴𝐵 , it enumerates all 𝐷 in 𝜏1, and stores its count in X𝜏1 (𝐵,𝐶).
❸ Given 𝑓𝐴𝐵 , it enumerates all 𝐸 in 𝜏2, and updates its count in
X𝜏1 (𝐴,𝐶) regarding 𝑓𝐴𝐵 using the count done in ❷. ❹ For 𝑓𝐴 in 𝜏2,
it repeats ❷ and ❸ to compute its final count inX𝜏2 (𝐴,𝐶) regarding
𝑓𝐴 . ❺ It indicates that the final count is stored inX𝜏2 (𝐴,𝐶) for 𝑓𝐴 . ❻
In 𝜏3, with the count of X𝜏2 (𝐴,𝐶) for 𝑓𝐴 done in ❺, it enumerates 𝐹
and updates its count regarding the orbit of 𝑝 . ❼ By repeating ❶-❻
for all possible matches of 𝑓𝐴 , it gets the final count for the orbit
𝑜 . Disc repeats it for every possible match of 𝑓𝐴 by maintaining it
with 2 counts. Here, the number of counts need to be maintained is
|𝑉𝑇 | − 1, which is considered as a constant.

Disc is space-efficient. However, the cost of computing𝑇 is high,
which is related to the number of iterations. The number of itera-
tions depends on 𝛼 = |⋃𝑖 𝑉𝐶 (𝜏𝑖 ) | over a path in 𝑇 . In Example 6.1,
it is |𝑉𝐶 (𝜏2) ∪ 𝑉𝐶 (𝜏1) | = |𝐴 ∪ 𝐵 |, and the number of exploring 𝜏1
in the data graph 𝐺 is 𝑂 (𝑛𝛼 ). We propose a new 𝑂 (𝑚)-approach
regarding the memory, which we call Scope. The main idea is to re-
duce 𝛼 by only using a part of 𝑉𝐶 (𝜏𝑖 ), while keeping the other part
of 𝑉𝐶 (𝜏𝑖 ) in memory. The memory used is bounded by 𝑂 (𝑚). We
give the algorithm in Algorithm 4, and explain it using Example 6.1.

As given in Example 6.1, we have 𝐴 = 𝐴1, 𝐴2, and 𝐵 = 𝐵1, 𝐵2.
Suppose |𝐴1 ∪𝐵1 | < |𝐴∪𝐵 |. Here, we take𝐴2 and 𝐵2 as an edge to
ensure 𝑂 (𝑚) memory. Scope (Algorithm 4) processes it as follows
starting from the root 𝜏3 in 𝑇 . ❶ It finds a partial match 𝑓𝐴1𝐵1 =

𝑓𝐴1 ∥ 𝑓𝐵1 that matches 𝐴1 ⊂ 𝑉𝐶 (𝜏2) in 𝜏2 and then 𝐵1 ⊂ 𝑉𝐶 (𝜏1) in
𝜏1. ❷ Given 𝑓𝐴1𝐵1 , it enumerates all 𝐵2 and 𝐷 in 𝜏1, and stores a
count for every 𝑓𝐵2 that can expand from 𝑓𝐴1𝐵1 in X𝜏1 (𝐵1𝐵2,𝐶). ❸
Given 𝑓𝐴1𝐵1 , it enumerates all 𝐴2, 𝐵2, and 𝐸 in 𝜏2, and updates the
counts in X𝜏2 (𝐴1𝐴2,𝐶) regarding 𝑓𝐴1 . To update, it needs to find
the count done in ❷ by hash-join. As all the matches 𝑓𝐵2 given 𝑓𝐴1𝐵1
are distinct, the join cost is constant. ❹ For 𝑓𝐴1 in 𝜏2, it repeats ❷

and ❸ to compute its final count in X𝜏2 (𝐴1𝐴2,𝐶) regarding 𝑓𝐴1 . ❺
It indicates that the final count is stored in X𝜏2 (𝐴1𝐴2,𝐶) regarding
𝑓𝐴1 . ❻ In 𝜏3, with the count of X𝜏2 (𝐴1𝐴2,𝐶) regarding 𝑓𝐴1 done in
❺, it enumerates𝐴2 and 𝐹 and updates its count regarding the orbit

