
Fight Fire with Fire: Towards Robust Graph Neural Networks on
Dynamic Graphs via Actively Defense

Haoyang LI

HKUST

hlicg@connect.ust.hk

Shimin DI
∗

HKUST

sdiaa@connect.ust.hk

Calvin Hong Yi LI

The Cigna Group

calvin.li@evernorth.com

Lei CHEN

HKUST(GZ)&HKUST

leichen@cse.ust.hk

Xiaofang ZHOU

HKUST

zxf@cse.ust.hk

ABSTRACT
Graph neural networks (GNNs) have achieved great success on var-

ious graph tasks. However, recent studies have revealed that GNNs

are vulnerable to injective attacks. Due to the openness of platforms,

attackers can inject malicious nodes with carefully designed edges

and node features, making GNNs misclassify the labels of target

nodes. To resist such adversarial attacks, recent researchers propose

GNN defenders. They assume that the attack patterns have been

known, e.g., attackers tend to add edges between dissimilar nodes.

Then, they remove edges between dissimilar nodes from attacked

graphs, aiming to alleviate the negative impact of adversarial at-

tacks. Nevertheless, on dynamic graphs, attackers can change their

attack strategies at different times, making existing passive GNN

defenders that are passively designed for specific attack patterns

fail to resist attacks. In this paper, we propose a novel active GNN

defender for dynamic graphs, namely ADGNN, which actively in-

jects guardian nodes to protect target nodes from effective attacks.

Specifically, we first formulate an active defense objective to de-

sign guardian node behaviors. This objective targets to disrupt the

prediction of attackers and protect easily attacked nodes, thereby

preventing attackers from generating effective attacks. Then, we

propose a gradient-based algorithm with two acceleration tech-

niques to optimize this objective. Extensive experiments on four

real-world graph datasets demonstrate the effectiveness of our pro-

posed defender and its capacity to enhance existing GNN defenders.

PVLDB Reference Format:
Haoyang LI, Shimin DI, Calvin Hong Yi LI, Lei CHEN, and Xiaofang ZHOU.

Fight Fire with Fire: Towards Robust Graph Neural Networks on Dynamic

Graphs via Actively Defense. PVLDB, 17(8): 2050 - 2063, 2024.

doi:10.14778/3659437.3659457

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at

https://github.com/Refrainlhy/ADGNN.

1 INTRODUCTION
With the increasing prevalence of graph-structured data in vari-

ous domains, such as social networks and e-commerce platforms,

ensuring the security and integrity of graph data has become a

∗
Corresponding Author

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 17, No. 8 ISSN 2150-8097.

doi:10.14778/3659437.3659457

𝒗𝟏
𝒗𝒕 𝒗𝟐

Attacked Graph

𝒗𝟐𝒗𝟏
𝒗𝒕

GNN of
Platforms

Surrogate
GNN

𝒄𝟏 𝒄𝟐
𝒗𝒕 0.1 0.9

Predict Wrongly!

𝒗𝒕

Graph 𝑮(𝒕)

𝒗𝒕

Graph 𝑮(𝒕 + 𝟏)

𝒗𝟐

(b) Passive GNN defender

Passive 
GNN 

Defender

𝒗𝒕 𝒗𝟎 𝒗𝒕 𝒗𝟎

𝒗𝟏

Graph
𝑮(𝒕 + 𝟏)

Defense 
Graph 𝑮𝒅(𝒕)

1. Active 
Defense

Clean Graph Attackers

𝒄𝟏 𝒄𝟐
𝒗𝒕 0.7 0.1

Predict Correctly!

𝒗𝒕

Graph 𝑮(𝒕)

Passive 
GNN 

Defender

1. Attack
2. Train

3. Test

2. 
Attack

2. Train

3. Test

(a) Injective attacker example (c) Active GNN defender

1 2

3

4

1

2

Figure 1: (a) Injective attack example. The GNN of platforms
predicts the node 𝑣𝑡 as class 𝑐1 correctly based on the clean
graph. After the attacker injects malicious nodes (𝑣1 and
𝑣2) to affect the target node 𝑣𝑡 , GNN predicts the label of 𝑣𝑡
wrongly. (b) Passive GNN defender. Red nodes 𝑣1 is injected
by attackers. (c) Active GNN defender. Platform injects green
node 𝑣0 as the guardian node before malicious node 𝑣1.

paramount concern for the database community. Adversarial at-

tacks, aimed at compromising the integrity and availability of graph

data, pose significant challenges to the database community. Due

to the openness of current web platforms, attackers can register

multiple users, manipulate node features, and create deceptive con-

nections, thereby undermining the integrity of the graph data. Con-

sequently, traditional defense mechanisms employed in database

systems, such as access control [2, 4], encryption [64, 71], and dif-

ferential privacy [10–12], fall short in protecting graph data within

open-world applications from determined attackers. The challenge

posed by adversarial attacks on graph data is particularly signifi-

cant for graph neural networks (GNNs) [7, 8, 47, 49, 50, 61, 73, 91],

which are specifically designed for graph-structured data and have

achieved great success on various graph tasks (e.g., node classi-

fication [82, 89], recommendation [48, 86], knowledge graph [9],

community search [20, 29], and graph isomorphism [14, 80]). GNNs

propose to use a message-passing manner to learn low-dimensional

representations by aggregating the information from neighbors.

Despite the great success, recent studies have shown that GNNs

are vulnerable to injective attacks [19, 43, 95, 96], i.e., attackers
can inject nodes into the graph to degrade the performance of

GNNs (e.g., decreasing node classification accuracy). For example,

as shown in Figure 1 (a), given a target node 𝑣𝑡 that attackers

are interested in, attackers can affect the GNN at platforms to

misclassify the label of 𝑣𝑡 by injecting nodes. More specifically, due

to the openness of web platforms, attackers can register several

users (red nodes 𝑣1 and 𝑣2) on the platforms, where we call these

users registered by attackers as malicious users. Then, attackers
can crawl users and their edges from open web platforms and

train a surrogate GNN model to mimic the platform GNNs [31, 42,

2050

https://doi.org/10.14778/3659437.3659457
https://github.com/Refrainlhy/ADGNN
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3659437.3659457
https://www.acm.org/publications/policies/artifact-review-and-badging-current


63, 95]. Next, they use the trained surrogate GNN to design the

edges and node features of malicious nodes 𝑣1 and 𝑣2 to affect the

node representations of 𝑣𝑡 . As a result, the platform’s GNNs may

misclassify the labels of target node 𝑣𝑡 . For instance, a spammer

can register a group of accounts with carefully crafted profiles

and interconnected relationships. By utilizing these accounts to

subscribe to its own account, the representation of this account

can be affected by these newly registered accounts. Consequently,

the GNN at platforms can misclassify this spammer account as a

normal account.

To resist adversarial attackers, recent researchers [31, 42, 63, 79]

propose to recover the graph quality by removing the adversarial

edges from the attacked graph. As shown in Figure 1 (b), exist-

ing strategies restore the graph integrity and alleviate the nega-

tive impact of attackers on a graph after this graph has been at-

tacked, i.e., they are passive defense approaches. Specifically, they
assume that they know the attack patterns of existing attackers.

For example, they believe that existing attackers tend to add edges

between dissimilar nodes or increase the rank of the adjacency

matrix [15, 31, 42, 44, 79]. Then, they propose to restore the clean

graph from the attacked graph by removing edges between dissim-

ilar nodes or decreasing the adjacency matrix rank. However, such

passive defense strategies may fail to resist attacks on dynamic

graphs, which is more practical in real-world graph scenarios. On

the dynamic graphs, attackers can use different attack strategies

to design the node behaviors at different times. As a result, the

platform may not be able to identify the exact attack pattern used

by attackers at each timestamp [31, 55, 63], and thus these pas-

sive defense strategies may have the risk of potential failures in

restoring the graph quality. Consequently, GNNs trained on the

processed graph data may still misclassify node labels.

To enhance the capability of GNNs to resist attacks, we propose

a novel active GNN defender to actively defend attackers on dy-

namic graphs, which targets to actively degrade the effectiveness

of GNN attackers. Such a way can help platforms avoid effective

attack behaviors that will affect GNNs to misclassify the node labels

of target nodes. As shown in Figure 1 (c), different from existing

passive GNN defenders, the platform can actively inject nodes (e.g.,

𝑣0) with carefully designed node features and edges into graphs

𝐺 (𝑡) to avoid effective attacks during time 𝑡 and 𝑡 + 1. Here, we call
these nodes injected by platforms actively to avoid effective attacks

as guardian nodes. As mentioned before, attackers commonly train

a surrogate GNN on the graph and use the trained GNN to guide

the design of malicious node behaviors to attack target nodes. Thus,

these guardian nodes injected by platforms can be used to degrade

the accuracy of surrogate GNNs and protect the more vulnerable

target nodes, thereby preventing the malicious nodes from chang-

ing the labels of target nodes. First, these guardian nodes can be

utilized to change the node representations of training nodes. As

a result, the surrogate GNN of attackers trained on the protected

graph may not predict the real label distribution of target nodes.

Without accurate predictions, attackers cannot generate suitable

malicious node behaviors to attack target nodes. Second, the target

nodes have different vulnerabilities to attacks. Thus, we can place

the guardian node around easily attacked target nodes to disrupt the

malicious node information, thereby preventing the attackers from

changing the labels of target nodes. With these two approaches, we

can enable the platform GNNs to classify nodes correctly at time

𝑡 + 1. To achieve this framework, we need to address the following

technique challenges.

• So far, no metrics are to measure the impact of each training

node on the predictions of target nodes, and the vulnerability of

target nodes to attacks.Without these metrics, it is challenging to

design effective behaviors for guardian nodes that can effectively

prevent attackers from generating successful attacks.

• Furthermore, no objective has been proposed to guide the gen-

eration of guardian node behaviors. Since the platform can only

inject guardian nodes with a limited budget (i.e., limited node

number), the objective of active defense is crucial in designing

guardian node behaviors to prevent potential effective attacks.

• Last but not least, the search space for potential behaviors of

guardian nodes is exponentially large, making it infeasible to

find the optimal solution through exhaustive search.

To address the above technique challenges, we propose an active

GNN defender to actively resist the attacks on dynamic graphs,

namely ADGNN. First, we theoretically analyze the importance of

each training node on the label predictions of target nodes, as well

as the vulnerability of target nodes. Secondly, based on the analysis,

we propose an active defense objective that targets to change the la-

bel distribution of important training nodes and to protect the easily

attacked target nodes. By optimizing this objective, the generated

guardian node behaviors are capable of impeding attackers from

generating effective attacks, thus enabling the platform GNN to

classify nodes correctly. Thirdly, we observe that the search spaces

of potential edges between guardian nodes and all other nodes, as

well as candidate features for guardian nodes, are exponential. This

indicates that identifying optimal protective behaviors through

exhaustive search is impractical due to exponential combinations.

Therefore, we propose a scalable gradient-based algorithm with

two acceleration techniques to optimize the active defense objective

efficiently. Specifically, we first identify the top-𝑘 influential and

diverse training nodes to replace all training nodes. Then, we only

design the guardian node behaviors by disrupting the labels of these

top-𝑘 training nodes instead of all training nodes. By focusing our

efforts on modifying the labels of just these top-𝑘 nodes, we dimin-

ish the computational burden on the defense objective. Secondly,

rather than calculating the gradient across all possible candidate

edges, we propose to sample the most significant edge candidates

between the guardian nodes and all nodes. This sampling approach

decreases the gradient computation time on the candidate edges.

Based on the top-𝑘 training nodes and candidate edge sampling, we

can efficiently design the node behaviors for dynamic graphs with-

out overwhelming the computational resources (i.e., GPU memory).

Our contributions are summarized as follows:

• We propose an effective and efficient active GNN defender for

dynamic graphs, namely ADGNN. We inject guardian nodes in

advance to degrade attackers and protect easily attacked nodes.

To the best of our knowledge, this is the first work to propose

active defense against GNN attackers.

• We theoretically analyze the impact of each training node on the

prediction of target nodes, as well as the vulnerability of target

nodes. Based on the analysis, we formulate an active defense

2051



objective that can both impede the training process of attackers

and protect the easily attacked target nodes.

• We propose an effective and efficient gradient-based greedy al-

gorithm to optimize the active defense objective. Additionally,

we introduce two techniques, i.e., top-𝑘 influential training node

selection and crucial edge sampling, to accelerate it.

• Experiments on four real-world graph datasets demonstrate the

superior performance and high scalability of our active GNN de-

fender ADGNN. Besides, ADGNN can help existing passive GNN

defenders to achieve better performance against the attackers.

2 PRELIMINARY AND RELATEDWORK
In various real-world applications, e.g., social networks, the node

feature and graph topology of a dynamic graph usually evolve with

different graph events. Formally, we denote a dynamic graph at time

𝑡 as𝐺 (𝑡) = (𝑉 (𝑡),A(𝑡),X(𝑡)), where𝑉 (𝑡),A(𝑡) ∈ {0, 1} |𝑉 (𝑡 ) |× |𝑉 (𝑡 ) | ,
and X(𝑡) ∈ R |𝑉 (𝑡 ) |×𝑑𝑥 denote nodes, adjacency matrix, and node

features at time 𝑡 , respectively. The training nodes 𝑉 𝑡𝑟 (𝑡) ⊆ 𝑉 (𝑡)
with labels Y(𝑡) ∈ {0, 1} |𝑉 𝑡𝑟 (𝑡 ) |× |Y |

denote the labeled training

nodes at time 𝑡 . Also, 𝑁𝑣 (𝑡) = {𝑢 : A(𝑡) [𝑢] [𝑣] = 1} denotes the
neighbors of 𝑣 at time 𝑡 . In general, GNNs for the node classification

task [70] are to learn a classifier 𝑓 (𝑡) : 𝑉 (𝑡) → Y to map nodes to

label space Y. We summarize the important notations in Table 1.

2.1 Dynamic Graph Neural Networks
2.1.1 Node Representation Learning. In general, DGNNs [21, 36,

38, 45, 46, 57, 67, 72, 84, 92] consist of two steps as follows.

Message-passing Aggregation. Given the dynamic graph 𝐺 (𝑡) =
(𝑉 (𝑡),A(𝑡),X(𝑡)), a DGNNM𝜃 parameterized by 𝜃 ∈ Θ learns the

node representations h𝑣 (𝑡) ∈ R𝑑ℎ for each node 𝑣 by aggregating

the latest state information from their neighbors 𝑁𝑣 (𝑡). The 𝑙-th
hidden representation of each node 𝑣 can be learned by aggregating

the information from their neighbors 𝑁𝑣 (𝑡) as:

h(𝑙 )𝑣 (𝑡) = 𝜎 (
∑︁

𝑢∈𝑁𝑣 (𝑡 )
A𝑛 (𝑡) [𝑣] [𝑢] · h(𝑙−1)𝑢 (𝑡) W(𝑙−1) ), (1)

where A𝑛 (𝑡) is the normalized adjacency matrix, such as A𝑛 (𝑡) =
(D(𝑡))−1A(𝑡) [25, 27], where D(𝑡) is the degree matrix. 𝜎 is a non-

linear function (e.g., Sigmoid or ReLU) andW(𝑙−1) ∈ 𝜃 is the trans-

form parameters of the (l-1)-th layer. In particular, h(0)𝑢 (𝑡) = s𝑢 (𝑡)
is the state vector of each node 𝑢 ∈ 𝑉 (𝑡).
Node State Updating. DGNNs maintain a state vector s𝑣 (𝑡) ∈ R𝑑𝑠
for each node 𝑣 , reflecting the status of 𝑣 at time 𝑡 . Specifically,

several works [37, 56, 59, 84], such as DySAT [59] and RoLAND [84],

directly take the node feature x𝑣 (𝑡) as the state vector s𝑣 (𝑡). On the

other hand, several works [33, 46, 53, 57, 67, 72], such as TGCN [57]

and DyREP [67], maintain state vectors by update functions, such

as MEAN [72], i.e., they update s𝑣 (𝑡) = (s𝑣 (𝑡 − 1) + s𝑢 (𝑡 − 1)) /2
under a new edge 𝑒 (𝑣,𝑢) between node 𝑣 and node 𝑢 at time 𝑡 .

