
ReAcTable: Enhancing ReAct for TableQuestion Answering
Yunjia Zhang

University of Wisconsin-Madison
yunjia@cs.wisc.edu

Jordan Henkel
Microsoft

jordan.henkel@microsoft.com

Avrilia Floratou
Microsoft

avflor@microsoft.com

Joyce Cahoon
Microsoft

jcahoon@microsoft.com

Shaleen Deep
Microsoft

shaleen.deep@microsoft.com

Jignesh M. Patel
Carnegie Mellon University

jignesh@cmu.edu

ABSTRACT
Table Question Answering (TQA) presents a substantial challenge
at the intersection of natural language processing and data analyt-
ics. This task involves answering natural language (NL) questions
on top of tabular data, demanding proficiency in logical reasoning,
understanding of data semantics, and fundamental analytical ca-
pabilities. Due to its significance, a substantial volume of research
has been dedicated to exploring a wide range of strategies aimed at
tackling this challenge including approaches that leverage Large
Language Models (LLMs) through in-context learning or Chain-
of-Thought (CoT) prompting as well as approaches that train and
fine-tune custom models.

Nonetheless, a conspicuous gap exists in the research landscape,
where there is limited exploration of how innovative foundational
research, which integrates incremental reasoning with external
tools in the context of LLMs, as exemplified by the ReAct para-
digm, could potentially bring advantages to the TQA task. In this
paper, we aim to fill this gap, by introducing ReAcTable (ReAct
for Table Question Answering tasks), a framework inspired by the
ReAct paradigm that is carefully enhanced to address the challenges
uniquely appearing in TQA tasks such as interpreting complex data
semantics, dealing with errors generated by inconsistent data and
generating intricate data transformations. ReAcTable relies on exter-
nal tools such as SQL and Python code executors, to progressively
enhance the data by generating intermediate data representations,
ultimately transforming it into a more accessible format for an-
swering the user’s questions with greater ease. Through extensive
empirical evaluations using three popular TQA benchmarks, we
demonstrate that ReAcTable achieves remarkable performance even
when compared to fine-tuned approaches. In particular, it outper-
forms the best prior result on the WikiTQ benchmark by 2.1%,
achieving an accuracy of 68.0% without requiring training a new
model or fine-tuning.

PVLDB Reference Format:
Yunjia Zhang, Jordan Henkel, Avrilia Floratou, Joyce Cahoon, Shaleen
Deep, and Jignesh M. Patel. ReAcTable: Enhancing ReAct for Table
Question Answering. PVLDB, 17(8): 1981 - 1994, 2024.
doi:10.14778/3659437.3659452

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 17, No. 8 ISSN 2150-8097.
doi:10.14778/3659437.3659452

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/yunjiazhang/ReAcTable.git.

1 INTRODUCTION
Table question answering (TQA) [15] is a subfield of natural lan-
guage processing (NLP) and information retrieval that focuses on
answering natural language (NL) questions over tabular data such
as Wikipedia tables, spreadsheets or relational tables. It constitutes
a complex task that demands a fusion of contextual understanding,
logical reasoning and analytical skills. TQA allows users without
expertise in querying languages and data analytics to interact with
their data using plain language and gain valuable insights. It is a
vital tool that can enhance data accessibility, usability, and decision
support across various domains, ultimately leading to more efficient
and informed decision-making processes.

The significance of Table Question Answering (TQA) has spurred
extensive research efforts, leading to the development of various
strategies falling into two primary categories. In the first cate-
gory, approaches like Tapas [11], Tapex [25], Tacube [66], and
OmniTab [14] involve training or fine-tuning specialized models
tailored specifically for the TQA task. The second category capi-
talizes on recent advancements in Large Language Models (LLMs).
Works such as [5, 29, 56] within this category utilize LLMs to gen-
erate code capable of manipulating tabular data. However, in the
context of industrial applications, the adoption of models that ne-
cessitate fine-tuning or training can introduce additional challenges.
For instance, the process of training or fine-tuning a model can
be resource-intensive, and collecting the required training data
may pose challenges due to privacy considerations [63]. More-
over, incorporating models with distinct architectures can raise
deployment complexities compared to utilizing a universal founda-
tion model. Such specialized models can also prove challenging to
maintain, especially as workloads or customer requirements evolve.
Therefore, due to these practical constraints, we directly build on
existing LLMs, focusing on the design of a high-performing, easy-
to-implement, and easy-to-maintain TQA framework.

The emergence of Chain-of-Thought (CoT) prompting, which en-
courages a model to engage in step-by-step reasoning, has brought
about a significant transformation in the utilization of Large Lan-
guage Models (LLMs) for intricate multi-step tasks. Expanding the
CoT ideas, the ReAct paradigm [55] has been introduced, enabling
interactions between the model and external tools in an interleaved
manner. This allows for greater synergy between reasoning and
acting and facilitates real-time guidance and corrections during

1981

https://doi.org/10.14778/3659437.3659452
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3659437.3659452
https://github.com/yunjiazhang/ReAcTable.git
https://www.acm.org/publications/policies/artifact-review-and-badging-current

NL question (𝑵)
which country had the most
cyclists finish within the top 10?

Tabular data (𝑻𝟎)
RankCyclist

1Alejandro (ESP)

2Alexandr (RUS)

……

ReAcTable with SQL and Python executors

Cyclist

Alejandro (ESP)

Alexandr (RUS)

…

CountryCyclist

ESPAlejandro (ESP)

RUSAlexandr (RUS)

……

COUNT(*)Country

3ITA

Answer:
Italy

Iteration #4

SELECT Cyclist from
T0 WHERE Rank<=10;

LLM

Iteration #1

Intermediate table (𝑻𝟏)

LLM LLM

SELECT country,
COUNT(*) FROM T2
GROUP BY country
ORDER BY COUNT(*)
DESC LIMIT 1;

Iteration #3

Intermediate table (𝑻𝟑)

def get_country(s):
return re.search("\((.*?)\)",
s).group(1)

T1['country'] = T1.apply(lambda x:
get_country(x['Cyclist']), axis=1)

Iteration #2

Intermediate table (𝑻𝟐)

LLM

𝑵 𝑵𝑵

Figure 1: Overview of the ReAcTable framework with SQL and Python code executors.

task execution. These innovative strategies aim to address the lim-
itations of traditional few-shot prompting methods [1]. Despite
the promising results demonstrated by combining reasoning with
external tools, to the best of our knowledge, the ReAct paradigm
has not yet been applied to the TQA task.

In this paper, we bridge the gap by investigating how the prin-
ciples behind the ReAct framework, i.e. CoT and availability of
external tools, can be applied to the TQA task. Beyond the antic-
ipated difficulty of accurately comprehending the user’s natural
language query, the TQA task poses a series of distinct challenges,
including: (i) interpreting potentially intricate data semantics, (ii)
the presence of noisy or inconsistent data, and (iii) the necessity
for complex data transformations to derive the correct response.
Let us take the example table in Figure 1 drawn from the Wik-
iTQ [32] dataset. In this example, the user wants to know "Which
country had the most cyclists finish in the top-10?". As we see in
the corresponding table, there is no column containing explicitly
information about countries. Instead, the Cyclist column contains
values that encompass both the cyclist’s name and an accompany-
ing abbreviation in parentheses signifying their affiliated country,
constituting a column with data values that encapsulate complex
semantics, all condensed into a single string entry. For a developer
to answer this question, they would have to first understand where
the country information is represented in the data, come up with a
transformation to extract it from Cyclist column and then write a
query/program to filter the data by rank and then group them by
the corresponding country by applying the transformation on each
row of the table. From the above example, the complexity inherent
in both the questions (involving multiple intricate reasoning steps)
and the tables (containing complex semantic representations), ren-
ders the table question answering problem a highly challenging
task.

To tackle the highlighted complexities, we present ReAcTable – a
novel TQA framework that draws inspiration from the ReAct frame-
work. ReAcTable is designed to simplify the question-answering
process through a methodical approach that includes step-by-step
reasoning, executing code via external tools, and most importantly,
generating intermediate tables. This innovative strategy allows
ReAcTable to decompose complex reasoning tasks into smaller,

manageable segments, iteratively refining the data through the cre-
ation of intermediate data representations. Our workflow facilitates
a smoother transformation of data into a format that is more readily
answerable, enhancing the accessibility and accuracy of responses
to user queries.

Figure 1 presents an overview of the ReAcTable framework. The
framework employs two external tools: one for executing SQL
queries and another for running Python code. Although the frame-
work is adaptable to a range of code execution tools capable of
manipulating tabular data, we have selected these two, as SQL
serves as the standard language for querying structured data, and
Python stands as the predominant choice among data scientists
for data cleaning and transformation tasks [34]. The input for the
ReAcTable framework comprises two key elements: (i) a tabular
data set (𝑇0) and (ii) a natural language question (𝑁) regarding
𝑇0. ReAcTable automatically forms a prompt that is sent to a LLM
(see Section 3.2 for details on the prompt). The LLM is equipped
with three possible actions: (i) generating SQL code, (ii) generating
Python code, or (iii) directly providing an answer. If the LLM opts to
generate code, ReAcTable automatically uses the appropriate code
executor to process the code and generate an intermediate table
(e.g.,𝑇1 in Figure 1). The process is repeated until the LLM produces
a direct answer to the initial question (more details can be found in
Section 3). It is crucial to note that this iterative process progres-
sively refines the data, generating increasingly reliable context in
the form of intermediate tables for subsequent reasoning iterations.
As an example, by the end of the second iteration, the intermediate
table contains a distinct Country column extracted from the origi-
nal data, that allows the next iteration to easily group the data by
country. Another intriguing observation is that the LLM employed
SQL code for querying tabular data while opting for the Python
executor when handling string manipulation tasks, a pattern that
closely aligns with human preferences. Finally, as we discuss in
Section 3.4, ReAcTable additionally leverages majority voting to
improve the predictive quality of LLMs and also handle errors/code
execution exceptions that might result from noisy/inconsistent data
values.

The key contributions of the paper are:
• We introduce a novel framework, ReAcTable, designed for Ta-

ble Question Answering (TQA) tasks, taking inspiration from

1982

prior work on CoT [51] and harnessing external tools such as
ReAct [55]. ReAcTable makes effective use of Large Language
Models (LLMs) to break down the TQA problem into multiple
steps, generating logical operations in the form of code for tabu-
lar data processing as needed. Notably, ReAcTable dynamically
integrates intermediate code execution results into the LLM’s
input for the TQA task, further allowing these results to enhance
subsequent reasoning steps.

• We perform a thorough empirical evaluation of the ReAcTable
framework using three popular TQA benchmarks (WikiTQ [32],
TabFact [4], and FetaQA [28] and compare it with various state-
of-the-art approaches (LLM and non-LLM-based). We find that
ReAcTable achieves remarkable performance across all the data
sets. In particular, the framework achieves a test accuracy of
68.0% on WikiTQ [32], the most commonly used benchmark
for TQA tasks, outperforming the state-of-the-art approaches
by 2.1%, even when comparing with approaches that require
fine-tuning.

