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ABSTRACT
We apply foundationmodels to data discovery and exploration tasks.
Foundation models are large language models (���s) that show
promising performance on a range of diverse tasks unrelated to their
training.We show that thesemodels are highly applicable to the data
discovery and data exploration domain. When carefully used, they
have superior capability on three representative tasks: table-class
detection, column-type annotation and join-column prediction. On
all three tasks, we show that a foundation-model-based approach
outperforms the task-speci�c models and so the state of the art. Fur-
ther, our approach often surpasses human-expert task performance.
We investigate the fundamental characteristics of this approach in-
cluding generalizability to several foundationmodels and the impact
of non-determinism on the outputs. All in all, this suggests a future
direction in which disparate data management tasks can be uni�ed
under foundation models.
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1 INTRODUCTION
Data discovery and exploration are major components of the work-
�ow of analysts and data scientists. A survey conducted by the
Anaconda data-science platform in 2021 found that analysts spend
40% of their working hours on data loading and cleaning [2]. Even
with this colossal e�ort, 60-70% of datawithin an enterprise still goes
unused for analytics [21], remaining as dark data [23, 63].

Recent developments in large language-models (���s) have un-
locked human-level performance on diverse domain tasks. The dis-
covery that these models can generalize to diverse domain-speci�c
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<COL 4, VIN ID>

Brand ? ZIP ?

Nissan Leaf 98112 JN1AZ0CP4C

Tesla Model 3 98074 5YJ3E1EBXL

Ford Transit 98501 1FTBW1YKXP

Hyundai Ioniq 5 98027 KM8KRDAF6P

② Annotate each column with an 
ontology semantic type […]

Make | Model | Zip |  
VIN Prefix

ElectricVehicle

① Detect the ontology class the table 
represents […]

③ Which columns to join on? […]

License No. VIN ID

CHORUS

CHORUS

CHORUS

CHORUS

CHORUS

…
CHORUS

···

Figure 1: Data discovery tasks considered in this work. Given
an ontology, such as DBPedia, 1� we assign an overall type
to the table and 2�we annotate the columns with semantic
types. Last, given another table, 3�wepredict the join column.
The user provides the data while ������ interacts with the
foundationmodel. Data from [44], full prompts in Figure 3.

tasks that they have not been trained on [3, 26, 59, 60] has led to
emergence of the term foundation models [5].

Despite their promise, serious risks have hampered the reception
of foundationmodels. These include: spurious generation (including
“hallucination”) [24], factual recall limitations [39], bias [19], dataset
contamination [14], logical shortcuts [50] and fallacies [38]. Naïve
deployment can lead to unanticipated problems: it has already led to
legal action [11] and recalls by major corporations [22]. These risks
are now acknowledged by the creators of these models [6, 45, 54].

The goal of this paper is to demonstrate the utility of founda-
tion models to the data discovery and exploration while mitigating
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the aforementioned risks. We select three representative tasks to
show the promise of foundation models: 1� table-class detection, 2�
column-type annotation and 3� join-column prediction. An outline
of our approach is shown in Figure 1. We call our approach ������.

Contributions. We summarize our contributions:

– The �rst work to use foundation models for the data discov-
ery tasks of table-class detection, column-type annotation
and join-column prediction;

– Propose a novel system, ������, whose �exible architecture
enables the synthesis of multiple data discovery tasks and
deploying risk mitigations;

– Design task-speci�c approaches that exploit zero- and few-
shot strategies and allow information �ow between tasks;

– Introduce thenovelmitigationofanchoring to reduce foundation-
model risks speci�c to this domain;

– Empirically validate ������, comparing its performance
with the state-of-the-art baselines across three individual
tasks.

Discussion. Prior work has addressed these tasks individually.
Landmark approaches like Sherlock [27] trained deep model archi-
tectures for a speci�c task, requiring 100K-1M labeled data points.
More recent work such as DoDuo [52] and TaBERT [62] has focused
on representation learning, learning embeddings for structured data
by improving their performance on one or more downstream tasks.

Foundationmodelsallowasubstantiallydi�erentapproach: rather
than the classical architecture where the outputs of the model are
task-speci�c, the inputs and outputs of the model are natural lan-
guage text. Training occurs not on tables or data management tasks
speci�cally, but on general text. Performance on domain-speci�c
tasks is solely by generalization.

This results in a high degree of �exibility. Novel tasks can be spec-
i�ed in natural text, without need for expensive data collection—task
examples,metadata and constraints are all incorporated into the task
easily. Another advantage of this approach is a uni�ed architec-
ture: tasks can utilize the overall context and previous outputs. For
example, in Figure 1 the table class ElectricVehicle helps with
deducing the outputs Make, Model in the next task.

