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ABSTRACT
Federated Learning (FL) provides a privacy-preserving and decen-
tralized approach to collaborative machine learning for multiple
FL clients. The contribution estimation mechanism in FL is ex-
tensively studied within the database community, which aims to
compute fair and reasonable contribution scores as incentives to
motivate FL clients. However, designing such methods involves
challenges in three aspects: effectiveness, robustness, and efficiency.
Firstly, contribution estimation methods should utilize the data
utility information of various client coalitions rather than that of
individual clients to ensure effectiveness. Secondly, we should be-
ware of adverse clients who may exploit tactics like data replication
or label flipping. Thirdly, estimating contribution in FL can be time-
consuming due to enumerating various client coalitions.

Despite numerous proposed methods to address these challenges,
each possesses distinct advantages and limitations based on specific
settings. However, existing methods have yet to be thoroughly eval-
uated and compared in the same experimental framework. There-
fore, a unified and comprehensive evaluation framework is nec-
essary to compare these methods under the same experimental
settings. This paper conducts an extensive survey of contribution es-
timation methods in FL and introduces a comprehensive framework
to evaluate their effectiveness, robustness, and efficiency. Through
empirical results, we present extensive observations, valuable dis-
coveries, and an adaptable testing framework that can facilitate
future research in designing and evaluating contribution estimation
methods in FL.
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1 INTRODUCTION
Federated Learning (FL) provides a collaborative machine learning
paradigm with low communication overhead while preserving data
privacy [30, 36, 41, 47, 71]. In FL, clients (i.e., participants) train ma-
chine learning models locally and send model updates to a central
coordinator. The coordinator aggregates these updates and shares
improved global model parameters with clients, allowing them to
refine their local models without sharing raw data.

However, clients may exhibit reluctance to share their data in
the absence of incentives or if they perceive the revenue allocation
as unfair [14, 16]. For instance, if an enterprise’s transaction data
from January and the first quarter are considered equally contribu-
tive to the FL task, the enterprise might be disinclined to share
its transaction data from February to March, as it would not yield
any additional benefits. However, in many scenarios, the transac-
tion data from February to March could potentially lead to further
improvement in the global model. Hence, the study of Federated
Learning Contribution Estimation (FLCE) emerged to develop fair
and reasonable methods for incentivizing clients’ participation in FL
and ensure the usability and sustainability of the FL ecosystem [30].
Challenges. It is crucial to consider the following three challenges
when designing such contribution estimation methods.
- Effectiveness. Effectiveness ensures that a client’s estimated contri-
bution aligns with its importance in the grand coalition. Assessing
contributions solely based on individual data utility might not ac-
curately represent a client’s true significance in FL, as it fails to
consider a client’s marginal contributionwhen combinedwith other
clients. For instance, a client with a large amount of data on general
cases may have high utility based on quantity alone, while a client
with scarce but complementary data may be assigned a lower utility.
However, even a small number of complementary data records can
yield a significant performance increase to the global model when
combined with sufficient general data [69].
- Robustness. In FL, the presence of strategic clients and malicious
clients is a potential concern [23, 38, 40]. Certain clients may seek to
gain advantages through manipulated data. For instance, they may
replicate their data to inflate their rewards at approximately zero
marginal cost. Alternatively, some clients might aim to compromise
the performance of the global model by manipulating the values
of their data, e.g., using the trick of flipping labels to poison the
performance of the global model.
- Efficiency. As mentioned above, calculating a client’s contribution
may involve enumerating different client coalitions and measuring
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their respective data utilities [19, 78], which may result in prohibi-
tively high computational costs when the number of clients is large.
For example, when utilizing the original ShapleyValuemethod [19],
it is necessary to enumerate all the coalitions of 𝑛 clients and train
a model for each of these client coalitions. The method, therefore,
has a time complexity of 𝑂(2𝑛).

Multiple techniques are proposed to solve the above concerns.
For the first challenge, methods based on ShapleyValue [19] and
LeastCore [78] are proposed, utilizing the data utility information
of all the 2𝑛 coalitions. For the second challenge, algorithms have
been proposed to defend against malicious users. For example, the
RobustVolumemetric is proposed, which is immune to data replica-
tion [77]. For the third challenge, several optimization techniques
have been proposed to reduce the computational complexity of the
FLCE process, e.g., sampling [42, 68] and gradients reusing [70].
Motivations. Despite numerous methods proposed to address
these challenges, each has distinctive advantages and limitations
within specific settings. Certain issues may hinder researchers from
attaining a comprehensive, unbiased, and systematic understanding
of these methods. Firstly, existing contribution estimation methods
have not been evaluated within the same experimental settings,
leading to unfair and incomplete comparison results. Secondly, pre-
vious papers lack comprehensive evaluation indicators. None of
them consider evaluating the effectiveness, robustness, and effi-
ciency of FLCE methods simultaneously. Thirdly, the absence of a
standardized and inclusive testing framework hinders the investiga-
tion and testing of new FLCEmethods in practical implementations.
For example, [27] demonstrated that ShapleyValue can outperform
the LeaveOneOut regarding scalability and usability but did not
assess the robustness of these methods against various adverse
behaviors. [23] only studied methods that can detect label flipping
while ignoring other adverse behaviors, such as data replication.
Contributions. In this paper, we make the following contributions:
- An in-depth survey. Through an extensive survey, we examined a
wide range of FLCE methods, providing valuable insights for FLCE
and potentially inspiring new methods. We break down the FLCE
problem into three progressive sub-problems: data utility metrics,
contribution estimation schemes, and optimization techniques, en-
abling an in-depth examination of each sub-problem independently.
- A comprehensive evaluation. We extensively evaluated state-of-
the-art FLCE methods, encompassing various datasets, data distri-
butions, federation settings, and adverse behaviors, and observed
their effectiveness, robustness, and efficiency. To the best of our
knowledge, we are the first to comprehensively evaluate all types
of FLCE methods within a unified experimental framework.
- An extensive set of findings. Based on experimental observations
in various FL scenarios, we have gained deep insights and concluded
the advantages and limitations of different data utility metrics,
contribution estimation schemes, and optimization techniques into
summarized findings. These valuable findings may contribute to
the development of new FLCE methods.
- An extensible testing framework. Our team developed a flexible
testing framework capable of accommodatingmultiple implemented
methods. This framework is designed to support both existing and
newly proposed contribution estimation methods, serving as a po-
tential benchmark for evaluating performance in this field.

The rest of this paper is organized as follows. We give the formal
definition of FLCE in Section 2, review the data utility metrics in
Section 3, the FLCE schemes in Section 4, and the state-of-the-art
optimization techniques in Section 5. We conduct comprehensive
experiments, discuss the empirical results in Section 6, provide
prospects of FLCE in Section 7, and conclude our study in Section 8.

2 PRELIMINARIES
2.1 Federated Learning
Federated Learning (FL) is a distributed machine learning frame-
work that enables training models on decentralized data sources
without transferring the raw data to a central server [47]. Each
round of FL training consists of three phases. First, each client
independently trains the model using its local data, ensuring data
privacy by only transmitting local updates such as model param-
eters or gradients to the server rather than sharing its raw data.
Second, the central server collects and aggregates the clients’ up-
dates, incorporating them with the current model to generate an
enhanced global model [47]. Third, the central server distributes
the updated parameters of the global model to the clients, allowing
each client to generate their respective enhanced local models [30].
This iterative process of local training, aggregation, and broadcast
continues for multiple global rounds until specific criteria are met,
such as achieving a predetermined model performance or reaching
a threshold number of iterations.
Note. This paper focuses on the survey and evaluation of HFL [79],
which involves clients with distinct samples in the same feature
space. The exploration of VFL, where clients possess different fea-
tures of the same samples, is deferred for future research [14, 21, 60].
Furthermore, since FL concentrates more on supervised learning
rather than unsupervised learning, we restrict our work to the tasks
of classification and regression in the survey parts of this paper.