Algorithm 3: Disc(𝑓𝑖 , 𝜏 , 𝑇 )
Input: an 𝑖-mapping 𝑓𝑖 , pattern graph 𝜏 = (𝑉𝜏 , 𝐸𝜏 ) , a tree

decomposition𝑇
Output: X𝜏

1 Disc(𝑓𝑖 , 𝜏 𝑗 ,𝑇 ) if 𝑖 is the smallest number for 𝑓𝑖 to contain𝑉𝐶 (𝜏 𝑗 )
for every child 𝜏 𝑗 of 𝜏 in𝑇 ;

2 if 𝑖 = |𝑉𝜏 | then
3 update X𝜏 based on𝑉𝐶 (𝜏) ;
4 else
5 let 𝑢𝑖+1 be the (𝑖+1)-th node in𝑉𝜏 in order;
6 find all 𝑓 (𝑢𝑖+1) matches that can expand from 𝑓𝑖 constrained

by 𝜏 , denoted as val(𝑓𝑖 → 𝑢𝑖+1) ;
7 for each 𝑣 in val(𝑓𝑖 → 𝑢𝑖+1) do
8 Disc(𝑓𝑖 ∥𝑣, 𝜏 ,𝑇 );

Algorithm 4: Scope(𝑓𝑖 , 𝜏 , 𝑇 )
Input: an 𝑖-mapping 𝑓𝑖 , pattern graph 𝜏 = (𝑉𝜏 , 𝐸𝜏 ) , a tree

decomposition𝑇
Output: X𝜏

1 let𝑉𝐶 (𝜏 𝑗 ) = 𝑉 1
𝐶
(𝜏 𝑗 ) ∪𝑉 2

𝐶
(𝜏 𝑗 ) where𝑉 1

𝐶
(𝜏 𝑗 ) ∩𝑉 2

𝐶
(𝜏 𝑗 ) = ∅ for

every child 𝜏 𝑗 of 𝜏 ;
2 Scope(𝑓𝑖 , 𝜏 𝑗 ,𝑇 ) if 𝑖 is the smallest number for 𝑓𝑖 to contain𝑉 1

𝐶
(𝜏 𝑗 )

for every child 𝜏 𝑗 of 𝜏 in𝑇 ;
3 if 𝑖 = |𝑉𝜏 | then
4 update X𝜏 based on𝑉 2

𝐶
(𝜏) using X𝜏 𝑗 for every child 𝜏 𝑗 of 𝜏 ;

5 else
6 let 𝑢𝑖+1 be the (𝑖+1)-th node in𝑉𝜏 in order;
7 find all 𝑓 (𝑢𝑖+1) matches that can expand from 𝑓𝑖 constrained

by 𝜏 , denoted as val(𝑓𝑖 → 𝑢𝑖+1) ;
8 for each 𝑣 in val(𝑓𝑖 → 𝑢𝑖+1) do
9 Scope(𝑓𝑖 ∥𝑣, 𝜏 ,𝑇 );
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Figure 11: Disc vs Scope

of 𝑝 . ❼ By repeating ❶-❻ for all possible matches of 𝑓𝐴1 , it gets the
final count for the orbit 𝑜 . Scope repeats it for every possible match
by maintaining𝑂 (𝑚) matches and counts supposing 𝐴2 and 𝐵2 are
for an edge. As indicated in Fig. 11, when we start processing 𝜏2 in
❹, we can release the memory used for its child in ❸.
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Scope is more efficient than Disc. For this example, we have
|𝐴1 ∪ 𝐵1 | < |𝐴∪ 𝐵 |. As an optimization technique, we share the𝑉 1