Outline. Section2de�nes the three tasks investigated in thispaper.
Section 3 describes the architecture of ������ and key approaches.
We evaluate the performance of ������ in Section 4’s experiments.
In that section,we also investigate the fundamental characteristics of
this approach.We o�er a discussion of those results in Section 5. This
includes a discussionof promising future directions. Finally,weplace
this workwithin the literature in Section 6, discussing related works.

2 BACKGROUND
2.1 Tasks
We assume to be given a data collection consisting of a number of re-
lational tables)1,)2,.... Each table)8 consists of a number of columns,
or attributes,�1,�2,... and a number of rows, or tuples, A1,A2,... The
name of a table)8 is, in general, non-informative, for example it may
be simply a sequential ��. The columns may optionally have a name
�1,�2,... or consist only of values.

In addition to the data collection, we are also given a reference on-
tology of table classes⇠1,⇠2,..., and a reference ontology of column
typesg1,g2,.... Forexample, theDBPedia.org types for the table classes
include https://dbpedia.org/ontology/Actor andhttps://dbpedia.org/
ontology/Continent and column types include https://dbpedia.org/
ontology/areaTotal and https://dbpedia.org/ontology/birthDate.

We consider three tasks of interest on the data collection:

De�nition 2.1 ( 1� Table-class detection). For each table)8 , deter-
mine its appropriate class⇠ 9 , such that every row A1,A2,... represents
an instance of the⇠ 9 type. We adopt this de�nition from [33].

For example, table-class detection on the table given in Figure 1
could output ElectricVehicle, since each row of that table is
an instance of that class. Alternatively stated, the table is about
ElectricVehicles.

De�nition 2.2 ( 2�Column-type annotation). For each table)8 ,�nd
a mapping from its attributes (columns) �1,�2, ... to the reference
column types g1,g2,..., such that each value in�8 is an instance of the
g8 type. See [1, 13].

For example, column-type annotation on the �rst column in Fig-
ure 1 could output Manufacturer, since the values are the respective
manufacturers of each ElectricVehicle.

De�nition 2.3 ( 3� Join-column prediction). Assume an execution
log !, a history of user actions including table joins and their join con-
ditions, which maps many ()8 ,)9 )! (�: ,�; ) where�: 2)8 ,�; 2)9 .
Given two tables ) and ) 0, with columns �1, ... and �0

1, ... respec-
tively, the join-column prediction task is to suggest a pair (�: ,�

0
; ) of

columns such that the equality condition�: =�0
; , which can be used

to join the the tables, matches with the choice in the execution log
!. For more discussion, see [61].

For example, given the table in Figure 1 and another table car_
registration(name, vehicle_id_number), join-column predic-
tion could output (VIN_prefix, vehicle_id_number). The cor-
rectness of the prediction depends on the ground truth of which
columns the user did in-fact join on.

Ontologies Foundation models contain knowledge of ontologies
such as DPBedia.org, Freebase andWikidata. We focus on universal
ontologies, that is, ontologies that aim to represent all entities in
general. This is in-line with �ndings that foundation models en-
code highly technical knowledge, such as clinical reasoning [51] or
electrical engineering principles [53].

3 APPROACH
We outline the structure of ������ in this section. First, we explore
the core idea of ingesting relational data with foundation models
and performing data exploration tasks in Subsection 3.1. Next, we
describe the necessary post-processing and mitigations we develop
in Subsection 3.2.

Figure 2 shows the architecture of the system. C����� has a
uni�ed architecture which runs multiple tasks in the same context,
allowing for information �ow. Each task is run sequentially, with
the output of one task fed as context into future tasks.

For each task instance, C����� generates a prompt by concate-
nating six inputs: context, demonstration, data samples, metadata,
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Figure 2:C����� system architecture.
task-speci�c knowledge, and pre�xes. They form the “Model In-
puts” box in Figure 2 and are color-coded so that they match the
colored prompt components in Figure 3. This natural language input
is then fed to the foundation model. The output is then subject to
post-processing: checks of parsability and feasibility are conducted.
If these pass, the output is extracted. Otherwise, we activate a mit-
igation process, called anchoring, in order to repair the error and
prevent its propagation.

3.1 Model Inputs
We discuss what inputs are provided to the foundation model and
how they are pre-processed and synthesized.We discuss the six com-
ponents of the Model Inputs module in Figure 2, individually. These
correspond to the six color-coded prompt components in Figure 3.
Once generated, all the above inputs are concatenated to into a single
prompt provided to the model.

Instructions. A description of the speci�c task (table-class detec-
tion, column-type annotation or join-column prediction) is provided
to the foundationmodel in natural language. These are shown in yel-
low in Figure 3. For example, we translate the formal De�nition 2.1
of the �rst task, table-class detection, into the English sentence “For
the following CSV sample, select one DBpedia.org ontology that
represents the dataset.” For the third task, join-column prediction,
we utilize a code-completion approach. We frame the task as code-
completing a Pandas fragment that performs a join, with the code to
complete shown in Figure 3c. We choose Pandas because it is a very
popular framework,withmore thanmillions of example lines of code

Legend: Instruction, Demonstration, Data sample, Metadata,
Task-speci�c knowledge, Pre�xes.