2.1.2 Node Classification Task. In node classification task, each

node 𝑣 can be categorized into a label 𝑦𝑣 ∈ Y. The target of GNN
M𝜃 at each time 𝑡 is to predict the label scoreZ(𝑡) ∈ [0, 1] |𝑉 (𝑡 ) |× |Y |
for nodes. Specifically, given a graph 𝐺 (𝑡), training nodes 𝑉 𝑡𝑟 (𝑡)

Table 1: Important notations.

Notation Description
𝑡, 𝑡−,𝑇 Time index, the latest time before 𝑡 , final time

𝑣,𝑢, 𝑣𝑖 , 𝑣𝑗 The generic node index

𝐺 (𝑡 ) Graph at time 𝑡 ,𝐺 (𝑡 ) = (𝑉 (𝑡 ),A(𝑡 ),X(𝑡 ),Y(𝑡 ) )
𝑁𝑣 (𝑡 ), 𝑁 𝑙

𝑣 (𝑡 ) 𝑣’s 1-hop and 𝑙-hop neighbors

𝐺𝑝 (𝑡 ),𝐺𝑎 (𝑡 ) Protected graph and attacked graph at 𝑡

𝑉 𝑡𝑟 (𝑡 ) The training nodes with labels Y(𝑡 ) at 𝑡
𝑉 𝑡𝑎𝑟 (𝑡 ) The target nodes at time 𝑡

𝑉 𝑝 (𝑡 ) Guardian nodes for protection at 𝑡

𝑉𝑚 (𝑡 ) Malicious nodes controlled by attackers at 𝑡

𝑦𝑣 (𝑡 ) The ground label of training node 𝑣

𝑦∗𝑢 (𝑡 ) The predicted label of unlabeled node 𝑢

𝑀𝜃∗ (𝑡 ) The optimized GNN model at time 𝑡

H(𝑡 ) ∈ R|𝑉 (𝑡 ) |×𝑑𝑧 Node representation matrix of all nodes at time 𝑡

h𝑣 (𝑡 ) ∈ R𝑑𝑧 Node representation vector of node 𝑣 at time 𝑡

s𝑣 (𝑡 ) ∈ R𝑑𝑠 State vector of node 𝑣 at time 𝑡

Z(𝑡 ) ∈ R|𝑉 (𝑡 ) |×|Y| Predicted label score of nodes at time 𝑡

𝑘𝑎, 𝑘𝑝 Budget (i.e., number) of malicious and guardian nodes

𝑘𝑡𝑟 The number of selected training nodes

𝑠 Sampling size for candidate edges

ˆI(𝑢,𝑉 𝑡𝑎𝑟 (𝑡 ) ) The normalized influence score of training node 𝑢

ˆE(𝑣, 𝑡 ) The normalized easy score of target node 𝑣

𝐻𝜃 (𝑡 ) Hessian matrix at time 𝑡

𝐴𝑂 ( ·) Active defense objective

𝑅𝑆 ( ·) Representative score function

with labels Y(𝑡), the optimized GNN parameter 𝜃∗ (𝑡) can be ob-

tained by minimizing the following loss:

min

𝜃 ∈Θ
𝐿𝑔𝑛𝑛 (𝐺 (𝑡),𝑉 𝑡𝑟 (𝑡),M𝜃 ) =

∑
𝑢∈𝑉 𝑡𝑟 (𝑡 ) 𝑙𝑛𝑐 (𝑢,𝐺 (𝑡),M𝜃 )

|𝑉 𝑡𝑟 (𝑡) | (2)

where the loss 𝑙𝑛𝑐 (𝑢,𝐺 (𝑡),M𝜃 ) = − logZ(𝑡) [𝑢] [𝑦𝑢 ] is the cross-
entropy loss and 𝑦𝑢 is the ground label of node 𝑢.

2.2 GNN Attackers on Dynamic Graphs
GNN attackers aim to degrade the performance of the target GNNs,

i.e., decreasing the node classification accuracy. Due to the open-

ness of real-world applications, GNN attackers can inject a set of

malicious nodes into the graph 𝐺 (𝑡), and design their features and

edges. Then, attackers can affect the node representations of target

nodes. Consequently, GNNs may misclassify the labels of target

nodes at the next time 𝑡 + 1. For clarification, we call the nodes in-
jected by attackers as malicious nodes. Here we formally formulate

the GNNs attack problem on dynamic graphs at each time 𝑡 .

Definition 2.1 (Target of GNN attackers.). Given the malicious

nodes budget𝑘𝑎 , a GNNmodelM𝜃 , graph𝐺 (𝑡) = (𝑉 (𝑡),A(𝑡),X(𝑡)),
training nodes 𝑉 𝑡𝑟 (𝑡) with labels Y(𝑡), and target nodes 𝑉 𝑡𝑎𝑟 (𝑡),
GNN attackers can inject malicious nodes 𝑉𝑚 (𝑡) with size con-

straint |𝑉𝑚 (𝑡) | ≤ 𝑘𝑎 into graph 𝐺 (𝑡). The target of GNN attackers

is to design node features and connected edges of 𝑉𝑚 (𝑡) to gener-

ate the attacked graph 𝐺𝑎 (𝑡) = (𝑉𝑎 (𝑡),A𝑎 (𝑡),X𝑎 (𝑡)), which can

2052



minimize the attack loss 𝐿𝑎𝑡𝑘 (·) as follows.

min

𝐺𝑎 (𝑡 )
𝐿𝑎𝑡𝑘 (𝐺𝑎 (𝑡),M𝜃 ∗ (𝑡 ) ), (3)

𝑠 .𝑡 .

{
𝜃∗ (𝑡) = argmin𝜃 ∈Θ 𝐿𝑔𝑛𝑛 (𝐺𝑎 (𝑡),𝑉 𝑡𝑟 (𝑡),M𝜃 )
|𝑉𝑚 (𝑡) | ≤ 𝑘𝑎

,

where 𝐿𝑔𝑛𝑛 (·) is GNN training loss in Equation (2). 𝐿𝑎𝑡𝑘 (·) denotes
the attack loss defined by attackers. One formulation of 𝐿𝑎𝑡𝑘 (·)
is 𝐿𝑎𝑡𝑘 (𝐺𝑎 (𝑡),M𝜃 ∗ (𝑡 ) ) = −𝐿𝑔𝑛𝑛 (𝐺𝑎 (𝑡),𝑉 𝑡𝑟 (𝑡),M𝜃 ∗ (𝑡 ) ) [95, 96],
since GNN𝑀𝜃 with a high training error on attacked graph𝐺𝑎 (𝑡)
is more likely to generalize poorly on target nodes 𝑉 𝑡𝑎𝑟 (𝑡).

In general, existing GNN attackers can be categorized into three

types, i.e., white-box, gray-box, and black-box attackers. Specifi-

cally, white-box attackers [22, 79] assume full access to the graph

(i.e., graph structure, node features), labeled training nodes, and

the target GNN parameters, to design the node features and edges

of injected malicious nodes. Different from white-box attackers,

gray-box attackers [6, 95, 96] do not need the parameters of target

GNNs, while they only require the graph structure, node features,

and labeled training nodes. They train a surrogate GNN which

simulates the target GNNs, and then generate attacks based on the

surrogate model. However, white-box and gray-box attackers are

impractical since it is scarcely realistic to obtain the parameters of

target GNNs or a large number of node labels in most real-world

applications. Recently, black-box attackers [5, 16, 42, 51, 52], are

proposed to only access partial graph structure, node features, and

limited node predictions from the target GNNs, to design malicious

node behaviors. For example, due to the openness of website plat-

forms, attackers can collect the user profiles (i.e., node features)

and their connections through subscriptions or watching history

(i.e., edges) from social media platforms (e.g., IMDB [28], rotten-

tomatoes [58], Goodreads [24], and YouTube [85]) and e-commerce

platforms (e.g., Amazon [1] and Yelp [83]). Also, platforms may

assign tags to users, and attackers can crawl these tags as the user

labels predicted by platform GNNs [39]. Thus, attackers can use

these predictions to infer the behaviors of platform GNNs.

Following [22, 79], we investigate the robustness of GNNs on

dynamic graphs under the white-box attackers. This is because

white-box attackers assume access to all information about GNNs

and graphs from platforms. In other words, white-box attackers are

assumed to know the exact behaviors of platform GNNs, therefore

most effectively compromising the performance of the platform’s

GNN. Therefore, from the defender perspective, it is better to di-

rectly propose GNN defenders that resist white-box attackers. If the

proposed defender can resist white-box attackers effectively, we

can expect that it can resist gray-box and black-box attackers effec-

tively as well. Also, due to information leaks, attackers can obtain

user data from various platforms. For example, even if a Facebook

user sets its profile and subscriptions to private, attackers have the

opportunity to collect its comments or moments from platforms

like Twitter to construct this user’s profile and subscriptions. There-

fore, even though black-box attackers are more realistic, we cannot

propose a GNN defender that only resists black-box attackers.

2.3 GNN Defenders on Dynamic Graphs
As introduced in Section 2.2, GNN attackers inject 𝑘𝑎 malicious

nodes into the graph 𝐺 (𝑡) between the time 𝑡 and 𝑡 + 1. Corre-
spondingly, GNN defenders are proposed, which target to enable

the platform GNN to classify the labels of target nodes correctly

under the attacked graph. In general, the core procedure of existing

GNN defenders is to purify the structure of attacked graphs, which

can alleviate the negative impact of injected nodes on the informa-

tion aggregation process. Thus, GNNs can capture the underlying

patterns of each node on the purified graph and predict node labels

correctly. Without loss of generality, we define GNN defenders on

dynamic graphs at each time 𝑡 + 1 as follows.

Definition 2.2 (Target of GNN defenders). Given a GNN model

M𝜃 , the graph 𝐺 (𝑡 + 1) = (𝑉 (𝑡 + 1),A(𝑡 + 1),X(𝑡 + 1)) attacked
by attackers between time 𝑡 and 𝑡 + 1, and target nodes 𝑉 𝑡𝑎𝑟 (𝑡),
the target of GNN defenders is to find a purified graph �̃�∗ (𝑡 + 1) =
(𝑉 (𝑡 + 1), Ã∗ (𝑡 + 1), X̃∗ (𝑡 + 1)), which minimizes 𝐿𝑔𝑛𝑛 (·):

𝜃∗ (𝑡 + 1) = argmin

𝜃 ∈Θ
L𝑔𝑛𝑛 (�̃�∗ (𝑡 + 1),𝑉 𝑡𝑟 (𝑡 + 1),M𝜃 ) (4)

𝑠.𝑡 . �̃�∗ (𝑡 + 1) = arg min

�̃� (𝑡+1)
L𝑝𝑓 𝑦 (M𝜃∗ (𝑡+1) , �̃� (𝑡 + 1),𝑉 𝑡𝑎𝑟 (𝑡 ) )

where L𝑝𝑓 𝑦 (·) measures the loss of the purification algorithm,

which targets to generate the purified graph structure Ã∗ (𝑡 + 1)
and node features X̃∗ (𝑡 + 1) to make the platform GNN get a lower

loss on training nodes 𝑉 𝑡𝑟 (𝑡 + 1). In such a way, they believe that

the platform GNN can predict the target nodes 𝑉 𝑡𝑎𝑟 (𝑡) correctly.

Generally, existing GNN defenders can be classified into three

categories. First, preprocessing-based defenders [77, 81] eliminate

edges between dissimilar nodes from the attacked graph. Second,

attention-based defenders [70, 90, 93] use the attention mecha-

nism [69] to measure the relative weight of edges, and expect that

they can assign lower weight for the adversarial edges. Third, graph

learning-based defenders [30, 31, 88] reconstruct graph structure

Ã(𝑡 + 1) and node features X̃(𝑡 + 1) by minimizing the GNN train-

ing loss on �̃� (𝑡 + 1) and decreasing the rank of adjacent matrix.

However, these existing GNN defenses are passive, as they are de-

signed for specific attack patterns and cannot adapt to new attack

strategies [55]. On the dynamic graphs, the attackers can employ

various strategies to design the node behaviors at different times.

As a result, the platform may not be able to identify the exact attack

pattern used by attackers at each timestamp, leading to potential

failures in protecting the GNN from misclassifying node labels.

In this paper, we propose an active GNN defender, which injects

guardian nodes at time 𝑡 in advance to prevent effective attacks

during time 𝑡 and 𝑡 + 1. Such a way can ensure GNNs to classify

the target nodes correctly at time 𝑡 + 1.

2.4 Robustness in Machine Learning
Adversarial robustness in machine learning [60, 62] is concerned

with the resilience of models against malicious inputs, known as

adversarial examples, which are subtly modified to induce errors

in the model’s output. Specifically, in the computer vision field,

researchers have observed that even minor perturbations to an

2053



image can drastically affect the performance of machine learn-

ing models [35, 65]. To counteract such vulnerabilities, a vari-

ety of defensive strategies have been proposed, including adver-

sarial training [26, 66, 75], contrastive learning [17, 23, 40], and

attack detection [13]. Inspired by computer vision, researchers

have shown that graph-based models, such as GNNs, can also be

compromised by slight alterations to the graph structure [95, 96].

Due to the intricate and non-uniform nature of graph data, re-

searchers [30, 31, 70, 77, 81, 88, 90, 93] have advocated for the pu-

rification of graph structures before learning node representations.

As we introduced in Section 2.3, such methods are categorized as

passive defenses for GNNs. In this paper, the proposed ADGNN

model addresses the unique challenges posed by dynamic graphs

with an active defense strategy.

3 FRAMEWORK OVERVIEW
We introduce the basic procedure of active GNN defender, which

consists of three stages and is summarized in Algorithm 1.

Stage 1: GNNTraining and Evaluation.As shown in Algorithm 1

lines 2-3, given a graph 𝐺 (𝑡) with training nodes 𝑉 𝑡𝑟 (𝑡) and labels

Y(𝑡), platforms will train a GNN model𝑀𝜃 by minimizing the loss

in Equation (2), where 𝜃 ∈ Θ. Then, the platforms can use the

optimized GNN𝑀𝜃 ∗ (𝑡 ) to predict the labels of the target nodes and
facilitate the downstream tasks. In particular, the GNN of platforms

can be raw GNNs (e.g., GraphSAGE [25] and RoLAND [84]) and

existing passive GNN defenders (e.g., ProGNN [31] and GNAT [42]).

Stage 2: Active Defense Graph Generation. As shown in Algo-

rithm 1 line 4, after the platform optimizes the GNNmodel on graph

𝐺 (𝑡), our active GNN defender (See Section 4) can actively inject 𝑘𝑝

nodes to protect the target nodes 𝑉 𝑡𝑎𝑟 (𝑡) from being successfully

attacked during time 𝑡 and 𝑡 + 1. Specifically, as shown in Figure 2,

in Step 1, we first select top-𝑘 training nodes from all training nodes

(Section 4.3.1). Then, in Step 2, we compute the sampling probability

of candidate edges between all nodes and guardian nodes and then

sample important edges (Section 4.3.2). In Step 3, we compute the

active objective in Equation (8) and optimize sampled edge weights

and features of guardian nodes. We will repeat Step 2 to sample

candidate edges and optimize their weights and node features in

Step 3. Finally, in Step 4, we obtain the active defense graph𝐺𝑑 (𝑡)
by generating edges of guardian nodes and node features based on

edge weights and feature weights, respectively. We introduce the

details of active defense graph generation in Section 4.

