
Optimal Matrix Sketching over Sliding Windows
Hanyan Yin

Renmin University of China
yinhanyan@ruc.edu.cn

Dongxie Wen
Renmin University of China
2019202221@ruc.edu.cn

Jiajun Li
Renmin University of China
2015201613@ruc.edu.cn

Zhewei Wei∗
Renmin University of China

zhewei@ruc.edu.cn

Xiao Zhang
Renmin University of China

zhangx89@ruc.edu.cn

Zengfeng Huang
Fudan University

huangzf@fudan.edu.cn

Feifei Li
Alibaba Group

lifeifei@alibaba-inc.com

ABSTRACT

Matrix sketching, aimed at approximating a matrix 𝑨 ∈ R𝑁×𝑑 con-
sisting of vector streams of length𝑁 with a smaller sketchingmatrix
𝑩 ∈ Rℓ×𝑑 , ℓ ≪ 𝑁 , has garnered increasing attention in fields such
as large-scale data analytics and machine learning. A well-known
deterministic matrix sketching method is the FreqentDirections
algorithm, which achieves the optimal 𝑂

(︂
𝑑
𝜀

)︂
space bound and pro-

vides a covariance error guarantee of 𝜀 = ∥𝑨⊤𝑨 − 𝑩⊤𝑩∥2/∥𝑨∥2𝐹 .
The matrix sketching problem becomes particularly interesting in
the context of sliding windows, where the goal is to approximate
the matrix 𝑨𝑊 , formed by input vectors over the most recent 𝑁
time units. However, despite recent efforts, whether achieving the
optimal 𝑂

(︂
𝑑
𝜀

)︂
space bound on sliding windows is possible has

remained an open question.
In this paper, we introduce the DS-FD algorithm, which achieves

the optimal 𝑂
(︂
𝑑
𝜀

)︂
space bound for matrix sketching over row-

normalized, sequence-based slidingwindows.We also presentmatch-
ing upper and lower space bounds for time-based and unnormalized
sliding windows, demonstrating the generality and optimality of
DS-FD across various sliding window models. This conclusively
answers the open question regarding the optimal space bound for
matrix sketching over sliding windows. We conduct extensive ex-
periments with both synthetic and real-world datasets, validating
our theoretical claims and thus confirming the correctness and
effectiveness of our algorithm, both theoretically and empirically.

PVLDB Reference Format:

Hanyan Yin, Dongxie Wen, Jiajun Li, Zhewei Wei, Xiao Zhang, Zengfeng
Huang, and Feifei Li. Optimal Matrix Sketching over Sliding Windows.
PVLDB, 17(9): 2149 - 2161, 2024.
doi:10.14778/3665844.3665847

∗Zhewei Wei is the corresponding author. The work was partially done at Gaoling
School of Artificial Intelligence, Beijing Key Laboratory of Big Data Management and
Analysis Methods, MOE Key Lab of Data Engineering and Knowledge Engineering,
and Pazhou Laboratory (Huangpu), Guangzhou, Guangdong 510555, China.
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 17, No. 9 ISSN 2150-8097.
doi:10.14778/3665844.3665847

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at
https://github.com/yinhanyan/DS-FD.

1 INTRODUCTION

Many types of real-world streaming data, such as computer net-
working traffic, social media content, and sensor data, are con-
tinuously generated, often arriving in large volumes or at high
speeds [17, 40]. Given the constraints in storage and computational
resources, it becomes frequently impractical to store or compute ag-
gregations and statistics for streaming data accurately. Algorithms
for streaming data provide approximate solutions by summarizing,
sketching, or synthesizing the data stream with sublinear space or
time complexity relative to the input size [25, 37]. Among various
streaming data algorithms, matrix sketching emerges as a general
technique designed to process streaming data comprised of vec-
tors or matrices [35]. A wide array of matrix sketching algorithms
has been proposed, categorized into several approaches: sparsifica-
tion [3, 15], sampling [3, 13, 27], random projection [28, 32], hash-
ing [10, 34], and FreqentDirections (FD) [19, 21]. These algo-
rithms typically present trade-offs between time-space complexity
and accuracy. Notably, FreqentDirections [19, 21], a prominent
deterministic algorithm, achieves a spectral bound on the relative
covariance error, expressed as 𝜀 = ∥𝑨⊤𝑨 − 𝑩⊤𝑩∥2/∥𝑨∥2𝐹 , with an

optimal space complexity of 𝑂
(︂
𝑑
𝜀

)︂
. These attributes have led to its

widespread application across various fields [8, 14, 16, 22].
In real-world scenarios, the interest often lies in themost recently

arrived elements rather than outdated items within data streams,
as highlighted by recent studies [11, 33, 38]. Datar et al. [12] con-
sider the problem of maintaining aggregates and statistics from the
most recent period of the data stream and refer to such a model
as the sliding window model. This paper delves into the continuous
tracking matrix sketch over sliding windows, a crucial technique for
applications like sliding window PCA or real-time PCA [9, 33]. Such
techniques play a vital role across various domains, including event
detection [26], fault monitoring [1, 29], differential privacy [31] and
online learning [18], highlighting the significance of optimizing
both the complexity and the quality of estimations provided by
matrix sketching algorithms for sliding windows.

Over the years, extensive research has been dedicated to devel-
oping improved sketching algorithms to address the challenge of

2149

https://doi.org/10.14778/3665844.3665847
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3665844.3665847
https://github.com/yinhanyan/DS-FD
https://www.acm.org/publications/policies/artifact-review-and-badging-current

Table 1: Given the dimension 𝑑 of each row vector, the upper bound of relative covariance error 𝜀, and the size of the sliding

window 𝑁 , this table presents an overview of space complexities for algorithms addressing matrix sketching over sliding

windows. An asterisk (*) indicates that the space complexity is the expected value when it is a random variable. For each

column, sequence-based denotes that each update occupies a timestamp, time-based denotes that each timestamp unit may

contain zero or multiple updates, normalized denotes the norm of each row equals a constant, and unnormalized denotes the

norm of each row ∥𝒂𝑖 ∥22 ∈ [1, 𝑅].

sketch 𝜅 Sequence-based Time-based
normalized unnormalized normalized unnormalized