For the following CSV sample, select one DBpedia.org ontology that
represents the dataset from the following list:
AcademicJournal, AdministrativeRegion, Airline, Airport, [. . . ],
University, VideoGame, Work, Wrestler.
For example, for a dataset about hospitals, return
�https://dbpedia.org/ontology/Hospital�. Begin your answer with
’https://dbpedia.org/ontology’.
���
Brand, �, ZIP, �,
Nissan, Leaf, 98112, JN1AZ0CP4C,
Tesla, Model 3, 98074, 5YJ3E1EBXL,
[...]
���

(a) Table-class detection

Consider this example. Input:
���
Name, Famous Book, Rk, Year
Fyodor Dostoevsky, Crime and Punishment, 22.5, 1866
Mark Twain, Adventures of Huckleberry Finn, 53, 1884
Albert Camus, The Stranger, -23, 1942
���
Output:
�dbo:author, dbo:title, Unknown, dbo:releaseDate�.
For the following CSV sample, suggest a DBPedia.org Property for each
column from the �dbo:�namespace.
��� [...] ���

(b) Column-type annotation

Given two Pandas Dataframes, suggest what �pd.merge�
parameters to use to join the dataframes.
df1 =
��� [...] ���
df2 =
��� [...] ���
Complete the correct Pandas merge command. �pd.merge(df1, df2, left_on=

(c) Join-column prediction

Figure 3: Prompts used in this paper, materialized with
examples. Most prompt elements are �xed—only the data
sample andmetadata change for each instance.
on theweb. This is the zero-shot prompt setting: themodel can be pro-
vided with instructions for a novel task and performs them directly.

Demonstration. For the �rst two tasks, we use the foundation
models with task examples as an additional input: this is called the
few-shot prompt setting. The model is given a few demonstrations
of task completion, including inputs and outputs. This is shown in
Figure 3 as green text.

Data sample. By serializing the input tables, we can input them
into foundation models. For example, consider the example table
from Figure 1 in the introduction. Serializing the table allows the
foundation model to ingest the data. We use the comma-separated
values (���) format, shown in blue in Figure 3.

Because themodels have a limited contextwindow size—typically
in the few thousands of tokens—tables cannot always be ingested as
a whole. Instead, we always serialize a sample of the rows. We �nd
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a sample size of �ve is su�cient. Intuitively, it su�ces to consider
only a few values to determine column type.

Metadata. Schema information including column names (head-
ers) and keys can be incorporated into the input, above the serialized
data sample. We found that foundation models can adaptively infer
whether the �rst column of the input is a header or data row, with
no modi�cation of the input required. This is shown in orange in
Figure 3.

Task-speci�c knowledge. For some tasks, additional information
can be used to guide the model. For 1� table-class detection, if only
certain output classes are desired, these can be listed to the model.
Themodelwill take these instructions into accountwhen generating
an output but they are not hard constraints. The encoding of such
additional constraints for the table-class detection task is shown in
Figure 3a.

Pre�xes. We also provide the model with pre�xeswith which to
complete. This includes the DBPedia format for the table-class detec-
tion task and a Pandas code fragment for the join-column prediction
task. Both pre�xes are highlighted in pink in Figure 3. Pre�xes in-
crease the likelihood the model will provide the output in a parsable
format rather than deviating into a natural language description.

3.2 Model Harness
The foundation model is run within a harness that parses outputs
into a symbolic representation and mitigates errors.

Constraint checks. Because the model is not constrained in its
outputs, it may not always output a feasible answer. In this setting
we impose three constraints: table typesmust belong to the ontology
classes, column types must belong to the ontology properties and
joins must be on existing columns. An output is infeasible if, in par-
ticular, it is not parsable or if it violates any of the three constraints.
If this occurs, ������ performs anchoring.

Anchoring. If the constraints are violated, we do not simply move
on to the next task. The risk is of hallucination snowballing [65]:
once a foundation model makes a single spurious generation, sub-
sequent outputs are more likely to also be wrong. The model will
make mistakes it would otherwise be able to avoid. For example, in
Figure 4(a): oncenonexistent classiucnStatus is suggested, another
nonexistent class animalName follows. Becausewemaintain context
across tasks, we are particularly vulnerable to this.

We call the novel domain-speci�c mitigation we deploy anchor-
ing, shown in Figure 4(b). C����� ends the conversation when an
error is detected. It then initiates a new conversation, feeding the
���with a false history in which the ��� did not hallucinate. This
is possible because the conversational ��� takes as input the full
history text, whichwe can retroactivelymodify.We insert arti�cially
an existing class from the ontology (e.g. the nearest neighbor in the
embedding space to the non-existing class). Fed with this cleaner
input, the model is able to directly provide the correct answer.