2.2 Federated Learning Contribution Estimation
To motivate data holders to engage in FL, it is essential to esti-
mate their contributions and offer incentives accordingly. Specif-
ically, when considering a grand coalition consisting of a set of
clients N = {1, 2, . . . , 𝑛}, an FLCE method calculates a vector
𝛷 = (𝜙1, 𝜙2, . . . , 𝜙𝑛), where 𝜙𝑖 denotes the contribution of client 𝑖 .
An ideal FLCEmethod is expected to have the following properties:

(1) Effectiveness. The estimated contribution of a client should
align with its significance in the cooperation within the grand
coalition. However, in practice, obtaining the ground truth of clients’
contributions is not feasible. Therefore, in this paper, we utilize a
commonly employed client removal indicator [61] (see Section 6),
which solely relies on the estimated contributions to evaluate the
effectiveness of FLCE methods.
(2) Robustness. In FL, some clients may attempt to gain advan-
tages or reduce the performance of the global model intentionally by
conducting strategic or malicious behaviors. The FLCE robustness
of a client can be determined by examining the relative contribu-

tion change
𝜙adv−𝜙orig

|𝜙orig |
. 𝜙orig represents the original contribution

of a client, which is estimated using a certain FLCE method in a
grand coalition without adverse data; whereas 𝜙adv refers to the
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contribution of the same client estimated using the same FLCE
method in the same grand coalition, with the only difference being
that this client has introduced its adverse data. An FLCE method is
deemed more robust if it shows negative changes instead of positive
changes resulting from adverse behaviors.
(3) Efficiency. Considering the potential computationally demand-
ing nature of contribution estimation, especially when dealing with
a large number of clients [19, 78], it is crucial to assess the running
time as a practical evaluation criterion for FLCE methods. In this
paper, we focus on the execution time of FLCE algorithms, ignoring
the training time of FL models.

Note. Many FLCE methods share similarities with Data Valuation
and Pricing (DVP) algorithms [11, 53, 83]. However, FLCE methods
are tailored to practical contexts that involve data privacy, client-
server communication costs, and the integration of FLCE with the
model training process, while DVP typically focuses on data value
computation from a theoretical perspective.

2.3 Research Question Breakdown
This paper makes a significant contribution by breaking down the
FLCE problem into three progressive sub-problems, allowing for
a more focused and in-depth examination of each sub-problem
independently. Firstly, given any coalition S ⊆ N , we aim to utilize
a utility metric 𝑣(S) to accurately capture the data’s usefulness for
the FL task, effectively reflecting the utility of S itself. Secondly, the
contribution 𝜙𝑖 is employed to quantify the extent to which client 𝑖
contributes to the FL task, distinct from 𝑣({𝑖}). Finally, to expedite
the computation of 𝜙𝑖 , optimization techniques can be employed
to improve the computational efficiency of FLCE.

(1) Data Utility Metrics. The data utility of a coalition S ⊆ N is
measured using a data utility metric 𝑣(·). Formally, we define the
function 𝑣(·) : 2N → R with 𝑣(∅) = 0, where 2N represents the
power set of N [6]. For example, if the utility metric corresponds
to the Accuracy achieved on a test set, then 𝑣(S) denotes the test
accuracy of the model trained on data from coalition S. Further
details regarding the data utility metrics can be found in Section 3.
(2) Contribution Estimation Schemes. Based on data utility
metric 𝑣(·), a contribution estimation scheme 𝜙𝑖 can be devised to
assess the significance that client 𝑖 contributes to the FL task. It
is essential to clarify that 𝜙𝑖 is distinct from 𝑣({𝑖}), and the data
utility of a coalition does not generally equate to the sum of the
contributions of its clients, i.e., 𝑣(S) ̸= ∑︁

𝑖∈S 𝜙𝑖 . Section 4 introduces
and compares various contribution estimation schemes.
(3) Optimization Techniques. In many FLCE methods, a sig-
nificant amount of client coalition enumeration and retraining is
required. As a result, there is a need for optimization techniques that
strike a balance between efficiency, effectiveness, and robustness.
Building upon the FLCE schemes in Section 4, FLCE optimization
techniques (e.g., coalitions sampling, gradient reusing and compu-
tation truncation) are discussed in Section 5.

3 DATA UTILITY METRICS
Data utilitymetrics can be divided into two types: test-set-dependent
metrics (when the test set is available), and test-set-independent
metrics (when the test set is not accessible).

3.1 Test-set-dependent Metrics
The data utility of a non-empty coalition S ⊆ N can be assessed by
training a model usingDS , the data from S, and measuring its per-
formance (ModelPerformance) on the test setD𝑡 held by the central
server. Accuracy and R2 are two standardized test-set-dependent
metrics [7], which are widely adopted to reflectModelPerformance.
They can be formally represented as:

𝑣(S) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∑︁
(𝑥,𝑦)∈D𝑡

I[𝑦 = �̂�]
|D𝑡 |

(Accuracy) classification task

1 −
∑︁

(𝑥,𝑦)∈D𝑡
(𝑦 − �̂�)2∑︁

(𝑥,𝑦)∈D𝑡
(𝑦 − �̄�)2

(R2) regression task

where |·| denotes the cardinality of a set, and (𝑥,𝑦) represents a
testing pair in the test setD𝑡 , where𝑦 is the true label of data record
𝑥 . The predicted label of input 𝑥 obtained from the model trained
on S is denoted as �̂�. Furthermore, �̄� stands for the average of 𝑦,
given by �̄� =

∑︁
(𝑥,𝑦)∈D𝑡

𝑦

|D𝑡 | . I[𝑦 = �̂�] equals 1 if 𝑦 = �̂� and 0 otherwise.
A higher Accuracy or R2 value of the model represents a higher
data utility, and it reaches its maximum value when 𝑣(S) = 1.

The selected metric should accurately capture the data utility
based on the specific task at hand. The mentioned metrics can be
customized and tailored to align with particular applications and
meet specific requirements. For example, in classification tasks,
Macro F1 Score [8] is preferable over Accuracy when dealing with
datasets that have extremely imbalanced classes. This is because
Macro F1 Score calculates the F1 score independently for each class
and takes the unweighted average of them, providing a more robust
evaluation [24]. In regression tasks, R2 can be replaced with other
metrics such as root mean square error (RMSE) or mean absolute
error (MAE) to suit the needs of the analysis. More insights and
different perspectives on metric selection and normalization can
be found in [9, 73]. Besides, due to the limitation of space, uncom-
mon data utility metrics designed for specific scenarios rather than
general FLCE are omitted [10, 25].

3.2 Test-set-independent Metrics
In practical scenarios, obtaining a comprehensive test set can be
challenging due to limited knowledge of the application context.
Consequently, there is a need to develop data utility metrics that
are not reliant on a specific test set.

3.2.1 Statistical Metrics. In an ideal scenario, the utility of a client’s
dataset would ideally increase with the number of records it con-
tains (DataQuantity) [15, 81], assuming that the datasets from var-
ious clients are independent and identically distributed (i.i.d.). In
other words, greater quantity would indicate higher data utility.
However, due to the non-i.i.d. distribution of the data across differ-
ent clients in most practical scenarios, it is inappropriate to make
such an assumption [82]. Besides, existing FLCE schemes do not
adopt general statistical metrics like mean and standard deviation
values due to their limited ability to accurately reflect the true data
value in most cases. Moreover, practical challenges arise from the
lack of knowledge about the specific application context, making
it impractical to design customized statistical metrics for FLCE.
Additionally, since each client only has a limited number of records
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in cross-device FL [22], directly uploading statistical metric values
to the central server can pose privacy risks to individuals [28].