• We delve deep into the behavior of ReAcTable and analyze the
contributions of each component (intermediate tables, availabil-
ity of code executors, iterative processing) using an ablation
study. We empirically demonstrate that the most significant im-
provement comes from the iterative generation of intermediate
tables by the two code executors which aligns with our intuition
that progressive refinement of the data can improve the LLMs
predictive capabilities. We also carefully examine the effects of
using different LLMs and majority voting mechanisms. More
detailed results and analysis are shown in Section 4.3.

2 BACKGROUND AND RELATEDWORK
In the context of question-answering tasks, LLMs have become
pivotal due to their ability to generate coherent and contextu-
ally relevant responses to users’ questions. Despite advancements
in LLMs, “out-of-the-box” LLMs still struggle with complex ques-
tions [5, 51, 55]. To address these limitations, various methodologies
have been proposed to enhance the performance of “out-of-the-box”
LLMs. Since ReAcTable is built upon these foundational works, we
provide related background and terminology in this section.

2.1 Large Language Models
Large Language Models (LLMs) represent a breakthrough in nat-
ural language processing, transforming the landscape of human-
computer interaction and information processing. These models,
often based on transformer architectures [50], such as GPT-3 [1],
Codex [2], T5 [37], and Code Llama [39], are pre-trained on vast
amounts of text data. By capturing context, these LLMs performwell
in generating coherent and contextually relevant text, exhibiting
capabilities ranging from text completion and language translation
to question answering and code generation. The underlying mech-
anism involves attention mechanisms that allow models to weigh
the significance of different words within a given context[50]. LLMs
have demonstrated remarkable performance across numerous tasks,
including machine translation [1, 67], question answering [1, 38],
schema matching [63], and database tuning [19, 47].

Few-shot prompting plays a pivotal role in harnessing the power
of LLMs for a wide range of natural language understanding and

generation tasks. By providing LLMs with a limited set of examples
and a carefully crafted prompt, researchers have demonstrated their
ability to generalize knowledge and perform specific tasks with
minimal supervision [1]. The effectiveness of few-shot prompting is
also related to prompt engineering and example selection strategies.
Prompt tuning techniques, such as gradient-based optimization of
prompts [21, 62], enable fine-grained control over model behavior
by automatically tuning the prompt for a given task. These methods
collectively enable practitioners to tailor LLMs to diverse tasks and
domains, effectively leveraging the few-shot capabilities of these
models to tackle real-world language understanding and generation
challenges.

2.2 Majority Voting Mechanisms
LLMs may produce responses that are uncertain or influenced by
biases. Majority voting mechanisms in LLMs serve as a widely
adopted approach to improve the response quality and mitigate
potential biases. With majority voting mechanisms, multiple re-
sponses are sampled from the LLM’s output distribution and one
of the responses is selected based on some criteria. One common
majority voting method is simple majority voting, which simply se-
lects the response that occurs most frequently among the multiple
generated outputs. Other criteria can be applied in majority vot-
ing methods, tailored to specific applications. For example, in code
generation tasks, majority votingmethods can also consider the exe-
cution results of generated code as a basis for selection [18, 29]. The
choice of voting method depends on the context and requirements
of the application.

2.3 Chain-of-Thought and ReAct Framework
In addition to simply prompting the LLMs, multiple prompting
paradigms are designed to enhance the quality of reasoning and
responses generated by these models. One specific example is
Chain-of-Thought (CoT) prompting [51], which goes beyond tra-
ditional prompting and introduces a structured approach to guide
the model’s reasoning process. In the CoT paradigm, the reasoning
process is organized into multiple intermediate steps, allowing the
model to solve one simpler subproblem at a time and progressively
build a coherent response. This structured approach helps LLMs
tackle complex tasks effectively.

The ReAct framework [55] has expanded upon the foundational
ideas of the CoT paradigm, introducing the concept that inter-
actions with external components can substantially enhance the
capabilities of LLMs. By enabling LLMs to engage with external
components, ReAct broadens the scope of tasks and applications
that these models can handle, making them more versatile and
adaptable. A similar idea has also been introduced into modern
LLMs, including GPT-4 [30], enabling them to provide users with
better results via external plugins.

2.4 Natural Language to Code
Natural language to code refers to the challenging task of automat-
ically translating human-readable natural language descriptions
into executable programming code. Traditionally, this problem has
been tackled using rule-based approaches, which involve designing

1983

handcrafted grammar and syntactic rules to parse and interpret
natural language queries [10, 13, 35].

While these rule-based approaches have shown promise, they
often struggle with handling the nuances and variations of natural
language. In recent years, there has been a significant shift towards
model-based methods for natural language to code conversion.
These methods employ machine learning models, often based on
neural networks, to learn the mapping between natural language
and code from large data sets [7, 8, 43].

Furthermore, the advent of large language models (LLMs) has
opened up new possibilities for natural language to code tasks.
Researchers have explored the use of LLMs with few-shot prompt-
ing to generate code snippets from natural language descriptions,
effectively treating the model as a powerful code generator [1, 2].
To ensure the generated code is free of syntax errors, additional
techniques such as controlled decoding and post-processing checks
are employed [16, 18, 29, 40, 41]. These advancements highlight
the potential of LLMs in automating the natural language to code
conversion process, making it more robust for various applications.

The availability of high-quality natural language to code data
sets, including Spider [58], CoSQL [57], SParC [59], WikiSQL [64],
and BIRD [20], has been instrumental in advancing research in
the domain of natural language to code conversion. These datasets
provide rich and diverse examples of natural language queries
paired with corresponding code snippets, covering a wide range of
programming languages and database domains.

2.5 Table Question Answering
Table Question Answering (TQA) is a task that resides at the in-
tersection of natural language processing and data analytics. In
this paper, our focus is on solving the single-table TQA problem.
Specifically, when presented with a natural language question 𝑁

about a relational table 𝑇0, our objective is to provide the correct
answer to 𝑁 . The output answer may take the form of a tuple list
or a sentence in natural language. For instance, the WikiTQ [32]
benchmark presents answers in tuple lists (e.g., "2001|2002|2003"),
while the FeTaQA [28] benchmarks uses natural language as the
answer format (e.g., "Harvey beat Royds by 1,463 votes"). We as-
sume that both schema-level information and data content of the
tabular data 𝑇0 are available to answer the given question 𝑁 .

3 ReAcTable: ReAct FOR TQA TASKS
ReAcTable (ReAct for Table Question Answering tasks) is an in-
stantiation of the ReAct framework [55], designed to tackle com-
plex, multi-step Table Question Answering (TQA) problems (as
defined in Section 2.5). By incorporating concepts from ReAct,
along with majority voting mechanisms and specialized code execu-
tors, ReAcTable is able to break down complex TQA problems into
smaller, simpler sequenced tasks. For each of these sequenced tasks,
it employs generated code to manipulate the target table. Thus, Re-
AcTable significantly boosts the performance of pre-trained Large
Language Models (LLMs) without additional fine-tuning.

3.1 Overview
Figure 1 provides an overview of the ReAcTable framework. The
inputs to ReAcTable consist of (i) a relational data table 𝑇0, and (ii)

a natural language question 𝑁 . The ultimate goal of ReAcTable is
to produce the correct answer to the given question.

ReAcTable iteratively separates the complex TQA task into smaller
tasks. At each iteration, the tabular data (𝑇0) and the natural lan-
guage question (𝑁) are first input into the LLM (1 in Figure 1).
The LLM can then perform one of three distinct operations (2 in
Figure 1): (i) generating a SQL query, (ii) generating Python code,
or (iii) directly answering the question.

The ReAcTable framework is designed to be adaptable, allowing
for the integration of other code executors in addition to SQL and
Python. In our work, we use these two specific executors as they
are commonly used by data scientists to manipulate tabular data. If
the LLM generates SQL or Python code, ReAcTable activates the
corresponding executor. The execution results are in an intermedi-
ate data table (3 in Figure 1). This table is derived from the initial
tabular data and is tailored to address the question more directly.
The intermediate table, along with the original natural language
question (𝑁), is then fed back into the LLM for subsequent itera-
tions (4 in Figure 1). The iterative process continues until the LLM
provides a direct answer to the question (instead of generating code
for an executor). To enable the LLM to “learn” how to answer the
question, we employ the in-context learning paradigm [1], using
(static) few-shot examples in our prompts. The formulation of these
prompts is elaborated in Section 3.2.

For the example question illustrated in Figure 1 (“which country
had the most cyclists finish within the top 10”), ReAcTable employs
four iterations to generate the answer. This TQA example is sourced
from the WikiTQ data set [32]. In the initial iteration, ReAcTable
generates SQL code to select the cyclists who finished the race
within the top 10 ranks. This SQL code is further executed, produc-
ing an intermediate table 𝑇1. Subsequently, using the intermediate
table 𝑇1 as input, ReAcTable’s LLM generates Python code to ex-
tract the country code from the Cyclist column for each row. The
python code is executed producing table 𝑇2. For the third iteration,
ReAcTable generates SQL to count how many times each country
appears in the intermediate table 𝑇2, producing table 𝑇3. Finally,
in the last iteration, ReAcTable leverages the LLM to generate an
answer based on the country code found in 𝑇3. Through these ex-
ecutors, ReAcTable improves the problem-solving capabilities of
the LLM by effectively using intermediate tables (𝑇1, 𝑇2, and 𝑇3).

3.2 Prompting Large Language Models
Prompt template. ReAcTable uses a prompt template that is in-
stantiated on every iteration based on the output of the LLM at the
previous iteration. The very first prompt contains the original table
𝑇0 (the schema, values and data format) and the user’s NL question.
It also instructs the LLM to think step-by-step (CoT) and utilize the
two available code executors as needed. The top part of Figure 2
reflects this prompt. Additionally, it contains few-shot demonstra-
tions (not included in the figure because of space requirements)
whose format we describe at the end of this section.

After each iteration, ReAcTable would have generated either the
answer to the question or an intermediate table. In case an inter-
mediate table is generated, it is leveraged to instantiate the prompt
template at the follow-up iteration. Specifically, in the ongoing iter-
ation, ReAcTable enhances the prompt used in the previous round

1984

The database table T0 is shown as follows:
[HEAD]:Rank|Cyclist|Team|Time|Uci_protour_points

[ROW] 1: 1|Alejandro Valverde (ESP)|Caisse d'Epargne|5h 29' 10\",40"|NULL
[ROW] 2: 2|Alexandr Kolobnev (RUS)|Team CSC Saxo Bank|s.t.|30.0
...

[ROW] 10: 10|David Moncoutié (FRA)|Cofidis|+ 2\",1"|NULL

Answer the following question based on the data above: "which country had
the most cyclists finish within the top 10?". Generate SQL or Python code
step-by-step given the question and table to answer the question correctly.

ReAcTable: SQL: ```SELECT Cyclist FROM T0 WHERE rank<=10;```.

Intermediate table (T1):
[HEAD]: Cyclist

[ROW] 1: Alejandro Valverde (ESP)
[ROW] 2: Alexandr Kolobnev (RUS)
 ...
[ROW] 10: David Moncoutié (FRA)

ReAcTable: Python: ```
def get_country(s):
 return re.search("\((.*?)\)", s).group(1)
T1['Country'] = T1.apply(lambda x: get_country(x['Cyclist']), axis=1)```.