4 EXPERIMENTS
We empirically evaluate ������ on the three tasks de�ned in Sec-
tion 2.1. For each task, we select a task-speci�c benchmark and
compare with baselines representing the state of the art. Table-class

(a) Nearest-neighbor (NN) 
Embedding (b) Anchoring

❌  animal 
Name

❌ iucn 
Status

✅  binomial

Annotate column 1 with a 
semantic type […] CHORUS

Annotate column 1 …

Annotate column 2 with an 
semantic […]

Annotate column 1 with a 
semantic type […]

CHORUS

✅  
conservation 

Status#  NN

search

Annotate column 2 with a 
semantic type […]

#  NN

search

❌  animal

❌ iucn 
Status

✅  
conservation 

Status#  NN

search

CHORUSRestart conversation

CHORUS

Clean inputs Dirty inputs

✅ conservation 
Status

Figure 4: Anchoring illustrated. The LLM hallucinates an
imagined label, iucnStatus. Under the standard approach,
this poisons all the upcoming tasks; the nearest-neighbor
post-processing cannot recover and outputs the incorrect
label animal. With anchoring, ������ intervenes when the
�rst error is detected. A new conversation is started and a
synthesized (false) history is provided to the LLM, in which
it did notmake themistake.With only clean inputs, LLM is
able to correctly answer the next task correctly: binomial.

detection 1� is evaluated inSection4.1, 2�column-typeannotation in
Section4.2, and 3� join-columnprediction inSection4.3.Thecode for
the experiments in available at https://github.com/mkyl/CHORUS.

Baselines. We considered the following state-of-the-art systems
for data exploration: relevant systems include T����� [62], D��
D�� [52], Sato [64], TURL [13], TaBBIE [29], Auto-suggest [61],
TrifectaWrangler [56], Paxata, Tableau Prep, and Sherlock.D�D��
outperforms TURL and Sherlock on column-type annotation [52], so
we select it for evaluation. Sato and Sherlock are similar, with Sato
utilizing additional signals not found in our benchmarks, so we eval-
uate the better-established Sherlock. TaBBIE can embed tables but is
not trained on column-type annotation unlike DoDuo and Tabert, so
we avoid it for the column-type annotation task. T����� is a work
similar to DoDuo and TURL, but from the NLP community rather
than the data management community, so we also test it too. For
join-column prediction, TrifactaWrangler outperforms Paxata and
Tableau Prep [61]. Auto-Suggest is reported to outperform Trifacta
Wrangler, but is a proprietary research project not released publicly.
Thus we select TrifactaWrangler for testing.

For the evaluated prior worksT�����,D�D��, TrifectaWrangler
and Sherlock [27, 52, 56, 62], we utilize each tool if applicable to the
task. If the baseline is not designed for a particular task, but can be
straightforwardly adapted, we do so. We describe all modi�cations
in the task subsection and always use established adaptations if
available. If the modi�cations required would be extensive enough
to become their own research project, we consider that task un-
supported. In all cases, we use the pretrained embeddings without
modi�cation, as providedby the authors. Table 1outlines the systems
we tested and tasks they support.
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Table 1: Capabilities of related systems. Only our system
supports all studied tasks out-of-the-box and without
additional training.

System Table-
class
detection

Column-
type
annotation

Join-
column
prediction

D�D�� [52] l 3 7
T����� [62] l 3 7
Sherlock [27] 7 3 7
TrifactaWrangler [56] 7 l 3
C����� 3 3 3

3 supported out-of-the-box, 7 no support
l required modi�cation or training data collection (see text)

Table 2: Summary of the datasets used in the paper. Numbers
indicate the size of the data used.

Dataset Title # Tables Avg. #Columns Avg. Rows

T2������� v2 237 7.41 118
V��N�� ⇠10 600 3.03 5 200
GitNotebooks 24 579 30.9 60 242

Overall 35 416 23.0 43 491

D�D��provides two embedding variants: one trained on theWik-
iTables dataset and another on VizNet. We label themD�D���W���
andD�D���V��.

Datasets. Table 2 outlines the three experiment benchmarks we
use. For the table-class detection task, we test on the T2D-class v2
dataset [48], a “gold standard” corpus of 237 tables, manually anno-
tated by experts with one of 39 DBPedia.org classes. These tables
were in turn selected from the Common Crawl corpus of web ta-
bles [17]. For column-type annotation, we sample a subset of the
VizNet dataset [25], extracted by the Sherlock team [27], comprised
of32386 columnswithoneof�fteen types fromapproximately10600
tables. This is in line with prior work that uses VizNet [28]. For the
join-column prediction task, we use a dataset we call GitNotebooks,
extracted by the Auto-suggest team [61]. We select 300 tables from
that dataset forwhichwehave join data to runmanually.Hereweuse
a sample as one of the baselines, TrifactaWrangler, does not have an
API but instead predictions must be produced manually. Separately,
we runall 24 thousand tables on thebaselineswith an���. For the�rst
two tasks, which require de�ning a type system for classes and prop-
erties,weuse theDBPediaontology[40] forourexperiments.This isa
community-sourced ontology and is the standard in previous studies.