Stage 3: Adversarial Attacks and Natural Evolving. As shown
in Algorithm 1 line 5-7, during time 𝑡 and 𝑡 + 1, new graph events

𝛼 (𝑡, 𝑡+1) arrive. Specifically, 𝛼 (𝑡, 𝑡+1) includes various events, such
as edge addition/deletion (e.g., subscription), node addition/deletion

(e.g., user registration), and node feature modifications (e.g., user

profile modifications). Besides, attackers can inject 𝑘𝑎 malicious

nodes into platforms to attack the target nodes 𝑉 𝑡𝑎𝑟 (𝑡), which will

affect the platforms to misclassify the labels of the target nodes

𝑉 𝑡𝑎𝑟 (𝑡) at time 𝑡 + 1. In particular, we assume the attackers are the

most effective white-box attackers to evaluate the active defender,

i.e., the attackers can access all information from platforms, such

as the platform GNN 𝑀𝜃 , graph 𝐺 (𝑡) with training nodes 𝑉 𝑡𝑟 (𝑡)
and labels Y(𝑡), target nodes 𝑉 𝑡𝑎𝑟 (𝑡), and new events 𝛼 (𝑡, 𝑡 + 1).

Algorithm 1: Active GNN defender framework

Input: The initial graph 𝐺 (1) with new graph events

{𝛼 (𝑡, 𝑡 + 1)}𝑇−1
𝑡=1

, the GNN modelM𝜃 , the target

nodes {𝑉 𝑡𝑎𝑟 (𝑡)}, the protection budget 𝑘𝑝
Output: The optimized GNN and active defense graph

{M𝜃 ∗ (𝑡 ) ,𝐺
𝑑 (𝑡)}𝑇

𝑡=1
and 𝐴𝑐𝑐

1 for 𝑡 = 1 to 𝑇 do
2 𝜃∗ (𝑡) = argmin𝜃 ∈Θ 𝐿𝑔𝑛𝑛 (𝐺 (𝑡),𝑉 𝑡𝑟 (𝑡),M𝜃 )
3 𝐴𝑐𝑐 (𝑡) = Evaluate(M𝜃 ∗ (𝑡 ) ,𝑉

𝑡𝑎𝑟 (𝑡))
4 𝐺𝑑 (𝑡) = ActiveDefender(𝐺 (𝑡),M𝜃 ∗ (𝑡),𝑉 𝑡𝑎𝑟 (𝑡), 𝑘𝑝 )
5 𝐺𝑒 (𝑡) = NaturalEvolving(𝐺𝑑 (𝑡), 𝛼 (𝑡, 𝑡 + 1))
6 𝐺𝑎 (𝑡) = Attacker(𝐺𝑒 (𝑡),M𝜃 ∗ (𝑡),𝑉 𝑡𝑎𝑟 (𝑡), 𝑘𝑎)
7 𝐺 (𝑡 + 1) = 𝐺𝑎 (𝑡)
8 𝐴𝑐𝑐 = 1

𝑇−1
∑𝑇
𝑡=2𝐴𝑐𝑐 (𝑡)

9 Return {M𝜃 ∗ (𝑡 ) ,𝐺
𝑑 (𝑡)}𝑇

𝑡=1
and 𝐴𝑐𝑐

4 ACTIVE DEFENSE GRAPH GENERATION
We introduce the details of our proposed active defense graph

generation in Stage 2 of Section 3. Specifically, we first analyze

how to degrade the effectiveness of attackers and the vulnerability

of each target node. Then, we formulate the active defense objective

that can actively degrade attackers and protect target nodes. Due

to the exponential search space for optimizing this objective, we

propose a gradient-based greedy algorithm with the support of two

acceleration algorithms to solve it, i.e., top-𝑘 training node selection

and crucial edge sampling. As illustrated in Figure 2, we provide an

example to demonstrate the generation of an active defense graph

with our proposed techniques.

4.1 Theoretical Analysis
As illustrated in Equation (3) in Section 2.2, existing attackers de-

sign the malicious node behaviors by solving a bi-level optimization

problem. Specifically, attackers first train a GNN on the training

nodes to predict the labels of target nodes at the low-level opti-

mization. Then, attackers use this pretrained GNN to guide the

malicious node behavior generation at the high-level optimization.

This process reveals that attackers’ success relies on two key factors:

the quality of the pretrained GNN at the low-level and the behavior

design of malicious nodes to attack target nodes at the high-level

optimization. Therefore, the actively guardian nodes injected by

platforms can create interference at both levels of the attackers’

strategy, thereby thwarting their ability to generate successful at-

tacks that impact the labels of target nodes. First, these guardian

nodes can be utilized to change the node representations of training

nodes. As a result, the surrogate GNN of attackers trained on the

protected graph may not predict the real label distribution of target

nodes. Without accurate predictions, attackers cannot generate

suitable malicious node behaviors to attack target nodes. Second,

target nodes exhibit varying vulnerabilities to attacks. A target

node whose representation is easily influenced is inherently more

vulnerable and more likely to be incorrectly classified by the plat-

form when under attack. Thus, we can place the guardian node

around easily attacked target nodes to disrupt the malicious node

2054



𝑣!

𝑣"

𝑣#

𝑣$

𝑣%

𝑣&
𝑣'

𝑣( 𝑣)

Step 2: Edge sampling

𝑒 𝑣!, 𝑣" , 𝑒 𝑣#, 𝑣$
𝑒 𝑣#, 𝑣% , 𝑒 𝑣#, 𝑣&

Step 3: Optimization

𝑷 𝑣' 𝑣! … 𝑣( 𝑣)

𝑣( 0.1 0.3 … 0.1 0.2

𝑣) 0.2 0.1 … 0.2 0.1

Step 1: Training node selection

Influence 
Score

Diversity 
Score

𝑣*

𝑾 𝑣' 𝑣! … 𝑣( 𝑣)

𝑣( 0.5 0.7 … 0 0

𝑣) 0 0 … 0.2 0

1
2

3
1

1
0

1
3

3
1

2
0

0
0

0
0

0
2

1
1

1
2

1
0

Sampling

𝑣!

𝑣"

𝑣$

𝑣%

𝑣!

𝑣% 𝑣!

𝑣"

𝑣#

𝑣$

𝑣%

𝑣&
𝑣'

𝑣(
𝑣)

𝑣*

1
0

1
3

3
1

2
0

1
2

3
0

0
2

1
1

1
2

1
0

Step 4: Projection

𝑣( 𝑣)

+

Graph at time 𝒕

Figure 2: A running example of active defense graph generation at each time 𝑡 . Two orange nodes (𝑣0 and 𝑣7) denote target
nodes for protection. Four black nodes (𝑣1, 𝑣3, 𝑣5, and 𝑣6 ) denote training nodes. Two green nodes (𝑣8 and 𝑣9) denote guardian
nodes injected by platforms. Specifically, at each time 𝑡 , we first select top-𝑘 (i.e., 𝑘 = 2) training nodes from all training nodes
(Section 4.3.1). Then, in Step 2, we compute the sampling probability of candidate edges between all nodes and the guardian
nodes and then sample four edges (Section 4.3.2). In Step 3, we compute the active objective in Equation (8) and optimize the
weight of sampled edges and features of guardian nodes. We will repeat Step 2 to sample candidate edges and optimize the
weight of sampled edges and node features in Step 3. Finally, in Step 4, we obtain the active defense graph 𝐺𝑑 (𝑡) by generating
the connected edges of guardian nodes (red edges) and node features based on the edge weights and feature weights, respectively.

information, thereby preventing the attackers from changing the

labels of target nodes.

4.1.1 Attackers Misleading. We first theoretically analyze the im-

pact of each training node on the predicted score of target nodes.

Intuitively, if we can first identify the important training nodes that

can more affect the predicted label score of target nodes, we can

actively inject guardian nodes to perturb these important training

nodes, i.e., changing their node labels. In such a way, the attackers

trained on the protected graph may not predict the score of target

nodes accurately. Consequently, attackers cannot generate effective

malicious node behaviors to attack target nodes.

As introduced in Section 2.1, at each time 𝑡 , the GNN model

M𝜃 obtains the optimized parameters 𝜃∗ (𝑡) by minimizing the loss

function on each training nodes 𝑢 ∈ 𝑉 𝑡𝑟 (𝑡) with weight
1

|𝑉 𝑡𝑟 (𝑡 ) | .
Intuitively, if we change a bit weight of a training node 𝑢 from

1

|𝑉 𝑡𝑟 (𝑡 ) | to
1

|𝑉 𝑡𝑟 (𝑡 ) | + 𝜁 where 𝜁 → 0, we can get the new optimized

GNN parameters 𝜃∗
𝜁 ,𝑢

by minimizing the following loss:

𝜃∗
𝜁 ,𝑢
(𝑡) = argmin

𝜃 ∈Θ
1

|𝑉 𝑡𝑟 (𝑡) |
∑︁

𝑣∈𝑉 𝑡𝑟 (𝑡 )
𝑙𝑛𝑐 (𝑣, 𝜃 ) + 𝜁𝑙𝑛𝑐 (𝑢, 𝜃 ) (5)

We denote the label score of nodes predicted byGNNmodelM𝜃 ∗
𝜁 ,𝑢
(𝑡 )

as Z𝜁 ,𝑢 (𝑡). Then, the predicted score difference between Z𝜁 ,𝑢 (𝑡) and
Z(𝑡) on target nodes𝑉 𝑡𝑎𝑟 (𝑡) is∑𝑣∈𝑉 𝑡𝑎𝑟 (𝑡 ) ∥Z𝜁 ,𝑢 (𝑡) [𝑣] − Z(𝑡) [𝑣] ∥.
Intuitively, if

∑
𝑣∈𝑉 𝑡𝑎𝑟 (𝑡 ) ∥Z𝜁 ,𝑢 (𝑡) [𝑣] − Z(𝑡) [𝑣] ∥ is larger, the train-

ing node 𝑢 is more influential on predicting the label distribu-

tion for target nodes. Therefore, we can measure the influence

of each training node 𝑢 on target nodes 𝑉 𝑡𝑎𝑟 (𝑡) as I(𝑢,𝑉 𝑡𝑎𝑟 (𝑡)) =∑
𝑣∈𝑉 𝑡𝑎𝑟 (𝑡 ) ∥Z𝜁 ,𝑢 (𝑡) [𝑣] − Z(𝑡) [𝑣] ∥. One straightforward way to

compute I(𝑢,𝑉 𝑡𝑎𝑟 (𝑡)) for each 𝑢 ∈ 𝑉 𝑡𝑟 (𝑡) is to retrain the GNN

model on training nodes 𝑉 𝑡𝑟 (𝑡) by slightly changing the weight of

node 𝑢. However, it is too time-consuming. Therefore, inspired by

the influence function [34], we measure the importance score of

each training node 𝑢 ∈ 𝑉 𝑡𝑟 (𝑡) without retraining as Theorem 4.1.

Theorem 4.1. Given graph 𝐺 (𝑡), GNN model𝑀𝜃 parameterized
by 𝜃 ∈ Θ, the GNN training loss function 𝑙𝑛𝑐 (·) in Equation (2), train-
ing nodes 𝑉 𝑡𝑟 (𝑡) ⊆ 𝑉 (𝑡), and the target nodes 𝑉 𝑡𝑎𝑟 (𝑡) ⊆ 𝑉 (𝑡), the
importance I(𝑢,𝑉 𝑡𝑎𝑟 (𝑡)) of each training node𝑢 ∈ 𝑉 𝑡𝑟 (𝑡) regarding
the target nodes 𝑉 𝑡𝑎𝑟 (𝑡) can be measured as :

I(𝑢,𝑉 𝑡𝑎𝑟 (𝑡)) =
∑︁

𝑣∈𝑉 𝑡𝑎𝑟 (𝑡 )
∥∇𝜃Z(𝑡) [𝑣]⊤𝐻−1𝜃

∇𝜃 𝑙𝑛𝑐 (𝑢,M𝜃 ∗ (𝑡 ) )∥,

(6)

where 𝐻𝜃 = 1

|𝑉 𝑡𝑟 (𝑡 ) |
∑
𝑢1∈𝑉 𝑡𝑟 (𝑡 ) ∇2𝜃 𝑙𝑛𝑐 (𝑢1,M𝜃 ∗ (𝑡)) is the Hessian

matrix. 𝜃∗ (𝑡) is the optimized GNN parameters on training nodes
𝑉 𝑡𝑟 (𝑡) based on Equation (2).

Proof Sketch. We first compute
𝜕Z(𝑡 ) [𝑣 ]

𝜕𝜁

����
𝜁=0

based on influ-

ence function [34] and then compute I(𝑢,𝑉 𝑡𝑎𝑟 (𝑡)). Due to space
limits, we put full proof in technique report [41] Appendix A.1. □

Particularly, we denote the normalized influence score of each

training node 𝑢 as
ˆI(𝑢,𝑉 𝑡𝑎𝑟 (𝑡)) =

I(𝑢,𝑉 𝑡𝑎𝑟 (𝑡 ) )∑
𝑢
1
∈𝑉𝑡𝑟 (𝑡 ) I(𝑢1,𝑉

𝑡𝑎𝑟 (𝑡 ) ) . If a

training node 𝑢 has a larger influence score
ˆI(𝑢,𝑉 𝑡𝑎𝑟 (𝑡)) towards

the prediction of target nodes, we can design guardian node be-

haviors to decrease the score on its ground truth label 𝑦𝑣 , i.e.,

Z(𝑡) [𝑣] [𝑦𝑣]. In such a way, the attackers trained on these perturbed
training nodes cannot accurately predict the label score of target

nodes, thereby preventing them from generating effective attacks.

4.1.2 Target Node Protection. Secondly, we theoretically analyze

the vulnerability of each target node to attacks. Intuitively, if the

predicted label of target nodes is more easily changed after a set of

attacks, this target node is more vulnerable to attacks. Therefore,

if we can identify these easily attacked target nodes, we can place

guardian nodes around them to prevent the information propa-

gation from potential malicious nodes, thereby enabling them to

be invariant to attackers. Specifically, based on Theorem 4.2, we

identify two factors that mainly determine the vulnerability of each

2055



node, i.e., the neighbor number and the predicted score difference

between the correct label and the wrong label.

Theorem 4.2. Given a 𝐿-layer GNN model𝑀𝜃 ∗ (𝑡 ) in Section 2.1.1
optimized on graph 𝐺 (𝑡), the prediction score of a target node 𝑣 is
denoted as Z(𝑡) [𝑣] ∈ [0, 1] |Y | . Let𝑦𝑣 denote the ground truth of node
𝑣 , and let 𝑦′𝑣 denote the wrong label with the largest score in Z(𝑡) [𝑣],
i.e., 𝑦′𝑣 = argmax𝑦∈Y\𝑦𝑣 Z(𝑡) [𝑣] [𝑦]. Considering that attackers in-
ject 𝑘 malicious nodesV𝑚 (𝑡) to generate the attacked graph 𝐺𝑎 (𝑡),
and the predicted score for 𝑣 on 𝐺𝑎 (𝑡) is denoted as Z𝑎 [𝑣]. Then, the
predicted score difference Z𝑎 (𝑡) [𝑣] [𝑦𝑣] and Z𝑎 (𝑡) [𝑣] [𝑦′′𝑣 ] under 𝑘
malicious nodes can be bound as follows:

Z𝑎 (𝑡 ) [𝑣 ] [𝑦𝑣 ] − Z𝑎 (𝑡 ) [𝑣 ] [𝑦′′𝑣 ] ≥
(𝑁𝑣 (𝑡 ) | + 1) (Z(𝑡 ) [𝑣 ] [𝑦𝑣 ] − Z(𝑡 ) [𝑣 ] [𝑦′𝑣 ] )

( |𝑁𝑣 (𝑡 ) | + 1 + 𝑘 ) (𝑘 + 1)𝐿−1
+ 𝑐𝑚𝑖𝑛

𝑣,𝑘

where 𝑦′′𝑣 = argmax𝑦∈Y\𝑦𝑣 Z
𝑎 (𝑡) [𝑣] [𝑦] is the wrong label with the

largest score inZ𝑎 (𝑡) [𝑣]. The constant 𝑐𝑚𝑖𝑛
𝑣,𝑘

= min𝑦∈Y\𝑦𝑣 −|W⊤ [𝑦] |,
where W =

∏
W𝑙 ∈𝜃 ∗ (𝑡 )W

𝑙 .