Sampling(SWR) [7, 33] 𝑂

(︂
𝑑
𝜀2

log𝑁
)︂
* 𝑂

(︂
𝑑
𝜀2

log𝑁𝑅

)︂
* 𝑂

(︂
𝑑
𝜀2

log𝑁
)︂
* 𝑂

(︂
𝑑
𝜀2

log𝑁𝑅

)︂
*

LM-HASH [10] 𝑂

(︂
𝑑2

𝜀3

)︂
𝑂

(︂
𝑑2

𝜀3
log𝑅

)︂
𝑂

(︂
𝑑2

𝜀3
log 𝜀𝑁

)︂
𝑂

(︂
𝑑2

𝜀3
log 𝜀𝑁𝑅

)︂
DI-RP [6] 𝑂

(︂
𝑑
𝜀2

log 1
𝜀

)︂
𝑂

(︂
𝑅𝑑
𝜀2

log 𝑅
𝜀

)︂
- -

DI-HASH [10] 𝑂

(︂
𝑑2

𝜀2
log 1

𝜀

)︂
𝑂

(︂
𝑅𝑑2

𝜀2
log 𝑅

𝜀

)︂
- -

LM-FD [21, 33] 𝑂

(︂
𝑑
𝜀2

)︂
𝑂

(︂
𝑑
𝜀2

log𝑅
)︂

𝑂

(︂
𝑑
𝜀2

log 𝜀𝑁
)︂

𝑂

(︂
𝑑
𝜀2

log 𝜀𝑁𝑅

)︂
DI-FD [21, 33] 𝑂

(︂
𝑑
𝜀 log 1

𝜀

)︂
𝑂

(︂
𝑅𝑑
𝜀 log 𝑅

𝜀

)︂
- -

DS-FD (This paper) 𝑂

(︂
𝑑
𝜀

)︂
𝑂

(︂
𝑑
𝜀 log𝑅

)︂
𝑂

(︂
𝑑
𝜀 log 𝜀𝑁

)︂
𝑂

(︂
𝑑
𝜀 log 𝜀𝑁𝑅

)︂
Lower bound (This paper) Ω

(︂
𝑑
𝜀

)︂
Ω
(︂
𝑑
𝜀 log𝑅

)︂
Ω
(︂
𝑑
𝜀 log 𝜀𝑁

)︂
Ω
(︂
𝑑
𝜀 log 𝜀𝑁𝑅

)︂
matrix sketching over sliding windows. For instance, Wei et al. [33]
proposed the Sampling, LM-FD, and DI-FD algorithms. Sampling
is a probabilistic algorithm, and LM-FD and DI-FD are determinis-
tic algorithms that build upon FreqentDirections. In addition,
streaming matrix sketching algorithms based on random projec-
tion [6] and hashing [10], such as LM-HASH, DI-RP, and DI-HASH,
are also compatible with the slidingwindowmodel. Zhang et al. [38]
explored the challenge of tracking matrix approximations over
distributed sliding windows, proposing communication-efficient
algorithms like priority sampling, ES sampling, and DA. Braver-
man et al. [7] present a randomized row sampling framework for
a wide spectrum of linear algebra approximation problems and
a unified framework for deterministic algorithms in the sliding
window model based on the merge-and-reduce paradigm and the
online coresets. Furthermore, Shi et al. [30] also present a method
to extend FreqentDirections to the persistent summary model,
another historical range query model similar to the sliding window.
Table 1 compares the memory cost of various matrix sketching
algorithms over sliding windows.
Motivations. Despite the significant efforts mentioned above, ex-
isting algorithms for matrix sketching over sliding windows remain
sub-optimal in terms of space complexity. Table 1 illustrates that
for the fundamental case where the window is sequence-based (i.e.,
each update occupies a timestamp) and each row is normalized (i.e.,
the norm of each row equals a constant), the current best space
complexity for matrix sketching algorithms over sliding windows
is 𝑂

(︂
𝑑
𝜀 log 1

𝜀

)︂
for DI-FD and 𝑂

(︂
𝑑
𝜀2

)︂
for LM-FD [33]. Conversely,

it has been demonstrated in [19] that the space lower bound for
FreqentDirections in the full stream model is Ω

(︂
𝑑
𝜀

)︂
, thus es-

tablishing the optimality of FreqentDirections. Given that the
sliding window model poses greater challenges than the full stream
model, Ω

(︂
𝑑
𝜀

)︂
also represents a space lower bound for the sliding

window model. This observation leads to a compelling inquiry: Is
it possible to achieve the optimal 𝑂

(︂
𝑑
𝜀

)︂
space bound for the

problem of matrix sketching over the sliding windowmodel?

To address the question, it is crucial to recognize that the ex-
isting methods fail to achieve optimal space complexity primarily
because they merely integrate FreqentDirections with generic
sliding window algorithmic frameworks. This approach lacks a
profound examination and enhancement of the original Freqent-
Directions algorithm specifically tailored for sliding windows. For
instance, LM-FD applies FreqentDirections within the Expo-
nential Histogram (EH) framework [12], and DI-FD combines Fre-
qentDirections with the Dyadic Interval (DI) framework [33].
While these well-known frameworks are adept at adapting various
streaming algorithms, such as Misra-Gries and SpaceSaving, to the
sliding window model, they inherently introduce a multiplicative
increase in memory overhead [20]. To develop more space-efficient
sliding window algorithms, it is often necessary to undertake mod-
ifications directly on the streaming algorithms. This paper takes
such an approach with FreqentDirections, aiming to refine and
optimize it specifically for the sliding window context.

1.1 Our Contributions

In this paper, we introduce DS-FD, a deterministic algorithm that
achieves optimal space complexity for matrix sketching over sliding
windows. Specifically, DS-FD reaches an optimal space complex-
ity of 𝑂

(︂
𝑑
𝜀

)︂
for sequence-based sliding windows with normalized

rows. When the norms of the rows are not normalized and falling
within the range of [1, 𝑅], the space complexity naturally expands
to 𝑂

(︂
𝑑
𝜀 log𝑅

)︂
. For time-based sliding windows, where each times-

tamp may not correspond to a row update, the space complexities
are adjusted to 𝑂

(︂
𝑑
𝜀 log 𝜀𝑁

)︂
(row-normalized) and 𝑂

(︂
𝑑
𝜀 log 𝜀𝑁𝑅

)︂

2150

(row-unnormalized), respectively. These space complexities are
detailed in the second-to-last row of Table 1.

Furthermore, we establish the lower bound of space complex-
ity for any deterministic matrix sketching algorithm over slid-
ing windows. Surprisingly, the corresponding lower bounds for
the four models are also Ω

(︂
𝑑
𝜀

)︂
, Ω

(︂
𝑑
𝜀 log𝑅

)︂
, Ω

(︂
𝑑
𝜀 log 𝜀𝑁

)︂
, and

Ω
(︂
𝑑
𝜀 log 𝜀𝑁𝑅

)︂
, as detailed in the last row of Table 1. This signifies

that we have achieved optimal space complexity across the four
distinct models. The specific contributions of this paper are outlined
below:
• Novel Algorithm with Improved Complexity: We theoreti-

cally show the superiority of our DS-FD algorithm over existing
methods in matrix sketching over sliding windows. Specifically,
in the second-last column of Table 1, we highlight the theoreti-
cal improvements of DS-FD compared to existing methods. The
space complexity𝑂

(︂
𝑑
𝜀

)︂
of DS-FD is lower than that of two lead-

ing algorithms, 𝑂
(︂
𝑑
𝜀2

)︂
for LM-FD and 𝑂

(︂
𝑑
𝜀 log 1

𝜀

)︂
for DI-FD.