Intermediate table (T2):
[HEAD]: Cyclist|Country

[ROW] 1: Alejandro Valverde (ESP)|ESP
[ROW] 2: Alexandr Kolobnev (RUS)|RUS
 ...
[ROW] 10: David Moncoutié (FRA)|FRA

ReAcTable: SQL: ```SELECT Country, COUNT(*) FROM T2 GROUP BY Country ORDER
BY COUNT(*) DESC LIMIT 1;```.

Intermediate table (T3):
[HEAD]: Country|COUNT(*)

[ROW] 1: ITA|3

ReAcTable: Answer: ```Italy```.

ReAcTable Prompt Example

LLM generated: dddddd
Code executor generated: dddddd

Figure 2: ReAcTable prompt after the 4𝑡ℎ iteration for our
running example.

by incorporating the SQL or Python code generated in the preced-
ing step, alongside the intermediate table formed by executing this
code. This updated prompt functions as the input for the present
iteration, guaranteeing that the LLM possesses a comprehensive
view of the related context at the current stage.

Figure 2 displays the prompt created by ReAcTable at the end of
the fourth iteration shown in Figure 1. As shown in the figure this
prompt contains all the information used in the very first prompt
(top part of the figure) along with the LLM output (green) and
intermediate table (yellow) produced at each subsequent iteration.

Note that ReAcTable is not restricted to using the “SQL-Python-
SQL-Answer” pattern shown in Figure 1. It can opt for any com-
bination of executors and the prompt template will be initiated
accordingly. For straightforward questions with intuitive answers,
ReAcTable may not generate any intermediate code, while for com-
plex questions, ReAcTable may employ five or more iterations to
break down the complexity into smaller sub-questions. This flexibil-
ity allows ReAcTable to adapt to questions of varying complexity.
Few-shot demonstrations. In-context learning through few-shot
demonstrations is a common technique for calibrating LLMs to
specific tasks [1]. By utilizing a small set of examples that closely
represent the problem structure, the LLM can be adapted to the
task at hand at inference time. In ReAcTable, we also use few-shot
demonstrations to guide LLMs. These demonstrations are inserted
at the beginning of the prompt template along with the original
table and NL question. These examples are omitted from Figure 2

due to the space limit. We provide a brief overview of how these
examples are selected in Section 4.1.

3.3 Interacting with External Code Executors
Code execution. Once the LLM used by ReAcTable generates code,
the system initializes corresponding code executors to execute the
code using the provided table in the current context. In the example
shown in Figure 1, the table is represented as a SQLite [12] table
when running SQL queries, while a Pandas DataFrame [26] is used
to run Python code.
Handling exceptions. Given that the code is generated by the
LLM, there remains a possibility of encountering exceptions during
code execution. Effectively managing such exceptions is crucial
for ensuring the “last-mile” performance of ReAcTable. Common
exceptions are addressed as follows:

• SQL exceptions: While the tables in the prompt are numbered,
there remains a possibility that the SQL predicted by the LLM
should be executed on a different table, especially when random-
ness is amplified under a high-temperature setup (detailed in Sec-
tion 3.4). To mitigate this issue, we implement a retry mechanism.
This mechanism enables SQL queries on previous intermediate
tables to be attempted in reverse order. If a query successfully
executes on a table, the resulting table is then utilized as the next
intermediate table in the ReAcTable framework.

• Python exceptions: In our Python running environment, we
take precautions to prevent “module not found” exceptions by im-
porting common packages, such as regular expressions (re) and
date-time (datetime). In cases where a new module is required in
the generated Python code, we dynamically install the necessary
package during runtime and rerun the Python code. Additionally,
for handling other potential Python code exceptions, we employ
“try-except” to encapsulate the Python functions. By default, we
return zero as the result value in such cases.

• Other exceptions: In the case of other exceptions, a common
scenario arises where the model generates semantically correct
code, yet the code cannot be successfully executed due to noisy
data. In such instances, we leverage the LLM’s comprehension of
the noisy data and “force” it to produce an answer. To accomplish
this, we append the lead word “Answer” to the end of the prompt
and utilize the LLM for completion.

Taken together, the three exception handling strategies described
above and the integration of voting mechanisms (detailed in the fol-
lowing section) help ReAcTable achieve best-in-class performance
across three distinct TQA benchmarks in the category of techniques
that do not leverage fine-tuning or training of custom models.

3.4 Voting Mechanisms
Majority voting mechanisms are frequently used to improve the
predictive quality of LLMs, as they facilitate the exploration of var-
ious responses and more effectively address ambiguity [18]. Since
the core of ReAcTable is an LLM, it can integrate with different vot-
ing mechanisms to increase the accuracy of its predictions. In this
section, we describe three different voting strategies with which the
ReAcTable framework can effectively operate: (i) simple majority

1985

SQL

Py

Iter 1

Iter 2

…

AnsIter 𝑘

LLM

SQL

At each iter 𝑖

SQL

×𝑛

Py…

sample 𝑛 times

…
log-p log-p log-p

=

log-p log-p

SQL

SQL

SQL

Py …

sample 𝑛 times

…… Ans

…AnsAns

Iter 1

Iter 2

Iter 𝑘

(a) Simple majority voting (b) Tree-exploration voting (c) Execution-based voting

SQL

SQL

…

Ans
max score

Figure 3: Overview of voting mechanisms

voting, (ii) tree-exploration voting, and (iii) execution-based voting.
Figure 3 shows an overview of these voting mechanisms.

3.4.1 Simple majority voting.
Figure 3a shows the simple majority voting mechanism used in
ReAcTable. We use chains to represent the problem-solving steps
in ReAcTable, with nodes representing the programs or answers
predicted by the LLM. In simple majority voting, we apply a high-
temperature setting to the LLM [44] and perform ReAcTable’s step-
by-step solving iterations for a total of𝑛 times. As a result, we obtain
𝑛 predicted answers. The majority answer among these predictions
is selected as ReAcTable’s final prediction.

3.4.2 Tree-exploration voting.
Figure 3b demonstrates the tree-exploration votingmechanism. The
idea behind tree-exploration voting is to enable LLMs to explore
multiple intermediate steps before arriving at the final answer. Un-
like simple majority voting, which repeats the entire chain multiple
times, tree-exploration voting allows the LLM to sample 𝑛 times
at each prediction, resulting in a fanout of 𝑛 in the reasoning tree.
In this voting mechanism, ReAcTable traverses all branches of the
tree until each branch reaches an answer. Finally, ReAcTable selects
the majority of the answers as the final prediction. The algorithm
for tree-exploration voting is shown in Algorithm 1.

Algorithm 1 ReAcTable with tree-exploration voting
Input: Table 𝑇0, Question 𝑁 , Temperature 𝑡 , Sample time 𝑛
Output: Predicted answer 𝑃
1. 𝑡𝑎𝑏𝑠 = [𝑇0], 𝑎𝑛𝑠𝑤𝑒𝑟𝑠 = []
2. 𝑡𝑟𝑒𝑒𝐵𝑟𝑎𝑛𝑐ℎ𝑒𝑠 = 𝑖𝑛𝑖𝑡𝑄𝑢𝑒𝑢𝑒 () # a queue to store branches
3. 𝑡𝑟𝑒𝑒𝐵𝑟𝑎𝑛𝑐ℎ𝑒𝑠.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑡𝑎𝑏𝑠)
4. while 𝑡𝑟𝑒𝑒𝐵𝑟𝑎𝑛𝑐ℎ𝑒𝑠 is not empty:
5. 𝑡𝑎𝑏𝑠′ = 𝑡𝑟𝑒𝑒𝐵𝑟𝑎𝑛𝑐ℎ𝑒𝑠.𝑝𝑜𝑝𝐿𝑒 𝑓 𝑡 ()
6. 𝑝𝑟𝑜𝑚𝑝𝑡 = 𝑝𝑟𝑒𝑝𝑎𝑟𝑒𝑃𝑟𝑜𝑚𝑝𝑡 (𝑡𝑎𝑏𝑠′, 𝑁0)
7. 𝑎𝑙𝑙_𝑝𝑟𝑒𝑑𝑠 = 𝐿𝐿𝑀 (𝑝𝑟𝑜𝑚𝑝𝑡, 𝑡, 𝑛)
8. for 𝑝𝑟𝑒𝑑 in 𝑎𝑙𝑙_𝑝𝑟𝑒𝑑𝑠:
9. if 𝑝𝑟𝑒𝑑 is code:
10. 𝑇 ′ = 𝐸𝑥𝑒𝑐𝑢𝑡𝑒 (𝑝𝑟𝑒𝑑, 𝑡𝑎𝑏𝑠′)
11. 𝑡𝑟𝑒𝑒𝐵𝑟𝑎𝑛𝑐ℎ𝑒𝑠.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑡𝑎𝑏𝑠′ + [𝑇 ′])
12. else:
13. 𝑎𝑛𝑠𝑤𝑒𝑟𝑠.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑝𝑟𝑒𝑑)
14.return 𝑔𝑒𝑡𝑀𝑎𝑗𝑜𝑟𝑖𝑡𝑦 (𝑎𝑛𝑠𝑤𝑒𝑟𝑠)

3.4.3 Execution-based voting.
In the two voting methods above, although they recognize the data

context from earlier stages (as stated in the prompt), they do not
consider the output of the code (intermediary result table) when
making decisions on which prediction to take. To utilize the data
context for selecting the next step, we introduce an execution-based
voting mechanism [18, 29].

In execution-based voting, ReAcTable allows the LLM to sample
𝑛 predictions at each reasoning step. Instead of exhaustively explor-
ing the tree like tree-exploration voting, execution-based voting
selects only one of the predictions as the intermediate step. For
each of the 𝑛 predictions, if the prediction is a program, ReAcTable
executes the program and retrieves the resulting table. If equivalent
tables are produced, the log probabilities are merged by selecting
themaximum log probability (log-p in Figure 3c). Finally, ReAcTable
selects the code or answer with the highest score as the next step
in the reasoning chain. This decision-making process is repeated
for each step in the question-answering procedure. Algorithm 2
shows a step-by-step explanation of execution-based voting.