Proof Sketch. Wefirst computeworse-case value ofZ𝑎 [𝑣] [𝑦𝑣]−
Z𝑎 [𝑣] [𝑦′′𝑣 ] after injecting𝑘 malicious nodes. Then, we relax GNN by

removing non-linear functions and get a lower bound. Due to space

limits, we put full proof in technique report [41] Appendix A.2. □

If the predicted score on ground label 𝑦𝑣 is larger than the pre-

dicted score on any other label 𝑦 ∈ Y \ 𝑦𝑣 after attacks, the node
𝑣 will be classified correctly. Therefore, smaller Z𝑎 (𝑡) [𝑣] [𝑦𝑣] −
Z𝑎 (𝑡) [𝑣] [𝑦′′𝑣 ] indicates that it is more likely to predict the node

label of 𝑣 incorrectly. According to Theorem 4.2, we can observe

that Z𝑎 (𝑡) [𝑣] [𝑦𝑣] −Z𝑎 (𝑡) [𝑣] [𝑦′′𝑣 ] is bounded by two factors (1) the
neighbor number |N𝑣 (𝑡) | of node 𝑣 at time 𝑡 and (2) the original

predicted score difference Z(𝑡) [𝑣] [𝑦𝑣] − Z(𝑡) [𝑣] [𝑦′𝑣] between the

correct label 𝑦𝑣 and the most incorrect label 𝑦′𝑣 before attacks. In
other words, a node 𝑣 with more neighbors 𝑁𝑣 (𝑡) and a larger

difference score Z(𝑡) [𝑣] [𝑦𝑣] − Z(𝑡) [𝑣] [𝑦′𝑣] is more difficult to be

attacked during time 𝑡 and 𝑡 + 1. Based on this analysis, we formally

define the easy score of each target node 𝑣 ∈ 𝑉 𝑡𝑎𝑟 (𝑡) as follows:

E(𝑣, 𝑡) = − log(𝑐 (Z(𝑡) [𝑣] [𝑦
∗
𝑣] − Z(𝑡) [𝑣] [𝑦′𝑣]) + 𝑏)

log( |𝑁𝑣 (𝑡) | + 1)
(7)

where 𝑦∗𝑣 = argmax𝑦∈Y Z(𝑡) [𝑣] [𝑦] is the predicted label for node

𝑣 and 𝑦′𝑣 = argmax𝑦∈Y\𝑦∗𝑣 Z(𝑡) [𝑣] [𝑦] the label with largest pre-

dicted score except label 𝑦∗𝑣 . Also, 𝑐 is a hyperparameter to scale

the score difference between 𝑦𝑣 and 𝑦
′
𝑣 and 𝑏 is a constant. A larger

E(𝑣, 𝑡) indicates that the 𝑣 is more easily to be attacked during time

𝑡 and 𝑡 + 1. Particularly, we denote the normalized easy score of

each node 𝑣 as ˆE(𝑣, 𝑡) = E(𝑣,𝑡 )∑
𝑢∈𝑉𝑡𝑎𝑟 (𝑡 ) E(𝑢,𝑡 )

. If a target node 𝑣 has a

high easy score E(𝑣, 𝑡), we can design guardian node behaviors to

increase the score on its predicted label and its neighbor’s number.

Such a way increases the difficulty of attacking it.

4.2 Active Defense Objective
We first propose the active defense objective and propose a gradient-

based greedy algorithm.

Definition 4.3 (Active Defense Objective). Given a graph𝐺 (𝑡) =
(𝑉 (𝑡),A(𝑡),X(𝑡)) at time 𝑡 , the GNNmodelM𝜃 , the training nodes

𝑉 𝑡𝑟 (𝑡) with labels Y(𝑡), the platform actively inject 𝑘𝑝 guardian

nodes 𝑉 𝑝 (𝑡) into graph 𝐺 (𝑡) to generate active defense graph

𝐺𝑑 (𝑡) = (𝑉𝑑 (𝑡),A𝑑 (𝑡),X𝑑 (𝑡)). Considering that each guardian

node can connect at most 𝜏 edges with other nodes, the connected

edges and node features of the guardian nodes are designed by

maximizing the following active defense objective:

max

𝐺𝑑 (𝑡 )
(1 − 𝜆)

∑︁
𝑢∈𝑉 𝑡𝑟 (𝑡 )

ˆI(𝑢,𝑉 𝑡𝑎𝑟 (𝑡)) · 𝜎 (−△z′𝑢 (𝑡) [𝑦𝑢 ])

+𝜆
∑︁

𝑣∈𝑉 𝑡𝑎𝑟 (𝑡 )

ˆE(𝑣, 𝑡) · (𝜎 (△z′𝑣 (𝑡) [𝑦∗𝑣]) + log(△|𝑁 ′𝑣 (𝑡) | + 1)) (8)

𝑠 .𝑡 .|𝑉 𝑝 | ≤ 𝑘𝑝 ; ∥A𝑑 [𝑢] ∥0 ≤ 𝜏,∀𝑢 ∈ 𝑉 𝑝 (𝑡)

where
ˆI(𝑢,𝑉 𝑡𝑎𝑟 (𝑡)) and ˆE(𝑣, 𝑡) is the normalized influence of each

training node 𝑢 in Section 4.1.1 and the easy score of each target

node 𝑣 in Section 4.1.2, respectively. 𝑦𝑢 is the ground label of each

training node 𝑢 ∈ 𝑉 𝑡𝑟 (𝑡) and 𝑦∗𝑣 is the predicted label of each

unlabeled target node 𝑣 ∈ 𝑉 𝑡𝑎𝑟 (𝑡) by GNNM𝜃 ∗ (𝑡 ) . 𝜆 is a trade-off

hyperparameter betweenmisleading attackers and protecting target

nodes. Also, △z′𝑣 (𝑡) [𝑦𝑣] = z𝑑𝑣 (𝑡) [𝑦𝑣] − z𝑣 (𝑡) [𝑦𝑣] is the difference
between scores predicted on graph𝐺 (𝑡) and protected graph𝐺𝑑 (𝑡).
△|𝑁 ′𝑣 (𝑡) | = |𝑁𝑑

𝑣 (𝑡) | − |𝑁𝑣 (𝑡) | is 𝑣 ’s neighbor number difference.

𝜎 (𝑥) = 1

1+exp(−𝑥 ) is the Sigmoid function.

The first part of Equation (8) targets to reduce the score of the

ground truth of more influential training nodes, thereby degrading

the accuracy of attackers’ predictions. The second part of Equa-

tion (8) targets to increase the predicted score and neighbor number

of easier target nodes. Such two ways actively protect the target

node against successful attacks by potential attackers. However, it

is non-trivial to optimize the active defense objective due to the

exponential search space for guardian node behaviors. Specifically,

given the graph 𝐺 (𝑡) and the guardian node number 𝑘𝑝 , the num-

ber of guardian node behavior combinations is 𝑂 (2𝑘𝑝 |𝑉 (𝑡 ) |+𝑘𝑝𝑑𝑥 ).
Thus, it is infeasible to obtain the best behaviors by an exhaus-

tive search. Then, we propose a greedy-based greedy algorithm in

Algorithm 2 to solve the problem in Definition 4.3.

4.2.1 Gradient-based Greedy Algorithm. We illustrate the proce-

dure of our gradient-based algorithm in Algorithm 2. Particularly,

we propose two acceleration techniques, i.e., top-𝑘 training node se-

lection (line 4) and candidate edge sampling (line 6), to improve the

efficiency of Algorithm 2. These two acceleration techniques will be

introduced in detail in Section 4.3. As shown in Algorithm 2, we first

inject 𝑘𝑝 guardian nodes 𝑉 𝑝 (𝑡) into the graph 𝐺 (𝑡) (line 1). Then,
we initialize the adjacency matrix A𝑑 (𝑡) and node features X𝑑 (𝑡)
of the active defense graph based on zero padding (line 2-3). Specifi-

cally, given the adjacency matrix A(𝑡) ∈ {0, 1} |𝑉 (𝑡 ) |× |𝑉 (𝑡 ) | , the A𝑑

can be generated as Ã𝑑 (𝑡) =
[

A(𝑡) Ã𝑝

2
(𝑡)

Ã𝑝

1
(𝑡) Ã𝑝

3
(𝑡)

]
, where Ã𝑝

1
(𝑡) ∈

R |𝑉
𝑝 (𝑡 ) |× |𝑉 (𝑡 ) |

and Ã𝑝

2
(𝑡) ∈ R |𝑉 (𝑡 ) |× |𝑉 𝑝 (𝑡 ) |

denotes the directed

edges between 𝑉 𝑝 (𝑡) and 𝑉 (𝑡), and Ã𝑝

3
(𝑡) ∈ R |𝑉 𝑝 (𝑡 ) |× |𝑉 𝑝 (𝑡 ) |

de-

notes the edges among nodes in𝑉 𝑝 (𝑡). Ã𝑝

1
(𝑡), Ã𝑝

2
(𝑡), and A𝑝

3
(𝑡) are

initialized as 0, which will be tuned into continuous value based

on gradients. Similarly, given node features X(𝑡) ∈ R |𝑉 (𝑡 ) |×𝑑𝑥 ,

X̃𝑑 (𝑡) =
[

X(𝑡)
X̃𝑝 (𝑡)

]
, where X̃𝑝 (𝑡) ∈ R |𝑉 𝑝 (𝑡 ) |×𝑑𝑥

are initialized as

2056



Algorithm 2: Active Defense Graph Generation

Input: Graph𝐺 (𝑡 ) = (𝑉 (𝑡 ),A(𝑡 ),X(𝑡 ) ) at time 𝑡 , training nodes

𝑉 𝑡𝑟 (𝑡 ) with labels Y(𝑡 ) , GNN modelM𝜃∗ (𝑡 ) , target nodes
𝑉 𝑡𝑎𝑟 (𝑡 ) , and protectecd node budget 𝑘𝑝

Output: The active defende graph under 𝑘𝑝 budget, i.e.,

𝐺𝑑 (𝑡 ) = (𝑉𝑑 (𝑡 ),A𝑑 (𝑡 ),X𝑑 (𝑡 ) )
1 𝑉𝑑 (𝑡 ) = 𝑉 (𝑡 ) ∪𝑉 𝑝 (𝑡 )
2 Ã𝑑 (𝑡 ) = Edge_Zero_Padding(A(𝑡 ),𝑉 𝑝 (𝑡 ) )
3 X̃𝑑 (𝑡 ) = Feature_Zero_Padding(X(𝑡 ),𝑉 𝑝 (𝑡 ) )
4 𝑉 𝑡𝑟

𝑠 (𝑡 ) = NodeSelection(𝑉 𝑡𝑟 (𝑡 ), 𝑘𝑡𝑟 ) // Algorithm 3

5 for 𝑖 = 1 to 𝑛𝑒 do
// 𝑖𝑑𝑥 is the flattened index of Ã𝑝 (𝑡 ) in A𝑑 (𝑡 ).

The details are in Algorithm 4

6 Ã𝑝
𝑠 (𝑡 ), 𝑖𝑑𝑥 = EdgeSample(Ã𝑑 (𝑡 ) \ A(𝑡 ), X̃𝑑 , 𝑠 )

7 Compute 𝐴𝑂 (𝐺𝑑 , 𝑀𝜃∗ (𝑡 ) ,𝑉
𝑡𝑟
𝑠 (𝑡 ),𝑉 𝑡𝑎𝑟 (𝑡 ) ) ← Equation (8)

8 Ã𝑑 (𝑡 ) [𝑖𝑑𝑥 ] = Ã𝑑 (𝑡 ) [𝑖𝑑𝑥 ] + 𝛼 · ∇Ã𝑝
𝑠 (𝑡 )

𝐴𝑂 ( ·)
9 X̃𝑑 (𝑡 ) [𝑉 𝑝 (𝑡 ) ] = X̃𝑑 (𝑡 ) [𝑉 𝑝 (𝑡 ) ] + 𝛼 · ∇X̃𝑑 (𝑡 ) [𝑉 𝑝 (𝑡 ) ]𝐴𝑂 ( ·)

10 A𝑑 (𝑡 ) = Project(Ã𝑑 (𝑡 ) ), X𝑑 (𝑡 ) = Project(X̃𝑑 (𝑡 ) )
11 Return 𝐺𝑑 (𝑡 ) = (𝑉𝑑 (𝑡 ),A𝑑 (𝑡 ),X𝑑 (𝑡 ) )

0 and will be tuned into continuous values based on gradients. In

line 4, we propose to select a set of influential nodes𝑉 𝑡𝑟
𝑠 (𝑡) ⊆ 𝑉 𝑡𝑟 (𝑡)

to replace the whole 𝑉 𝑡𝑟 (𝑡) to further accelerate the gradient com-

putation (See details in Section 4.3.1).

In each epoch 𝑖 , we first sample 𝑠 crucial candidate edges Ã𝑝
𝑠 (𝑡)

from Ã𝑑 (𝑡)\A(𝑡), i.e., {Ã𝑝

1
(𝑡), Ã𝑝

2
(𝑡), Ã𝑝

3
(𝑡)} in line 6 (See Section 9).

Then, we compute the active objective 𝐴𝑂 (·) in Equation (8) based

on the selected training nodes 𝑉 𝑡𝑟
𝑠 (𝑡), active graph 𝐺𝑑 (𝑡), GNN

model𝑀𝜃 ∗ (𝑡 ) , and target nodes 𝑉 𝑡𝑎𝑟 (𝑡) (line 7). Based on this, we

use the stochastic gradient ascent approach [3] to compute the

gradient of Ã𝑝
𝑠 (𝑡) and X̃𝑝 (𝑡) that gives a direction to maximize

the active defense objective. Based on gradients, we update the

edges and features of these guardian nodes with the learning rate

𝛼 (line 8-9). After finishing the optimization of the guardian node

behaviors, we project the designed edges of each guardian node

𝑣 ∈ 𝑉 𝑝 (𝑡) by setting the top-𝜏 entry in Ã𝑑 (𝑡) [𝑣] as 1 and others

as 0. Also, we project the node features X̃𝑑 (𝑡) of nodes into the

normal range of node features X𝑑 (𝑡) ∈ [−𝐵, 𝐵] |𝑉𝑑 (𝑡 ) |×𝑑𝑥
, where 𝐵

is the maximum absolute value of node features (line 10).

We analyze the time complexity of Algorithm 2 without two ac-

celeration algorithms. Specifically, Algorithm 2 will take all training

nodes 𝑉 𝑡𝑟 (𝑡) to compute the active defense objective and optimize

all candidate edges at each epoch. The analysis is as follows:

Time Complexity of Algorithm 2 without Accelerations. The
time is𝑂 (𝑛𝑒𝐷𝐿𝑑2𝑥 ( |𝑉 𝑡𝑟 (𝑡) |+ |𝑉 𝑡𝑎𝑟 (𝑡) |) ( |𝑉 𝑝 (𝑡) | |𝑉 (𝑡) |+ |𝑉 𝑝 (𝑡) |𝑑𝑥 )).
Please refer to Appendix A.5 in our technique report [41].