More importantly, our DS-FD algorithm implements modifica-
tions on the FreqentDirections based on our deeper insight
into its application in sliding windows, rather than merely incor-
porating FreqentDirections into a generic sliding window
framework, as done by LM-FD andDI-FD. OurDS-FD offers a de-
terministic error bound and applies to both sequence-based and
time-based windows with an amortized update time of 𝑂 (𝑑ℓ),
which is on par with the fastest FD in the full stream setting.
• Matching Lower Bounds:We establish matching lower bounds

for any deterministic matrix sketching algorithm over sliding
windows. Our proof is inspired by techniques used in the space
lower bound proofs of BasicCounting [12] and other streaming
matrix sketching problems [19]. This validation confirms that
our DS-FD algorithm is optimal in terms of space complexity.

• Extensive Experiments: We conduct comprehensive exper-
imental studies to verify the superiority of DS-FD over other
state-of-the-art algorithms, especially in terms of sketch memory
usage. Our experimental results reveal that the trade-off between
error bounds and space cost for the DS-FD algorithm is more
favorable than existing algorithms on synthetic and real-world
datasets. Furthermore, optimizing space cost becomes increas-
ingly significant as the permissible upper bound of covariance
relative error tightens. These experimental findings are in strong
agreement with our theoretical analyses.

2 PRELIMINARIES

This section introduces widely-used problem definitions of matrix
sketching over sliding windows and several fundamental concepts
related to this topic.

2.1 Problem Definition

Problem 1 (Matrix Sketching over Sliding Window). Sup-
pose we have a data stream where each item is in the set R𝑑 . Given
the error parameter 𝜀 and window size 𝑁 , the goal is to maintain
a matrix sketch 𝜅 such that, at the current time 𝑇 , 𝜅 can return an
approximation 𝑩𝑊 for the matrix 𝑨𝑊 = 𝑨𝑇−𝑁,𝑇 ∈ R𝑁×𝑑 , stacked
by the recent 𝑁 items. The approximation quality is measured by the

covariance error, such that:

cova-error(𝑨𝑊 ,𝑩𝑊) = ∥𝑨⊤𝑊𝑨𝑊 − 𝑩⊤𝑊 𝑩𝑊 ∥2 ≤ 𝜀∥𝑨𝑊 ∥2𝐹 ,
where 𝑁 bounds the maximum size of window𝑊 .

Wei et al. [33] show that maintaining a deterministic sketch with
space less than 𝑜 (𝑁𝑑) is not feasible if the maximum norm of row
vectors of 𝑨𝑊 is unbounded, even when a large covariance error is
permissible. Consequently, contemporary research concentrates on
problem variants where the maximum possible squared norm of all
rows is upper-bounded. We define the following four variants of
the FreqentDirections over sliding window problem. The paper
will sequentially introduce algorithms to tackle these four problems,
starting with the simplest, the sequence-based normalized window
model, to illustrate the concept of dump snapshots. This approach
serves as a foundation for addressing the unnormalized or the
time-based model. We begin by formulating the problem for the
sequence-based normalized window model, which is the simplest
to solve and analyze.

Problem 1.1 (Matrix Sketching over Seqence-based Nor-
malized Sliding Window). We assume the squared norms of the
rows in the window take value 1, that is, ∥𝒂∥22 = 1 for all 𝒂 ∈ 𝑊 .
Therefore, the covariance error is,

cova-error(𝑨𝑊 ,𝑩𝑊) = ∥𝑨⊤𝑊𝑨𝑊 − 𝑩⊤𝑊 𝑩𝑊 ∥2 ≤ 𝜀∥𝑨𝑊 ∥2𝐹 = 𝜀𝑁 .

Next, we eliminate the normalization restriction, resulting in the
following variant of the problem definition.

Problem 1.2 (Matrix Sketching over Seqence-based Slid-
ing Window). We assume the squared norms of the rows in the
window range from [1, 𝑅], that is, 1 ≤ ∥𝒂∥22 ≤ 𝑅 for all 𝒂 ∈𝑊 .

If we account for real-world time instead of sequential order, the
problems of both the normalized and unnormalized versions can
be stated as follows.

Problem 1.3 (Matrix Sketching over Time-basedNormalized
Sliding Window). We assume the squared norms of the rows in the
window are either 0 or 1, that is, ∥𝒂∥22 = 0 or ∥𝒂∥22 = 1 for all 𝒂 ∈𝑊 .

Problem 1.4 (Matrix Sketching over Time-based Sliding
Window). We assume the squared norms of the rows in the window
range from {0} ∪ [1, 𝑅], that is, ∥𝒂∥22 = 0 or 1 ≤ ∥𝒂∥22 ≤ 𝑅 for all
𝒂 ∈𝑊 .

2.2 FreqentDirections

FreqentDirections [19, 21] is a deterministic algorithm ofmatrix
sketching in the row-update model. It processes one row vector 𝒂𝑖 ∈
R1×𝑑 at a time, accumulating a stream of row vectors to construct a
matrix 𝑨 ∈ R𝑛×𝑑 , where 𝑑 ≪ 𝑛. Let ℓ = 1/𝜀, FreqentDirections
takes amortized 𝑂 (𝑑ℓ) time per row and maintains a sketch matrix
𝑩 ∈ Rℓ×𝑑 , achieving an error bound of

cova-error(𝑨,𝑩) = ∥𝑨⊤𝑨 − 𝑩⊤𝑩∥2 ≤ 𝜀∥𝑨∥2𝐹 .
To process each arriving row vector, we first check whether 𝑩

has any zero-valued rows. If 𝑩 contains a zero-valued row, we insert
𝒂𝑖 into it. Otherwise, we perform a Singular Value Decomposition
(SVD) [𝑼 , 𝚺, 𝑽⊤] = svd(𝑩), rescale the "directions" in 𝑩 with the
ℓ-th largest singular value 𝜎ℓ , and "forget" the least significant

2151

direction in the column space of 𝑽⊤. The updated 𝚺
′ and sketch

matrix 𝑩′ are computed as follows:

Σ′ = diag
(︃√︂

𝜎21 − 𝜎
2
ℓ
, . . . ,

√︂
𝜎2
ℓ−1 − 𝜎

2
ℓ
, 0, . . . , 0

)︃
and 𝑩′ = 𝚺

′𝑽⊤, where 𝜎21 ≥ 𝜎22 ≥ · · · ≥ 𝜎22ℓ . The updated 𝑩′ will
have at least ℓ+1 nonzero rows, allowing the process to continuously
accommodate the next arriving row vector and update the sketch
matrix 𝑩 in the same manner as described above.

FreqentDirections can also be adapted for the slidingwindow
model. We briefly introduce two algorithms based on it, which are
the main competitors to our novel algorithms:
• LM-FD applies Exponential Histogram [12] to FreqentDirec-

tions. It organizes the window into exponentially shrinking
block sizes, with the most recent level having blocks of size ℓ
and the oldest level being 𝜀∥𝑨𝑊 ∥2𝐹 . As shown in Table 1, it uses

𝑂

(︂
𝑑
𝜀2

)︂
space for sequence-based normalized sliding windows.