Algorithm 2 ReAcTable with execution-based voting
Input: Table 𝑇0, Question 𝑁 , Temperature 𝑡 , Sample time 𝑛
Output: Predicted answer 𝑃
1. 𝑡𝑎𝑏𝑠 = [𝑇0]
2. while true:
3. 𝑝𝑟𝑜𝑚𝑝𝑡 = 𝑝𝑟𝑒𝑝𝑎𝑟𝑒𝑃𝑟𝑜𝑚𝑝𝑡 (𝑡𝑎𝑏𝑠, 𝑁0)
4. 𝑎𝑙𝑙_𝑝𝑟𝑒𝑑𝑠 = 𝐿𝐿𝑀 (𝑝𝑟𝑜𝑚𝑝𝑡, 𝑡, 𝑛)
5. 𝑟𝑒𝑠𝑢𝑙𝑡𝐿𝑜𝑔 = 𝑖𝑛𝑖𝑡𝑅𝑒𝑠𝑢𝑙𝑡𝐿𝑜𝑔() # initialize the result log
6. for 𝑝𝑟𝑒𝑑 , 𝑙𝑜𝑔_𝑝𝑟𝑜𝑏 in 𝑎𝑙𝑙_𝑝𝑟𝑒𝑑𝑠:
7. if 𝑝𝑟𝑒𝑑 is code:
8. 𝑟𝑒𝑠𝑢𝑙𝑡𝐿𝑜𝑔.𝑢𝑝𝑑𝑎𝑡𝑒 (𝐸𝑥𝑒𝑐𝑢𝑡𝑒 (𝑝𝑟𝑒𝑑, 𝑡𝑎𝑏𝑠), 𝑙𝑜𝑔_𝑝𝑟𝑜𝑏)
9. else:
10. 𝑟𝑒𝑠𝑢𝑙𝑡𝐿𝑜𝑔.𝑢𝑝𝑑𝑎𝑡𝑒 (𝑝𝑟𝑒𝑑, 𝑙𝑜𝑔_𝑝𝑟𝑜𝑏)
11. # get prediction with max score
12. 𝑝𝑟𝑒𝑑 = 𝑟𝑒𝑠𝑢𝑙𝑡𝐿𝑜𝑔.𝑔𝑒𝑡_𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛()
13. if 𝑝𝑟𝑒𝑑 is code:
14. 𝑇 ′ = 𝐸𝑥𝑒𝑐𝑢𝑡𝑒 (𝑝𝑟𝑒𝑑, 𝑡𝑎𝑏𝑠) # execute the code
15. 𝑡𝑎𝑏𝑠.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑇 ′) # log the intermediate table
16. else:
17. return 𝑝𝑟𝑒𝑑

3.5 Discussion
Comparing ReAcTable with CoT and ReAct. ReAcTable can be
viewed as an advanced and specialized version of the CoT and ReAct
paradigms, specifically tailored to address the unique challenges
and requirements of TQA tasks. The primary distinction between

1986

these frameworks and ReAcTable lies in ReAcTable’s utilization of
code executors, which are also essential tools for data scientists, to
generate intermediate tables. When working with these intermedi-
ate tables which are progressively refined, the LLM produces more
coherent and semantically correct code to solve the user question
in a step-by-step fashion. Furthermore, ReAcTable incorporates
specific design elements crucial for solving TQA problems, such as
handling execution exceptions and integrating with majority voting
methods. ReAcTable demonstrates that the CoT paradigm is also
performance-critical in the TQA scenario, providing data scientists
with an easily implementable and high-performing framework.
Comparing different majority voting methods. In ReAcTable,
simple majority voting and tree-exploration majority voting can
explore a broader range of possible solution paths. By generating
multiple code segments and finally selecting the answers that occur
themost frequently, they enable the exploration of various solutions
to the given question. This naturally aligns with the observation
that there could be multiple solutions that lead to the same correct
answer. In contrast, execution-based majority voting prioritizes
the selection of code segments that are more likely to produce
semantically correct results when executed. Instead of exploring the
diverse solutions to the same question, this approach emphasizes
the practicality and correctness of the generated code.

The selection of the majority voting methods in ReAcTable de-
pends on multiple factors, including the complexity of the TQA task
and the capabilities of the underlying LLM. In this paper, we em-
pirically compare these majority voting methods in Section 4.2 and
demonstrate that all majority voting methods result in improved
performance compared to ReAcTable without majority voting. Ad-
ditionally, we demonstrate that the selection of the optimal voting
method is also a non-trivial task as it depends on the capabilities of
the underlying LLM (see Section 4.4). We discuss this aspect in our
directions for future work.

4 EXPERIMENTAL EVALUATION
In this section, we present the experimental evaluation of ReAcTable.
Our findings show that ReAcTable surpasses state-of-the-art ap-
proaches across multiple commonly used TQA datasets (often beat-
ing more complex approaches that fine-tune custom models). To
dive deeper into understanding why ReAcTable achieves better
performance, we conduct a comprehensive ablation study and ana-
lyze the interplay between various voting mechanisms and other
parameters (like model choice).

4.1 Experimental Setup
Benchmarks. We adopt three commonly used benchmarks – Wik-
iTQ [32], TabFact [4], and FeTaQA [28] – to evaluate ReAcTable
against state-of-the-art baseline approaches. For all data sets, we use
the training sets to create static few-shot examples for ReAcTable
and use the same sets of few-shot examples throughout the paper.

• WikiTQ: WikiTableQuestions (WikiTQ) is a data set designed
to facilitate research in the field of question answering over
structured tabular data [32]. The WikiTQ data set comprises
14,149 question-answer pairs in the training set and 4,344 in
the test set. The answers in the WikiTQ data set can take three

forms: (i) natural language answers derived from a single tuple,
(ii) lists of values extracted frommultiple tuples, or (iii) analytical
answers that do not exist in the tables.

• TabFact: the Table-Fact-Checking (TabFact) data set provides
a diverse collection of tables sourced from various domains, ac-
companied by a set of fact-checking queries [4]. The answers to
the given queries in TabFact are binary (“yes” or “no”), indicating
whether the given queries state facts or not based on the tabular
data. To reduce the experimental cost without losing generality,
we chose to use the small test set provided [4] to evaluate the
performance of ReAcTable and all baseline approaches [5]. The
small test set contains 1,998 question-answer pairs.

• FeTaQA: Free-form Table Question Answering (FeTaQA) is a
free-form question-answering data set built upon Wikipedia
and presents a different TQA scenario: one in which answers are
free-form natural language [28]. FeTaQA contains 7,326 question-
answer pairs in the training set and 2,006 in the test set.

Baselines. There are two categories of baseline approaches: (i)
approaches that require training, and (ii) approaches that do not
require training. Because they differ in their training data require-
ments (and in their industrial applicability), we report these two cat-
egories separately. For the approaches that require training, we in-
clude MAPO [23], IterativeSearch [6], MeRL [17], TableFormer [53],
Table-BERT [3], ProgVGAT [54], LogicFactChecker [65], SAT [60],
Tapex [25], TaCube [66], OmniTab [14], TaPas [11], SaMoE [61],
PASTA [9], Lever [29], and the T5 series of models (T5-Small, T5-
Base, and T5-Large) [36]. In terms of approaches that do not require
training, we report Binder [5] and Dater [56] due to their strong
performance. Because the best-performing baseline varies across
different benchmarks, we report the best-performing baselines for
each benchmark. It is also worth noting that these LLM-based base-
line approaches also incorporate various majority voting methods
as described in [5, 56]. For all the baseline approaches, we report
the best results observed.
ReAcTable Configurations. In our experiments, we report the
performance of ReAcTable with and without the three majority
voting methods. We denote ReAcTable without majority voting as
ReAcTable, ReAcTable with simple majority voting as ReAcTable
with s-vote, ReAcTable with tree-exploration majority voting as
ReAcTable with t-vote, and ReAcTable with execution-based ma-
jority voting as ReAcTable with e-vote. Regarding the temperature
parameter in LLMs [44], we employ two settings: We set the LLM
temperature to zero for ReAcTable, while for all experiments uti-
lizing majority voting, we consistently set the temperature to 0.6,
which is the common setting of previous works [18, 29]. Addition-
ally, for the code execution environment, we use SQL and Python
executors in ReAcTable, unless otherwise specified (Section 4.3.3).
For the underlying LLM of ReAcTable, we use Codex [2, 45] as
the default LLM. To evaluate the versatility of ReAcTable, we also
evaluate ReAcTable with other GPT-series LLMs in Section 4.4.
We implement ReAcTable as a Python project and evaluate using
Microsoft Fabric Notebooks [27] and Azure OpenAI.
Few-shot Demonstrations. In our experiments, we maintain a con-
sistent approach to selecting few-shot examples from the training
set across all benchmark datasets. Specifically, for each of the three

1987

Table 1: Performance of ReAcTable on WikiTQ data set.

Methods Accuracy

Approaches require training

MAPO 43.8%
IterativeSearch 44.7%
MeRL 44.1%
T5-3B 50.3%
TableFormer 52.6%
Tapex 57.5%
TaCube 60.8%
OmniTab 62.8%
Lever 62.9%

Approaches without training

Binder 61.9%
Dater 65.9%
ReAcTable 65.8%

with s-vote 68.0%
with t-vote 66.4%
with e-vote 67.2%

datasets - WikiTQ, TabFact, and FeTaQA, we opt for five examples
from the training set and manually create problem-solving demon-
strations. Among these five examples, four are addressed using SQL
queries, while one necessitates the incorporation of Python code in
addition to SQL queries. This selection aligns with our observation
that the majority of TQA tasks can be effectively handled using SQL
queries, with a smaller subset of questions requiring Python for
more complex processing. The choice of five examples is motivated
by the necessity to keep the prompt length within the constraints
of the context window limit [1]. Notably, from our observation,
increasing the number of examples does not necessarily result in
improved performance. The process of selecting the most effective
few-shot examples remains a longstanding challenge when work-
ing with prompting LLMs [42]. Therefore, we regard this aspect as
a potential area for future research.
Metrics. We mainly use accuracy to compare the response quality
of ReAcTable with the baseline approaches. Since the table question
answering task can give multiple tuples as output answers, we use
set-based comparison to evaluate the output answer against the
given gold answer. To evaluate the quality of the WikiTQ data
set, we use the official Python-based WikiTQ evaluator [52]. We
simply use string matching for TabFact. As for FeTaQA, since the
gold answers are free-form natural language-based answers, we
use the commonly adopted ROUGE-N and ROUGE-L metrics [24]
to evaluate the “similarity” of answers.

4.2 Performance of ReAcTable
In this section, we compare the performance of ReAcTable with
state-of-the-art approaches using three commonly used TQA data
sets: WikiTQ, TabFact, and FetaQA.
Results. Table 1, 2, and 3 show the performance of ReAcTable on
WikiTQ, TabFact, and FetaQA, respectively.

Table 2: Performance of ReAcTable on TabFact data set.

Methods Accuracy

Approaches require training

Table-BERT 68.1%
ProgVGAT 72.6%
LogicFactChecker 74.3%
SAT 75.5%
TaPas 83.9%
Tapex 86.7%
SaMoE 86.7%
PASTA 90.8%

Approaches without training

Binder 85.1%
Dater 85.6%
ReAcTable 83.1%

with s-vote 86.1%
with t-vote 84.2%
with e-vote 84.9%

Table 3: Performance of ReAcTable on FeTaQA data set.

Methods ROUGE-1 ROUGE-2 ROUGE-L

Approaches require training

T5-Small 0.55 0.33 0.47
T5-Base 0.61 0.39 0.53
T5-Large 0.63 0.41 0.53

Approaches without training

Dater 0.66 0.45 0.56
ReAcTable 0.71 0.46 0.61

As shown in Table 1, ReAcTable with s-vote achieves an accuracy
of 68.0%, outperforming all baseline approaches (including both fine-
tuned approaches and approaches without fine-tuning). It is worth
noting that the results of the baseline approaches also incorporate
various majority voting methods [5, 29]. For ReAcTable (without
majority voting), it still maintains an accuracy of 65.8%. Among
the three majority voting methods, ReAcTable with s-vote performs
the best (68.0%), while ReAcTable with t-vote exhibits a relatively
lower accuracy (66.4%). However, all three majority voting methods
(ReAcTable with s-vote, t-vote, and e-vote) improve the performance
of the original ReAcTable.