4.3 Acceleration Techniques
Generally, node feature dimension of real-world graphs is small.

For example, AmazonProducts [87] and Yelp [87] shown in Table 2

only have 100 dimension. Thus, the time complexity of Algorithm 2

mainly depends on the number of training nodes 𝑉 𝑡𝑟 (𝑡) and the

number of candidate edges |𝑉 𝑝 (𝑡) | |𝑉 (𝑡) |. Therefore, we propose
to select the top-𝑘 representative nodes 𝑉 𝑡𝑟

𝑠 (𝑡) ⊆ 𝑉 𝑡𝑟 (𝑡) to replace

all training nodes 𝑉 𝑡𝑟 (𝑡) and sample 𝑠 crucial candidate edges

Algorithm 3: Greedy Node Selection Algorithm

Input: Training nodes𝑉 𝑡𝑟 (𝑡 ) , GNN modelM𝜃∗ (𝑡 ) , target nodes
𝑉 𝑡𝑎𝑟 (𝑡 ) , and the budget 𝑘𝑡𝑟

Output: Selected nodes𝑉 𝑡𝑟
𝑠 (𝑡 )

1 𝑉 𝑡𝑟
𝑠 (𝑡 ) ← ∅

2 while |𝑉 𝑡𝑟
𝑠 (𝑡 ) | < 𝑘 do

3 𝑉 𝑡𝑟
𝑠𝑎𝑚 (𝑡 ) = Random_Sample(𝑉 𝑡𝑟 (𝑡 ) \𝑉 𝑡𝑟

𝑠 (𝑡 ), 𝑛𝑠 )
4 for 𝑣 ∈ 𝑉 𝑡𝑟

𝑠𝑎𝑚 (𝑡 ) do
5 𝑅𝑆 (𝑉 𝑡𝑟

𝑠 (𝑡 ) ∪ {𝑣}) ← Equation (9)

6 △𝑅𝑆 (𝑣 |𝑉 𝑡𝑟
𝑠 (𝑡 ) ) = 𝑅𝑆 (𝑉 𝑡𝑟

𝑠 (𝑡 ) ∪ {𝑣}) − 𝑅𝑆 (𝑉 𝑡𝑟
𝑠 (𝑡 ) )

7 𝑣∗ = argmax𝑣∈𝑉 𝑡𝑟
𝑠𝑎𝑚 (𝑡 ) △𝑅𝑆 (𝑣 |𝑉

𝑡𝑟
𝑠 (𝑡 ) )

8 𝑉 𝑡𝑟
𝑠 (𝑡 ) ← 𝑉 𝑡𝑟

𝑠 (𝑡 ) ∪ {𝑣∗}
9 Return selected training nodes𝑉 𝑡𝑟

𝑠 (𝑡 )

to replace |𝑉 𝑝 (𝑡) | |𝑉 (𝑡) | edges. Such two ways can accelerate the

objective and gradient computation of Algorithm 2.

4.3.1 Top-𝑘 Training Node Selection. Intuitively, one simpler way

is to select 𝑘𝑡𝑟 training nodes with the largest influence score

I(𝑢,𝑉 𝑡𝑎𝑟 (𝑡)). However, such a way may select a set of similar train-

ing nodes, which cannot fully represent the whole training nodes.

This is because the influence score in Equation (6) is computed

independently for each individual training node. As analyzed in the

technical report Appendix A.1, even if we can extend Equation (6)

to measure the importance of multiple nodes, it is impractical due

to heavily time-consuming. Therefore, we propose to select the

top-𝑘 influential and diverse training nodes. In such a way, we can

effectively mislead attackers by perturbing these selected training

nodes, achieving results similar to perturbing all training nodes.

We define the top-𝑘 training node selection problem as follows.

Definition 4.4 (Top-𝑘 Training Node Selection Problem). Given
the training nodes 𝑉 𝑡𝑟 (𝑡), GNN modelM𝜃 ∗ (𝑡 ) , and target nodes

𝑉 𝑡𝑎𝑟 (𝑡), the target is to select the 𝑘𝑡𝑟 nodes𝑉 𝑡𝑟
𝑠 (𝑡) from𝑉 𝑡𝑎𝑟 (𝑡) by

maximizing the following representative score 𝑅𝑆 (𝑉 𝑡𝑟
𝑠 (𝑡)):

max

𝑉 𝑡𝑟
𝑠 (𝑡 )⊆𝑉 𝑡𝑟 (𝑡 )

∑︁
𝑣∈𝑉 𝑡𝑟

𝑠

I(𝑣,𝑉 𝑡𝑎𝑟 (𝑡)) +
∑︁

𝑣∈𝑉 𝑡𝑟
𝑠 (𝑡 )

D(𝑣,𝑉 𝑡𝑟
𝑠 (𝑡)) (9)

whereD(𝑣,𝑉 𝑡𝑟
𝑠 (𝑡)) is the diversity value of node 𝑣 regarding𝑉 𝑡𝑟

𝑠 (𝑡).
Specifically,D(𝑣,𝑉 𝑡𝑟

𝑠 (𝑡)) = 𝑐𝑚𝑎𝑥 −min𝑢∈𝑉 𝑡𝑟
𝑠 (𝑡 )\𝑣 | |h𝑣 (𝑡) − h𝑢 (𝑡) | |

is the maximum distance minus the minimum distance between

the node representation of 𝑣 and nodes in 𝑉 𝑡𝑟
𝑠 (𝑡), where 𝑐𝑚𝑎𝑥 =

max𝑢1,𝑢2∈𝑉 𝑡𝑟 (𝑡 ) | |h𝑢1
(𝑡) − h𝑢2

(𝑡) | | is themaximum distance among

training nodes and h𝑣 (𝑡) is the node representation of node 𝑣 .

Theorem 4.5. The training node selection problem is NP-hard.

Proof Sketch. We prove that our top-𝑘 training node selection

problem is NP-hard based on the𝑘-clique problem [68]. Due to space

limits, we put full proof in technique report [41] Appendix A.3 □

Sampling-based Greedy Algorithm. Theorem 4.5 indicates that

top-𝑘 training node selection problem is NP-hard. Therefore it is

unlikely to obtain the optimal solution of this problem in polyno-

mial time unless P=NP. In this subsection, we propose an efficient

sampling-based greedy algorithm to address this problem. Specifi-

cally, we first define the marginal representative score gain brought

by each node 𝑣 if we select it into 𝑉 𝑡𝑟
𝑠 (𝑡). Formally, given selected

2057



Algorithm 4: Candidate Edge Sampling

Input: All candidate edges Ã𝑑 (𝑡) \ A(𝑡), node features
X̃𝑑 (𝑡) and samling size 𝑠

Output: Sampled Ã𝑝
𝑠 (𝑡) with their flattened index list 𝑖𝑑𝑥

1 Compute𝑤𝑣,𝑢 (𝑡) for each pair of 𝑣 ∈ 𝑉 𝑝 (𝑡) and 𝑢 ∈ 𝑉𝑑 (𝑡)
2 Ã𝑝

𝑠 (𝑡), 𝑖𝑑𝑥 = MultiNomial(Ã𝑑 (𝑡) \ A(𝑡),𝑤, 𝑠)
3 Return Sampled Ã𝑝

𝑠 (𝑡) with their flattened index list 𝑖𝑑𝑥

nodes 𝑉 𝑡𝑟
𝑠 (𝑡), the marginal representative score gain of a node 𝑣

can be defined as △𝑅𝑆 (𝑣 |𝑉 𝑡𝑟
𝑠 (𝑡)) = 𝑅𝑆 (𝑉 𝑡𝑟

𝑠 (𝑡) ∪ {𝑣}) − 𝑅𝑆 (𝑉 𝑡𝑟
𝑠 (𝑡)).

As shown in Algorithm 3, we will first initialize node set 𝑉 𝑡𝑟
𝑠 (𝑡)

as an empty set (line 1). Then, we sample 𝑛𝑠 nodes𝑉
𝑡𝑟
𝑠𝑎𝑚 (𝑡) from the

un-selected training nodes 𝑉 𝑡𝑟 (𝑡) \𝑉 𝑡𝑟
𝑠 (𝑡). Finally, we will select

the representative node with the maximummarginal representative

gain △𝑅𝑆 (𝑣 |𝑉 𝑡𝑟
𝑠 (𝑡)) into 𝑉 𝑡𝑟

𝑠 (𝑡) from the sampled nodes 𝑉 𝑡𝑟
𝑠𝑎𝑚 (𝑡)

(line 2-8). We will repeat the selection process to obtain the selected

training nodes 𝑉 𝑡𝑟
𝑠 (𝑡) until exceeding the node budget 𝑘𝑡𝑟 .

Theorem 4.6. Given 𝑛𝑠 =
|𝑉 𝑡𝑟 (𝑡 ) |

𝑘𝑡𝑟
log

1

𝜖 , Algorithm 3 can achieve
an approximation ratio of 1 − 1/𝑒 − 𝜖 .

Proof Sketch. Let 𝑉 𝑡𝑟
𝑠,𝑖
(𝑡) and 𝑉 𝑡𝑟

𝑠,𝑜𝑝𝑡 (𝑡) denote the solution of

Algorithm 3 at the 𝑖-th iteration and the optimal solution of Equa-

tion (9), respectively. First, expectation satisfiesE(△𝑅𝑆 (𝑣 |𝑉 𝑡𝑟
𝑠,𝑖
(𝑡))) ≥

1−𝜖
𝑘

∑
𝑢∈𝑉 𝑡𝑟

𝑠,𝑜𝑝𝑡 (𝑡 )\𝑉 𝑡𝑟
𝑠,𝑖
(𝑡 ) △𝑅𝑆 (𝑢 |𝑉 𝑡𝑟

𝑠,𝑖
(𝑡)). Then, 𝑅𝑆 (𝑉 𝑡𝑟

𝑠 (𝑡)) ≥ (1 −
1/𝑒 − 𝜖) · 𝑅𝑆 (𝑉 𝑡𝑟

𝑠,𝑜𝑝𝑡 (𝑡)). Due to space limits, we put the full proof

in our technique report [41] Appendix A.4. □

Time Complexity of Algorithm 3. In line 3, it takes O(|𝑉 𝑡𝑟 (𝑡) |)
to sample𝑉 𝑡𝑟

𝑠𝑎𝑚 (𝑡). in line 4-8, at each epoch, it takes𝑂 ( |𝑉 𝑡𝑟
𝑠𝑎𝑚 (𝑡) | +

|𝑉 𝑡𝑟
𝑠𝑎𝑚 (𝑡) | |𝑉 𝑡𝑟

𝑠 (𝑡) |𝑑𝑥 ) to select one representative node. Thus, the

total time complexity is 𝑂 (𝑘𝑡𝑟 |𝑉 𝑡𝑟 (𝑡) | + 𝑘𝑡𝑟𝑛𝑠 + 𝑛𝑠𝑘2𝑡𝑟 /2).

4.3.2 Crucial Candidate Edge Sampling. We propose to sample a

set of crucial candidate edges instead of all edges to compute active

defense objective and gradients, thereby accelerating the guardian

node behaviors optimization. As shown in Algorithm 4 line 1, we

first compute a weight for each edge candidate. Specifically, Inspired

by current researchers [31, 42], the label of a node 𝑣 tends to be

changed if we add more edges between it and dissimilar nodes.

Thereby, we can add edges between training nodes and guardian

nodes that are dissimilar to training nodes, thereby changing the

labels of training nodes and misleading attackers. Similarly, we can

add edges between target nodeswith guardian nodes that are similar

to target nodes, thereby protecting them. Additionally, as shown

in Theorem 4.2, the node with a larger degree is more robust with

attacks. Based on these two observations, we define the weight of

each candidate edge between each pair of 𝑣 ∈ 𝑉 𝑝 (𝑡) and 𝑢 ∈ 𝑉𝑑 (𝑡)
as follows:

𝑤𝑣,𝑢 (𝑡) =



1 − 𝑐𝑜𝑠𝑖𝑛𝑒 (x𝑑𝑣 (𝑡 ), x𝑑𝑢 (𝑡 ) )
2 log( |𝑁𝑢 (𝑡 ) + 1) |

, 𝑢 ∈ 𝑉 𝑡𝑟
𝑠 (𝑡 )

1 + 𝑐𝑜𝑠𝑖𝑛𝑒 (x𝑑𝑣 (𝑡 ), x𝑑𝑢 (𝑡 ) )
2 log( |𝑁𝑢 (𝑡 ) | + 1)

, 𝑢 ∈ 𝑉 𝑡𝑎𝑟 (𝑡 )∑
𝑢1∈𝑉 𝑡𝑟

𝑠 (𝑡 )∪𝑉 𝑡𝑎𝑟 (𝑡 )𝑤𝑣,𝑢
1
(𝑡 )

|𝑉 𝑡𝑟
𝑠 (𝑡 ) | + |𝑉 𝑡𝑎𝑟 (𝑡 ) |

·, 𝑢 ∈ 𝑉 (𝑡 ) \𝑉 𝑡𝑎𝑟 (𝑡 ) \𝑉 𝑡𝑟
𝑠 (𝑡 )

Table 2: Dataset statistics summary, including the node num-
ber (#Node), feature dimension (#Feat), edge number (#Edge),
timestamp number (#TS), and node class number (#Class).

#Node #Feat #Edge #Degree #TS #Class
Cora 2,708 1,433 10,556 3.90 10 7

DBLP 28,085 100 324,902 11.57 10 5

Yelp 716,847 300 13,954,819 19.47 10 100

Products 1,569,960 200 264,339,468 168.37 10 107

Then, based on weights, we sample 𝑠 edges from all candidate

edges based on multinomial sampling (line 2). We analyze the time

complexity of Algorithm 4 as follows.

Time Complexity of Algorithm 4. It takes 𝑂 ( |𝑉 𝑝 (𝑡) | |𝑉 (𝑡) |𝑑𝑥 )
time to compute edge weights. Then, it takes𝑂 ( |𝑉 𝑝 (𝑡) | |𝑉 (𝑡) |) time

to sample 𝑠 edges. Thus, the time is 𝑂 ( |𝑉 𝑝 (𝑡) | |𝑉 (𝑡) |𝑑𝑥 ) in total.

4.3.3 Acceleration Analysis. We analyze the time complexity of

Algorithm 2 with two acceleration techniques in Section 4.3.1 and

Section 9. Specifically, Algorithm 3 will select top 𝑘𝑡𝑟 training

nodes to compute the active defense objective and gradients for

node behaviors. At each epoch 𝑖 of Algorithm 2 (line 5-9), Algo-

rithm 2 will optimize 𝑠 crucial edges sampled by Algorithm 4 in-

stead of optimizing |𝑉 𝑝 (𝑡) | |𝑉 (𝑡) | candidate edges. Thus, by con-

sidering the training node selection time and crucial edge sam-

pling time, the time complexity of Algorithm 2 will be decreased

from 𝑂 (𝑛𝑒𝐷𝐿𝑑2𝑥 ( |𝑉 𝑡𝑟 (𝑡) | + |𝑉 𝑡𝑎𝑟 (𝑡) |) ( |𝑉 𝑝 (𝑡) | |𝑉 (𝑡) | + |𝑉 𝑝 (𝑡) |𝑑𝑥 ))
to 𝑂 (𝑡𝑠𝑒𝑙 + 𝑛𝑒𝐷𝐿𝑑2𝑥 (𝑘𝑡𝑟 + |𝑉 𝑡𝑎𝑟 (𝑡) |) (𝑠 + |𝑉 𝑝 (𝑡) |𝑑𝑥 ) + 𝑡𝑠𝑎𝑚), where
training selection time 𝑡𝑠𝑒𝑙 = 𝑘𝑡𝑟 |𝑉 𝑡𝑟 (𝑡) | +𝑘𝑡𝑟𝑛𝑠 +𝑛𝑠𝑘2𝑡𝑟 /2 and edge
sample time 𝑡𝑠𝑎𝑚 = |𝑉 𝑝 (𝑡) | |𝑉 (𝑡) |𝑑𝑥 .