• DI-FD adopts the Dyadic Interval [2] approach to Freqent-
Directions, maintaining 𝐿 = log 𝑅

𝜀 parallel levels. At the 𝑗-th
level, the matrix over the sliding window is segmented into sizes
of Θ

(︂
𝑁𝑅
2𝐿−𝑖

)︂
. DI-FD uses 𝑂

(︂
𝑑
𝜀 log 1

𝜀

)︂
space for sequence-based

normalized sliding windows.

3 OUR METHOD

In this section, we present a fundamental method that addresses
Problem 1.1, termed Dump Snapshots (DS). This method draws
inspiration from the 𝜆-snapshot method employed for solving the
𝜀-approximate frequent items problem over the sliding window [20]
and its connection to matrix sketching over the sliding window [19].
The algorithms developed for solving both the unnormalized and
time-based problems are also based on this approach.
Connection to Item Frequency Estimation. The matrix sketch-
ing problem over sliding windows has a significant relation to the
𝜀-approximation frequent items problem over sliding windows. The
definition of this latter problem is outlined in [20, 39]:

Problem 2 (𝜀-approximation Freqent Items over Sliding
Window). Consider a data stream where each item belongs to the
set [𝑑]. Given an error parameter 𝜀 and a window size 𝑁 , the goal is
to maintain a sketch 𝜅 such that that ensures, for any item 𝑖 ∈ [𝑑],
the error between its true frequency 𝑓𝑖 and estimated frequency 𝑓 𝑖
over the most recent 𝑁 items returned by 𝜅 is constrained by:|︁|︁|︁𝑓𝑖 − 𝑓 𝑖

|︁|︁|︁ ≤ 𝜀𝑁 .

For the Problem 2, each element arriving in the data stream
𝑨𝑊 = {𝒂1, 𝒂2, . . . , 𝒂𝑛} can be viewed as a one-hot indicator vector,
denoted as 𝒂𝑖 ∈ {𝒆1, ..., 𝒆𝑑 }, where 𝒆 𝑗 represents the 𝑗-th standard
basis vector. The precise frequency of item 𝑗 can be expressed
as 𝑓𝑗 = ∥𝑨𝑊 𝒆 𝑗 ∥22, which corresponds to the 𝑗-th element on the
diagonal of matrix 𝑨⊤

𝑊
𝑨𝑊 . Assuming an algorithm that offers an

estimated frequency 𝑓�̂� for each item 𝑖 , we designate the 𝑖-th row
of matrix 𝑩 as 𝑓

1/2
𝑖 · 𝒆𝑖 . Consequently, the error bound for the

Problem 2, max𝑖
|︁|︁|︁𝑓𝑖 − 𝑓�̂�

|︁|︁|︁ ≤ 𝜀𝑁 , can be expressed as ∥𝑨⊤
𝑊
𝑨𝑊 −

𝑩⊤
𝑊
𝑩𝑊 ∥2 ≤ 𝜀𝑁 , aligning with Problem 1.1. Hence, the Problem 2

over sliding window can be regarded as a special case of matrix

sketching problem outlined in Problem 1.1, where the incoming
row vectors are mutually orthogonal.

The Misra-Gries (MG) summary is a well-known algorithm for
addressing the 𝜀-approximation frequent items problem [23]. It op-
erates by maintaining 1/𝜀 counters, each initially set to 0. Upon
encountering a new item, the algorithm increments its correspond-
ing counter if it already has one; otherwise, it assigns a counter to
it, setting its value to 1. If, following this increment, all 1/𝜀 coun-
ters possess a value greater than 0, the algorithm decrements each
counter by one, ensuring that there will be at least one counter
reset to 0. This method effectively keeps track of the most frequent
items within a data stream.
Extension of MG Summary to Sliding Windows. The MG sum-
mary can be effectively adapted to the sliding window model by the
𝜆-snapshot method introduced by Lee et al. [20]. It preserves the
error-bound guarantee without additional space or time complexity.
This method’s core concept is to log the event "item 𝑖 has appeared
𝜀𝑁 times" along with the current timestamp and expire these logs in
time. Similar to the original MG summary, the 𝜆-snapshot method
demands 𝑂 (1/𝜀) time for both updates and queries, and requires
𝑂 (1/𝜀) space. Moreover, an optimization has been proposed that
can further diminish the time complexity for updates and queries
to 𝑂 (1), while keeping the space complexity unchanged [39].

𝑘 − 1 𝑁 𝑇 − 𝑁 𝑘𝑁 𝑇
𝑪′

Current Window

Dumped snapshots in queue 𝒮

Expired snapshots in queue 𝒮

Time

𝑪𝑇−1

𝒂𝑇

=

𝑼 𝚺 𝑽⊤

⋅ ⋅

𝑪𝑇

queue 𝒮

dump

Figure 1: The data structures and update steps of DS-FD entail

performing an SVD decomposition 𝑼𝚺𝑽⊤ = svd([�̂�𝑇−1, 𝒂𝑇])
for each update. Following the decomposition, singular val-

ues and their corresponding right singular vectors are evalu-

ated against the error bound 𝜀𝑁 . Those exceeding the bound

are "dumped," i.e., removed from the current sketch and

stored as snapshots in a queueS, accompanied by the current

timestamp.

Given the connection outlined above, where both the FD sketch
and the 𝜆-snapshot method derive from the principles of the MG
summary, a compelling question emerges: Is it possible to extend
the FD matrix sketch to the sliding window model while maintain-
ing the same error-bound guarantee and the same space and time
complexity as done by the 𝜆-snapshot method? This question paves
the way for the introduction of the DS-FD method.
Extension of FD Summary to Sliding Windows. The core con-
cept of DS-FD is illustrated in Figure 1: for each FD update, after

2152

performing an SVD
[︁
𝑼 , 𝚺, 𝑽⊤

]︁
= svd(

[︁
�̂�𝑇−1, 𝒂𝑇

]︁
), we "dump" the

singular values and their corresponding right singular vectors if
the singular values exceed the error threshold 𝜀𝑁 . These vectors
are stored as snapshots in a queue S with the timestamps. When a
query is invoked, we combine the vectors from the snapshots within
the current window’s timeframe with the FD sketch to produce a
matrix 𝑩𝑊 , which is then provided as the sketch.

Despite the simplicity of this approach, proving its correctness
and achieving efficient implementation pose significant challenges.
The main difficulties are: (1) The change in the orthogonal basis
formed by the right singular vectors from the SVD of 𝑨𝑊 before
and after a single-step update, which results in past snapshots being
non-orthogonal with current right singular vectors, complicating
the error analysis. We prove the error bound for our algorithm as
Theorem 3.1. (2) The challenge of accurately recording the times-
tamps of dumped snapshot vectors, which complicates the direct
application of the FAST-FD algorithm. We also try to optimize it
and propose the Fast-DS-FD.

The space requirement for DS-FD is 𝑂 (𝑑/𝜀), aligning with the
space lower bound of FD, thus confirming the optimality of our al-
gorithm in terms of space usage. Additionally, we plan to extend our
algorithms to address more general scenarios, including arriving
vectors with norms ∥𝒂𝑖 ∥22 ∈ [1, 𝑅], in Sections 4 and 5.