Turning our attention to the TabFact data set, as shown in Table 2,
we also observe that ReAcTable with s-vote outperforms all state-of-
the-art approaches without fine-tuning. Regarding the approaches
with fine-tuning, ReAcTable with s-vote is still 4.7% lower than the
best-performing baseline.

Regarding FeTaQA, as shown in Table 3, given that the gold
answers to the questions are free-form natural language sentences,
we use the commonly adopted ROUGE-1, ROUGE-2, and ROUGE-L
as evaluation metrics, where higher values represent better results.

1988

ReAcTable achieves the highest ROUGE score compared to any
other reported baseline.
Takeaways. As shown in the above results, ReAcTable consistently
outperforms the state-of-the-art approaches on commonly used
benchmarks. It is also worth noting that, in contrast to fine-tuning-
based approaches, ReAcTable does not require any training steps,
making ReAcTable easier to implement and deploy.

Regarding various votingmechanisms, we observe that ReAcTable
with simple majority voting outperforms the other two voting meth-
ods. Beyond this experiment, we also observe that these majority
voting methods may perform differently when using different LLMs
(see Section 4.4). We also present a detailed analysis of the voting
methods in Section 3.4.

4.3 Analyzing ReAcTable
In this section, we aim to analyze ReAcTable to address a fundamen-
tal question:Why does ReAcTable outperform most other approaches?
Considering that the major difference between ReAcTable and ba-
sic CoT/ReAct prompting is using intermediate tables to improve
subsequent reasoning steps, we first analyze how the intermediate
tables affect performance. Then, we investigate whether controlling
the maximum number of iterations has an impact on the perfor-
mance of ReAcTable. Finally, we analyze how the choice of different
code executors (SQL and Python) affects the results.

4.3.1 Effect of intermediate tables.
To evaluate the impact of intermediate tables on ReAcTable’s perfor-
mance, we conduct an ablation study of ReAcTable by removing the
intermediate tables and creating a new method named Codex-CoT.
This method produces code sequences for tabular data through a
single LLM completion step, directly executing this code for the
final answer. The key difference between Codex-CoT and ReAcTable
is the use of intermediate tables in code generation, allowing for a
direct comparison to assess the influence of intermediate results
on overall performance.

As shown in Section 4.2, simple majority voting (ReAcTable with
s-vote) stands out as the best-performing configuration among var-
ious majority voting methods. Therefore, in this experiment, we
exclusively focus on the simple majority voting setup, specifically
comparing Codex-CoT with s-vote with ReAcTable with s-vote.
Results. Table 4 presents the results of our ablation study on the
WikiTQ and TabFact data sets.

We observe that Codex-CoT achieves an accuracy of only 49.4%,
while ReAcTable performs notably better with an accuracy of 65.8%,
which is a 16.4% improvement. Interestingly, when applying simple
majority voting to Codex-CoT, the accuracy drops to 47.7%. One
possible reason for this decline is that when the LLM is uncertain
about the answer, using a high-temperature setup (0.6 in Codex-
CoT with s-vote) can further increase uncertainty, leading to worse
results compared to the low-temperature setup [18].

Regarding the TabFact data set, we make a similar observation
from Table 4, where Codex-CoT exhibits a 12.0% lower accuracy
compared to ReAcTable. Furthermore, even after applying simple
majority voting, Codex-CoT with s-vote achieves an accuracy of
72.3%, which is still 13.8% behind the accuracy of ReAcTable with
s-vote.

Table 4: Comparison of ReAcTable vs. Codex with simple
chain-of-thought on WikiTQ and TabFact data sets.

WikiTQ

Methods Accuracy

Codex-CoT 49.4%
with s-vote 47.7%

ReAcTable 65.8%
with s-vote 68.0%

TabFact

Methods Accuracy

Codex-CoT 71.1%
with s-vote 72.3%

ReAcTable 83.1%
with s-vote 86.1%

Takeaways. Our ablation study demonstrates that the inclusion
of intermediate tables significantly enhances the performance of
ReAcTable. Moreover, it is worth noting that majority voting mech-
anisms with a high temperature do not consistently yield better
accuracy, especially when the LLM is uncertain about the answer.

4.3.2 Number of iterations.
ReAcTable uses multiple rounds of interactions with LLMs and
code executors to handle complex question-answering tasks over
tabular data. In ReAcTable, the number of iterations can affect
the performance: more iterations may enable ReAcTable to reason
through difficult questions. To gain insights into how the number of
iterations affects ReAcTable ’s performance, we aim to answer two
questions: 1) How many iterations does ReAcTable utilize when we
do not control the number of iterations, and 2) How does controlling
the maximum iteration number impact the results.
Number of iterations.We first analyze the number of iterations
when we allow an unlimited number of iterations for ReAcTable. In
this experiment, we use ReAcTable with s-vote on three data sets
(WikiTQ, TabFact, and FeTaQA) to perform the study. Figure 4 illus-
trates the distribution of iteration numbers. As shown in Figure 4,
across the three data sets, all questions are resolved within five
iterations, with over 70% of the questions being answered within
two iterations.

Furthermore, we break down the accuracy of ReAcTable with
s-vote on the WikiTQ data set (shown in Figure 4a) to reveal the
detailed accuracy corresponding to the different numbers of iter-
ations chosen by ReAcTable (w.r.t. different bars in Figure 4a). As
demonstrated in Table 5, ReAcTable achieves its highest perfor-
mance when it opts for two iterations (72.3%). However, as the
number of iterations increases, the performance of ReAcTable grad-
ually declines. This observation suggests that questions that require
more iteration steps might be inherently challenging for ReAcTable
to handle, resulting in lower accuracy.
Limiting the number of iterations. Next, we investigate whether
imposing a limit on the number of iterations in ReAcTable impacts
its performance. To establish a maximum iteration limit at 𝑘 , we
terminate the reasoning process at iteration 𝑘 − 1 if ReAcTable does
not opt to directly answer the question. When reaching iteration 𝑘 ,
we force ReAcTable to directly answer the question by appending
the leading word “Answer” to the prompt.

Table 6 presents the results of ReAcTable when various maxi-
mum iteration limits are imposed. As the maximum iteration limit

1989

(a) WikiTQ (b) TabFact (c) FeTaQA

Figure 4: Distribution of the number of iterations.

Table 5: Accuracy breakdown of ReAcTable on WikiTQ data
set. We show the accuracy when ReAcTable uses different
numbers of iterations to solve the questions, i.e. the accuracy
for each bar in Figure 4a.

Iteration # used by ReAcTable Accuracy

Iteration # = 1 (# of data points: 233) 62.8%
Iteration # = 2 (# of data points: 3,426) 72.3%
Iteration # = 3 (# of data points: 364) 60.3%
Iteration # = 4 (# of data points: 264) 59.3%
Iteration # = 5 (# of data points: 19) 46.2%

Table 6: Performance of ReAcTable on WikiTQ data set.

𝑙𝑖𝑚𝑖𝑡 = 1 𝑙𝑖𝑚𝑖𝑡 = 2 𝑙𝑖𝑚𝑖𝑡 = 3 unlimited

Accuracy 49.2% 65.1% 67.3% 68.0%

is raised, the accuracy of ReAcTable also rises. An interesting ob-
servation is that with a maximum limit set at two iterations, the
accuracy reaches 65.1% (from 49.2%). When the maximum limit
exceeds two, the increase in accuracy becomes less pronounced.
This observation aligns with the finding that a substantial portion
of questions can be effectively answered within two iterations.
Takeaways. Based on the aforementioned results, the majority of
questions in the three commonly used data sets can be answered in
just two iterations. Moreover, for complex question-answering tasks
where ReAcTable employs more than two iterations to generate
an answer, restricting the number of iterations does not lead to
improved accuracy. This shows the adaptability of ReAcTable to the
complexity of questions and highlights the importance of allowing
ReAcTable’s flexibility in the iteration process.

4.3.3 Effect of Using Different Code Executors.
In the default configuration of ReAcTable, two external executors
are utilized: the SQL executor and the Python executor. The SQL
code generated by ReAcTable primarily handles data selection,
while the Python code generated by ReAcTable deals with data
formatting. In this experiment, our objective is to assess the indi-
vidual performance contributions of each executor.

For our experiments, we adjusted the ReAcTable configurations
to create a variant named ReAcTable (SQL), which uses only SQL
for tabular data manipulation. This change means ReAcTable (SQL)

depends entirely on SQL, potentially complicating data reformat-
ting and relying more on the LLM’s understanding. We limited
our ablation study to the Python executor because our version of
ReAcTable primarily uses the SQL executor for essential tabular
data tasks.
Results. Table 9 presents the results on the WikiTQ and TabFact
data sets. When using ReAcTable (SQL), the accuracy on WikiTQ
drops from 65.8% to 62.5%. After applying simple majority voting
(ReAcTable with s-vote), removing the Python executor results in
a decrease of 3.5%. Similarly, on TabFact, removing the Python
executor leads to a significant drop in accuracy, up to 9.9%. This
highlights the importance of the Python executor in enhancing the
performance on these data sets.
Takeaways. From our results, the inclusion of the Python executor
indeed improves accuracy, particularly by allowing complex data
reformatting via Python. It is also important to note that ReAcTable
exhibits flexibility and can be adapted to work with various code
executors beyond the default SQL and Python executors. We further
discuss the choice of code executors in Section 5.2.

4.3.4 Effect of Using Different Majority Voting Methods.
In the results showcased in Tables 1 and 2, our findings indicate that
among the three majority voting methods, the simple majority vot-
ing approach consistently outperforms the others when employed
in conjunction with our ReAcTable configuration. Furthermore, the
integration of voting methods significantly enhances the overall
performance of ReAcTable, as thoroughly discussed in Section 4.2.

In addition to variations in performance, the majority voting
methods also exhibit disparities in the number of code predictions
(LLM inferences). This aspect is of paramount importance as a
higher number of code predictions can lead to increased resource
utilization and time consumption [46]. To provide a comprehensive
overview of these prediction costs, we present the average number
of code predictions, along with the end-to-end TQA time, for the
WikiTQ dataset in Table 7. As anticipated, ReAcTable (without ma-
jority voting) requires a minimal 2.4 predictions per question. In
contrast, the tree-exploration voting method necessitates a larger
number of predictions due to its exponential relationship with the
number of steps However, given that questions are answered within
five steps (see Figure 4), the overall volume of LLM inferences re-
mains manageable, averaging 30.2 per question. It is important to
note that the reported latencies are measured without leveraging
parallelization. Implementing parallel execution of independent
LLM inferences could significantly diminish these overheads, offer-
ing a pathway to enhanced efficiency.