5 EXPERIMENTS
In this section, we compare our active GNN defender with state-of-

the-art baselines on four real-world graph datasets.

5.1 Experiment Setting
Codes are implemented by PyTorch and are run on a CentOS 7 ma-

chine with a 20-core Intel(R) Xeon(R) Silver 4210 CPU @ 2.20GHz,

8 NVIDIA GeForce RTX 2080 Ti GPUs (11G), and 256G of RAM.

5.1.1 Datasets. We introduce four widely-used graph datasets

and the data statistics are summarized on Table 2. Cora [32] and

DBLP [18, 78] are citation graphs. Yelp [87] are user social networks

from a business review website. AmazonProducts (Products) [87]

are item purchasing graph. For each dataset, we randomly choose

50% of nodes as training nodes, choose 10% of nodes as validation

nodes. There exist 40% of remaining nodes. Then, at each time 𝑡 , we

randomly select 10% of nodes from the remaining 40% of nodes as

the target nodes to evaluate our proposed active GNN defender. The

details of datasets are in our technical report [41] Appendix B.1.

5.1.2 GNN Attackers. To evaluate our active defender, we utilize

state-of-the-art attackers to attack the dynamic graphs, including

Metattack [96], PRBCD [22], and TDGIA [94]. We employ sampling

technique in PRBCD for Metattack and TDGIA for scalability. The

details are in technical report [41] Appendix B.2.

5.1.3 GNN Defender Baselines. We choose six GNNs as baselines.

Specifically, GCN [32] and RoLAND [84] are two representative

2058



Table 3: Node classification performance (Accuracy±Std). GNN-J. denotes GNN-Jaccard. OOM indicates out of GPU memory.

Cora DBLP Yelp Products
Mettack TDGIA RBGCD Mettack TDGIA RBGCD Mettack TDGIA RBGCD Mettack TDGIA RBGCD

GCN 76.21±1.27 75.81±0.98 76.26±1.72 52.72±1.82 51.59±2.01 50.29±1.67 51.24±1.36 52.16±1.28 50.43±1.62 23.12±0.28 23.36±0.33 23.02±0.39
RoLAND 76.76±1.34 76.12±1.18 77.24±0.83 52.53±1.92 51.27±1.65 51.14±1.73 51.28±1.92 51.82±1.71 51.78±1.83 23.16±0.51 23.23±0.39 23.13±0.58
GNNSVD 78.26±1.79 77.92±1.32 77.10±1.65 OOM OOM OOM OOM OOM OOM OOM OOM OOM

ProGNN 82.37±1.37 82.96±1.87 81.96±1.85 OOM OOM OOM OOM OOM OOM OOM OOM OOM

GNN-J. 79.28±1.49 80.23±1.31 78.98±1.52 56.23±1.76 54.23±2.32 55.43±2.10 52.86±1.72 53.03±1.27 51.24±1.36 23.53±0.66 23.41±0.38 23.39±0.65
GNAT 83.82±1.61 83.21±1.71 82.83±1.53 57.10±2.13 56.03±1.96 56.52±1.87 52.12±1.59 53.29±1.85 52.17±1.62 23.81±0.47 23.73±0.63 23.65±0.51
ADGNN 83.71±1.39 83.92±1.50 83.27±1.64 60.27±1.79 59.28±2.03 58.13±1.91 52.87±1.86 53.41±1.92 53.05±1.75 24.22±0.62 23.92±0.56 23.81±0.76

raw GNNs that do not consider attacks. Also, GNN-Jaccard [79],

GNN-SVD [15], ProGNN [31], and GNAT [42] are passive GNN

defenders and take attacked graphs to generate purified graphs. In

particular, we employ state-of-the-art dynamic RoLAND [84] as

the GNN encoder of these GNN defenders. Also, to compute the

influence score efficiently for large graphs (i.e., DBLP, Yelp, and

Products), we use 2-layer MLP to replace the GNN in Equation (6),

which directly takes node features to predict labels The details of

baselines are in our technique report [41] Appendix B.3.

5.1.4 Evaluation Procedure. For clarification, we elaborately in-

troduce the evaluation procedure for passive GNN defenders and

active GNN defenders on dynamic graphs.

• Passive GNN Defenders and Raw GNNs. Given graph𝐺 (𝑡) at
each time 𝑡 , we first use GNN attackers in Section 5.1.2 to inject

𝑘𝑎 malicious nodes to obtain the attacked graph 𝐺𝑎 (𝑡). Then,
with normal evolving graph events (i.e., edge deletion/addition)

during 𝑡 and 𝑡 + 1, we can get 𝐺 (𝑡 + 1). We will evaluate the

passive GNN defender and raw GNNs on 𝐺 (𝑡 + 1) by predicting

the labels of target nodes 𝑉 𝑡𝑎𝑟 (𝑡).
• Our Active GNN Defender: As shown in Algorithm 1 (lines

2-7), given graph 𝐺 (𝑡) at each time 𝑡 , our active defender first

injects 𝑘𝑝 guardian nodes in 𝐺 (𝑡). Then, we obtain protected

graph𝐺𝑝 (𝑡) to avoid potential effective attacks on target nodes

𝑉 𝑡𝑎𝑟 (𝑡). Then, we use GNN attackers to inject𝑘𝑎 malicious nodes

in graph𝐺𝑝 (𝑡). With normal evolving graph events during 𝑡 and

𝑡 + 1, we can get𝐺 (𝑡 + 1), and train a GNN on𝐺 (𝑡 + 1) to predict
the labels of target nodes 𝑉 𝑡𝑎𝑟 (𝑡). Particularly, when training

the GNN, we remove all injected guardian nodes to avoid the

negative impacts of guardian nodes on training nodes.

In particular, given target nodes 𝑉 𝑡𝑎𝑟 (𝑡) at time 𝑡 , we will evalu-

ate whether 𝑉 𝑡𝑎𝑟 (𝑡) are successfully attacked at time 𝑡 + 1. Thus,
given a graph with 𝑇 time snapshots, we use the mean accuracy

tested on target nodes from the second time to the𝑇 time for evalua-

tion, which can be defined as:𝐴𝑐𝑐 = 1

𝑇−1
∑𝑇
𝑡=2

∑
𝑣∈𝑉𝑡𝑎𝑟 (𝑡−1) I(𝑦∗𝑣==𝑦𝑣 )
|𝑉 𝑡𝑎𝑟 (𝑡−1) | .

Besides, we report the average accuracy of three different runs.

5.1.5 Hyperparameter Setting. For attackers in Section 5.1.2 and

GNN defender baselines in Section 5.1.3, we use their default hy-

perparameter settings. In experiments except for Section B.4, at-

tackers and our GNN active defenders only inject nodes at the first

time once and design the behaviors of these nodes at each time.

We set the malicious node budget of attackers 𝑘𝑎 = 𝑟𝑎 · |𝑉 (𝑇 ) |
where |𝑉 (𝑇 ) | is the node number of the whole platform, and set

𝑟𝑎 = 0.01 as the default. Also, we set the node protection budget as

𝑘𝑝 = 𝑟𝑝 · |𝑉 (𝑇 ) | and set 𝑟𝑝 = 0.01 as the default. In Algorithm 3, we

set the number of selected training nodes as 𝑘𝑡𝑟 = 𝑟𝑡𝑟 · |𝑉 𝑡𝑟 (𝑡) | and
tune 𝑟𝑡𝑟 ∈ {0.1, 0.2, 0.3, · · · , 1} based on validation data. We tune 𝜆

in Equation (8) by 𝜆 ∈ {0.1, 0.2, 0.3, · · · , 1} based on validation data.

For both attackers and our active defender, we set the maximum

edges of each injected node that can connect as the average de-

gree of nodes of each data in Table 2. In such a way, the behaviors

of injected nodes are more likely to normal nodes and can avoid

injected node detection.

5.2 Main Results
5.2.1 Effectiveness Evaluation. We report the performance of GNN

defenders against attackers on four datasets in Table 3. A higher

node classification accuracy indicates a more robust GNN defender.

As shown in Table 3, under the same attacker, the raw GNNs, in-

cluding GCN and RoLAND, achieve unsatisfying performance since

they are directly trained on the attacked graph and cannot predict

the labels of target nodes correctly. Second, the passive GNN de-

fenders do not outperform our active GNN defenders. It is because

they purify the attacked graph for platforms, and such a passive

defense manner cannot prevent attackers from generating effective

attacks. Also, these passive GNN defenders are proposed to resist

specific attack patterns and cannot resist different attackers.

Besides, ProGNN and GNN-SVD cannot scale well on DBLP,

Yelp, and Products datasets, i.e., they meet the out of GPU mem-

ory (OOM) issue. This is because ProGNN and GNN-SVD directly

optimize the whole adjacent matrix by decreasing the rank of the

adjacent matrix on GPU, significantly exceeding the GPU mem-

ory. Our proposed active GNN defender ADGNN achieves the best

and most comparable performance under different attackers and

graph datasets, which demonstrates the effectiveness of ADGNN.

It is mainly because before each time attackers inject malicious

nodes, ADGNN actively injects nodes to protect the graph from

two aspects. First, these injected guardian nodes can change the

labels of important training nodes to degrade the effectiveness of

attackers. Second, the injected guardian node can protect nodes of

easily attacked target nodes.

5.2.2 Deployment with Passive Defenders. As introduced in Sec-

tion 1, our active GNN defender and existing passive GNN defender

alleviate the negative impact of attacks on 𝑉 𝑡𝑎𝑟 (𝑡) in different

phases. Here, we more comprehensively explore how our active

GNN defenders help existing passive defenders resist attacks. Specif-

ically, at each time 𝑡 , we first use our ADGNN to inject protected

graphs to avoid effective attacks. Then, after attackers attack the

2059



Table 4: Node classification performance (Accuracy±Std) on
four graph datasets with Attacker RBGCD.

Cora DBLP Yelp Products
GNN-SVD 77.10±1.65 OOM OOM OOM

GNN-SVD++ 83.47±1.89 OOM OOM OOM

ProGNN 81.96±1.85 OOM OOM OOM

ProGNN++ 83.92±1.71 OOM OOM OOM

GNN-Jaccard 78.98±1.52 55.43±2.10 51.24±1.36 23.39±0.65
GNN-Jaccard++ 83.56±2.07 58.87±2.11 53.17±1.52 24.02±0.50
GNAT 82.83±1.53 56.52±1.87 52.17±1.62 23.65±0.51
GNAT++ 84.12±2.13 59.24±1.92 53.31±1.49 23.90±0.62

protected graph during 𝑡 and 𝑡 + 1, we use the passive GNN defend-

ers to purify the attacked graphs for platform GNNs. In particular,

we use [model++] to denote that this [model] is deployed with

ADGNN. Since the trend of GNN defenders under different attack-

ers is similar in Table 3, we use RBGCD attacker for evaluation.

As shown in Table 4, after deploying ADGNN, all passive GNN

defenders improve their performance. It demonstrates that ADGNN

can actively degrade the effectiveness of attackers. Besides, the per-

formance of ADGNN with one passive GNN defender, such as

ADGNN+GNAT (i.e., GNAT++), is better than the performance of a

single ADGNN in Table 3. It demonstrates that after degrading the

effectiveness of attackers by ADGNN, existing passive defenders

can further help purify the graph to improve the performance on

target nodes together. These observations demonstrate the high

practicability of ADGNN: (1) It provides a new active manner to

resist attackers on real-world dynamic graphs. (2) It can seamlessly

integrate with existing passive GNN defenders to boost their per-

formance in defending against attackers.

5.2.3 Scalability Evaluation. To comprehensively explore the scala-

bility of ADGNNand baselines, we use 𝛽 ∈ {20%, 40%, 60%, 80%, 100%}
nodes of Products dataset to construct subgraphs for evaluation.

Specifically, given all nodes 𝑉 of Products, we use the first 𝛽 |𝑉 |
nodes and only keep temporal events that happen in these 𝛽 |𝑉 |
nodes. Since the trend of GNN defenders under different attackers

is similar in Table 3, we use RBGCD attacker for evaluation. We

compare ADGNN with existing passive GNN defenders. ProGNN

and GNNSVD are not scalable, i.e., they meet the out of GPU mem-

ory problem. As shown in Figure 3 (a), the time of GNN-Jaccard

and GNAT increases as the node number increases. It is because

the time complexity of their purifying the attacked graph step is

𝑂 ( |𝑉 (𝑡) |2𝑑𝑥 ), i.e., they need to compute the similarity between

each pair of nodes. Instead, as analyzed in Section 4.3.3, the time

complexity of ADGNN is dominated by𝑂 ( |𝑉 𝑡𝑎𝑟 (𝑡) | |𝑉 𝑝 (𝑡) |), which
is significantly less than GNAT and GNN-Jaccard. Consequently,

ADGNN requires less computational time than both GNAT and

GNN-Jaccard. Also, the node prediction accuracy of ADGNN out-

performs GNAT and GNN-Jaccard at different node ratios, indicat-

ing that ADGNN degrades attackers to generate effective attacks.

5.3 Ablation Study
5.3.1 Effect of Previously Guardian Nodes. We evaluate the effect of

previously injected guardian nodes before time 𝑡 on the protection

of target nodes at each time 𝑡 . Specifically, we set that the attacker

0.2 0.4 0.6 0.8 1.0
Node Ratio

20

22

24

26

28

Ac
cu

ra
cy

 (%
)

GNNJ._acc
GNAT_acc
ADGNN_acc

0.0
2.5
5.0
7.5
10.0
12.5
15.0
17.5
20.0

Ti
m

e 
(H

ou
rs

)

GNNJ._time
GNAT_time
ADGNN_time

(a) Scalability evaluation.

Cora DBLP Yelp Products
20
30
40
50
60
70
80

Ac
cu

ra
cy

 (%
) ADGNN-With

ADGNN-Without

(b) Effect of previous guardian nodes.

Figure 3: Evaluation on scalability and guardian nodes.
Table 5: Node classification performance (Accuracy±Std) on
two graphs under the attacker RBGCD. A. is the abbreviation
of ADGNN. Time(s) is the mean time of injecting guardian
nodes on all snapshots.

Variants DBLP Yelp
Accuracy Time (s) Accuracy Time (s)

A.\S OOM - OOM -

A.\TopK 57.61±2.36 2082 51.29±1.82 26298

A.\S\TopK OOM - OOM -

ADGNN 58.13±1.91 872 53.05±1.75 7629

and our proposed ADGNN inject 0.01· |𝑉 (𝑡) | new nodes at each time

𝑡 . We evaluate two variants, ADGNN-With and ADGNN-Without.

When injecting new guardian nodes at each time 𝑡 , ADGNN-With

keeps the guardian nodes injected before time 𝑡 , and ADGNN-

Without removes all guardian nodes injected before time 𝑡 . As

indicated by the results in Figure 3 (b), ADGNN-With consistently

outperforms ADGNN-Without across all four datasets in terms

of node classification accuracy. This superiority suggests that the

guardian nodes injected before time 𝑡 can help platforms protect

nodes at time 𝑡 . The reason is that the guardian nodes before 𝑡 , even

when the target nodes differ across time steps, can still interfere

with the natural information flow within the graph at time 𝑡 . This

interference hampers an attacker’s ability to learn accurate and

intrinsic representations of the target nodes, thereby reducing the

efficacy of their attacks.