𝐶

of a child with the 𝑉 1
𝐶
of its parent. In this example, if we make it

as 𝐴1 = 𝐵1, we have |𝐴1 ∪ 𝐵1 | = |𝐴1 |, and we only have 𝑂 (𝑛 |𝐴1 |)
iterations instead of𝑂 (𝑛 |𝐴1∪𝐵1 |). Recall that a similar optimization
is to share SymRs between a child and its parent to reduce the
number of reconstructions. Consider the pattern graph 𝑝 and the
tree decomposition𝑇 in Fig. 4. Here,𝐴1 = 𝐵1 = {𝑢1},𝐴2 = {𝑢3, 𝑢6},
𝐵2 = {𝑢4, 𝑢6}, 𝐷 = {𝑢5}, 𝐸 = ∅, and 𝐹 = {𝑢2}. The number of
iterations is 𝑂 (𝑛 |𝐴1 |) = 𝑂 (𝑛), and 𝜏1 can be processed efficiently.
We put the complexity analysis of the three multi-join algorithms
in the full version in our GitHub repository.
7 RELATEDWORK
Subgraph Counting. The recent survey on subgraph counting
[80] outlines three primary approaches to exact subgraph count-
ing: enumeration-based, matrix-based, and decomposition-based.
Enumeration-based approaches [33, 43, 44, 50, 52, 67, 71, 81, 97, 98]
count by enumerating all matches of the pattern graph in the data
graph. Matrix-based approaches [23, 41, 42, 63–65] rely on resolv-
ing linear algebra equations, which are grounded in the enumer-
ation of other pattern graphs. JESSE [63–65] is a representative
matrix-based approach that can automatically generate and se-
lect equations, but it is limited to computing the local counts of
all 𝑘-node patterns collectively for a specified 𝑘 . Decomposition-
based approaches [4, 60, 62, 73, 74, 101] count 𝑝 based on enumer-
ating smaller graphs that are obtained by decomposing 𝑝 . DISC
[101], EVOKE [73] and SCOPE are in this category. For approx-
imate subgraph counting, there are sampling-based approaches
[11, 14, 15, 17, 18, 29, 30, 37, 46, 51, 56, 75, 78, 94, 95, 99] and learning-
based approaches [93, 102]. Our approach is a new decomposition-
based approach for general local subgraph counting.
Subgraph Matching. Subgraph matching enumerates iso-matches
from the pattern graph to the data graph, with many works founded
on Ullmann’s backtracking [90] or Leapfrog [91]. Research efforts
have been devoted to filtering candidates [10, 12, 19, 33, 38, 39, 53, 54,
87, 88, 103], optimizing matching order [12, 38, 39, 53, 54, 66, 83, 85,
87, 88], and using previous matching results for pruning [7, 38, 47,
53, 54]. Different backtracking algorithms have been proposed [48,
85] to reduce set intersections. There are also distributed approaches
that decompose the query into sub-structures and assembly the
matches of sub-structures to obtain the pattern’s results [58, 77, 79,
82, 96, 100]. Experimental studies for subgraph matching can be
found in [59, 86]. We extend symmetry-breaking [33] in subgraph
matching to decomposition-based counting.
Worst-case optimal join. The 𝐴𝐺𝑀 bound [8] gives the worst-
case output size of a multi-join. In worst-case scenarios, executing
a series of binary joins is inefficient since their complexity exceeds
the 𝐴𝐺𝑀 bound. Conversely, worst-case optimal join algorithms
such asNPRR [69],GenericJoin [70], and Leapfrog [91] have a time
complexity that matches this𝐴𝐺𝑀 bound. Owing to its remarkable
efficiency, Leapfrog finds extensive application in both subgraph
matching and subgraph counting. Various studies [3, 49, 66, 89]
have amalgamated the worst-case optimal join with a binary join,
steered by the principles of tree decomposition for better perfor-
mance. Based on Leapfrog, Disc [101] handles aggregations in tree
decompositions, and our Scope improves Disc.

Table 2: The 12 datasets

Graph Notation |V| |E| avg. degree
web-spam WS 4.8 × 103 3.7 × 104 15.7
rec-movielens-user-movies-10m RM 7.6 × 103 5.5 × 104 14.6
bio-grid-yeast BY 6.0 × 103 1.6 × 105 52.2
ca-AstroPh CA 1.9 × 104 2.0 × 105 21.1
rec-github RG 1.2 × 105 4.4 × 105 7.2
soc-gowalla SG 2.0 × 105 9.5 × 105 9.7
soc-youtube SY 1.1 × 106 3.0 × 106 5.3
web-wiki-ch-internal WW 1.9 × 106 9.0 × 106 9.3
web-hudong WH 2.0 × 106 1.4 × 107 14.6
ca-coauthors-dblp CC 5.4 × 105 1.5 × 107 56.4
soc-livejournal1 SL 4.8 × 106 4.3 × 107 17.7
soc-orkut-dir SO 3.1 × 106 1.2 × 108 76.3

58 5-node
queries

407 6-node
queries

...

...

50 7-node
queries

...