Setup. We use the GPT-3.5 model [45] as it is the most widely-
available largemodel with ��� access at the time of writing. All other
code was run on a commodity laptop with 8 physical ��� cores and
16GB of main memory. Running all experiments came to a total of
$20 in ��� costs.

We evaluate using the metrics precision, recall and �1 score. Preci-
sion is theproportionof truepositive results out of the total predicted
positive results, while recall is the proportion of true positive results

out of the total actual positive results in the dataset. The �1 score is
theharmonicmeanof precision and recall. Sincewedealwith amulti-
class setting,we calculate thesemetrics for each class separately then
aggregate by taking the mean, weighted by the class size. Weighted
precision, recall and �1 are the standard metrics in prior work [7, 27,
52, 64]. We also report average throughput and cost for each task.

4.1 Table-class detection
For the �rst task, 1� table-class detection, we tag each table with the
DBPedia ontology entry that represents the row-type of the data. Of
the 1 000 datasets that comprise the T2Dv2 dataset, 237 tables have
table-class correspondences available while 763 do not—we exclude
the unlabelled ones from the supervised evaluation. We call this
subset of 237 annotated tables T2D-class v2 and use it for evaluation
on this task. We note that only 40 classes are utilized in this “gold
standard” mapping, while DBPedia ontology has 769 classes.

We compare against the baselines D�D�� and T�B���. No ap-
proach in the prior work provides out-of-the-box capabilities on this
task, so we add a classi�cation layer on top of the pretrained embed-
ding layer. After computing the column embeddings usingD�D��
or T�B���, predictions are extracted by adding a pooling layer, fed
to a multi-layer perceptron, and then �nally taking the soft-max.
This is a straightforward method of adapting the embeddings to our
multi-class setting, used in prior benchmarks for table-class detec-
tion [33].We �x the embeddings to their pretrained values and learn
theweights of the classi�cation layer using�ve-fold cross-validation.

Supervised variant. To allow for comparisonswith prior work, we
initially restrict our system to picking out of the 33 classes. This is
because all other approaches require training on labelled instances—
the baselines cannot predict outside those classes. We test 33 classes
rather than 40 because the classes that occur only once cannot be
tested on baselines that require supervised training (DoDuo and
TaBERT), since a result requires a disjoint training and test set.

Table 3 shows the results.C����� improves on the three baselines
on all metrics. �1 score is improved by 0.169 points, precision by
17.5 percentage points and recall by 15.5 percentage points. Of the
baselines, DoDuo-Wiki provides the best �1 and precision, while
TaBERTprovides the comparable recall. The best performingmodels,
TaBERT and DoDuo-Wiki are trained on CommonCrawl, a superset
of the T2Dv2 benchmark. DoDuo-Vizwhich is trained on the VizNet,
a dataset disjoint from T2Dv2, has the weakest performance. The
numbers for TaBERT are in line with prior replications [33], while to
the best of our knowledge this is the �rst benchmarking of DoDuo
on this task.

Unsupervised variant. Next, we relax the classi�cation domain,
allowing the foundationmodel to choose any of the 768 classes of the
DBPedia ontology. We then compare the quality of the classes with
that of the human-expert labels. DoDuo and TaBERT are not eval-
uated in this task setting as they cannot predict outside the classes
they have observed in training.

For 93% of tables, our system produces correct results. Of that
portion, 83 percentage points are comprised of exact matches, while
10 percentage points are better-than-correct results. This means we
judge the predicted labels are clearly and unambiguously better than
those selected by the benchmark authors. This is a strong claim so
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Table 3:Weighted �1 scores for table-class detection on T2Dv2
dataset. Systems are compared with the expert-annotated
classes for each table. The = = 237 tables each correspond to
one of 33 DBPedia.org classes.

�1-score Precision Recall

DoDuo-Viz 0.654 66.8% 68.3%
DoDuo-Wiki 0.757 78.6% 76.9%
TaBERT 0.746 76.3% 76.8%
C����� 0.926 96.1% 92.4%

we list all such datasets in the technical report [31], with evidence.
For the �nal 6% the answer is incorrect: this can mean the answer
is wrong or simply worse than the label provided by the expert.
This means that on the relations where ������ and the expert-label
disagree, our system is 1.6⇥more likely to be correct.

C����� has a throughput of nearly 31 tables per second on this
benchmark and cost an average 2.5¢ per 100 table-class predictions.