5.3.2 Framework. We investigate the effect of different parts of

ADGNN. Specifically, we propose the gradient-based algorithm

in Algorithm 2 and propose to select top-𝑘 training nodes (Algo-

rithm 3) and sample candidate edges (Algorithm 4) to accelerate

Algorithm 2. We denote Algorithm 2 without the support of Algo-

rithm 3 asADGNN\TopK, without Algorithm 4 asADGNN\S, and
without both Algorithm 3 and Algorithm 4 as ADGNN\S\TopK.
Particularly, due to the large size of dynamic graphs, ADGNN\TopK
and ADGNN\S\TopK repeatedly first sample training nodes and

then update the sampled edge weighs. In particular, since results

are similar under different attackers and datasets, we report the ac-

curacy and time on both DBLP and Yelp under the attacker RBGCD.

As shown in Table 5, ADGNN\S and ADGNN\S\TopK are not

scalable andmeet the out of GPUmemory (OOM) issue. It is because

they directly compute the gradients for all candidate edges and

node features of injected guardian nodes, exceeding the capacity of

GPU memory. ADGNN\TopK takes more time, since they need to

compute active defense objective in Equation (8) and gradients of

2060



0.0 0.2 0.4 0.6 0.8 1.0
Hyperparamter λ

50

52

54

56

58

60

Ac
cu

ra
cy

 (%
)

DBLP
Yelp

(a) Hyperparameter 𝜆.

0.01 0.02 0.03 0.04 0.05
Protection budget rp

50

52

54

56

58

60

Ac
cu

ra
cy

 (%
)

DBLP
Yelp

(b) The budget of guardian nodes.

0.2 0.4 0.6 0.8 1.0
Selected training nodes number rtr
50

52

54

56

58

60

Ac
cu

ra
cy

 (%
)

DBLP_acc
Yelp_acc

1.0
1.5
2.0
2.5
3.0
3.5

No
rm

al
ize

d 
Ti

m
e

DBLP_time
Yelp_time

(c) Selected training nodes number.

102 103 104 105 106

Sampling size s
50

52

54

56

58

60

Ac
cu

ra
cy

 (%
)

DBLP
Yelp

(d) Sampling size.

Figure 4: Parameter sensitivity evaluations.

guardian node behaviors based on all training nodes. Also, ADGNN

outperforms ADGNN\TopK. The reason is that Algorithm 3 selects

the most influential training nodes regarding the target nodes. Then,

under limited node budget, it is more effective to design guardian

node behaviors to affect the node labels of these top-𝑘 nodes. In

other words, these limited protection nodes are incapable of affect-

ing the node labels of all training nodes, thereby decreasing the

performance of ADGNN\TopK.

5.4 Parameter Sensitivity Analysis
Since results are similar under different attackers and datasets, we

report results on DBLP and Yelp datasets under the attacker RBGCD.

5.4.1 The hyperparameter 𝜆. We investigate the effects of the trade-

off parameter 𝜆 in Equation (8) between affecting influential train-

ing nodes to mislead attackers and protecting easily attacked target

nodes. A higher 𝜆 more emphasizes protecting the target nodes.

Specifically, we vary 𝜆 ∈ {0, 0.2, 0.4, 0.6, 0.8, 1}. As shown in Fig-

ure 4 (a), as 𝜆 increases, the performance of ADGNN on both

datasets first increases and then decreases. It indicates that only

considering affect training nodes (𝜆 = 0) and protecting target

nodes (𝜆 = 1) cannot achieve the best performance. Instead, by in-

corporating both misleading attackers and protecting target nodes,

ADGNN can achieve the best performance.

5.4.2 Guardian node budget 𝑘𝑝 . As introduced in Section 5.1.5, we

control the number of guardian nodes by the parameter 𝑟𝑝 , i.e.,

𝑘𝑝 = 𝑟𝑝 |𝑉 (𝑡) |. Here, we vary 𝑟𝑝 ∈ {0.01, 0.02, 0.03, 0.04, 0.05}. As
shown in Figure 4 (b), as the budget of protection nodes increases,

the node classification accuracy on target nodes increases as well.

It indicates that with a more protection node budget, our proposed

ADGNN can degrade the effectiveness of attacks and avoid poten-

tially effective attacks. With more guardian nodes, we gain the

capacity to perturb a larger subset of training nodes, leading to

more affecting their labels. Then, this will disrupt the attackers’

ability to accurately measure the impact of their malicious node be-

haviors on the target nodes. Consequently, attackers are prevented

from generating effective attacks.

5.4.3 The number of selected training nodes 𝑘𝑡𝑟 . We investigate the

effects of the number of the selected training nodes in Algorithm 3,

i.e., 𝑘𝑡𝑟 = 𝑟𝑡𝑟 |𝑉 𝑡𝑟 (𝑡) |. Here, we vary 𝑟𝑡𝑟 ∈ {0.2, 0.4, 0.6, 0.8, 1.0}. For
clarification, we normalize the time under different 𝑟𝑡𝑟 by dividing

it by the time under 𝑟𝑡𝑟 = 0.2. As shown in Figure 4 (c), as 𝑘𝑡𝑟

increases, node classification accuracy first increases and decreases.

It indicates that partial training nodes can represent all training

nodes. Also, a larger number of training nodes decreases the node

classification accuracy. It is because limited protection nodes cannot

fully affect a large number of training nodes to mislead the attackers

and thereby cannot avoid effective adversarial attacks. Also, as 𝑘𝑡𝑟
increases, the consumed time increases, since ADGNN take 𝑘𝑡𝑟
training nodes to compute the objective and the gradients.

5.4.4 Sampling size 𝑠 . We investigate the effects of the sampling

size 𝑠 in In Algorithm 4 by varying 𝑠 ∈ {102, 103, 104, 105, 106}. As
shown in Figure 4 (d), as the sampling size increases, the perfor-

mance on both datasets first increases and then keeps stable. It is

because the exploration of a smaller search space is limited, and

as a consequence, the generated protection node behaviors remain

suboptimal. As sample size 𝑠 continues to increase, ADGNN is capa-

ble of sampling a more extensive set of critical candidate edges for

optimization. As a result, ADGNN can generate effective protection

nodes and achieve satisfying performance.

6 CONCLUSION
In this paper, we propose a novel active GNN defender ADGNN

designed for dynamic graphs, which aims at protecting nodes from

effective adversarial attacks. ADGNN proactively injects guardian

nodes into graphs to disrupt the predictions of attackers and protect

vulnerable nodes, ultimately preventing attackers from generating

effective attacks. Extensive experiments on four real-world datasets

validate the effectiveness of our proposed defender and demonstrate

its seamless integration with existing passive GNN defenders.

ACKNOWLEDGMENTS
This work is supported by National Key Research and Development

Program of China Grant No. 2023YFF0725100, National Science

Foundation of China (NSFC) under Grant No. U22B2060, the Hong

Kong RGCGRF Project 16213620, RIF Project R6020-19, AOE Project

AoE/E-603/18, Theme-based project TRS T41-603/20R, CRF Project

C2004-21G, Guangdong Province Science and Technology Plan

Project 2023A0505030011, Hong Kong ITC ITF grants MHX/078/21

and PRP/004/22FX, Zhujiang scholar program 2021JC02X170, Mi-

crosoft Research Asia Collaborative Research Grant and HKUST-

Webank joint research lab grants.

2061



REFERENCES
[1] Amazon. 2024. amazon.com.au. https://www.amazon.com.au/. [Accessed

10-02-2024].

[2] Elisa Bertino, Gabriel Ghinita, Ashish Kamra, et al. 2011. Access control for

databases: Concepts and systems. Foundations and Trends® in Databases 3, 1–2

(2011), 1–148.

[3] Aleksandr Beznosikov, Eduard Gorbunov, Hugo Berard, and Nicolas Loizou. 2023.

Stochastic gradient descent-ascent: Unified theory and new efficient methods.

In International Conference on Artificial Intelligence and Statistics. PMLR, 172–

235.

[4] Ji-Won Byun and Ninghui Li. 2008. Purpose based access control for privacy

protection in relational database systems. The VLDB Journal 17 (2008), 603–619.

[5] Heng Chang, Yu Rong, Tingyang Xu, Wenbing Huang, Honglei Zhang, Peng

Cui, Wenwu Zhu, and Junzhou Huang. 2020. A restricted black-box adversarial

framework towards attacking graph embedding models. In Proceedings of the

AAAI Conference on Artificial Intelligence, Vol. 34. 3389–3396.

[6] Jinyin Chen, Jian Zhang, Zhi Chen, Min Du, and Qi Xuan. 2021. Time-aware

gradient attack on dynamic network link prediction. IEEE Transactions on

Knowledge and Data Engineering (2021).

[7] Yue Cui, Kai Zheng, Dingshan Cui, Jiandong Xie, Liwei Deng, Feiteng Huang,

and Xiaofang Zhou. 2021. METRO: a generic graph neural network framework

for multivariate time series forecasting. Proceedings of the VLDB Endowment

15, 2 (2021), 224–236.

[8] Gunduz Vehbi Demirci, Aparajita Haldar, and Hakan Ferhatosmanoglu. 2022.

Scalable Graph Convolutional Network Training on Distributed-Memory Sys-

tems. Proc. VLDB Endow. 16, 4 (2022), 711–724. https://www.vldb.org/pvldb/

vol16/p711-demirci.pdf

[9] Shimin Di and Lei Chen. 2023. Message Function Search for Knowledge Graph

Embedding. In Proceedings of the ACMWeb Conference 2023. 2633–2644.

[10] Wei Dong, Juanru Fang, Ke Yi, Yuchao Tao, and Ashwin Machanavajjhala.

2022. R2t: Instance-optimal truncation for differentially private query eval-

uation with foreign keys. In Proceedings of the 2022 International Conference

on Management of Data. 759–772.

[11] Wei Dong and Ke Yi. 2021. Residual sensitivity for differentially private multi-

way joins. In Proceedings of the 2021 International Conference on Management

of Data. 432–444.

[12] Wei Dong and Ke Yi. 2022. A Nearly Instance-optimal Differentially Pri-

vate Mechanism for Conjunctive Queries. In Proceedings of the 41st ACM

SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems. 213–

225.

[13] Nathan Drenkow, Numair Sani, Ilya Shpitser, and Mathias Unberath. 2021. A

systematic review of robustness in deep learning for computer vision: Mind the

gap? arXiv preprint arXiv:2112.00639 (2021).

[14] Chi Thang Duong, Trung Dung Hoang, Hongzhi Yin, Matthias Weidlich, Quoc

Viet Hung Nguyen, and Karl Aberer. 2021. Efficient streaming subgraph isomor-

phism with graph neural networks. Proceedings of the VLDB Endowment 14, 5

(2021), 730–742.

[15] Negin Entezari, Saba A Al-Sayouri, Amirali Darvishzadeh, and Evangelos E

Papalexakis. 2020. All you need is low (rank) defending against adversarial

attacks on graphs. In Proceedings of the 13th International Conference on Web

Search and Data Mining. 169–177.

[16] Houxiang Fan, Binghui Wang, Pan Zhou, Ang Li, Zichuan Xu, Cai Fu, Hai

Li, and Yiran Chen. 2021. Reinforcement learning-based black-box evasion

attacks to link prediction in dynamic graphs. In 2021 IEEE 23rd Int Conf on High

Performance Computing & Communications; 7th Int Conf on Data Science &

Systems; 19th Int Conf on Smart City; 7th Int Conf on Dependability in Sensor,

Cloud & Big Data Systems & Application (HPCC/DSS/SmartCity/DependSys).

IEEE, 933–940.

[17] Lijie Fan, Sijia Liu, Pin-Yu Chen, Gaoyuan Zhang, and Chuang Gan. 2021. When

does contrastive learning preserve adversarial robustness from pretraining

to finetuning? Advances in neural information processing systems 34 (2021),

21480–21492.

[18] Yucai Fan, Yuhang Yao, and Carlee Joe-Wong. 2021. Gcn-se: Attention as ex-

plainability for node classification in dynamic graphs. In 2021 IEEE International

Conference on Data Mining (ICDM). IEEE, 1060–1065.

[19] Fuli Feng, Xiangnan He, Jie Tang, and Tat-Seng Chua. 2019. Graph adversarial

training: Dynamically regularizing based on graph structure. IEEE Transactions

on Knowledge and Data Engineering (2019).

[20] Jun Gao, Jiazun Chen, Zhao Li, and Ji Zhang. 2021. ICS-GNN: lightweight

interactive community search via graph neural network. Proceedings of the

VLDB Endowment 14, 6 (2021), 1006–1018.

[21] Shihong Gao, Yiming Li, Yanyan Shen, Yingxia Shao, and Lei Chen. 2024. ETC:

Efficient Training of Temporal Graph Neural Networks over Large-scale Dynamic

Graphs. Proc. VLDB Endow. 17, 5 (2024), 1060–1072. https://www.vldb.org/

pvldb/vol17/p1060-gao.pdf

[22] Simon Geisler, Tobias Schmidt, Hakan Şirin, Daniel Zügner, Aleksandar Bo-

jchevski, and Stephan Günnemann. 2021. Robustness of graph neural networks

at scale. Advances in Neural Information Processing Systems 34 (2021), 7637–

7649.

[23] Aritra Ghosh and Andrew Lan. 2021. Contrastive learning improves model

robustness under label noise. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition. 2703–2708.

[24] Goodreads. 2024. Goodreads — goodreads.com. https://www.goodreads.com/.

[Accessed 10-02-2024].

[25] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation

learning on large graphs. In Advances in neural information processing systems.

1024–1034.

[26] Tianjin Huang, Vlado Menkovski, Yulong Pei, and Mykola Pechenizkiy. 2020.

Bridging the performance gap between fgsm and pgd adversarial training. arXiv

preprint arXiv:2011.05157 (2020).

[27] Wenbing Huang et al. 2018. Adaptive sampling towards fast graph representation

learning. In Advances in neural information processing systems. 4558–4567.

[28] IMDb. 2024. IMDb: Ratings, Reviews, and Where to Watch the Best Movies &

TV Shows — imdb.com. https://www.imdb.com/. [Accessed 10-02-2024].

[29] Yuli Jiang, Yu Rong, Hong Cheng, Xin Huang, Kangfei Zhao, and Junzhou

Huang. 2022. Query driven-graph neural networks for community search: from

non-attributed, attributed, to interactive attributed. Proceedings of the VLDB

Endowment 15, 6 (2022), 1243–1255.

[30] Wei Jin, Tyler Derr, Yiqi Wang, Yao Ma, Zitao Liu, and Jiliang Tang. 2021. Node

similarity preserving graph convolutional networks. In Proceedings of the 14th

ACM International Conference on Web Search and Data Mining. 148–156.

[31] Wei Jin, Yao Ma, Xiaorui Liu, Xianfeng Tang, Suhang Wang, and Jiliang Tang.

2020. Graph structure learning for robust graph neural networks. In Proceedings

of the 26th ACM SIGKDD International Conference on Knowledge Discovery

& Data Mining. 66–74.

[32] Thomas N Kipf and Max Welling. 2016. Semi-supervised classification with

graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

[33] Boris Knyazev, Carolyn Augusta, and Graham W Taylor. 2019. Learning Tem-

poral Attention in Dynamic Graphs with Bilinear Interactions. arXiv preprint

arXiv:1909.10367 (2019).

[34] Pang Wei Koh and Percy Liang. 2017. Understanding black-box predictions

via influence functions. In International conference on machine learning. PMLR,

1885–1894.

[35] Alexey Kurakin, Ian Goodfellow, and Samy Bengio. 2016. Adversarial machine

learning at scale. arXiv preprint arXiv:1611.01236 (2016).

[36] Janet Layne, Justin Carpenter, Edoardo Serra, and Francesco Gullo. 2023. Tem-

poral SIR-GN: Efficient and Effective Structural Representation Learning for

Temporal Graphs. Proceedings of the VLDB Endowment 16, 9 (2023), 2075–

2089.

[37] Haoyang Li and Lei Chen. 2021. Cache-based GNN System for Dynamic Graphs.

In Proceedings of the 30th ACM International Conference on Information &

Knowledge Management. 937–946.