In a more general context, the diversity of data can serve as a
reflection of its utility. The greater the diversity of the data, the
higher its utility [20]. In a FL task with clients holding datasets
with 𝑑 data features, each sample in the coalition S can be repre-
sented as a vector in a 𝑑-dimensional Euclidean space. The degree
to which these vectors are spread out in the feature space indicates
the diversity. Formally, the data diversity of S can be denoted as

𝑣(S) =
√︃

det
(︂
𝑋
⊺
S𝑋S

)︂
based on Gram determinant (Volume) as is

proposed in [77], where 𝑋S ∈ R𝑚×𝑑 is a matrix composed of the
feature values of the data in the coalition S, with𝑚 representing
the number of records in the dataset of coalition S. This metric is
considered to achieve good performance when there is no inclu-
sion of adverse behaviors, and when the data distributions exhibit
uniform or normal patterns. However, a significant drawback of
this metric is that clients can artificially inflate their data utilities
by duplicating their own data.

To address this issue, RobustVolume is proposed [77] as an al-
ternative. This metric involves discretizing the feature space into a
collection of data cubes, compressing each cube into a single vector,
and constructing a data matrix ˜︂𝑋S that approximates the original
feature value matrix𝑋S using these compressed vectors. The utility
function can be formally denoted as:

𝑣(S) =
√︃

det
(︂˜︂𝑋⊺

S
˜︂𝑋S

)︂
×
∏︂
𝑗∈Φ

𝜌 𝑗 (1)

where 𝜌 𝑗 = ∑︁𝜑 𝑗

𝑝=0 𝛼
𝑝 , 𝛼 ∈ [0, 1], and Φ represents the collection of

all cubes. The coefficient 𝜌 𝑗 is determined by the number of samples
within cube 𝑗 , denoted as 𝜑 𝑗 , and can reflect the importance of the
cube. Since the summation of a geometric progression is bounded
when the common ratio 𝛼 is within [0, 1), the influence of data
replication will be restricted.

3.2.2 Model Parameter Metrics. In FL, the global model is expected
to be the optimal model compared to models trained on any other
coalitions, assuming positive contributions from each client and the
absence of adverse behavior. Therefore, we can assess the similarity
between the global model trained on the grand coalition and the
model trained on a specific coalition S as 𝑣(S). A straightforward
approach is to gauge data utility by computing the inverse of the
𝐿2 distance between the parameters of the two models [5]. How-
ever, this method may not consistently capture the actual similarity
between models in each training round due to the inherent random-
ness in the training process, especially when specific techniques like
dropout are applied [65]. The following two promising alternatives
are often preferred as parameter-based data utility metrics.
- Gradient Similarity. From the perspective of optimization, the ob-
jective of FL is to find an approximate solution to optimize the cost
function by iteratively updating the model’s parameters using gra-
dients. The gradient vectors in each iteration reflect how the model
changes in this round of training. Therefore, a higher similarity
between the gradient update of the model trained on coalition S
and that of the global model trained on the grand coalition N [76]
indicates a greater data utility for S. As a result, a utility metric,

which is referred to as CosineGradient, is defined as:

𝑣(S) = 𝛽𝑇−1 cos
(︂
𝒖1
S, 𝒖

1
N

)︂
+ (1 − 𝛽)

𝑇∑︂
𝑡=2

𝛽𝑇−𝑡 cos
(︂
𝒖𝑡S, 𝒖

𝑡
N

)︂
(2)

where, the gradient of the model trained on coalition S and that on
the grand coalitionN in the 𝑡 th round of training are represented as
𝒖𝑡S and 𝒖𝑡N , respectively. 𝑇 represents the total number of training
rounds and 𝛽 is a predetermined weight.

Nevertheless, this metric might not accurately capture the true
utility of data in certain rounds due to the stochastic nature of
gradient descent. There are instances where this metric could even
yield negative values for high-contribution coalitions, especially in
cases involving non-convex loss functions [76].
- Model Uncertainty. Under the assumption that all clients posi-
tively contribute to the grand coalition, the utility of a coalition can
also be measured based on how much it reduces the uncertainty
of the global model parameters upon its introduction. This utility
can be quantified using the entropy changes (InformationGain)
in the model parameters [62], represented formally as 𝑣(S) =
H(𝜽 )−H (𝜽 | DS), where 𝜃 represents the vector of model parame-
ters, H (𝜃 ) signifies the prior information entropy (i.e., uncertainty)
of the model parameters, and H (𝜃 | DS) stands for the posterior
information entropy of the model parameters after trained with the
data DS . The difference between these two information entropies
represents the uncertainty reduction or information gain on the
model parameters 𝜃 resulting from the introduction of coalition S.

In contrast to gradient similarity, this metric offers several ad-
vantages. It ensures stability by excluding randomness and doesn’t
require the optimal global model as the reference. Furthermore, it
relaxes the requirement that all clients must contribute positively
to some extent. Even with a few malicious clients, it remains ef-
fective in measuring data utility, as the presence of poisoned data
from malicious clients may increase the uncertainty of model pa-
rameters within their coalitions. However, this metric relies on
the distribution of model parameters, which typically requires the
global model to contain a Bayesian layer [4], and may additionally
introduce challenges in reaching a consensus on specific learning
settings among different clients [62, 72].

3.3 Insights of Choosing Data Utility Metrics
We can summarize the following conclusions regarding the selec-
tion of utility metrics. First, when a test set is available, ModelPer-
formance accurately reflects the data utility. Second, when a test
set is not available, but the datasets from different clients are i.i.d.
without strategic clients, DataQuantity can be used to measure
utility. Third, in cases where no test set is available, and the data
distribution is not i.i.d. without strategic clients and the data dis-
tribution is simple, the data distribution diversity (Volume) can be
employed. In the presence of data replication, RobustVolume is a
better alternative to Volume. Fourth, when no test set is available,
and the data distribution is not i.i.d., but the data distribution is
simple, we can employ model uncertainty (InformationGain) and
gradient similarity (CosineGradient) to measure data utility even
in the presence of adverse behaviors. Finally, when there are a
moderate number of malicious clients or the data distribution is
too complex, no existing metrics can reflect the data utility well.
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4 CONTRIBUTION ESTIMATION SCHEMES
This section presents four schemes for estimating each client’s
contribution to the FL task (denoted as 𝜙𝑖 ), given any data utility
metric 𝑣(·) discussed in Section 3.

4.1 Individual
The Individual scheme determines the contribution of a client in
FL by its data utility, i.e., 𝜙𝑖 = 𝑣({𝑖}). This approach is commonly
employed in practice due to its simplicity and efficiency [10, 31].
However, employing the Individual scheme for estimating a client’s
contribution may neglect the significance of other clients’ data. For
instance, a client with a limited amount of data that complements
the data of other clients can significantly improve the performance
of the global model. Unfortunately, since this client lacks the typical
data found in common test scenarios that most clients possess, it
may be assigned a low contribution.

This absence of constraints makes it challenging to quantify
clients’ contributions to model performance [57], creating unfair
revenue allocation, as each client’s contribution may not accurately
represent their proportionate share of the grand coalition’s utility,
despite normalizing contributions values based on their sum [84].
Note. Another idea in FLCE is to utilize the local datasets and
require clients to self-report their utility results [31, 52] as their
contributions. However, in practice, the local datasets of different
clients come from heterogeneous sources, rendering the assumption
of i.i.d. invalid, and the self-reported utility may be inaccurate.

4.2 LeaveOneOut
The LeaveOneOut scheme, commonly utilized in machine learn-
ing for cross-validation [32], serves as the basis for determining a
client’s contribution by considering the marginal data utility loss
when that client is excluded [27, 34, 55]. Formally, the contribution
of a specific client can be expressed as 𝜙𝑖 = 𝑣(N ) − 𝑣(N\{𝑖}).

When estimating the contribution of a client 𝑖 , the LeaveOneOut
scheme assumes that it is the last addition to the grand coalition
N , which may raise fairness issues. For example, consider a client
coalition S where each client 𝑖 possesses similar but high-utility
data. From the perspective of LeaveOneOut, removing any client 𝑖 ∈
S would not result in a significant reduction in data utility, leading
to the estimation of the clients in S as low-contribution clients.
However, from an alternative viewpoint, removing all clients 𝑖 ∈ S
simultaneously may cause a substantial reduction in data utility.
Additionally, similar to the Individual scheme, the sum of all clients’
contributions is not restricted to a specific value, posing challenges
to revenue allocation.