In summary, simple majority voting exhibits strong performance
while retaining simplicity of implementation. Execution-based vot-
ing generates semantically correct code, while tree-exploration-
based voting explores a broad spectrum of answering approaches
but incurs significant resource costs and requires further optimiza-
tion. The selection of the most suitable voting method for specific
scenarios remains a non-trivial research challenge, and we highlight
it as a promising avenue for future exploration.

4.3.5 Analyzing the Computational Efficiency of ReAcTable.
In this section, we analyze ReAcTable ’s computational efficiency.
We report four runtime statistics for ReAcTable: (i) average code

1990

Table 7: The average number of LLM inferences performed
by ReAcTable on the WikiTQ data set.

Methods Avg. # of
LLM inferences

Avg. end-to-end
latency (seconds)

ReAcTable 2.4 5.3
with s-vote 12.1 27.6
with t-vote 30.2 62.2
with e-vote 15.3 31.5

Table 8: Analyzing the runtime of ReAcTable on WikiTQ.

Time (seconds)

Avg. code prediction time 2.171
Avg. code prediction time per token 0.045
Avg. code execution time 0.187
Avg. code execution time per result row 0.003
Avg. end-to-end question answering time 5.323

prediction time, (ii) average code prediction time per token, (iii)
average code execution time, (iv) average code execution time per
result row, and (v) average end-to-end question answering time.
Among these statistics, average code prediction time and average
code prediction time per token pertain to code prediction efficiency
(i.e., the inference time of LLMs), while average code execution
time and average code execution time per result row relate to the
efficiency of executing Python or SQL code over tabular data. We
derive these statistics by running ReAcTable (without majority
voting methods) on the WikiTQ data set, and similar results can be
expected with other data sets.

Table 8 provides a summary of the runtime statistics for Re-
AcTable. Among all the reported times, code prediction consumes
the most time in ReAcTable. In comparison, code execution is rela-
tively less time consuming, as the tables in all the TQA data sets
are not of a large scale. Additionally, even with large-scale datasets,
since ReAcTable only uses a small number of rows in its prompts
(see Section 3.2), ReAcTable can be extended to execute the code
over a small set of sampled data rows and/or return only the top-k
rows, enhancing the overall code execution efficiency. As there are
currently limited TQA data sets with industry-scale tables available,
we consider the preparation of such data sets and the exploration
of efficient large-scale TQA as a future direction.

In comparison to baseline approaches, ReAcTable stands out
for its efficiency, as it eliminates the need for additional training
or fine-tuning steps within the TQA pipeline. Regarding baselines
that do not involve training, ReAcTable exhibits latency similar to
Dater, with the primary latency stemming from the LLM inference
process. In contrast, when compared to Binder, which utilizes LLMs
to process data values, ReAcTable notably reduces the number of
LLM inferences, resulting in reduced latency.

Table 9: Performance of ReAcTable on WikiTQ and TabFact
data sets with only the SQL query executor.

WikiTQ

Methods Accuracy

ReAcTable 65.8%
with s-vote 68.0%
with t-vote 66.4%
with e-vote 67.2%

ReAcTable (SQL) 62.5%
with s-vote 64.5%
with t-vote 64.1%
with e-vote 63.6%

TabFact

Methods Accuracy

ReAcTable 83.1%
with s-vote 86.1%
with t-vote 84.2%
with e-vote 84.9%

ReAcTable (SQL) 75.4%
with s-vote 76.2%
with t-vote 77.1%
with e-vote 75.8%

Table 10: Performance of ReAcTable with various GPT-series
models on WikiTQ data set.

Methods Accuracy

ReAcTable (code-davinci-002) 65.8%
with s-vote 68.0%
with t-vote 66.4%
with e-vote 67.2%

ReAcTable (text-davinci-003) 63.3%
with s-vote 64.1%
with t-vote 64.5%
with e-vote 65.0%

ReAcTable (gpt3.5-turbo) 52.4%
with s-vote 51.8%
with t-vote 52.5%
with e-vote N.A.1

4.4 ReAcTable with Various Language Models
Currently, the landscape of LLMs is diverse and quickly evolving.
Likewise, ReAcTable is versatile in its ability to improve the pre-
diction quality of various LLMs for the TQA task. To illustrate
the effectiveness of ReAcTable with different LLMs, we evaluate
ReAcTable using various GPT series language models.

From the large number of models offered by OpenAI [31], we
opted for two commonly used models in addition to the default
code-davinci-002 model: text-davinci-003 and gpt3.5-turbo [49].
Results. The results of ReAcTable with various LLMs are shown
in Table 10 for the WikiTQ data set. In the table, we do not report
the performance of ReAcTable with e-vote using gpt3.5-turbo since
gpt3.5-turbo does not provide probability scores [49].

From the table, the accuracy achieved with the additional two
models (text-davinci-003 and gpt3.5-turbo) is lower than when using
the default Codex model (code-davinci-002). Specifically, with text-
davinci-003, ReAcTable achieves a maximum accuracy of 65.0% on
WikiTQ (ReAcTable with e-vote).

1Since gpt3.5-turbo does not provide probability scores [49], e-vote is not applicable on
gpt3.5-turbo.

1991

Our results reveal that chat-based models tend to generate an-
swers in a more natural language format. For example, in the Wik-
iTQ dataset, when the gold answer is “Francisco Bravo Medical
Magnet High School|2007”, ReAcTable with gpt3.5-turbo predicts
“the first school to reach 800 API is Francisco Bravo Medical Mag-
net High School in the year 2007”. While we still use the official
evaluator provided with the WikiTQ dataset [52] to ensure con-
sistency, it is worth noting that this official evaluator does not
recognize synonyms or paraphrases of the correct answer as valid.
We also consider the development of an evaluator that accounts for
synonyms and paraphrases as a potential future direction.

Furthermore, it is worth noting that for all ReAcTable config-
urations with text-davinci-003, execution-based voting methods
(ReAcTable with s-vote) consistently yield the best results. This
observation suggests that execution-based voting is effective in
selecting semantically correct code for a model that is not primarily
designed for code generation, like text-davinci-003.
Takeaways. From the results, ReAcTable exhibits the capability to
effectively utilize various language models. However, the choice of
model can also impact ReAcTable’s end-to-end performance.

5 LESSONS LEARNED
In this section, we summarize the lessons we learned during our
exploration of LLMs in TQA tasks. We provide discussions on the
design spaces that we considered and the limitations of ReAcTable.

5.1 Design Spaces of LLM for TQA tasks
Prior research in TQA has mainly explored two strategies: (i) train-
ing or fine-tuning LLMs, and (ii) using pre-trained LLMs with-
out modification. The former involves customizing LLMs for TQA,
which can enhance performance but faces challenges like data ac-
quisition and high costs. The latter strategy employs pre-trained
LLMs directly, requiring careful prompting and design to be ef-
fective despite their initial lack of task-specific optimization. We
focused on the latter, leveraging pre-trained LLMs due to their sim-
plicity and flexibility. By adapting LLM enhancement frameworks,
CoT and ReAct, for TQA, ReAcTable outperforms many standard
methods, maintaining its ease of use and adaptability.

5.2 Choosing External Code Executors
In our experiments, we employ SQL and Python as the two exter-
nal code executors. We have chosen these two executors because
they are commonly utilized by data scientists for tabular data ma-
nipulation tasks. In our configuration, SQL primarily handles data
selection, while Python is employed for complex data reformat-
ting operations. Furthermore, incorporating these code executors
also facilitates the possibility for data scientists to easily assess the
correctness of (intermediate) code. In addition, using these code
executors does not introduce additional implementation complexi-
ties, unlike approaches like Binder [5], which necessitate complex
re-implementation of the SQL executor.

5.3 Majority Voting Mechanisms
In this paper, we investigate the three majority voting methods in
ReAcTable: (i) simple majority voting, (ii) tree-exploration voting,
and (iii) execution-based voting. As elaborated in Section 3.5, simple

majority voting and tree-exploration voting involve exploring mul-
tiple solution paths for the same question, whereas execution-based
voting prioritizes the generation of semantically correct code.

It is important to emphasize that the application of majority
voting may potentially lead to a performance decline, particularly
when the model exhibits uncertainty regarding the answer. This
could be attributed to the fact that the high-temperature setup in
majority voting might further accentuate the model’s uncertainty.
Furthermore, majority voting introduces additional prompting costs.
Such cost can also be crucial, as prompting LLMs consumes substan-
tial GPU resources. Therefore, one should exercise caution when
considering the use of majority voting methods.

5.4 Limitations and Future Works
In the context of ReAcTable, we employ few-shot prompting meth-
ods, which involve the manual creation of examples based on the
training set. This process can be intricate, and fine-tuning prompts
falls beyond the scope of this paper. While there are existing meth-
ods proposed for searching few-shot examples from a corpus [5, 33]
and tuning model prefixes [22], ReAcTable differs from traditional
table question answering methods. It utilizes the CoT and ReAct par-
adigm, which requires the creation of few-shot examples to follow
the “chain-of-code” style. This presents a challenge for automa-
tion, as it often necessitates human involvement in the process. We
recognize automatic prompt tuning and the selection of few-shot
examples as potential directions for future research.

While our current work primarily focuses on the foundational
aspect of answering questions over tabular data using LLMs with
multi-step code execution, specifically addressing single-table ques-
tion answering, an enticing direction for future research lies in
extending our approach to tackle large-scale multi-table scenarios.
Within the realm of multi-table scenarios, the intricate multi-table
merging semantics (such as inner joins, outer joins, union, inter-
section, etc.) presents a challenge for LLMs to effectively capture.
Moreover, due to the limited availability of large-scale multi-table
question answering datasets, we recognize the formulation of such
datasets and research aimed at addressing these complexities as a
novel direction. Additionally, we also acknowledge the importance
of automating the selection process for the most effective majority
voting method, as discussed in Sections 3.5 and 4.3.

Finally, we note that recent work in the space of multi-modal
query planning [48] presents yet another intriguing area for future
research. In such works, questions operate not just over a single
table, or even multiple tables, but, instead, over entirely different
modalities of data such as images.

6 CONCLUSION
In this paper, we investigate how the TQAproblem can be effectively
addressed using foundational advances in LLMs. We introduce Re-
AcTable, a framework that employs LLMs to reason step-by-step
and iteratively generates intermediate tables using external code
executors. Our experimental results demonstrate that ReAcTable
outperforms existing state-of-the-art approaches. Our findings il-
lustrate that a simple, yet carefully adapted LLM-based framework
can still surpass many state-of-the-art approaches tailored to the
table question answering task.