Figure 12: The 515 queries

8 EXPERIMENTS
Algorithms: We implemented SCOPE to compute a local subgraph
counting query by tISO and SymRs, and evaluate tree decompo-
sitions by the Scope (Algorithm 4). To fully understand SCOPE,
we have implemented its variants: SCOPE-Td, SCOPE-TSd, and
SCOPE-Ts. Here, SCOPE-Td is by tISO without SymRs and is eval-
uated by the Disc algorithm (Algorithm 3), SCOPE-TSd is by both
tISO and SymRs and is evaluated by theDisc algorithm, and SCOPE-
Ts is by tISO without SymRs and is evaluated by the Scope algo-
rithm. It is important to note that the Disc algorithm (Algorithm 3)
is the algorithm used in DISC [101] to compute the aggregations in
a tree decomposition, whereasDISC is the overall algorithm to com-
pute subgraph counts. We also implemented 2 baselines, isoS and
DISC1. Here, isoS is to count by directly enumerating iso-matches
with SymRs. DISC1 is our implementation of DISC [101]. We also
compare with EVOKE [73], DISC [101] and JESSE [63–65]. Like
SCOPE, EVOKE and DISC are decomposition-based approaches,
where EVOKE can only handle 𝑘-node pattern graphs for 𝑘 ≤ 5,
and DISC is a general approach. JESSE is a matrix-based approach
on a single machine that can handle any 𝑘-node pattern graphs.
JESSE can only count all 𝑘-node patterns collectively for a specified
𝑘 . It can not count selected queries. We omit other algorithms since
they either only support global counting or are outperformed by
DISC and EVOKE, as reported in [73, 101].
12 Datasets: We use 12 data graphs, including web graphs, recom-
mendation networks, biological networks, collaboration networks,
and social networks (Table 2). All data graphs are taken from [1, 2].
We deal with all graphs as simple undirected graphs.
515 Queries: We conduct testing using 515 local subgraph counting
queries in total, as shown in Fig. 12: all 58 5-node queries, all 407
6-node queries, and 50 7-node queries. We randomly select 50 7-
node queries from 2,423 7-node queries whose tw = 3. On average,
each selected pattern has 11.7 edges, and uses 10.9 HOM counts
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Table 3: Results of the 6-node pattern in Fig. 4

Enumerated matches (×108) Elasped Time(seconds)
WS BY CA SG WW WS BY CA SG WW

isoS 17.5 372 886 356 3,724 36.3 710 1,286 851 15,200
DISC1 4.6 65.4 113 89.8 1,127 15.8 237 153 572 16,400
SCOPE-Td 4.1 59.8 107 78.7 934 16.0 257 172 542 17,596
SCOPE-TSd 1.9 28.8 51.0 37.7 458 7.4 115 81.3 265 8,871
SCOPE-Ts 1.4 15.7 21.6 29.2 483 6.8 80.3 69.4 159 5,011
SCOPE 0.6 6.7 8.1 12.9 232 3.3 38.2 32.9 80.6 2,536

or 9.6 tISO counts to compute its ISO count. It is challenging. As
an indication, the general approach DISC can only handle up to
some simple 6-node queries [101], and there is no report published
to test all 6-node queries in real-world data graphs.
Settings: We conduct all experiments on a single machine running
CentOS 8 with Intel Xeon Silver 4215 32-core 2.5GHz CPU and
128GB memory. SCOPE and the variants, isoS, DISC1 and EVOKE
are in C++. All these C++ implementations are compiled by g++
8.5.0 with -O3 enabled and run with one thread. JESSE is in Java
(Java 1.8). We use the default configuration and run it with one
thread. DISC is a distributed system built on Spark (Spark 2.4.3). To
remedy the difference in the programming language, we use the
single machine configuration in [101] and runDISCwith 32 threads.
We also show the results of our C++ implementation DISC1. Like
the previous works [63, 73, 101], we report the total time of running
all queries in a batch. The time limit is 1 day. We also present the
number of matches enumerated. We compare two algorithms A1
andA2 by the speedup ofA2 relative toA1, defined as the ratio of
A1’s execution time to that ofA2, and the reduction in enumerated
matches, defined as the ratio of the number of matches enumerated
by A1 to the number by A2. We put the results for memory usage,
preprocessing time and scalability tests in the full version.