3.1 Algorithm Description

Algorithm 1: DS-FD: Initialize(𝑑, ℓ, 𝑁 , 𝜃)
Input: 𝑑 : Dimension of input vectors of Update
ℓ = min

(︂
⌈ 1𝜀 ⌉, 𝑑

)︂
: Number of rows in FD sketch

𝑁 : Length of sliding window
𝜃 : Dump threshold. For Problem 1.1, 𝜃 = 𝜀𝑁

1 �̂� ← 0ℓ×𝑑
2 �̂�
′ ← 0ℓ×𝑑

3 Queue of snapshots S ← queue.Initialize()
4 Auxiliary queue of snapshots S′ ← queue.Initialize()

Data Structures. Figure 1 and Algorithm 1 show the data struc-
tures of DS-FD. At any given moment, DS-FD maintains two FD
sketches: a primary sketch �̂� and an auxiliary sketch �̂�

′. Each
sketch is associated with its corresponding queue of snapshots,
S and S′, respectively. By setting ℓ = min (𝑑, ⌈1/𝜀⌉), the mem-
ory requirements for both the residual matrix �̂� and the queue of
snapshots S are 𝑂 (𝑑/𝜀), leading to a total memory cost of 𝑂 (𝑑/𝜀).
Update Algorithm. Algorithm 2 outlines the pseudocode for up-
dating a DS-FD sketch, under the assumption that all arriving row
vectors 𝒂𝑖 are normalized, i.e., ∥𝒂𝑖 ∥22 = 1. The process starts by
removing the oldest snapshots from the main queue until no snap-
shot in the queue is expired (lines 6-7). The input row vector then
updates both the main and auxiliary FD sketches. If the squared
norm of the top singular value multiplied by its corresponding
right singular vector, ∥𝒄1∥22, in any FD sketch surpasses the error
threshold (evaluated in lines 9 and 13), this component is recorded
alongside the current timestamp as a snapshot at the end of the
respective queue (lines 10 and 14), before its removal from the FD
sketch (lines 11 and 15).

Algorithm 2: DS-FD: Update(𝒂𝑖)
Input: 𝒂𝑖 : the row vector arriving at timestamp 𝑖

1 if 𝑖 ≡ 1 mod 𝑁 then

2 �̂� ← �̂�
′

3 �̂�
′ ← 0ℓ×𝑑

4 S ← S
5 S′ ← queue.Initialize()
6 while S[0] .𝑡 + 𝑁 ≤ 𝑖 do // oldest snapshot expired
7 S.popleft()
8 �̂� ← FDℓ (�̂�, 𝒂𝑖)
9 while ∥𝒄1∥22 ≥ 𝜃 do

10 S append snapshot (𝒗 = 𝒄1, 𝑠 = S[−1] .𝑡 + 1, 𝑡 = 𝑖)
11 Remove first row 𝒄1 from �̂� // 𝒄′2 becomes 𝒄′1
12 �̂�

′ ← FDℓ (�̂�
′
, 𝒂𝑖)

13 while ∥𝒄′1∥
2
2 ≥ 𝜃 do

14 S′ append snapshot (𝒗 = 𝒄′1, 𝑠 = S
′ [−1] .𝑡 + 1, 𝑡 = 𝑖)

15 Remove first row 𝒄′1 from �̂�
′

// 𝒄′2 becomes 𝒄′1

Lines 1 to 5 describe the procedure of swapping the current
main sketch and its queue with the auxiliary sketch and its queue,
alongside initializing a new empty auxiliary sketch and queue of
snapshots every 𝑁 update step. This methodology, named as restart
every 𝑁 steps, contributes to maintaining the algorithm’s error
bound which is detailed in the proof of Theorem 3.1.

The predominant time complexity for Algorithm 2 arises from
executing two FD updates, each necessitating an SVD on an ℓ × 𝑑
matrix. Hence, the total time complexity for each update step of
DS-FD is 𝑂 (𝑑ℓ2).
Optimized Update Algorithm. We introduce optimization strate-
gies to enhance the update algorithm for the primary DS-FD. The
efficiency of each update step in Algorithm 2 is dominated by the
computation of FDℓ (�̂�, 𝒂𝑖), which traditionally requires 𝑂 (𝑑ℓ2)
time. Ghashami et al. [19] have introduced the Fast-FD technique,
effectively reducing the update time complexity of FD from𝑂 (𝑑ℓ2)
to an amortized 𝑂 (𝑑ℓ). This optimization is achieved by perform-
ing a merge operation between the matrix formed by the arrival
of ℓ vectors and the FD sketch every time ℓ vectors accumulate,
updating the FD sketch with the merged result.

Expanding upon this principle, we propose the Fast-DS-FD al-
gorithm, which decreases the time complexity for a single update
operation inDS-FD from𝑂 (𝑑ℓ2) to an amortized𝑂 (𝑑ℓ+ℓ3), without
incurring additional spatial complexity. Particularly for scenarios
where 𝑑 = Ω(ℓ2), the amortized complexity is effectively 𝑂 (𝑑ℓ).

Algorithm 3 details the optimized update operation for Fast-DS-
FD, adopting the Fast-FD strategy by postponing the SVD operation
until ℓ rows are prepared for merging. This deferred condition is
met once every ℓ iterations, allocating the majority of the compu-
tational effort to the SVD (line 6) and the computation of the new
matrix 𝑲 = �̂� �̂�

⊤ (line 10). Each of these steps requires𝑂 (𝑑ℓ2) time,
thereby resulting in an amortized time cost of𝑂 (𝑑ℓ). This approach
significantly enhances the update mechanism within the sliding
window framework, ensuring the algorithm remains efficient and
effective.

2153

Algorithm 3: Fast-DS-FD: Optimized Update algorithm
on Algorithm 2.
Input: 𝒂𝑖 : the row vector arriving at timestamp 𝑖

1 while S[0] .𝑡 + 𝑁 ≤ 𝑖 do // oldest snapshot expired
2 S.popleft()