4.3 ShapleyValue
ShapleyValue originated from cooperative game theory [59] and
has since gained recognition as a promising scheme for estimating
clients’ contributions [19, 68]. The ShapleyValue of client 𝑖 can be
interpreted as the expected value of the marginal utility increase
that results from the inclusion of client 𝑖 in all permutations, de-
noted as 𝜙𝑖 = E𝜋∈Π

[︁
𝑣(S𝑖

𝜋 ∪ {𝑖}) − 𝑣(S𝑖
𝜋 )
]︁
, where Π is the set of all

permutations of clients, S𝑖
𝜋 is the coalition of clients that precede

client 𝑖 in the permutation 𝜋 . However, in practice, a simplified

formula for calculating ShapleyValue can be expressed as follows:

𝜙𝑖 =
1
𝑛

∑︂
S⊆N\{𝑖 }

1(︃
𝑛 − 1
|S|

)︃ [𝑣(S ∪ {𝑖}) − 𝑣(S)]
(3)

where |·| denotes the cardinality of a set, and the term 1
𝑛 represents

the probability that client 𝑖 appears after coalition S and before the
remaining clients in a permutation of N . Equation 3 simplifies the
estimation of client 𝑖’s contribution by considering all coalitions that
do not include client 𝑖 , and computing the weighted average of the
marginal increase in utility resulting from introducing client 𝑖 . The
ShapleyValue scheme offers greater fairness and reasonableness
compared to Individual and LeaveOneOut as it considers all possible
permutations of clients, satisfying a set of properties:

(1) Group Rationality. The utility of the grand coalition equals
the sum of all clients’ contributions [56]. Formally, 𝑣(N ) = ∑︁𝑛

𝑘=1 𝜙𝑘 .
(2) Symmetry. If the marginal contributions of any two clients
are the same across all possible client coalitions, their contributions
estimated by ShapleyValue will also be the same [56, 59]. Formally,
𝜙𝑖 = 𝜙 𝑗 , if 𝑣(S ∪ {𝑖}) = 𝑣(S ∪ { 𝑗}), ∀S ⊆ N\{𝑖, 𝑗}.
(3) Zero Element.When the marginal contribution of a client is
consistently zero across all possible client coalitions, this signifies
that the client’s contribution is zero; that is, the client is a null
player [56]. Formally, 𝜙𝑖 = 0, if 𝑣(S ∪ {𝑖}) = 𝑣(S), ∀S ⊆ N\{𝑖}.
(4) Additivity. If the utility function is the sum of multiple met-
rics, the final contribution is obtained by summing all the partial
contributions based on each metric separately. Formally, 𝜙𝑖 [𝑢 + 𝑣] =
𝜙𝑖 [𝑢] + 𝜙𝑖 [𝑣], where 𝑢 and 𝑣 represent two different utility met-
rics [56, 59].

The symmetry and zero element properties play a crucial role in
ensuring fairness during contribution estimation [26]. The symme-
try property guarantees that each client’s contribution is evaluated
without bias or favoritism, irrespective of the order in which clients
are considered. The zero-element property promises that if a client
is not helpful to any coalition, it will not be considered as a con-
tributor. In addition, the group rationality property ensures that
the contribution represents the allocation of the grand coalition’s
data utility [59]. Furthermore, the additivity property enables the
efficient introduction of new data utility metrics, as new contribu-
tions can be added to the existing ones to obtain the final value,
eliminating the need to recalculate data utilities of original metrics.

However, a limitation of the ShapleyValue scheme is its require-
ment to enumerate all possible coalitions and calculate their data
utilities, which becomes impractical when dealing with a large
number of clients in real-world FL systems. In Section 5, we will
explore optimization techniques to reduce the computational cost
of the ShapleyValue scheme.

4.4 LeastCore
Another well-known cooperative gaming solution concept for FLCE
is the LeastCore scheme [54, 78], which is based on the core theory
that the sum of all clients’ contributions within a coalition should
be equal to or greater than the utility of the coalition [58]. However,
achieving this exact goal may not be feasible in practice. Therefore,
in the context of FLCE, our objective is to minimize the maximum
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Table 1: Comparison of contribution estimation schemes.

Scheme Individual [45] LeaveOneOut [27] ShapleyValue [69] LeastCore [78]
Group Rationality × × ✓ ✓

Symmetry ✓ ✓ ✓ ×
Zero Element ✓ ✓ ✓ ✓
Additivity ✓ ✓ ✓ ×
Stability × × × ✓

Complexity 𝑂(𝑛) 𝑂(𝑛) 𝑂(2𝑛) 𝑂(2𝑛)
Fairness × × individual fairness group fairness

deficit, which represents the gap between the summation of all
contributions in a coalition and the data utility of the coalition.
LeastCore can be formulated as:

min 𝑒 s.t.

{︄ ∑︁
𝑖∈N 𝜙𝑖 = 𝑣(N )∑︁
𝑖∈S 𝜙𝑖 + 𝑒 ≥ 𝑣(S) ∀S ⊆ N

(4)

The LeastCore scheme involves a total of 2𝑛 linear inequality and
one equality constraint, making it a linear programming problem. In
practical implementations, we can compute a solution of LeastCore
using the simplex or the interior-point method [74]. Consistent
with ShapleyValue, LeastCore also satisfies the group rationality
and zero element property. Besides, the LeastCore scheme satisfies
the stability property, which ensures that the contribution sum
of any coalition is maximized compared to its overall utility. For
instance, in specific scenarios where 𝑒 = 0, each coalition is guar-
anteed a reward no smaller than its utility value, a property known
as coalitional rationality [63]. This provision ensures that no client
experiences a loss, discouraging them from leaving the grand coali-
tion, and thus can maintain the stability of the grand coalition in
FL. However, like ShapleyValue, the LeastCore scheme needs to
enumerate all possible coalitions, which may raise feasibility issues
in scenarios with a large number of clients.

4.5 Comparison of FLCE Schemes
Table 1 provides a comparison of FLCE schemes. Generally, In-
dividual and LeaveOneOut are simple and efficient schemes for
estimating contributions. They have a linear increase in time com-
plexity with the number of clients and are commonly used due
to their intuitiveness and ease of implementation. Nonetheless,
these schemes can not ensure fairness or reasonableness without
considering various client coalitions. On the other hand, the Shap-
leyValue and LeastCore schemes satisfy the group rationality and
zero element properties [51], ensuring fairness and reasonableness
in contribution estimation. In particular, ShapleyValue ensures fair-
ness at the individual level while LeastCore emphasizes fairness
at the coalition level with group fairness [78]. Thus, they are ap-
plicable in a broader range of scenarios, though achieving these
desirable properties requires exponential computation cost.

The relationship between contribution estimation schemes and
data utility metrics reveals that the Individual scheme is highly
sensitive to the selected metrics, unlike the LeaveOneOut, Shap-
leyValue, and LeastCore schemes which are more robust due to
their complex calculations. Furthermore, a key distinction between
ShapleyValue and LeastCore is that ShapleyValue supports symme-
try and additivity, whereas LeastCore supports stability. Additivity
allows ShapleyValue to integrate new utility metrics efficiently,
eliminating recalculation of currently used utilities.

5 OPTIMIZATION TECHNIQUES
The efficiency of FLCE can be influenced by two primary factors.
First, certain schemes like ShapleyValue [19] and LeastCore [78]
requires the enumeration of 2𝑛 coalitions. Second, estimating the
contributions of clients necessitates training the model of multiple
coalitions. To tackle the first factor, we can compute the approxi-
mate FLCE results by sampling a subset of the permutations (for
ShapleyValue) or inequalities (for LeastCore). Concerning the sec-
ond factor, we can reuse the gradients from the FL global model
training, thereby avoiding redundant computations. Besides, certain
computations with negligible impact on FLCE can be truncated.