8.1 A Simple Case Study: HOM, ISO, or tISO
As a case study to start, we consider a local subgraph counting
query 𝑄 = (𝑝, 𝑜), where 𝑝 is the 6-node pattern graph in Fig. 4 and
𝑜 = 𝑢1. We test 3 different approaches, namely, ISO, HOM, and
tISO. For ISO, we use isoS which takes an ISO-based approach on
𝑝 by directly enumerating iso-matches with SymRs. For HOM, we
use DISC1, which generates 8 distinct trees for 𝑝 by tree decompo-
sition and processes each of the 8 trees by Disc [101]. For tISO, we
use SCOPE and its variants, which generate 6 distinct trees by the
tISOToISO algorithm (Algorithm 1). This results in 11 tree nodes,
and each of them is a 3/4-graph. The results are presented in Table 3.
Decomposition approaches (DISC1, SCOPE, and the variants) enu-
merate much less matches compared to the enumeration approach
isoS. Our SCOPE that combines tree decomposition, SymRs, and
the Scope algorithm outperforms the others significantly.

8.2 The Three Batches of Queries
We have conducted testing using three batches of queries, namely,
all 58 5-node queries, all 407 6-node queries, and 50 selected 7-node
queries. The results are shown in Fig. 13, Fig. 14(a), and Fig. 14(c), re-
spectively. Cases where the algorithm exceeded the time or memory
limits are excluded from the figures.
All 5-node Queries: As shown in Fig. 13, JESSE can only complete
all 5-node queries onWS and CA, and SCOPE outperforms JESSE

by more than 2 orders. SCOPE also outperforms DISC. Here, on
the one machine setting SCOPE runs using one thread, whereas
DISC runs using 32 threads on Spark. SCOPE is 133× faster than
DISC on average across 6 datasets, while DISC cannot compute the
other 6 datasets. The maximum speedup observed is 227× on the
WS graph. EVOKE outperforms SCOPE in many cases. The main
reason is that EVOKE does its best to deal with each of the 5-node
queries in implementation, even though EVOKE takes a simple
way to construct a 2-level tree for each 𝑝 . However, the differences
between EVOKE and SCOPE are not big. On average, EVOKE is
about 1.9× faster than SCOPE. But note that SCOPE is better than
EVOKE in the three largest data graphs. SCOPE can compute all
5-node queries on SO, but EVOKE cannot. Also, EVOKE cannot
support 𝑘-node queries when 𝑘 > 5.
All 6-node Queries: For all 407 6-node queries in Fig. 14(a), only
SCOPE can compute the batch of all 407 6-node queries. EVOKE
does not support 𝑘 = 6. JESSE and DISC run out of memory. To
compare with DISC, we referred to our implementation DISC1 in
Fig. 14(a). SCOPE outperforms all variants and DISC1 significantly.
We also select 50 of the 6-node queries whose tw are 3. The results
are in Fig. 14(b). SCOPE consistently outperforms DISC by more
than 1 order of magnitude, in terms of both the elapsed time and
the number of enumerated matches.
The 50 7-node Queries: The results are shown in Fig. 14(c). Like in
the batch of 6-node queries, DISC can not run these 7-node queries
due to memory exhaustion, so we use DISC1 in Fig. 14(c). SCOPE
significantly outperforms the other variants and DISC1.

8.3 Effect of Proposed Techniques
tISO-based counting: We compare DISC1 and SCOPE-Td. Here,
the former counts by HOM and the latter counts by tISO. Both
use tree decomposition and use Disc to process each tree. SCOPE-
Td does not use SymR. SCOPE-Td consistently performs better,
showing average speedups of 1.1×. Also, the average reductions in
enumerated matches are 1.3×, 1.4×, and 1.3×, respectively for 𝑘 =