1992

REFERENCES
[1] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,

Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter,
Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. 2020. Language Models are Few-Shot Learners.
arXiv:2005.14165 [cs.CL]

[2] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de
Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg
Brockman, Alex Ray, Raul Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf,
Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder, Mikhail
Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fo-
tios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex
Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shan-
tanu Jain, William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Josh
Achiam, Vedant Misra, Evan Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, MiraMurati, Katie Mayer, PeterWelinder, BobMcGrew, Dario Amodei,
Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. 2021. Evaluating Large
Language Models Trained on Code. arXiv:2107.03374 [cs.LG]

[3] Wenhu Chen, Hongmin Wang, Jianshu Chen, Yunkai Zhang, Hong Wang,
Shiyang Li, Xiyou Zhou, and William Yang Wang. 2019. TabFact: A Large-
scale Dataset for Table-based Fact Verification. CoRR abs/1909.02164 (2019).
arXiv:1909.02164 http://arxiv.org/abs/1909.02164

[4] Wenhu Chen, Hongmin Wang, Jianshu Chen, Yunkai Zhang, Hong Wang,
Shiyang Li, Xiyou Zhou, and William Yang Wang. 2020. TabFact: A Large-scale
Dataset for Table-based Fact Verification. International Conference on Learning
Representations (2020). https://openreview.net/forum?id=rkeJRhNYDH

[5] Zhoujun Cheng, Tianbao Xie, Peng Shi, Chengzu Li, Rahul Nadkarni, Yushi Hu,
Caiming Xiong, Dragomir Radev, Mari Ostendorf, Luke Zettlemoyer, Noah A.
Smith, and Tao Yu. 2023. Binding Language Models in Symbolic Languages.
arXiv:2210.02875 [cs.CL]

[6] Pradeep Dasigi, Matt Gardner, Shikhar Murty, Luke Zettlemoyer, and Eduard
Hovy. 2019. Iterative Search for Weakly Supervised Semantic Parsing. In Pro-
ceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long
and Short Papers), Jill Burstein, Christy Doran, and Thamar Solorio (Eds.). As-
sociation for Computational Linguistics, Minneapolis, Minnesota, 2669–2680.
https://doi.org/10.18653/v1/N19-1273

[7] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong,
Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, et al. 2020. Codebert: A pre-trained
model for programming and natural languages. arXiv preprint arXiv:2002.08155
(2020).

[8] Xiaodong Gu, Hongyu Zhang, and Sunghun Kim. 2018. Deep code search. In
Proceedings of the 40th International Conference on Software Engineering. 933–944.

[9] Zihui Gu, Ju Fan, Nan Tang, Preslav Nakov, Xiaoman Zhao, and Xiaoyong Du.
2022. PASTA: Table-Operations Aware Fact Verification via Sentence-Table Cloze
Pre-training. arXiv:2211.02816 [cs.CL]

[10] Tihomir Gvero and Viktor Kuncak. 2015. Synthesizing Java expressions from
free-form queries. In Proceedings of the 2015 acm sigplan international conference
on object-oriented programming, systems, languages, and applications. 416–432.

[11] Jonathan Herzig, Pawel Krzysztof Nowak, Thomas Müller, Francesco Piccinno,
and Julian Eisenschlos. 2020. TaPas: Weakly Supervised Table Parsing via
Pre-training. In Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics. Association for Computational Linguistics. https:
//doi.org/10.18653/v1/2020.acl-main.398

[12] Richard D Hipp. 2020. SQLite. https://www.sqlite.org/index.html
[13] Reid Holmes and Gail Murphy. 2005. Using structural context to recommend

source code examples. Proceedings - 27th International Conference on Software
Engineering, ICSE05, 117–125. https://doi.org/10.1109/ICSE.2005.1553554

[14] Zhengbao Jiang, Yi Mao, Pengcheng He, Graham Neubig, andWeizhu Chen. 2022.
OmniTab: Pretraining with Natural and Synthetic Data for Few-shot Table-based
Question Answering. arXiv:2207.03637 [cs.CL]

[15] Nengzheng Jin, Joanna Siebert, Dongfang Li, and Qingcai Chen. 2022. A Survey
on Table Question Answering: Recent Advances. arXiv:2207.05270 [cs.CL]

[16] Rogers Jeffrey Leo John, Dylan Bacon, Junda Chen, Ushmal Ramesh, Jiatong Li,
Deepan Das, Robert V. Claus, Amos Kendall, and JigneshM. Patel. 2023. DataChat:
An Intuitive and Collaborative Data Analytics Platform. In Companion of the 2023
International Conference on Management of Data, SIGMOD/PODS 2023, Seattle,
WA, USA, June 18-23, 2023, Sudipto Das, Ippokratis Pandis, K. Selçuk Candan,
and Sihem Amer-Yahia (Eds.). ACM, 203–215. https://doi.org/10.1145/3555041.
3589678

[17] Shauharda Khadka, Somdeb Majumdar, and Kagan Tumer. 2019. Evolutionary
Reinforcement Learning for Sample-Efficient Multiagent Coordination. CoRR
abs/1906.07315 (2019). arXiv:1906.07315 http://arxiv.org/abs/1906.07315

[18] Anirudh Khatry, Joyce Cahoon, Jordan Henkel, Shaleen Deep, Venkatesh Emani,
Avrilia Floratou, Sumit Gulwani, Vu Le, Mohammad Raza, Sherry Shi, Mukul
Singh, and Ashish Tiwari. 2023. From Words to Code: Harnessing Data for
Program Synthesis from Natural Language. arXiv:2305.01598 [cs.DB]

[19] Jiale Lao, Yibo Wang, Yufei Li, Jianping Wang, Yunjia Zhang, Zhiyuan Cheng,
Wanghu Chen, Mingjie Tang, and Jianguo Wang. 2023. GPTuner: A Manual-
Reading Database Tuning System via GPT-Guided Bayesian Optimization.
arXiv:2311.03157 [cs.DB]

[20] Jinyang Li, Binyuan Hui, Ge Qu, Binhua Li, Jiaxi Yang, Bowen Li, Bailin Wang,
Bowen Qin, Rongyu Cao, Ruiying Geng, et al. 2023. Can llm already serve as a
database interface? a big bench for large-scale database grounded text-to-sqls.
arXiv preprint arXiv:2305.03111 (2023).

[21] Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning: Optimizing continuous
prompts for generation. arXiv preprint arXiv:2101.00190 (2021).

[22] Xiang Lisa Li and Percy Liang. 2021. Prefix-Tuning: Optimizing Continuous
Prompts for Generation. In Proceedings of the 59th Annual Meeting of the Associ-
ation for Computational Linguistics and the 11th International Joint Conference on
Natural Language Processing (Volume 1: Long Papers), Chengqing Zong, Fei Xia,
Wenjie Li, and Roberto Navigli (Eds.). Association for Computational Linguistics,
Online, 4582–4597. https://doi.org/10.18653/v1/2021.acl-long.353

[23] Chen Liang, Mohammad Norouzi, Jonathan Berant, Quoc V. Le, and Ni Lao.
2018. Memory Augmented Policy Optimization for Program Synthesis with
Generalization. CoRR abs/1807.02322 (2018). arXiv:1807.02322 http://arxiv.org/
abs/1807.02322

[24] Chin-Yew Lin. 2004. Rouge: A package for automatic evaluation of summaries.
In Text summarization branches out. 74–81.

[25] Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi Lin, Weizhu Chen, and
Jian-Guang Lou. 2022. TAPEX: Table Pre-training via Learning a Neural SQL
Executor. arXiv:2107.07653 [cs.CL]

[26] Wes McKinney et al. 2010. Data structures for statistical computing in python. In
Proceedings of the 9th Python in Science Conference, Vol. 445. Austin, TX, 51–56.

[27] Microsoft Power BI 2024. Microsoft Power BI. Retrieved Jan 27, 2023 from
https://msit.powerbi.com/home?experience=power-bi

[28] Linyong Nan, Chiachun Hsieh, Ziming Mao, Xi Victoria Lin, Neha Verma, Rui
Zhang, Wojciech Kryściński, Hailey Schoelkopf, Riley Kong, Xiangru Tang,
Mutethia Mutuma, Ben Rosand, Isabel Trindade, Renusree Bandaru, Jacob Cun-
ningham, Caiming Xiong, and Dragomir Radev. 2022. FeTaQA: Free-form Table
Question Answering. Transactions of the Association for Computational Linguistics
10 (2022), 35–49.

[29] Ansong Ni, Srini Iyer, Dragomir Radev, Ves Stoyanov, Wen tau Yih, Sida I. Wang,
and Xi Victoria Lin. 2023. LEVER: Learning to Verify Language-to-Code Genera-
tion with Execution. arXiv:2302.08468 [cs.LG]

[30] OpenAI. 2023. GPT-4 Technical Report. arXiv:2303.08774 [cs.CL]
[31] OpenAI models 2023. OpenAI models. Retrieved Sep 17, 2023 from https:

//platform.openai.com/docs/models
[32] Panupong Pasupat and Percy Liang. 2015. Compositional Semantic Parsing on

Semi-Structured Tables. arXiv:1508.00305 [cs.CL]
[33] Ethan Perez, Douwe Kiela, and Kyunghyun Cho. 2021. True few-shot learning

with language models. Advances in neural information processing systems 34
(2021), 11054–11070.

[34] Fotis Psallidas, Yiwen Zhu, Bojan Karlas, Jordan Henkel, Matteo Interlandi,
Subru Krishnan, Brian Kroth, Venkatesh Emani, Wentao Wu, Ce Zhang, Markus
Weimer, Avrilia Floratou, Carlo Curino, and Konstantinos Karanasos. 2022. Data
Science Through the Looking Glass: Analysis of Millions of GitHub Notebooks
and ML.NET Pipelines. SIGMOD Rec. 51, 2 (jul 2022), 30–37. https://doi.org/10.
1145/3552490.3552496

[35] Chris Quirk, Raymond Mooney, and Michel Galley. 2015. Language to code:
Learning semantic parsers for if-this-then-that recipes. In Proceedings of the
53rd Annual Meeting of the Association for Computational Linguistics and the 7th
International Joint Conference on Natural Language Processing (Volume 1: Long
Papers). 878–888.

[36] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the Limits
of Transfer Learning with a Unified Text-to-Text Transformer. Journal of Machine
Learning Research 21, 140 (2020), 1–67. http://jmlr.org/papers/v21/20-074.html

[37] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. 2023. Exploring
the Limits of Transfer Learning with a Unified Text-to-Text Transformer.
arXiv:1910.10683 [cs.LG]

[38] Joshua Robinson, Christopher Michael Rytting, and David Wingate. 2022. Lever-
aging large language models for multiple choice question answering. arXiv
preprint arXiv:2210.12353 (2022).