5.1 Sampling
When calculating the ShapleyValue of a client, a naive optimization
approach involves randomly choosing samples from the entire set of
𝑛! permutations ofN and calculates the marginal data utility gains
attributed to the inclusion of this client. Subsequently, the mean
of these marginal data utility gains serves as an approximation of
the client’s contribution to N [19]. Yet, in real-world applications,
relying on random sampling can lead to inaccurate estimates of
contributions. This inaccuracy stems from the unbalanced number
of times different clients appear in a given position in the permuta-
tions. Specifically, a client’s estimated marginal benefit will likely
be higher if it is in the front position in a permutation. To ensure
fairness in FLCE, every client should appear equally at specific
positions in the selected permutations.

5.1.1 Structured sampling. An effective alternative is structured
sampling. Specifically, when approximating the contribution of a
client, structured sampling divides the randomly sampled permuta-
tions into 𝑛 equally sized groups. For the 𝑖-th group, the method
swaps the estimated client with the client at the 𝑖-th position in the
permutation. Then, it calculates the average marginal contribution
of the client being assessed across these 𝑛 groups. This equalizes
the number of samples for each position, ensuring a relatively fair
result for the client being estimated [68].

5.1.2 Guided sampling. In the computation of ShapleyValue, where
data utility metrics like Accuracy are utilized, it is observed that
the marginal contributions of the initial clients tend to be larger
than those of the later clients. Building on this insight, it becomes
apparent that focusing on the clients appearing at the beginning
of the permutations is important. This led to the proposal of the
guided sampling technique. In contrast to structured sampling,
guided sampling works by ensuring that the first 𝑛′ positions of
the sampled permutations encompass all possible permutations
of 𝑃 (𝑛, 𝑛′), where 𝑛′ ≪ 𝑛. Afterward, a random ordering of the
remaining 𝑛−𝑛′ clients is generated. For instance, when 𝑛′ = 1, the
clients must appear an equal number of times in the first position,
while no such requirement exists for the last 𝑛 − 1 positions [42].

5.1.3 Subsampling. The above two methods perform well when
the number of clients is not excessively large, e.g., cross-silo FL [86].
However, in scenarios where each data record is considered a sep-
arate client in a cross-device FL setting, these techniques still ne-
cessitate sampling a substantial number of permutations, leading
to significant computational demands. To enhance computational
efficiency, a subsampling technique tailored for cross-device FL can
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be implemented. This involves selecting a small subset of repre-
sentative clients from the entire coalition N , thereby forming a
smaller coalition N𝑝 . FLCE processes are then applied to clients in
N𝑝 using the above strategies. Following this, a regression model is
trained using the estimated contributions of clients inN𝑝 to predict
the contributions of the remaining clients [18]. Nevertheless, given
the extensive number of clients in cross-device FL, maintaining a
sufficiently large sample size forN𝑝 to accurately represent the full
spectrum of clients in N can be challenging and time-intensive.

5.2 Gradients Reusing
Most FLCE methods typically require extensive model retraining,
leading to high overhead. A practical solution to reduce this cost is
reusing gradient updates from the FL global model training process.

5.2.1 One round reusing. A straightforward approach involves stor-
ing the clients’ gradient updates from the FL global model training,
then reusing these gradient updates in the coalition model training
processes, and finally calculating the data utility of coalitions after
a certain number of rounds. While this method circumvents the
need to recalculate gradients and thereby reduce training costs,
the reused gradients may not represent the actual gradients in
non-global model training processes. This discrepancy can result
in a considerable cumulative error over multiple training rounds,
thereby diminishing the accuracy of the estimated data utility [64].

5.2.2 Multiple rounds reusing. An alternative approach involves
estimating the contributions of each client in each training round
and then aggregating these contributions over multiple rounds to
obtain the overall client contributions [42, 64, 66]. In round 𝑡 , the
central server utilizes the updates from all the 𝑛 clients to compute
the gradient update 𝒖𝑡S for each coalition S. Based on current
global modelM𝑡 , and the gradient update 𝒖𝑡S , the server derives
the modelM𝑡+1

S , and the data utility of coalition S. Then, a client’s
contribution in the 𝑡-th round can be derived based on the utilities of
associated coalitions. Ultimately, it aggregates all the contribution
scores of a specific client over multiple rounds to derive its overall
contribution. Instead of training 2𝑛 models and computing gradient
updates in each model training process, this reusing technique
reduces the model training complexity from exponential (2𝑛) to
constant (1). This method can be further optimized through the
implementation of truncation techniques [42] (see Section 5.3).

5.3 Truncation
In FLCE, certain computations have a negligible impact on the
contribution estimation results. Therefore, eliminating these non-
essential computations, a process known as truncation, can achieve
a trade-off between the efficiency and other properties of FLCE
methods. Note that this truncation strategy can be combined with
sampling and gradient reuse methods when appropriate. Permu-
tation truncation is a prevalent method for streamlining the com-
putation of ShapleyValue, which is based on the observation that
the marginal utility gain from each subsequent client decreases
over the order of permutation. Therefore, once the utility differ-
ence between an initial coalition of clients and the grand coalition
becomes negligible, further calculation of marginal contributions
is considered redundant and can be skipped [19].

Table 2: Characteristics of datasets. "#Domain" is calculated
by multiplying the distinct value counts of all the columns.

Dataset Application #Features #Samples #Domain
Tic-Tac-Toe Board Game 9 958 103

Adult Social Science 14 30 162 1021

Bank Finance and Marketing 16 45 211 1021

Dota2 E-sports 116 102 944 1020

Credit-Card Finance (Fraud Detection) 29 568630 10166

Note. Many other optimization techniques are not illustrated in
this paper, as our primary focus lies on the fundamental FLCE
optimization techniques. These methods can either be considered as
variations of the algorithms discussed in this paper [13, 14, 43, 46, 70,
75, 76] or are not widely studied [1, 19, 25, 31, 37, 44, 61, 69, 80, 85].

6 EXPERIMENT
6.1 Setup
We conducted simulations within an 8-client HFL configuration,
where clients possessed different samples within the same feature
space, all intended for classification tasks. It is important to note
that when the number of clients, 𝑛, becomes excessively large, the
excessive computational complexity associated with ShapleyValue
and LeastCore, which is 2𝑛 , renders our experiments unfeasible.

6.1.1 Datasets. The datasets utilized in this study were sourced
from the UCI Machine Learning Repository [33] or Kaggle [29].
The characteristics of these datasets are shown in Table 2.

(1) Tic-Tac-Toe Dataset [2]. It comprises all possible board lay-
outs at the ends of the games. The label indicates whether the player
who initiates the game and takes the ‘x’ symbols is the winner.
(2) Adult Dataset [3, 35]. Sourced from the US Census database,
this dataset comprises attributes concerning personal information
such as age, workclass, and educational levels. The label variable
denotes whether an individual’s annual earnings surpass $50,000.
(3) Bank Dataset [48–50]. The Bank dataset was sourced from a
Portuguese banking institution, which includes attributes such as
the age, occupation, and marital status of clients. The classification
target is whether a client will subscribe to a term deposit.
(4) Dota2Dataset [67]. This dataset encompasses extensive game-
specific information from numerous rounds of Dota2 matches, e.g.,
the game mode, type, and the selected heroes for both teams. The
classification target is whether team 1 emerges victorious.
(5) Credit-Card Dataset [12]. This dataset contains anonymized
credit card transactions made by European cardholders in 2023. The
objective of the concerned classification is to determine whether a
transaction is fraudulent. We utilized this dataset to evaluate the
effectiveness of FLCE methods in scenarios on large-scale data.