3 𝑫 ←
[︂
�̂�
⊤

𝒂⊤
𝑖

]︂⊤
4 𝜎1̂ ←

√︂
𝜎1̂2 + ∥𝒂𝑖 ∥22

5 if #(rows of �̂�) ≥ 2ℓ then
6 �̂� ← FastFDℓ (𝑫)
7 while ∥𝒄1∥22 ≥ 𝜃 do

8 S append snapshot (𝒗 = 𝒄1, 𝑠 = S[−1] .𝑡 + 1, 𝑡 = 𝑖)
9 Remove first row 𝒄1 from �̂� . // 𝒄′2 becomes 𝒄′1

10 𝑲 = �̂� �̂�
⊤

11 𝜎1̂ ← ∥𝒄1∥2
12 else

13 𝑲 ←
[︄
𝑲 𝒂𝑖 �̂�

⊤

�̂�𝒂⊤
𝑖

𝒂𝑖𝒂⊤𝑖

]︄
14 if 𝜎1̂2 ≥ 𝜃 then

15 [𝑼 , 𝚺2, 𝑼⊤] ← svd(𝑲)
16 for 𝑗 ∈ [1, ℓ] do
17 if 𝜎2

𝑗
≥ 𝜃 then // largest singular value

18 𝒗⊤
𝑗
← 1

𝜎 𝑗
𝒖⊤
𝑗
𝑫

19 S append snapshot
(𝒗 = 𝒗 𝑗 , 𝑠 = S[−1] .𝑡 + 1, 𝑡 = 𝑖)

20 𝑫 ← 𝑫 − 𝑫𝒗 𝑗𝒗⊤𝑗
21 𝑲 ← 𝑲 − (𝑫𝒗 𝑗) (𝑫𝒗 𝑗)⊤

22 𝜎1̂ ← 𝜎1

23 �̂� ← 𝑫

In the general scenario where the "if" condition remains untrig-
gered, it is essential to determine whether the maximum singular
value 𝜎1 of the FD sketch 𝑫 =

[︂
�̂�
⊤

𝒂⊤
𝑖

]︂⊤
, after incorporating the

newly arrived row vector 𝒂𝑖 , exceeds the threshold 𝜃 (line 17). If this
criterion is met, the corresponding right singular vector 𝒗1 along
with the current timestamp 𝑖 is archived as a snapshot (line 19).
This step also involves reducing the influence of this right singular
vector 𝒗1 from both the FD sketch 𝑫 and the covariance matrix 𝑲 ,
incurring a time cost of 𝑂 (𝑑ℓ + ℓ2) (lines 20, 21).

Rather than performing an SVD directly on the FD sketch 𝑫 to
compute 𝑫 = 𝑼𝚺𝑽⊤ within 𝑂 (𝑑ℓ2), an incremental update to 𝑲 =

𝑫𝑫⊤ is executed rank-1-wise in 𝑂 (𝑑ℓ) time (line 13). Following
this, conducting SVD on 𝑲 to obtain 𝑲 = 𝑼𝚺2𝑼⊤ can be achieved
in 𝑂 (ℓ3) (line 15). Then multiply the maximum singular value’s
corresponding left singular vector 𝒖1 with 𝑫 to extract the right
singular vector 𝒗⊤1 = 1

𝜎1
𝒖⊤1 𝑫 is completed in 𝑂 (𝑑ℓ) time (line 18).

Summarizing the aforementioned time expenditures, the amor-
tized time complexity for a single update step in Algorithm 3 is
established as 𝑂 (𝑑ℓ + ℓ3). Lemma 1 supports that the action taken

in line 20—specifically, removing the 𝑗-th row of 𝚺𝑽⊤—parallels
the procedure described in line 9.

Lemma 1. If 𝑫 = 𝑼𝚺𝑽⊤ and 𝑫′ = 𝑫 − 𝑫𝒗 𝑗𝒗⊤𝑗 , where 𝒗 𝑗 is one
of row vector of 𝑽⊤. Then 𝑫 = 𝑼𝚺𝑽⊤ (𝑰 − 𝒗 𝑗𝒗⊤𝑗), which is same as
remove the 𝑗-th row of 𝚺𝑽⊤.

Given that the covariance matrix 𝑲 might have𝑚 singular values
surpassing the threshold 𝜃 , arranged as 𝜎21 ≥ 𝜎22 ≥ · · · ≥ 𝜎2𝑚 ≥ 𝜃

increasingly, the "if" condition on line 17 within the loop could be
validated 𝑚 times, leading to a total operation count of 𝑂 (𝑚𝑑ℓ).
For the normalized model, these operations can be averaged over
𝑚𝜃 steps, yielding an amortized time complexity for the loop of
𝑂 (𝑑ℓ/𝜃). With 𝜃 = 𝑁 /ℓ as specified in Problem 1.1, this amorti-
zation results in 𝑂 (𝑑ℓ2/𝑁). Assuming 𝑁 = Ω(ℓ), the amortized
time complexity for a single update step in Algorithm 3 remains
𝑂 (𝑑ℓ + ℓ3), which is a reasonable assumption.

Setting ℓ = 1/𝜀, the residual matrix �̂� of Fast-DS-FD can extend
up to 2ℓ × 𝑑 , and the covariance matrix 𝑲 can reach dimensions of
2ℓ × 2ℓ , leading to a space complexity of 𝑂 (ℓ𝑑 + ℓ2). When 2ℓ ≤ 𝑑 ,
the space complexity simplifies to 𝑂 (ℓ𝑑); for 2ℓ > 𝑑 , maintain-
ing the residual matrix �̂� up to 𝑑 × 𝑑 suffices, keeping the space
complexity at𝑂 (𝑑2 + ℓ𝑑) = 𝑂 (ℓ𝑑). Thus, compared to DS-FD, Fast-
DS-FD improves the update operation without incurring additional
asymptotic space complexity.

Furthermore, potential optimizations could be realized. By main-
taining an upper bound estimate 𝜎1̂ on the maximum singular
value 𝜎1 of the current FD sketch and updating this estimate to√︂
𝜎1̂2 + ∥𝒂𝑖 ∥22 with each new vector, an SVD is warranted only

if this updated estimate exceeds the dump threshold 𝜃 (line 15),
possibly avoiding the 𝑂 (ℓ3) SVD computation at this stage. Since
only the largest singular value and its associated singular vector
𝒖1 of 𝑲 are needed, iterative eigenvalue methods like Power It-
eration could be used to reduce the time complexity of SVD fur-
ther. Alternatively, randomized Krylov methods, such as Block
Krylov, could offer a high-probability rank-1 approximation, requir-
ing𝑂 (log(min(1/𝜀, 𝑑)/𝜀′1/2)) matrix-vector multiplications, where
𝜀′ denotes the relative error of the rank-1 approximation. This ad-
justmentmight render Fast-DS-FD a probabilistic algorithmwith an
amortized update time complexity of 𝑂 (𝑑ℓ), marking a substantial
efficiency enhancement [4, 24].
Query Algorithm. The query operation for DS-FD and Fast-DS-
FD is elegantly simple, as delineated in Algorithm 4. It involves
merging the FD sketch �̂� with matrix 𝑩 stacked by the vectors
of non-expiring snapshots. This process ensures that the query
algorithm efficiently utilizes the preserved historical data within the
sliding window, alongside the current sketch, to provide accurate
matrix approximations.

Algorithm 4: DS-FD and Fast-DS-FD: Query()

1 return FDℓ (𝑩, �̂�), where 𝑩 is stacked by 𝑠𝑖 .𝒗 for all 𝑠𝑖 ∈ S

3.2 Analysis

We present the following theorem about the error guarantee, space
usage, and update cost of DS-FD and Fast-DS-FD.