4.2 Column-type annotation
Next, we compare the ability of our system to assign classes to table
columns. V��N�� is a collection of tables, extracted by the Sher-
lock [27] team from the VizNet repository [25] of data visualizations
and open datasets. VizNet comprises 31 million columns in total, of
which a test set of 142 000 can be used for evaluation—the rest have
trained on by DoDuo and Sherlock. Of those, we select a subset of
15 classes which are supported by both DoDuo-Wiki and DoDuo-
VizNet (these baselines support a disjoint set of classes), arriving at
32 386 test columns used as a benchmark in this section.

Baselines. We compare against TaBERT [62], DoDuo [52] and
Sherlock [27] on this task. Since Sherlock and DoDuo are designed
for column annotation, we use the out-of-the-box model provided
by the original teams.We restrict both to the �fteen target classes
by setting the probabilities of non-target classes to zero. For DoDuo-
Wiki, which supports a distinct set of classes, we perform a manual
mapping to the class names used by DoDuo-VizNet and Sherlock.
For TaBERT we train an additional classi�cation layer on top of the
pre-trained embeddings that these frameworks provide. We �x the
embeddings to their pretrained values and learn the weights of the
classi�cation layer using �ve-fold cross-validation.

Results. Table 4 contains the results for the V��N�� dataset. Our
��-based approach improves performance on the measured metrics
of �1-score, precision and recall. The best performing method is
Sherlock, narrowly beating DoDuo-VizNet, with a 0.954 �1 score. If
we considermethodswhich are not speci�cally pretrained onVizNet
(note, which is also the test set) ������ is the best performing on
all three metrics. It has comparable �1 and precision to Sherlock, but
6 percentage points lower recall.

Note in particular DoDuo-Wiki, which does not have access to
VizNet at pretraining time, has a large regression in performance
compared to DoDuo-Viznet, nearly half �1 points. This drop is in
line with previous results, see Section 5. We sanity-check the low
scores of TaBERT by replicating previously reported scores [33].

Table 4: Weighted �1 scores for column-type annotation
on V��N�� test set, with = = 32 000 columns. Systems are
compared with the “gold standard” classes for each column.
Methods which are also pre-trained onV��N�� are marked
with an asterisk ⇤.

�1-score Precision Recall

DoDuo-VizNet⇤ 0.876 89.4% 87.2%
Sherlock⇤ 0.954 96.2% 94.6%

TaBERT 0.321 32.6% 32.0%
DoDuo-Wiki 0.440 59.2% 45.4%
C����� 0.891 91.2% 88.8%

C����� achieves a competitive throughput of 41 columns per sec-
ond (col/s), comparable to Sherlock’s 50 col/s and exceedingDoDuo’s
7.3 col/s and TaBERT’s 4.5 col/s. This corresponds to benchmark
completion in 13minutes, as contrastedwith over 2 hours 10minutes
for TaBERT. The average cost of GPT-3.5 calls for this task was 1.3¢
cents per 100 columns.

4.3 Join-column prediction
Finally, we evaluate our approach’s ability to suggestwhich columns
are the correct choice for a join, the join-column prediction task.
We use the GitNotebooks dataset from [61], a collection of 4 million
Python notebooks (and their associated relational tables) including
24 thousand joins collected from Github. One of the baselines, Tri-
facta Wrangler, requires manual execution and recording of each
prediction. For that reason we restrict this benchmark to 300 ran-
domly sampled tables.

Baselines. For this task, we compare with three baselines. Jac-
card similarity, � , is the �rst. Two columns are selected such that
argmax22⇠) ,20 2⇠) 0 � (2,20) where � (- ,. )= |-\. |/|-[. |. This is a
commonly used approach in the literature [10, 12, 43, 61]. Another
baseline is Levenshtein distance [37], which selects the pair of col-
umn names with the smallest edit distance between them. The �nal
baseline is Trifacta Wrangler [56], a commercial product spun o�
from the Wrangler research line [30]. When joining two tables in
this product, it suggests the keys on which to join them. As no ���
was available, we obtain all Trifacta predictions by joining manually.

Results. Table 5 shows the quality of estimates for our approach
and the baselines. We measure the quality of the predictions by the
same criteria as the previous tasks. By these metrics, our approach
improves the quality of predictions and beats the next-best approach
by a clear margin: �1 score is improved by 0.072, precision by 8.4
percentage points and recall by 6.0 percentage points. This perfor-
mance is maintained when scaling to the full dataset. On this task,
our system has an average throughput of 23.5 predictions per second
and cost approximately 5¢ cents per 100 predicted joins.

4.4 Dataset contamination
Here we perform an experiment to validate whether any of the
testing data occurred in the training corpus of the large-language
model, an issue called dataset contamination or data leakage. Because
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Table 5: �1 scores, precision and recall for the join-column
prediction task on GitNotebooks dataset.