[39] Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xi-
aoqing Ellen Tan, Yossi Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom
Kozhevnikov, Ivan Evtimov, Joanna Bitton, Manish Bhatt, Cristian Canton Fer-
rer, Aaron Grattafiori, Wenhan Xiong, Alexandre Défossez, Jade Copet, Faisal
Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas Scialom, and
Gabriel Synnaeve. 2023. Code Llama: Open Foundation Models for Code.
arXiv:2308.12950 [cs.CL]

1993

https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2107.03374
http://arxiv.org/abs/1909.02164
https://openreview.net/forum?id=rkeJRhNYDH
https://arxiv.org/abs/2210.02875
https://doi.org/10.18653/v1/N19-1273
https://arxiv.org/abs/2211.02816
https://doi.org/10.18653/v1/2020.acl-main.398
https://doi.org/10.18653/v1/2020.acl-main.398
https://www.sqlite.org/index.html
https://doi.org/10.1109/ICSE.2005.1553554
https://arxiv.org/abs/2207.03637
https://arxiv.org/abs/2207.05270
https://doi.org/10.1145/3555041.3589678
https://doi.org/10.1145/3555041.3589678
http://arxiv.org/abs/1906.07315
https://arxiv.org/abs/2305.01598
https://arxiv.org/abs/2311.03157
https://doi.org/10.18653/v1/2021.acl-long.353
http://arxiv.org/abs/1807.02322
http://arxiv.org/abs/1807.02322
https://arxiv.org/abs/2107.07653
https://msit.powerbi.com/home?experience=power-bi
https://arxiv.org/abs/2302.08468
https://arxiv.org/abs/2303.08774
https://platform.openai.com/docs/models
https://platform.openai.com/docs/models
https://arxiv.org/abs/1508.00305
https://doi.org/10.1145/3552490.3552496
https://doi.org/10.1145/3552490.3552496
http://jmlr.org/papers/v21/20-074.html
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/2308.12950

[40] Torsten Scholak, Nathan Schucher, and Dzmitry Bahdanau. 2021. PICARD: Pars-
ing Incrementally for Constrained Auto-Regressive Decoding from Language
Models. In Proceedings of the 2021 Conference on Empirical Methods in Natu-
ral Language Processing. Association for Computational Linguistics, 9895–9901.
https://aclanthology.org/2021.emnlp-main.779

[41] Freda Shi, Daniel Fried, Marjan Ghazvininejad, Luke Zettlemoyer, and Sida I
Wang. 2022. Natural language to code translation with execution. arXiv preprint
arXiv:2204.11454 (2022).

[42] Hongjin Su, Jungo Kasai, Chen HenryWu,Weijia Shi, TianluWang, Jiayi Xin, Rui
Zhang, Mari Ostendorf, Luke Zettlemoyer, Noah A Smith, et al. 2022. Selective
annotation makes language models better few-shot learners. arXiv preprint
arXiv:2209.01975 (2022).

[43] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014. Sequence to sequence learning
with neural networks. Advances in neural information processing systems 27
(2014).

[44] Temperature setup of GPT models 2023. Temperature setup of GPT models.
Retrieved Sep 28, 2023 from https://platform.openai.com/docs/api-reference/
completions

[45] The Codex model of OpenAI 2023. The Codex model of OpenAI. Retrieved Sep
28, 2023 from https://openai.com/blog/openai-codex

[46] The prompting cost of OpenAI 2023. The prompting cost of OpenAI. Retrieved
Dec 22, 2023 from https://openai.com/pricing

[47] Immanuel Trummer. 2022. DB-BERT: a Database Tuning Tool that" Reads the
Manual". In Proceedings of the 2022 international conference on management of
data. 190–203.

[48] Matthias Urban and Carsten Binnig. 2024. CAESURA: Language Models as
Multi-Modal Query Planners. In Proceedings of the Conference on Innovative
Data Systems Research (CIDR). https://www.cidrdb.org/cidr2024/papers/p14-
urban.pdf

[49] Usage of GPT-3.5-Turbo and GPT-4 Models 2023. Usage of GPT-3.5-Turbo and
GPT-4 Models. Retrieved Sep 17, 2023 from https://learn.microsoft.com/en-
us/azure/ai-services/openai/how-to/chatgpt?pivots=programming-language-
chat-completions

[50] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2023. Attention Is All
You Need. arXiv:1706.03762 [cs.CL]

[51] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei
Xia, Ed Chi, Quoc Le, and Denny Zhou. 2023. Chain-of-Thought Prompting
Elicits Reasoning in Large Language Models. arXiv:2201.11903 [cs.CL]

[52] WikiTableQuestions data set 2023. WikiTableQuestions data set. Retrieved Sep
28, 2023 from https://github.com/ppasupat/WikiTableQuestions

[53] Jingfeng Yang, Aditya Gupta, Shyam Upadhyay, Luheng He, Rahul Goel, and
Shachi Paul. 2022. TableFormer: Robust Transformer Modeling for Table-Text
Encoding. In Proceedings of the 60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), Smaranda Muresan, Preslav Nakov,
and Aline Villavicencio (Eds.). Association for Computational Linguistics, Dublin,
Ireland, 528–537. https://doi.org/10.18653/v1/2022.acl-long.40

[54] Xiaoyu Yang, Feng Nie, Yufei Feng, Quan Liu, Zhigang Chen, and Xiaodan
Zhu. 2020. Program Enhanced Fact Verification with Verbalization and Graph
Attention Network. In Proceedings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), Bonnie Webber, Trevor Cohn, Yulan

He, and Yang Liu (Eds.). Association for Computational Linguistics, Online,
7810–7825. https://doi.org/10.18653/v1/2020.emnlp-main.628

[55] Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan,
and Yuan Cao. 2023. ReAct: Synergizing Reasoning and Acting in Language
Models. arXiv:2210.03629 [cs.CL]

[56] Yunhu Ye, Binyuan Hui, Min Yang, Binhua Li, Fei Huang, and Yongbin Li. 2023.
Large Language Models are Versatile Decomposers: Decompose Evidence and
Questions for Table-based Reasoning. arXiv:2301.13808 [cs.CL]

[57] Tao Yu, Rui Zhang, He Yang Er, Suyi Li, Eric Xue, Bo Pang, Xi Victoria Lin,
Yi Chern Tan, Tianze Shi, Zihan Li, et al. 2019. Cosql: A conversational text-to-
sql challenge towards cross-domain natural language interfaces to databases.
arXiv preprint arXiv:1909.05378 (2019).

[58] Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, DongxuWang, Zifan Li, James
Ma, Irene Li, Qingning Yao, Shanelle Roman, et al. 2018. Spider: A large-scale
human-labeled dataset for complex and cross-domain semantic parsing and
text-to-sql task. arXiv preprint arXiv:1809.08887 (2018).

[59] Tao Yu, Rui Zhang, Michihiro Yasunaga, Yi Chern Tan, Xi Victoria Lin, Suyi
Li, Heyang Er, Irene Li, Bo Pang, Tao Chen, et al. 2019. Sparc: Cross-domain
semantic parsing in context. arXiv preprint arXiv:1906.02285 (2019).

[60] Hongzhi Zhang, Yingyao Wang, Sirui Wang, Xuezhi Cao, Fuzheng Zhang, and
Zhongyuan Wang. 2020. Table Fact Verification with Structure-Aware Trans-
former. In Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), Bonnie Webber, Trevor Cohn, Yulan He, and
Yang Liu (Eds.). Association for Computational Linguistics, Online, 1624–1629.
https://doi.org/10.18653/v1/2020.emnlp-main.126

[61] Minjia Zhang, Conglong Li, Xiaoxia Wu, Zhewei Yao, and Yuxiong He. 2022.
SaMoE: Parameter Efficient MoE Language Models via Self-Adaptive Expert
Combination. (2022).

[62] Ningyu Zhang, Luoqiu Li, Xiang Chen, Shumin Deng, Zhen Bi, Chuanqi Tan,
Fei Huang, and Huajun Chen. 2021. Differentiable prompt makes pre-trained
language models better few-shot learners. arXiv preprint arXiv:2108.13161 (2021).

[63] Yunjia Zhang, Avrilia Floratou, Joyce Cahoon, Subru Krishnan, Andreas C.Müller,
Dalitso Banda, Fotis Psallidas, and JigneshM. Patel. 2023. SchemaMatching using
Pre-Trained LanguageModels. In ICDE. IEEE. https://www.microsoft.com/en-us/
research/publication/schema-matching-using-pre-trained-language-models/

[64] Victor Zhong, Caiming Xiong, and Richard Socher. 2017. Seq2sql: Generating
structured queries from natural language using reinforcement learning. arXiv
preprint arXiv:1709.00103 (2017).

[65] Wanjun Zhong, Duyu Tang, Zhangyin Feng, Nan Duan, Ming Zhou, Ming Gong,
Linjun Shou, Daxin Jiang, Jiahai Wang, and Jian Yin. 2020. LogicalFactChecker:
Leveraging Logical Operations for Fact Checking with Graph Module Network.
In Proceedings of the 58th Annual Meeting of the Association for Computational
Linguistics, Dan Jurafsky, Joyce Chai, Natalie Schluter, and Joel Tetreault (Eds.).
Association for Computational Linguistics, Online, 6053–6065. https://doi.org/
10.18653/v1/2020.acl-main.539

[66] Fan Zhou, Mengkang Hu, Haoyu Dong, Zhoujun Cheng, Shi Han, and Dongmei
Zhang. 2022. TaCube: Pre-computing Data Cubes for Answering Numerical-
Reasoning Questions over Tabular Data. arXiv:2205.12682 [cs.IR]

[67] Wenhao Zhu, Hongyi Liu, Qingxiu Dong, Jingjing Xu, Shujian Huang, Lingpeng
Kong, Jiajun Chen, and Lei Li. 2023. Multilingual Machine Translation with Large
Language Models: Empirical Results and Analysis. arXiv:2304.04675 [cs.CL]

1994

https://aclanthology.org/2021.emnlp-main.779
https://platform.openai.com/docs/api-reference/completions
https://platform.openai.com/docs/api-reference/completions
https://openai.com/blog/openai-codex
https://openai.com/pricing
https://www.cidrdb.org/cidr2024/papers/p14-urban.pdf
https://www.cidrdb.org/cidr2024/papers/p14-urban.pdf
https://learn.microsoft.com/en-us/azure/ai-services/openai/how-to/chatgpt?pivots=programming-language-chat-completions
https://learn.microsoft.com/en-us/azure/ai-services/openai/how-to/chatgpt?pivots=programming-language-chat-completions
https://learn.microsoft.com/en-us/azure/ai-services/openai/how-to/chatgpt?pivots=programming-language-chat-completions
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/2201.11903
https://github.com/ppasupat/WikiTableQuestions
https://doi.org/10.18653/v1/2022.acl-long.40
https://doi.org/10.18653/v1/2020.emnlp-main.628
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2301.13808
https://doi.org/10.18653/v1/2020.emnlp-main.126
https://www.microsoft.com/en-us/research/publication/schema-matching-using-pre-trained-language-models/
https://www.microsoft.com/en-us/research/publication/schema-matching-using-pre-trained-language-models/
https://doi.org/10.18653/v1/2020.acl-main.539
https://doi.org/10.18653/v1/2020.acl-main.539
https://arxiv.org/abs/2205.12682
https://arxiv.org/abs/2304.04675

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Large Language Models
	2.2 Majority Voting Mechanisms
	2.3 Chain-of-Thought and ReAct Framework
	2.4 Natural Language to Code
	2.5 Table Question Answering

	3 ReAcTable: ReAct for TQA Tasks
	3.1 Overview
	3.2 Prompting Large Language Models
	3.3 Interacting with External Code Executors
	3.4 Voting Mechanisms
	3.5 Discussion

	4 Experimental Evaluation
	4.1 Experimental Setup
	4.2 Performance of ReAcTable
	4.3 Analyzing ReAcTable
	4.4 ReAcTable with Various Language Models

	5 Lessons Learned
	5.1 Design Spaces of LLM for TQA tasks
	5.2 Choosing External Code Executors
	5.3 Majority Voting Mechanisms
	5.4 Limitations and Future Works

	6 Conclusion
	References