6.1.2 Method Selection. Our experiment covers most of the sur-
veyed data utility metrics, contribution estimation schemes, and
optimization techniques. Nonetheless, a specific few algorithms
were omitted from our experiments due to their incompatibility
with our primary experimental framework, which is designed to
ensure the convincingness and broad applicability of our experi-
ment results. Specifically, we excluded one-round gradient reuse
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Figure 1: Client removal line chart used to assess the effec-
tiveness of FLCE methods. A more effective FLCE method
is expected to decrease faster. The captions are formatted as
x|y|z, where x denotes the data partitioning strategy, y de-
notes the number of clients, and z specifies the dataset name.

from our experiments due to its potential to degrade model train-
ing quality, attributed to the accumulation of errors from gradient
reuse, as detailed in Section 5.2. Furthermore, the implementation
of InformationGain, which requires a customized machine learn-
ing model, was excluded to maintain equitable comparisons across
FLCE methods, as discussed in Section 3.2.2. Subsampling, tailored
for cross-device FL scenarios where each client holds a single data
instance, does not align with our primary focus in this paper, where
clients have multiple data instances.

6.1.3 Metrics. We evaluated the effectiveness, robustness, and ef-
ficiency of various FLCE methods, as elaborated in Section 2.2.
Notably, for comparing method effectiveness, we utilized the client
removal line plot [19, 61], as obtaining the ground truth of clients’
contributions was not feasible in our experiments. In this approach,
after estimating client contributions, clients are removed in de-
scending order of contribution, and the data utility of the remaining
coalition of clients is measured and marked on the figure. As each
iteration removes the top-contributing client, a notable decrease
in the utility of the remaining coalition is anticipated. Rather than
comparing the estimated contribution scores with the ground truth,
the philosophy of the client removal line plot is to visually contrast
any two different FLCE methods, aiming to offer insights into their
relative effectiveness.

6.1.4 Data Preprocessing. The initial datasets underwent encod-
ing, with categorical attributes being transformed using a one-hot
encoder and numerical attributes being converted to their corre-
sponding z-scores. We did not consider string attributes in our
experiment. Following this, a random splitting was made, allocat-
ing 10% of the datasets as test sets while the remaining 90% were
designated as training sets.

Subsequently, the training set was divided and allocated to 8
clients. In practical scenarios, clients are less likely to possess i.i.d.
samples in equal proportions. Thus, we simulated the following
two specific scenarios. The first scenario employed the Dirichlet dis-
tribution [39] to partition the dataset into 8 segments with varying
sample quantities while maintaining identical data distributions

across these segments (Quantity Skewed). By following the ap-
proach suggested in [17, 39], the second scenario divided a dataset
into multiple subgroups based on their labels and then used the
Dirichlet distribution to randomly distribute the samples within
each subgroup across the 8 clients (Label Skewed). This approach
resulted in varying data distributions and quantities across clients.

6.1.5 Settings. The parameter 𝛼 for the Dirichlet distribution was
varied from 0.3 to 0.8. The size of the hidden layer in the 2-layer
MLP model was adjusted between 4 and 24, while the number of
global rounds was set between 3 and 80. The learning rates spanned
from 0.001 to 0.01, and the batch sizes varied from 16 to 256. The
selection of these parameter values was contingent on the inherent
characteristics of the datasets. We repeated the effectiveness and
robustness experiments 10 times and the efficiency experiment 3
times and computed the average outcomes to mitigate the influence
of random variations.

6.1.6 Machine. All experiments were conducted on an Ubuntu
server with 2 Intel CPUs running at 3.10 GHz, 256 GB of RAM,
and 4 RTX 3090 graphics cards, each boasting 24 GB of memory,
and utilizing CUDA 12.1. The implementation of all methods was
carried out using Python 3.9.7 along with PyTorch 1.10.1.

6.2 Effectiveness Experiment
In this section, we assessed the effectiveness of Individual, LeaveO-
neOut, ShapleyValue, and LeastCore. Additionally, two optimized
FLCEmethods, StructuredMC-Shapley andMC-LeastCore, tailored
for accelerating ShapleyValue and LeastCore respectively, were also
evaluated, and a baseline method involving random client removal,
Random, was employed. The results are shown in Figure 1.

We have the following observations. Firstly, ShapleyValue ex-
hibited the most promising performance on various datasets and
FL scenarios compared to other FLCE methods. This is attributed
to the extensive enumeration within ShapleyValue, which aids
in identifying the marginal contributions of clients within coali-
tions. Secondly, LeastCore was less effective than ShapleyValue
with equivalent complexity, because LeastCore is not specifically
designed to identify high-contributing individual clients but to
maintain grand coalition stability. Thirdly, both sampling methods,
MC-LeastCore and StructuredMC-Shapley, exhibit lower perfor-
mance compared to the non-optimizedmethods, suggesting a loss of
effectiveness due to sampling. Fourthly, Individual nearly matches
ShapleyValue performance in quantity-skewed FL, and maintains
a moderate level of performance in label-skewed FL, because of
the positive correlation between data quantity and contributions
under i.i.d. FL setting. However, under label-skewed FL, the hetero-
geneity of data samples across clients makes the performance of a
client’s model an inadequate reflection of its contribution. Fifthly,
LeaveOneOut is the least effective in quantity-skewed FL, only
slightly outperforming Random, but has moderate effectiveness in
label-skewed FL. In quantity-skewed FL, this ineffectiveness mainly
stems from the lack of data distinctiveness among clients, which
leads to only slight performance degradation when a single client
is removed. Besides, the performance of a machine learning task
is not strictly positively related to the quantity of the records. In
label-skewed FL, due to the heterogeneity of data across clients,
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Figure 2: Robustness evaluation of FLCE methods. When considering data replication and random data generation behaviors, a
smaller relative increase in contribution indicates better method performance. Conversely, for scenarios involving low-quality
data and label flips, a greater relative decrease in contribution corresponds to superior method performance.

removing a client can cause sensible model performance decline,
making LeaveOneOut moderately effective.

It’s crucial to note that Individual and LeastCore seem to outper-
form ShapleyValue in theAdult dataset when the client removal rate
exceeds 50%. This indicates their ability to detect low-contributing
clients, resulting in reduced Accuracy towards the curve’s end.
However, as the client removal chart primarily evaluates an FLCE
method’s capacity to identify high-contribution clients, the mid-
dle and end segments of the curve cannot validate Individual and
LeastCore’s superiority over ShapleyValue.

Additionally, we simulated a scenario involving 14 clients par-
ticipating using the Dota2 dataset. Due to the exponential com-
plexity of ShapleyValue and LeastCore, we exclusively deployed
their optimized versions, namely StructuredMC-Shapley and MC-
LeastCore. Under a quantity-skew setting, the experimental out-
comes resembled those in the 8-client setting, leaving LeaveOne-
Out andMC-LeastCore less effective. In the label-skew scenario,
StructuredMC-Shapley outperforms other methods and Individual
exhibits reduced effectiveness, also consistent with observations in
the 8-client configuration.

Finding 1. Most FLCE methods demonstrate effective performance
under the quantity-skew scenario because the data across clients is
homogeneous, where a client’s contribution approximately corre-
lates with its data volume. For label skewed FL, the ShapleyValue
method evaluates a client’s importance by aggregating its mar-
ginal contributions across all possible coalitions, which is likely
the key to addressing FLCE under more challenging settings.

6.3 Robustness Experiment
We simulated four commonly encountered adverse behaviors, com-
prising two strategic actions aimed at increasing individual con-
tributions (i.e., data replication and random data generation), and

two malicious actions designed to harm the global model (i.e., low-
quality data and label flipping). In the context of data replication
and random data generation, a client might duplicate a fraction
of the initial samples and generate new samples, respectively. For
generating low-quality data, we shuffled the labels of partial client
data samples. In the case of label flipping, a portion of the labels
were inverted to their opposite values. For the sake of simplicity
and without loss of generality, we considered a single adverse client
within the FL framework, responsible for altering 30% of the origi-
nal dataset. We assessed the relative change in contribution caused
by these adverse behaviors using the formula in Section 2.2.