[38] Haoyang Li and Lei Chen. 2023. EARLY: Efficient and Reliable Graph Neural

Network for Dynamic Graphs. Proceedings of the ACM onManagement of Data

1, 2 (2023), 1–28.

[39] Haoyang LI, Shimin Di, and Lei Chen. 2022. Revisiting Injective Attacks on

Recommender Systems. Advances in Neural Information Processing Systems

35 (2022), 29989–30002.

[40] Haoyang Li, Shimin Di, Lei Chen, and Xiaofang Zhou. 2024. E2GCL: Efficient

and Expressive Contrastive Learning on Graph Neural Networks. In 2024 IEEE

40th International Conference on Data Engineering (ICDE). IEEE.

[41] Haoyang Li, Shimin Di, Calvin Hong Yi Li, Lei Chen, and Xiaofang Zhou. 2024.

Fight Fire with Fire: Towards Robust Graph Neural Networks on Dynamic Graphs

via Actively Defense-Techniqcal Report. Online (2024). https://drive.google.

com/drive/folders/1jGIm0G21kP9BJRFNSs6lbwiQp8cZr2LI?usp=sharing

[42] Haoyang Li, Shimin Di, Zijian Li, Lei Chen, and Jiannong Cao. 2022. Black-box

Adversarial Attack and Defense on Graph Neural Networks. In 2022 IEEE 38th

International Conference on Data Engineering (ICDE). IEEE, 1017–1030.

[43] Jintang Li, Tao Xie, Chen Liang, Fenfang Xie, Xiangnan He, and Zibin Zheng.

2021. Adversarial attack on large scale graph. IEEE Transactions on Knowledge

and Data Engineering (2021).

[44] Kuan Li, Yang Liu, Xiang Ao, and Qing He. 2022. Revisiting graph adversar-

ial attack and defense from a data distribution perspective. In The Eleventh

International Conference on Learning Representations.

[45] Yiming Li, Yanyan Shen, Lei Chen, andMingxuan Yuan. 2023. Orca: Scalable Tem-

poral Graph Neural Network Training with Theoretical Guarantees. Proceedings

of the ACM on Management of Data 1, 1 (2023), 1–27.

[46] Yiming Li, Yanyan Shen, Lei Chen, and Mingxuan Yuan. 2023. Zebra: When

Temporal Graph Neural Networks Meet Temporal Personalized PageRank.

Proceedings of the VLDB Endowment 16, 6 (2023), 1332–1345.

[47] Zhiyuan Li, Xun Jian, Yue Wang, Yingxia Shao, and Lei Chen. 2024. DAHA:

Accelerating GNN Training with Data and Hardware Aware Execution Planning.

Proc. VLDB Endow. 17, 6 (2024), 1364–1376.

[48] Zhao Li, Xin Shen, Yuhang Jiao, Xuming Pan, Pengcheng Zou, Xianling Meng,

Chengwei Yao, and Jiajun Bu. 2020. Hierarchical bipartite graph neural networks:

Towards large-scale e-commerce applications. In 2020 IEEE 36th International

2062

https://www.amazon.com.au/
https://www.vldb.org/pvldb/vol16/p711-demirci.pdf
https://www.vldb.org/pvldb/vol16/p711-demirci.pdf
https://www.vldb.org/pvldb/vol17/p1060-gao.pdf
https://www.vldb.org/pvldb/vol17/p1060-gao.pdf
https://www.goodreads.com/
https://www.imdb.com/
https://drive.google.com/drive/folders/1jGIm0G21kP9BJRFNSs6lbwiQp8cZr2LI?usp=sharing
https://drive.google.com/drive/folders/1jGIm0G21kP9BJRFNSs6lbwiQp8cZr2LI?usp=sharing


Conference on Data Engineering (ICDE). IEEE, 1677–1688.

[49] Ningyi Liao, Dingheng Mo, Siqiang Luo, Xiang Li, and Pengcheng Yin. 2022.

SCARA: scalable graph neural networks with feature-oriented optimization.

Proceedings of the VLDB Endowment 15, 11 (2022), 3240–3248.

[50] Husong Liu, Shengliang Lu, Xinyu Chen, and Bingsheng He. 2020. G3: when

graph neural networks meet parallel graph processing systems on GPUs.

Proceedings of the VLDB Endowment 13, 12 (2020), 2813–2816.

[51] Jiaqi Ma, Junwei Deng, and Qiaozhu Mei. 2021. Near-Black-Box Adversarial

Attacks on Graph Neural Networks as An Influence Maximization Problem.

https://openreview.net/forum?id=sbyjwhxxT8K

[52] Jiaqi Ma, Shuangrui Ding, and Qiaozhu Mei. 2020. Black-box adversarial at-

tacks on graph neural networks with limited node access. arXiv preprint

arXiv:2006.05057 (2020).

[53] Yao Ma, Ziyi Guo, Zhaochun Ren, Eric Zhao, Jiliang Tang, and Dawei Yin. 2018.

Streaming graph neural networks. arXiv preprint arXiv:1810.10627 (2018).

[54] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient esti-

mation of word representations in vector space. arXiv preprint arXiv:1301.3781

(2013).

[55] Felix Mujkanovic, Simon Geisler, Stephan Günnemann, and Aleksandar Bo-

jchevski. 2022. Are Defenses for Graph Neural Networks Robust? Advances in

Neural Information Processing Systems 35 (NeurIPS 2022) (2022).

[56] Aldo Pareja et al. 2020. Evolvegcn: Evolving graph convolutional networks for

dynamic graphs. In Proceedings of theAAAI conference on artificial intelligence,

Vol. 34. 5363–5370.

[57] Emanuele Rossi, Ben Chamberlain, Fabrizio Frasca, Davide Eynard, Federico

Monti, and Michael Bronstein. 2020. Temporal graph networks for deep learning

on dynamic graphs. arXiv preprint arXiv:2006.10637 (2020).

[58] RottenTomatoes. 2024. Rotten Tomatoes. https://www.rottentomatoes.com/.

[Accessed 10-02-2024].

[59] Aravind Sankar, Yanhong Wu, Liang Gou, Wei Zhang, and Hao Yang. 2020.

DySAT: Deep Neural Representation Learning on Dynamic Graphs via Self-

Attention Networks. In Proceedings of the 13th International Conference on

Web Search and Data Mining. 519–527.

[60] Vikash Sehwag, Arjun Nitin Bhagoji, Liwei Song, Chawin Sitawarin, Daniel

Cullina, Mung Chiang, and Prateek Mittal. 2019. Analyzing the robustness of

open-world machine learning. In Proceedings of the 12th ACM Workshop on

Artificial Intelligence and Security. 105–116.

[61] Zezhi Shao, Zhao Zhang, Wei Wei, Fei Wang, Yongjun Xu, Xin Cao, and Chris-

tian S Jensen. 2022. Decoupled dynamic spatial-temporal graph neural network

for traffic forecasting. Proceedings of the VLDB Endowment 15, 11 (2022), 2733–

2746.

[62] Samuel Henrique Silva and Peyman Najafirad. 2020. Opportunities and chal-

lenges in deep learning adversarial robustness: A survey. arXiv preprint

arXiv:2007.00753 (2020).

[63] Lichao Sun, Yingtong Dou, Carl Yang, Kai Zhang, Ji Wang, S Yu Philip, Lifang

He, and Bo Li. 2022. Adversarial attack and defense on graph data: A survey.

IEEE Transactions on Knowledge and Data Engineering (2022).

[64] Yuanyuan Sun, Sheng Wang, Huorong Li, and Feifei Li. 2021. Building enclave-

native storage engines for practical encrypted databases. Proceedings of the

VLDB Endowment 14, 6 (2021), 1019–1032.

[65] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru

Erhan, Ian Goodfellow, and Rob Fergus. 2013. Intriguing properties of neural

networks. arXiv preprint arXiv:1312.6199 (2013).

[66] Florian Tramèr, Alexey Kurakin, Nicolas Papernot, Ian Goodfellow, Dan Boneh,

and Patrick McDaniel. 2017. Ensemble adversarial training: Attacks and defenses.

arXiv preprint arXiv:1705.07204 (2017).

[67] Rakshit Trivedi, Mehrdad Farajtabar, Prasenjeet Biswal, and Hongyuan Zha. 2018.

Dyrep: Learning representations over dynamic graphs. (2018).

[68] Charalampos Tsourakakis. 2015. The k-clique densest subgraph problem. In

Proceedings of the 24th international conference on world wide web. 1122–

1132.

[69] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all

you need. In Advances in neural information processing systems. 5998–6008.

[70] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro

Lio, and Yoshua Bengio. 2017. Graph attention networks. arXiv preprint

arXiv:1710.10903 (2017).

[71] Sheng Wang, Yiran Li, Huorong Li, Feifei Li, Chengjin Tian, Le Su, Yanshan

Zhang, Yubing Ma, Lie Yan, Yuanyuan Sun, et al. 2022. Operon: An encrypted

database for ownership-preserving data management. Proceedings of the VLDB

Endowment 15, 12 (2022), 3332–3345.

[72] Xuhong Wang et al. 2021. APAN: Asynchronous propagation attention net-

work for real-time temporal graph embedding. In Proceedings of the 2021 ACM

SIGMOD International Conference on Management of Data. 2628–2638.

[73] Zhili Wang, Shimin Di, and Lei Chen. 2023. A Message Passing Neural Network

Space for Better Capturing Data-dependent Receptive Fields. In Proceedings of

the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining.

2489–2501.

[74] Wikipedia. 2023. Taylor’s theorem—Wikipedia, The Free Encyclopedia. http://en.

wikipedia.org/w/index.php?title=Taylor’s%20theorem&oldid=1174353983. [On-

line; accessed 22-September-2023].

[75] Eric Wong, Leslie Rice, and J Zico Kolter. 2020. Fast is better than free: Revisiting

adversarial training. arXiv preprint arXiv:2001.03994 (2020).

[76] Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian

Weinberger. 2019. Simplifying graph convolutional networks. In International

conference on machine learning. PMLR, 6861–6871.

[77] HuijunWu, ChenWang, Yuriy Tyshetskiy, Andrew Docherty, Kai Lu, and Liming

Zhu. 2019. Adversarial examples on graph data: Deep insights into attack and

defense. arXiv preprint arXiv:1903.01610 (2019).

[78] Dongkuan Xu, Wei Cheng, Dongsheng Luo, Yameng Gu, Xiao Liu, Jingchao Ni,

Bo Zong, Haifeng Chen, and Xiang Zhang. 2019. Adaptive neural network for

node classification in dynamic networks. In 2019 IEEE International Conference

on Data Mining (ICDM). IEEE, 1402–1407.

[79] Kaidi Xu, Hongge Chen, Sijia Liu, Pin-Yu Chen, Tsui-Wei Weng, Mingyi Hong,

and Xue Lin. 2019. Topology attack and defense for graph neural networks: An

optimization perspective. arXiv preprint arXiv:1906.04214 (2019).

[80] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2018. How powerful

are graph neural networks? arXiv preprint arXiv:1810.00826 (2018).

[81] Xiaojun Xu, Yue Yu, Bo Li, Le Song, Chengfeng Liu, and Carl Gunter. 2018.

Characterizing malicious edges targeting on graph neural networks. (2018).

[82] Renchi Yang, Jieming Shi, Xiaokui Xiao, Yin Yang, Juncheng Liu, and Sourav S

Bhowmick. 2020. Scaling attributed network embedding to massive graphs.

Proceedings of the VLDB Endowment 14, 1 (2020), 37–49.

[83] Yelp. 2024. Yelp — yelp.com. https://www.yelp.com/. [Accessed 10-02-2024].

[84] Jiaxuan You, Tianyu Du, and Jure Leskovec. 2022. ROLAND: Graph Learning

Framework for Dynamic Graphs. In Proceedings of the 28th ACM SIGKDD

Conference on Knowledge Discovery and Data Mining. 2358–2366.

[85] YouTube. 2024. YouTube — youtube.com. https://www.youtube.com/. [Accessed

10-02-2024].

[86] Wenhui Yu, Xiao Lin, Jinfei Liu, Junfeng Ge, Wenwu Ou, and Zheng Qin.

2021. Self-propagation Graph Neural Network for Recommendation. IEEE

Transactions on Knowledge and Data Engineering (2021).

[87] Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor

Prasanna. 2019. Graphsaint: Graph sampling based inductive learning method.

arXiv preprint arXiv:1907.04931 (2019).

[88] Ao Zhang and Jinwen Ma. 2020. Defensevgae: Defending against adversar-

ial attacks on graph data via a variational graph autoencoder. arXiv preprint

arXiv:2006.08900 (2020).

[89] Wentao Zhang, Zhi Yang, Yexin Wang, Yu Shen, Yang Li, Liang Wang, and Bin

Cui. 2021. GRAIN: improving data efficiency of gra ph neural networks via

diversified in fluence maximization. Proceedings of the VLDB Endowment 14,

11 (2021), 2473–2482.

[90] Xiang Zhang and Marinka Zitnik. 2020. Gnnguard: Defending graph neural

networks against adversarial attacks. arXiv preprint arXiv:2006.08149 (2020).

[91] Chenguang Zheng, Hongzhi Chen, Yuxuan Cheng, Zhezheng Song, Yifan Wu,

Changji Li, James Cheng, Hao Yang, and Shuai Zhang. 2022. ByteGNN: effi-

cient graph neural network training at large scale. Proceedings of the VLDB

Endowment 15, 6 (2022), 1228–1242.

[92] Yanping Zheng, Zhewei Wei, and Jiajun Liu. 2023. Decoupled Graph Neural

Networks for Large Dynamic Graphs. Proc. VLDB Endow. 16, 9 (2023), 2239–2247.

https://www.vldb.org/pvldb/vol16/p2239-zheng.pdf

[93] Dingyuan Zhu, Ziwei Zhang, Peng Cui, andWenwu Zhu. 2019. Robust graph con-

volutional networks against adversarial attacks. In Proceedings of the 25th ACM

SIGKDD International Conference on Knowledge Discovery & Data Mining.

1399–1407.

[94] Xu Zou, Qinkai Zheng, Yuxiao Dong, Xinyu Guan, Evgeny Kharlamov, Jialiang

Lu, and Jie Tang. 2021. Tdgia: Effective injection attacks on graph neural networks.

In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery

& Data Mining. 2461–2471.

[95] Daniel Zügner, Amir Akbarnejad, and Stephan Günnemann. 2018. Adversarial

attacks on neural networks for graph data. In Proceedings of the 24th ACM

SIGKDD International Conference on Knowledge Discovery & Data Mining.

2847–2856.

[96] Daniel Zügner and Stephan Günnemann. 2019. Adversarial attacks on graph

neural networks via meta learning. arXiv preprint arXiv:1902.08412 (2019).

2063

https://openreview.net/forum?id=sbyjwhxxT8K
https://www.rottentomatoes.com/
http://en.wikipedia.org/w/index.php?title=Taylor's%20theorem&oldid=1174353983
http://en.wikipedia.org/w/index.php?title=Taylor's%20theorem&oldid=1174353983
https://www.yelp.com/
https://www.youtube.com/
https://www.vldb.org/pvldb/vol16/p2239-zheng.pdf

	Abstract
	1 introduction
	2 Preliminary and Related Work
	2.1 Dynamic Graph Neural Networks
	2.2 GNN Attackers on Dynamic Graphs
	2.3 GNN Defenders on Dynamic Graphs
	2.4 Robustness in Machine Learning

	3 Framework Overview
	4 Active Defense Graph Generation
	4.1 Theoretical Analysis
	4.2 Active Defense Objective
	4.3 Acceleration Techniques

	5 Experiments
	5.1 Experiment Setting
	5.2 Main Results
	5.3 Ablation Study
	5.4 Parameter Sensitivity Analysis

	6 Conclusion
	Acknowledgments
	References