5, 6, 7. On one hand, ISO has an overhead for checking the injectivity
of mappings. On the other hand, it benefits from having fewer iso-
matches, and there are less trees to compute in tISO. Also, note
that tISO can be used with SymRs, whereas HOM cannot. Overall,
our experiments show that tISO performs better than HOM.
The symmetry rules: We investigate the benefit of symmetry
rules by comparing SCOPE-Ts (without SymRs) and SCOPE (with
SymRs). SCOPE significantly outperforms SCOPE-Ts. Take the CA
graph as an example. SCOPE is 18.3× faster than SCOPE-Ts for
the total time of the 5-node batch query, 10.9× faster for the 6-
node batch query, and 5.7× faster for the 7-node batch query. To
further investigate the effectiveness of SymRs in different queries,
we run all 6-node queries separately and compare SCOPE-Ts and
SCOPE in Fig. 15. Here, we use a scatter plot where the x-axis is
the density of each pattern, the colored points denote the tw, and
the y-axis is the speedup/reduction in enumerated matches. The
average speedup of the 407 individual queries in BY, CA, and RG
are 7.2×, 5.8×, and 7.0×, respectively, and the average reduction
in enumerated matches are 5.8×, 6.4×, and 5.3×, respectively. We
observe that the speedup and reduction in enumerated matches are
more significant for queries with larger tw. A tree node is likely to
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Figure 13: The batch with 58 5-node queries
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(a) The batch with 407 6-node queries
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(b) The batch with 50 6-node queries
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(c) The batch with 50 selected 7-node queries
Figure 14: 6-node and 7-node queries
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Figure 15: SCOPE vs SCOPE-Ts over the 407 individual 6-node queries

Table 4: Mean absolute error (MAE) for the ZINC dataset

model GCN GraphSage GAT MoNet GatedGCN
Baseline .356±.011 .455±.023 .464±.005 .260±.008 .340±.006
F -MPNN .198±.003 .235±.005 .209±.006 .190±.002 .135±.010
F +-MPNN .190±.021 .226±.014 .200±.003 .168±.011 .126±.009

induce a dense subgraph since it can not be further partitioned. If
the tw is large, then there exist some large and dense tree nodes in
the tree decomposition, and there are many automorphism orbits
and SymRs to be used. Note that a large tw means that the query is
difficult to compute, so hard queries benefit more from SymRs.
Themulti-join algorithms: We discussed two algorithms, namely,
Disc (Algorithm 3) and Scope (Algorithm 4). We study the efficiency
of the two by comparing SCOPE-TSd and SCOPE. The primary dis-
tinction lies in the algorithmic choice; SCOPE-TSd uses Disc, while
SCOPE uses the Scope algorithm. In the three batch queries, SCOPE
is more effective than SCOPE-TSd. For example, for the 6-node
queries, SCOPE-TSd can only finish in 3 graphs, where SCOPE is
10.6× faster on average. This is due to the fact that Scope enumer-
ates much less matches. SCOPE-TSd enumerates more matches
since it can repeatedly enumerate the same tree nodes.

8.4 Applying Subgrpah Counts to GNN
In [9], the authors show that augmenting node feature with local
subgraph counts can increase the expressive power of GNNs theo-
retically and empirically. Here, we further augment node features
with 5-node and 6-node local subgraph counts that they do not
use. We conducted extensive experimental studies to study the two

tasks conducted in [9], with five GNN architectures: GCN [55],
GraphSage [36], GAT [92], MoNet [68], and GatedGCN [16], fol-
lowing the settings [9].We study predicting the solubility ofmolecules
in the ZINC dataset [27]. It has 12,000 graphs and each graph is a
particular molecule. Table 4 shows the results. Here, Baseline uses
atom types as node features. F -MPNN [9] adds 3-10 cycle counts
to node features, and we further add 95 non-zero counts taken
from all 5/6-node patterns that F -MPNN does not use, denoted
as F +-MPNN. F +-MPNN has the smallest mean absolute error in
all cases, and the improvement over the Baseline is significant. We
also studied the node classification task in the full version.

9 CONCLUSION
We propose a novel decomposition-based approach for local sub-
graph counting, 𝑄 = (𝑝, 𝑜), by tree-decomposition-based counting
(tISO-based counting), which can handle any 𝑘-node pattern graph
𝑝 with the node orbit 𝑜 . We confirm the efficiency of tISO-based
counting by comparing our SCOPE with two state-of-the-art ap-
proaches, EVOKE and DISC, using 12 large datasets. EVOKE only
supports pattern graphs up to 5 nodes, and SCOPE outperforms
EVOKE in 3 large data graphs. For the batch of 5-node queries,
SCOPE is 133 times faster than DISC on average over 6 datasets,
while DISC cannot compute the other 6 datasets in the given time
limit. For the batch of all 407 6-node queries, SCOPE is the only
one that can compute on real large graphs in the given time limit.
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