Figure 2 demonstrates the robustness of these methods by show-
ing the average and dispersion of relative contribution changes.
The following observations can be made. First, Individual shows
the highest robustness across all adverse behavior, where the av-
eraged relative changes are always 0 or negative. This is because
training models based on different clients’ samples separately can
accurately reflect the impact of adverse behaviors on the data qual-
ity of individual clients. Second, most averaged relative changes
of ShapleyValue and StructuredMC-Shapley are around 0 for data
replication and random data generation and tend to be negative
for low-quality data and label flip, indicating their robustness. This
occurs because strategic behaviors tend to maintain or slightly
decrease the marginal contribution of a client, and malicious be-
haviors can reduce the marginal contribution of a specific client.
Third, despite having theoretically similar complexity, LeastCore
andMC-LeastCore show increased dispersion compared to Shapley-
Value and StructuredMC-Shapley, showing moderate performance
regarding adverse behaviors even though they exhibit negative
relative changes. This occurs because adverse behaviors result in
alterations to the linear programming constraints, which, in turn,
lead to substantial fluctuations in the optimal solution to the con-
tribution estimation problem.MC-LeastCore exhibits notably di-
minished robustness in comparison to LeastCore, implying that

2085



−0.2

0.0

Re
lC

on
Ch

RG | tictactoe

−0.2

0.0

0.2
RG | adult

0.0

0.2
RG | bank

0.0

0.2
RG | dota2

1 2 3
num adverse clients

−0.2

0.0

Re
lC

on
Ch

LF | tictactoe

1 2 3
num adverse clients

−0.2

0.0

LF | adult

1 2 3
num adverse clients

−0.2

0.0

LF | bank

1 2 3
num adverse clients

−0.2

0.0

LF | dota2

Individual
LeaveOneOut

ShapleyValue
StructuredMC-Shapley

LeastCore
MC-LeastCore

0.1 0.3 0.5 0.7
adverse data ratio

−0.5

0.0

Re
lC

on
Ch

RG | tictactoe

0.1 0.3 0.5 0.7
adverse data ratio

0.0

0.5 RG | dota2

0.1 0.3 0.5 0.7
adverse data ratio

−0.5

0.0
LF | tictactoe

0.1 0.3 0.5 0.7
adverse data ratio

−0.5

0.0

LF | dota2

Figure 3: Robustness evaluation of FLCE methods with vary-
ing number of adverse clients (Row 1-2) and adverse data
ratio (Row 3). We use “RelConCh” to represent relative con-
tribution change.

MC-LeastCore possesses only a moderate capacity to replicate the
robustness and stability of LeastCore. This discrepancy arises from
the fact that sampling leads to the loss of linear programming con-
straints, resulting in a change in the optimal point. Last, the changes
in LeaveOneOut contributions exhibit high dispersion and many of
the changes are positive, indicating low robustness of the results.

We also studied the correlation between the robustness and the
number of adverse clients. The results are shown in Row 1-2 of
Figure 3. We observed that the relative contribution change of In-
dividual is not sensitive to the number of adverse clients, because
Individual assesses a client’s contributionwithout considering other
clients. Meanwhile, relative contribution changes for ShapleyValue
and StructuredMC-Shapley remain constant or slightly rise when
the number of adverse clients increases, attributed to the dimin-
ishing data utility of coalitions that include other adverse clients.
Besides, we assessed how robustness correlates with adverse data
ratio in Row 3 of Figure 3. Generally, the relative contribution
changes of ShapleyValue and StructuredMC-Shapley decline with
the increase of adverse data ratio, as these methods can reflect the
reduction of the clients’ data quality by considering marginal contri-
butions. Besides, the relative contribution decrease of Individual is
significantly lower than that of the other methods, since Individual
assigns a relatively high contribution to adverse clients.

Finding 2. FLCE methods that overlook clients’ cooperation, such
as Individual, can reflect the impact of adverse behaviors on
data. FLCE methods that evaluate a wide range of coalitions, like
ShapleyValue and StructuredMC-Shapley, demonstrate robustness
against adverse behaviors. FLCE methods that only consider few
limited client collaborations, such as LeaveOneOut, show reduced
robustness to adverse actions.

6.4 Efficiency Experiment
We measured and compared the computation time overhead of
various FLCE methods, considering both CPU and GPU overhead
required to complete these methods. In addition to the original
methods and their sampling optimized variants,MultiRounds (MR),
a ShapleyValue-based method optimized by the “gradient reuse
technique”, was also evaluated. Note that we only evaluate the

FLCE efficiency, other than the summation of FL training time
and FLCE time. We implemented a cache mechanism to store all
previously computed data utility metrics (if applicable), which elim-
inates the need for redundant re-evaluation of coalitions, ensuring
that the implementation aligns with the theoretical computational
complexity. Figure 4 shows the experimental results.

ShapleyValue and LeastCore exhibited the highest computa-
tional costs, while StructuredMC-Shapley and MC-LeastCore had
relatively high computational requirements. Individual, LeaveO-
neOut, and MR were found to be most efficient. It is important
to note that the time expenditure for MR was lower than that of
StructuredMC-Shapley and ShapleyValue becauseMR only necessi-
tates the training of a single model, whereas StructuredMC-Shapley
and ShapleyValue involve the training of multiple models.

Even though, compared with Individual, MR has a smaller com-
plexity and LeaveOneOut theoretically does not have a greater
complexity, their practical time requirements are notably higher
than those of Individual. The primary reason is that MR, a method
with the same amount of training data and number of rounds as
Individual, necessitates the evaluation of a considerable number
of models (i.e., 𝑂(2𝑛)) during each training round. Conversely, dur-
ing training, Individual does not require such a large number of
model evaluations in each round. In contrast, LeaveOneOut needs
to utilize the combined data of coalitions consisting of all or (𝑛 − 1)
clients to train a model, significantly increasing the volume of
training data and consequently increasing computation time. Ad-
ditionally, despite having the same theoretical time complexity,
StructuredMC-Shapley demonstrates slightly lower computational
costs thanMC-LeastCore. This discrepancy arises because the struc-
tured sampling technique employed by StructuredMC-Shapley en-
ables the reusing of previously calculated utility metric values. In
contrast,MC-LeastCore samples exactly 𝑛2 log𝑛 distinct coalitions
in each round, resulting in longer computation times compared to
StructuredMC-Shapley.

Finding 3. In general, the practical running time of FLCE methods
exhibits a positive correlation with their theoretical complexity,
which is determined by the number of evaluated coalitions. Besides,
the computational cost is also influenced by the quantity of training
data and the selection of optimization techniques.

6.5 Evaluating Various Utility Metrics
In this section, we evaluated the most representative utility metrics,
namely Accuracy, DataQuantity, CosineGradient, and RobustVol-
ume. We chose ShapleyValue as the contribution estimation scheme
to integrate with these metrics, due to its superior ability to effec-
tively estimate contributions.

6.5.1 Effectiveness. Figure 5 demonstrates the effectiveness of Shap-
leyValue with various data utility metrics under quantity skew and
label skew distributions without adverse behaviors. We exclusively
assess the RobustVolume algorithm using the Tic-Tac-Toe dataset
due to its susceptibility to numerical instability, which restricts
its applicability. We do not include an evaluation of Volume in
this paper because the metric exhibits low robustness against data
replication [77] and high computational complexity. In practical
scenarios, obtaining a high-quality test set managed by the central
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server to calculate Accuracy can be challenging, making it impor-
tant to find alternatives. With this consideration, if a utility metric,
when combined with ShapleyValue, exhibits a consistent down-
ward trend in the client removal chart with Accuracy as its vertical
coordinate, it can be regarded as a viable alternative to Accuracy.