2154

Theorem 3.1. Assume that the data stream of vectors is 𝑨 =

[𝒂1, 𝒂2, ..., 𝒂𝑇] and ∀1 ≤ 𝑖 ≤ 𝑇, ∥𝒂𝑖 ∥2 = 1. Given the length 𝑁 of
the sliding window and the relative error 𝜀, the DS-FD or Fast-DS-
FD algorithm returns a sketch matrix 𝑩𝑊 . If we set 𝜃 = 𝜀𝑁 and

ℓ = min
(︂
⌈ 1𝜀 ⌉, 𝑑

)︂
, then we have:

cova-err(𝑨𝑊 ,𝑩𝑊) =
∥︁∥︁∥︁𝑨⊤𝑇−𝑁,𝑇𝑨𝑇−𝑁,𝑇 − 𝑩⊤𝑊 𝑩𝑊

∥︁∥︁∥︁
2
≤ 4𝜀𝑁, (1)

where 𝑨𝑊 = 𝑨𝑇−𝑁,𝑇 = [𝒂𝑇−𝑁+1, 𝒂𝑇−𝑁+2, . . . , 𝒂𝑇]⊤. The DS-FD
or Fast-DS-FD algorithm uses 𝑂

(︂
𝑑
𝜀

)︂
space and process an update in

𝑂
(︁
𝑑ℓ2

)︁
time for DS-FD, 𝑂

(︁
𝑑ℓ + ℓ3

)︁
time for Fast-DS-FD or 𝑂 (𝑑ℓ)

time for probablistic Fast-DS-FD.

The proof of Theorem 3.1 can be found in our technical re-
port [36].

4 SEQUENCE-BASED MODEL

In this section, we delve into extending DS-FD to Seq-DS-FD to ac-
commodate the general case where row vectors are not normalized,
that is, ∥𝒂𝑖 ∥22 ∈ [1, 𝑅], aiming to tackle Problem 1.2. Seq-DS-FD

achieves the optimal space complexity of 𝑂
(︂
𝑑
𝜀 log𝑅

)︂
for Prob-

lem 1.2, aligning with the problem’s lower bound space complexity
as established in Theorem 6.1.

4.1 High-Level Ideas

In the unnormalized scenario of sequence-based matrix sketching,
the error bounds 𝜀∥𝑨𝑊 ∥2𝐹 fluctuate based on the distribution of
the most recently arrived vectors 𝒂 ∈ 𝑊 over different periods.
The minimum error bound is 𝜀𝑁 assuming that ∥𝒂∥22 = 1 for any
𝒂 ∈𝑊 , whereas the maximum error bound reaches 𝜀𝑁𝑅, assuming
∥𝒂∥22 = 𝑅 for any 𝒂 ∈𝑊 .

Drawing inspiration from the extension process applied in transi-
tioning from the BasicCounting problem to the Sum problem [12],
we regard the arrival of a row vector 𝒂𝑖 with ∥𝒂𝑖 ∥22 = 𝑣𝑖 as analo-
gous to the simultaneous arrival of 𝑣𝑖 normalized vectors 𝒂𝑖/

√
𝑣𝑖 .

Following this approach, we apply the same update procedure as
utilized in the normalized DS-FD. As a result, the outputs produced
by the normalized DS-FD are confined within the window size of
the most recent ∥𝑨𝑊 ∥2𝐹 =

∑︁𝑡now
𝑖=𝑡now−𝑁+1 𝑣𝑖 normalized row vectors.

Given that the initial algorithm is limited to fixed-size sliding
windows with a constant size of 𝑁 , extending normalized DS-FD
to general DS-FD effectively broadens the algorithm’s capability
to maintain and provide answers for matrix covariance estimation
over sliding windows of variable sizes. Inspired by the extended
𝜆-snapshot scheme for the FreqentItems problem across variable-
size sliding windows [20], we introduce the Seq-DS-FD algorithm to
address Problem 1.2. Illustrated in Figure 2, our approach involves
maintaining 𝐿 = ⌈log𝑅⌉ layers of DS-FD structures concurrently,
each configured with distinct error bounds and dump thresholds
𝜃 = 2𝑗𝜀𝑁 for the 𝑗-th level, where 0 ≤ 𝑗 ≤ 𝐿. Accordingly, the error
bounds and dump thresholds extend from 𝜀𝑁, 2𝜀𝑁, . . . , 𝜀𝑁𝑅 in an
ascending sequence. The lower levels, characterized by smaller 𝜃
values, perform dump operations more frequently.

When handling query requests for a sketch 𝑩𝑊 corresponding to
the current window, we select the layer that meets the error bound
criterion based on 𝜀∥𝑨𝑊 ∥2𝐹 for the prevailing window. Notably, it

𝑇 − 𝑁

Level 0

Level 1

Level 2

Level log 𝑅

𝑇

Time

.

.

.

.

.

.

𝜃 = 𝜀𝑁

𝜃 = 2𝜀𝑁

𝜃 = 4𝜀𝑁

𝜃 = 𝑅𝜀𝑁

.

.

.

Current Window

Expired Snapshot Dropped Snapshot Saved Snapshot

Figure 2: Sequence-based DS-FD. We maintain 𝐿 = ⌈log𝑅⌉
layers of DS-FD structures in parallel, each with different

error bounds and dump thresholds 𝜃 = 2𝑗𝜀𝑁 for the 𝑗-th

level. In the visualization, depicted in dark blue, the norm of

snapshots increases. For each level, we retain only the most

recent 𝑂

(︂
1
𝜀

)︂
snapshots saved in the queue and discard the

older ones to limit the total memory usage to 𝑂

(︂
1
𝜀 log𝑅

)︂
.

is unnecessary to actively maintain ∥𝑨𝑊 ∥2𝐹 or its approximation.
Instead, we opt for the DS-FD layer that offers the minimal error
bound while ensuring that the retained dumped snapshots span the
time range of the current window size 𝑁 . This chosen layer then
yields the appropriate sketch 𝑩𝑊 .

4.2 Algorithm descriptions.

Algorithm 5: Seq-DS-FD: Initialize(𝑑, ℓ, 𝑁 , 𝑅, 𝛽)
Input: 𝑑 : Dimension of input vectors of Update
ℓ = min

(︂
⌈ 1𝜀 ⌉, 𝑑

)︂
: Number of rows in FD sketch

𝑁 : Length of sliding window
𝑅: Upper bound of ∥·∥22 for rows. For Problem 1.2,
𝑅 = ∥𝑨∥22,∞
𝛽 : Additional coefficient of error, default as 1.0

1 𝐿 ← ⌈log2 𝑅⌉
2 L ← []
3 for 𝑗 ∈ [0, 𝐿] do
4 L .append(Fast − DS − FD(𝑑, ℓ, 𝑁 , 𝜃 = 2𝑗𝜀𝑁))

Data Structures. As outlined in Algorithm 5, we determine the
number of levels to be 𝐿 = ⌈log2 𝑅⌉ (line 1). For each level 𝑖 , we
initialize a DS-FD structure with a dump threshold 𝜃 = 2𝑖𝜀𝑁 (lines
3-4). This setup specifies that the top row 𝑐1 of the FD sketch is
dumped as a snapshot if ∥𝑐1∥22 ≥ 2𝑖𝜀𝑁 . Concurrently, to maintain
memory efficiency, we cap the number of snapshots at each level
to a maximum of 2(1 + 4/𝛽) 1𝜀 , thereby constraining the memory
requirement to 𝑂

(︂
𝑑
𝜀 log𝑅

)︂
.