�1-score Precision Recall

Manually-run subset, ==300
Jaccard 0.575 60.7% 54.7%
Levenshtein 0.718 72.3% 71.3%
TrifactaWrangler 0.823 82.6% 82.0%
C����� 0.895 91.0% 88.0%

Full dataset, ==24 579
Jaccard 0.458 63.3% 35.9%
Levenshtein 0.777 78.7% 76.8%
TrifactaWrangler No ���
C����� 0.912 93.2% 89.4%

Table 6: Data contamination experiment.Weighted �1 scores
for table-class detection on public benchmarks versus tables
the foundationmodel is guaranteed to have not been trained
on.

Dataset �1-score Precision Recall

Public benchmark (VizNet) 0.865 90.1% 86.7%
Guaranteed-unseen 0.857 90.0% 81.8%

these models are trained on internet data [18] and we use public
benchmarks, they may have seen the test data in training.

We test on seven guaranteed-unseen tables (listed in the technical
report [31]) and their columns, all uploadedbetweenApril–June2023
to the federal data repository Data.gov. They are guaranteed-unseen
because the foundation model training was completed on or before
March 2023. Repeating the supervised column-type annotation task
as in Section 4.2, we measure a 0.857 �1 score, 90.0% precision and
81.8% recall. This is within 0.01 �1 points, 0.1% precision and 5%
recall of the benchmark results. See Table 6. The recall drop re�ects
the datasets being more diverse and therefore di�cult to classify.

4.5 System characteristics
Determinism. We examine the impact of nondeterminism in the

foundation model on the performance of ������. The randomness
of the generation is controlled by the temperature hyperparameter.
To assure that the results of ������ are reliable, we conduct the fol-
lowing experiment: we run the T2D table-class detection benchmark
25 times, �ve trials for each value of) between 0,1/4,...,1. Figure 5
shows the result. C�����’s performance is consistent: at the ideal
temperature setting the �1 score sees error bars of 0.01 �1 points.
The best performance is obtained at lowest temperature, 0.0—this is
in contrast to NLP tasks like summarization that bene�t from higher
temperatures. In the prior experiments we use the default tempera-
ture, as to get ������ runningwithminimal hyperparameter tuning.

Alternative models. To demonstrate the versatility of this ap-
proach, we run ������with three alternative, open-source foun-
dation models on the table-class detection task. We consider Vi-
cuna [67], a variant of LLaMA [54] at two sizes: 13 billion parameters

Figure 5: Determinism vs. performance. We conduct 25 runs
of ������ on the T2D table class benchmark. Shaded bands
indicate con�dence intervals. Temperature is a parameter
controlling the randomness of the foundation model, with
zero being themost (but not completely) deterministic.
Table7:Alternativefoundationmodels.Weighted�1 scores for
table-class detection onT2Dv2 dataset, for di�erent choices of
foundationmodel used by ������. Parameter size in brackets.
GPT-3.5 numbers identical to experiment in Figure 3.

Table-class correctness

Model choice �1-score Precision Recall

GPT-3.5 (175B) 0.926 96.1% 92.4%
LLaMA 2 (70B) 0.893 92.2% 86.5%
Vicuna/LLaMA (13B) 0.713 79.2% 64.1%
Vicuna/LLaMA (7B) 0.713 75.3% 67.5%

and 7 billion parameters. Themore advancedmodel is LLaMA 2 [55],
the SOTA open-source model with 70 billion parameters.

Table 7 shows the results. While OpenAI’s GPTmodel performs
best, the best open-source model is very competitive. LLaMA 2 out-
performs the best baseline model for this task—DoDuo-Wiki—by
0.136 �1 points, on precision by 13.6 percentage points and on recall
by 9.6 percentage points. This model lags behind the proprietary
and larger GPTmodel by only a modest 0.03 �1 points. Open-source
LLMs are now compelling alternatives on the tested task.

Ablations. We conduct ablation experiments to measure the con-
tribution of individual components of ������. We remove one com-
ponent at a time andnote the loss of scores compared to theunaltered
model. Figure 6 shows the results. First, we remove the demonstra-
tion from the prompt. This results in an F1 score loss of 0.03, a recall
loss of 4.7 and a precision loss of 4.7 percentage points. Next, we
remove the metadata where it is available. This results in a cumu-
lative F1 score loss of 0.04, a recall loss of 5.1 and a precision loss
of 5.6 percentage points. After that, we disable anchoring. This re-
sults in a cumulative F1 score loss of 0.389, a recall loss of 47.4 and a
precision loss of 31.9 percentage points. From this the prevalence of
hallucinations can be gleaned: the substantive score loss implies that
hallucination is highly prevalent. Finally, we remove the pre�xes
from the prompt. This results in a cumulative F1 score loss of 0.736,
a recall loss of 92.3 and a precision loss of 53.1 percentage points.
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Figure 6: Ablation experiments. We ablate key features of
C����� and report performance characteristics on the T2D
table-class detection task.