We have the following observations. Firstly, CosineGradient is a
strong alternative for Accuracy across various distributions. This
is because the similarity between a coalition’s model gradient and
the global model’s gradient effectively reflects the coalition’s utility
when the global model is considered optimal, without accounting
for malicious clients. Secondly, DataQuantity demonstrates solid
substitutability for Accuracy in scenarios with quantity-skewed
data distribution, but its substitutability is only moderate when
dealing with label-skewed distribution. This difference stems from
the data homogeneity inherent in quantity-skewed distribution,
whereas label-skewed distribution lacks this characteristic. Lastly,
RobustVolume exhibits a moderate level of substitutability for Ac-
curacy across all distribution types. This is because data diversity
does not necessarily align with the proportion of data within the
dataset that contributes to models.

We also assess the utility metrics’ performance in the Collabo-
rative Adverse Behavior scenario, where two adverse clients alter
80% of the original datasets, focusing on one of the key adverse be-
haviors, label flipping, due to space constraints. Figure 6 illustrates
the effectiveness of utility metrics in the presence of label-flipping
behavior within the Collaborative Adverse Behavior scenario. Our
results reveal thatCosineGradient, while demonstrating some effec-
tiveness, has limited substitutability for Accuracy. This limitation
arises when the global model gradient inaccurately represents the
global optimal gradient due to label flip occurrences under label
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Figure 7: Robustness evaluation of utility metrics. Random
data generation (RG) and label flipping (LF) are selected as
examples of strategic and malicious behaviors, respectively.

skew, leading to misjudgments of contributions. BothDataQuantity
and RobustVolume exhibit reduced substitutability for Accuracy as
they do not leverage label information, rendering them unable to
identify malicious clients.

Finding 4. In the absence of adverse behavior, we can use
DataQuantity and CosineGradient as substitutes for Accuracy
in quantity-skewed datasets and CosineGradient in label-skewed
datasets. However, no existing metrics can completely replace Ac-
curacy in cases of heavy adversity like significant label flipping.

6.5.2 Robustness and Efficiency. Figure 7 reflects the robustness of
distinct data utility metrics in scenarios where one client alters 30%
of its data. First, DataQuantity does not possess the capability to
identify random generation and label-flipping behaviors, because it
does not consider data quality. Second, CosineGradient can identify
most label-flipping behaviors, but its robustness against random
generation is low. Third, RobustVolume demonstrates weak robust-
ness against random generation and label flipping because it does
not depend on labels and is unable to identify the quality of labels,
and the term “robust” in its algorithm specifically refers to its re-
silience against replication [77]. Note that RobustVolume exhibited
cases where some relative contribution changes become negative
in the random data generation scenario, which is inconsistent with
the expected results. This is attributed to the numerical instability.
Additionally, the time cost of various data utility metrics combined
with the ShapleyValue scheme can be found in Table 3, aligning
with their theoretical complexity.

6.6 Evaluating Optimization Techniques
We assessed the performance of sampling and gradient reuse tech-
niques to optimize the FLCE process. Truncation is applied in con-
junction with these techniques when it is deemed suitable. We
exclusively showcase the results of the effectiveness experiment
due to space constraints. The experimental results demonstrating
the robustness and efficiency of typical optimized FLCE methods
can be found in Section 6.3 and Section 6.4.

6.6.1 Sampling. We evaluated three techniques, namely random
sampling, structured sampling, and guided sampling, and the stan-
dard ShapleyValuewithout sampling is selected as a baseline.We de-
noted three ShapleyValue variants as TMC-Shapley, StructuredMC-
Shapley, and GuidedTMC-Shapley, where T stands for Truncation
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Figure 9: Effectiveness evaluation of ShapleyValue using dif-
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andMC stands for MonteCarlo. In Figure 8, we can draw the fol-
lowing observations. First, the performance drop caused by TMC-
Shapley is only a little sharper than Random in quantity-skewed
FL. In label-skewed FL, TMC-Shapley has certain effectiveness,
but it is still the worst due to the absence of systematic sampling.
Conversely, the performance drop in StructuredMC-Shapley and
GuidedTMC-Shapley falls between that of TMC-Shapley and Shap-
leyValue, suggesting that the systematic sampling technique can
improve the effectiveness of methods.

6.6.2 Gradient Reuse. We conducted an evaluation of two con-
tribution estimation methods based on gradient reuse: MR and
Guided Truncation Gradient Shapley (GTG-Shapley). The results,
depicted in Figure 9, yield the following observations. First, in
cases of quantity skew distribution, both GTG-Shapley and MR
exhibit smaller decreases in Accuracy compared to ShapleyValue
and StructuredMC-Shapley. Second, in the context of label skew,
both GTG-Shapley and MR show moderate decreases overall. Both
observations suggest a relatively limited ability of gradient reuse
methods to identify highly contributing clients. This is primarily
due to GTG-Shapley and MR relying on the global model’s perfor-
mance, which may not accurately reflect the model’s performance
when trained solely on specific coalitions. Last, the magnitudes of
the decreases identified by GTG-Shapley and MR are similar in
most scenarios, implying that GTG-Shapley serves as an effective
approximation and improvement overMR.

7 PROSPECT
Following our comprehensive review of the literature and analysis
of experimental results, we have observed that research efforts in
the field of FLCE have only begun to emerge in recent years, with
many proposed methods still distant from practical implementation
in FL systems. In light of these findings, we suggest the following
prospects that may serve as inspiration for future work in FLCE.

Table 3: Efficiency evaluation of utility metrics (in seconds).

Dataset Accuracy DataQuantity CosineGradient RobustVolume
Tic-Tac-Toe 8.26 × 102 1.09 × 10−2 1.67 × 101 2.01 × 101

Adult 1.96 × 103 3.93 × 10−2 1.92 × 101 /
Bank 2.34 × 103 3.73 × 10−2 2.09 × 101 /
Dota2 7.88 × 102 7.13 × 10−1 6.94 /

(1) UtilityMetric.Ametric is needed to identify adverse behaviors
efficiently with minimal computational expense, without relying
solely on data quantity or diversity to avoid unjustly rewarding
strategic clients. Ideally, this metric would align with the mathemat-
ical principles of cooperative game theory, such as additivity [6].
(2) FLCE Scheme. No contribution estimation scheme exists that
can fulfill the criteria of effectiveness, robustness, and efficiency
simultaneously. It would be beneficial to either explore a more
balanced trade-off among these three aspects or prove that it is not
feasible to simultaneously meet all three requirements in FLCE.
(3) Optimization Technique. The current sampling techniques
have been tailored for ShapleyValue, and there has been no ex-
ploration of sampling techniques, such as systematic sampling,
specifically designed for LeastCore. Besides, while gradient reuse
techniques theoretically tackle the problem of high estimation costs
compared to model training costs, their practical effectiveness and
efficiency remain sub-optimal, necessitating further investigation.
(4) Benchmarking. Our paper focused on binary classification
datasets with structural data due to space constraints. Future re-
search could explore multi-classification and regression datasets,
as well as image datasets. Furthermore, due to the lack of widely
recognized real-world FL datasets, there is a need to create realistic
partitioned FLCE datasets and establish a ground truth for clients’
contributions.

8 CONCLUSION
In this paper, we have undertaken an extensive examination of
contribution estimation methods in FL and have introduced a com-
prehensive evaluation framework. Our analysis encompasses data
utility metrics, contribution estimation schemes, and optimization
techniques, offering valuable insights for prospective research en-
deavors. Our comprehensive evaluation encompasses a wide range
of scenarios and datasets, thereby serving as a benchmark for eval-
uating the performance of contribution estimation methods in the
context of FL. Through rigorous analysis, we have identified the
strengths and limitations inherent in various methods, thereby
contributing to the advancement of more effective contribution
estimation methods for FL. Our adaptable testing framework ac-
commodates both existing and forthcoming methods, simplifying
the evaluation process in this ever-evolving domain. In summary,
this research not only advances the theoretical aspects of FL con-
tribution estimation but also enhances our understanding of the
practical implementation of FLCE methods.
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