5 DISCUSSION
Trainingdatacollection. Amajoradvantageofa foundation-model

approach is that there is no need for training on speci�c tasks. In
contrast, T�BERT requires 26 million tables for training its embed-
dings. In [13], the use of 250 labels for one task is considered a “small
dataset” by the authors and leads to subpar performance. In contrast,
our prompts in Figure 3 use zero or none examples for each task.

Out-of-domain performance. We note a troubling pattern of a
lack of cross-domain generalization in representation-learning ap-
proaches. The tested baselines degrade when used to embed tables
not from the dataset the embeddings were trained on. This �nding is
in-line with prior work: regressions of up to 0.40 and 0.30 �1 points
when generalizing to new datasets have been reported [13, 28].

Flexibility. Another advantage of ������we observe in the ex-
periments is task adaptability. In the 1� table-class detection task,we
are able to switch the prediction domain easily. Restricting to the 33
classes used by the benchmark can be done by providing the permit-
ted classes to the foundationmodel; allowing themodel to generalize
to other DBPedia classes (the unsupervised heading of Section 4.1)
is as simple as omitting those instructions. Contextual information,
such as table title or ���, could be as easily added. Previously, such
modi�cations would require retraining the embeddings.

Limitations and risks. We control the risk of dataset contamina-
tion by testing for it in Section 4.4. The performance of ������ on
guaranteed-unseen datasets is comparable to those in public bench-
marks, so good performance on the those benchmarks cannot be
explained away as simple data contamination. Separately, formal lin-
guistic �uencymeans that errors may fool human reviewers [35, 36].
This has been called subtlemisinformation in priorwork [47]. Finally,
prompts may not be robust to changes [66].

Future directions:Additional tasks. The above hypothesis sug-
gests thepromisingperformancemayextend tomanymore tasks. Re-
lated tasks to be explored include schema auto-completion [7], where
missingparts of a partial schemaare suggested to theuser; join-graph
traversal, where successive tables to join on are suggested [15]; and
outlier detection, where erroneous data are detected. These are all
promising because they involve composing simple patterns that are
prevalent in ��’s training data. On the other hand, novel approaches

will likely be needed to apply ��s to tasks like data provenance [20],
since these involving trackingmorepatterns than ��’s are thought to
currently support. Incorporating proprietary information may also
be di�cult to due the dearth of these patterns in the training data.

Private or domain-speci�c datasets. Aswith all the testedbaselines,
the foundation models are trained on public data. The distribution
of data in the public sphere di�ers signi�cantly from that in special-
ized domains or private data. It is worth investigating whether the
observed capabilities continue to hold on e.g. enterprise data lakes.
Furtherapplication todomain-speci�contologysuchas����, aphar-
maceutical ontology of drugs, would also be a valuable investigation.

6 RELATEDWORK
The seminal earlywork isWebTables [7],which extracts relational ta-
bles fromwebdata, annotatedwithmetadata for discoverability. This
work introduced the related tasks: schema auto-completion, attribute
synonym �nding, and join-graph traversal. Early work onwrapper
induction [34] also extracted tables from heterogeneous sources.

The promise of foundationmodels for data pro�ling was outlined
in a recent position paper [58]. This paper was based on evidence of
foundationmodels being able to predict correlations in data from the
column names [57]. Another work considered foundation models
for data wrangling [41]: comprising the tasks of entity matching,
error detection and data imputation. Finally, most recently founda-
tion models have been applied to the classic problem of wrapper
induction in the system ��������� [4].

The currently deployed generation of approaches has focused
on representation learning. These include ���� [13], �a���� [62],
DoDuo [52] and ������ [29]. These explore the use of �ne-tuned
languagemodels for similar tasks. Prior to these table-embedding ap-
proaches, the prior generation of data tools involved data-intensive
deep learning for speci�c tasks, e.g. Sherlock [27] and Sato [64].

Data discovery within data lakes is an active area of research,
with recent works including: unionability search [32], joinability
search[68],newindexstructures for fastercorrelateddataset search[49]
and end-to-end systems for data ingestion and pro�ling [8]. Recent
tutorials [16, 42] outline the prevalence of the problem of unstruc-
tured document data management. A user-study of scientists con-
clude that “current systems fail to su�ciently support scientists in
their data-seeking process” [46]. One dataset-search survey [9] high-
lights key open problems: more natural query languages, better data
integration, and incorporating external knowledge.

7 CONCLUSION
We propose ������ to integrate foundation models for data discov-
ery. We show it provides superior performance on three exemplars:
table-class annotation, column-type detection and join-column pre-
diction. We conclude that foundation models hold promise as a core
component of next generation data discovery systems.
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