Update Algorithm.Algorithm 6 details the procedure for updating
a Seq-DS-FD sketch. Note that all incoming row vectors 𝒂𝑖 have
norms ∥𝒂𝑖 ∥22 within the range [1, 𝑅]. Initially, in line 3, we discard

2155

Algorithm 6: Seq-DS-FD: Update(𝒂𝑖)
Input: 𝒂𝑖 : the row vector arriving at timestamp 𝑖

1 for 𝑗 ∈ [0, 𝐿] do
2 while 𝑙𝑒𝑛(L[𝑗] .S) > 2(1 + 4

𝛽
) 1𝜀 or

L[𝑗] .S[0] .𝑡 + 𝑁 ≤ 𝑖 do

3 L[𝑗] .S.popleft()
4 if ∥𝒂𝑖 ∥22 ≥ 2𝑗𝜀𝑁 then

5 L[𝑗] .S appends
(𝒗 = 𝒂𝑖 , 𝑠 = L[𝑗] .S[−1] .𝑡 + 1, 𝑡 = 𝑡now)

6 L[𝑗] .S′ appends
(𝒗 = 𝒂𝑖 , 𝑠 = L[𝑗] .S′ [−1] .𝑡 + 1, 𝑡 = 𝑡now)

7 else

8 L[𝑗] .Update(𝒂𝑖)

the oldest snapshot from the queue until the head element of the
queue remains within the current sliding window and ensure the
snapshot count does not surpass 2(1 + 4/𝛽) 1𝜀 . Subsequently, each
level of DS-FD is updated with the input row vector 𝒂𝑖 . If the norm
of the input row vector ∥𝒂𝑖 ∥22 is above the dump threshold 𝜃 (line
4), we directly save it as a snapshot and add it to the queue of the
corresponding level (lines 5 and 6), effectively achieving zero error
for this row. If not, the DS-FD is updated with 𝒂𝑖 following the
same procedures outlined in Algorithms 2 or 3 (line 8).

For every incoming row 𝒂𝑖 , Algorithm 6 processes the Fast-DS-
FD sketch up to log𝑅 times across all 𝐿 = log𝑅 layers, sum up to a
total per-step update time of 𝑂 (𝑑ℓ log𝑅).

In Seq-DS-FD, it remains essential to concurrently manage dual
sets of sketches for each level and execute a restart every 𝑁 step
operation, akin to the approach in DS-FD. Distinctively, for the
primary DS-FD sketch at layer 𝑗 within Seq-DS-FD, an alternating
swap between the primary DS-FD sketch and the auxiliary DS-FD
sketch occurs once the cumulative size of input vectors

∑︁∥𝒂𝑖 ∥2𝐹
processed by the primary DS-FD sketch surpasses 2𝑗+1𝑁 . This
adaptation accounts for the perception of the arrival of a row vector
𝒂𝑖 with ∥𝒂𝑖 ∥22 = 𝑣𝑖 as equivalent to the simultaneous arrival of 𝑣𝑖/2𝑗

rescaled vectors
√︂

2𝑗
𝑣𝑖
𝒂𝑖 . For clarity, this mechanism is not explicitly

depicted in the pseudocode of Algorithms 5 and 6.
Query Algorithm. Algorithm 7 details the procedure for generat-
ing a matrix sketch for the window [𝑡 −𝑁, 𝑡] utilizing a Seq-DS-FD
sketch. Figure 2 illustrates the possible state of the data structure
at a specific moment.

Given that the queue of each layer saves 𝑂 (ℓ) snapshots, it is
uncertain whether the snapshots preserved in the lower layers
encompass the full window, as shown in levels 0 and 1 of Figure 2.
Consequently, it is imperative to identify the lowest layer (offering
minimal error) that contains snapshots spanning a window length
of 𝑁 (as exemplified by level 2 in Figure 2). A straightforward
linear search could be conducted by verifying if the timestamp of
the oldest snapshot in each layer’s queue falls within the window
interval [𝑡−𝑁, 𝑡], which would entail a time complexity of𝑂 (log𝑅).
However, considering that the timestamp of the leading snapshot in
each layer’s queue increases monotonically, a binary search method

could be employed, effectively reducing the time complexity to
𝑂 (log log𝑅).

Algorithm 7: Seq-DS-FD: Query()
1 Find the min𝑗 1 ≤ L[𝑗] .S[0] .𝑠 ≤ 𝑡now − 𝑁 + 1
2 return FDℓ (𝑩,L[𝑗] .�̂�), where 𝑩 is stacked by 𝑠𝑖 .𝒗 for all

𝑠𝑖 ∈ L[𝑗] .S

4.3 Analysis

We present the following theorem about the error guarantee, space
usage, and update cost of Seq-DS-FD.

Theorem 4.1. Assume that the data stream of vector is 𝑨 =

[𝒂1, 𝒂2, ..., 𝒂𝑇] and ∀1 ≤ 𝑖 ≤ 𝑇, ∥𝒂𝑖 ∥22 ∈ [1, 𝑅]. Given the length 𝑁 of
the sliding window and the relative error 𝜀, the Seq-DS-FD algorithm

returns a sketch matrix 𝑩𝑊 . If we set ℓ = min
(︂
⌈ 1𝜀 ⌉, 𝑑

)︂
and 𝛽 > 0,

then we have:

cova-err(𝑨𝑊 ,𝑩𝑊) =
∥︁∥︁𝑨⊤𝑊𝑨𝑊 − 𝑩⊤𝑊 𝑩𝑊

∥︁∥︁
2 ≤ 𝛽𝜀∥𝑨𝑊 ∥2𝐹 , (2)

where𝑨𝑊 = 𝑨𝑇−𝑁,𝑇 = [𝒂𝑇−𝑁+1, 𝒂𝑇−𝑁+2, . . . , 𝒂𝑇]⊤. Suppose the 𝛽
is constant and𝑢 as the update time of each level; the Seq-DS-FD algo-

rithm uses 𝑂
(︂
𝑑
𝜀 log𝑅

)︂
space and processes an update in 𝑂 (𝑢 log𝑅)

time.

The proof of Theorem 4.1 can be found in our technical re-
port [36].

5 TIME-BASED MODEL

In our previous discussions, we focused on sequence-based data
streams, characterized by the regular arrival of data items, where
the arrival time increments by one unit for each arrival. However,
in many real-world applications of sliding window data streams,
attention often shifts to slidingwindows defined in real-time terms—
such as maintaining a sketch of data items received over the past
hour or day. This scenario is termed time-based data streams.

Time-based data streams differ from sequence-based streams
primarily in two aspects: (1) The presence of idle periods, which
denote intervals without any arriving items, or equivalently, when
the incoming vector 𝒂𝑡 is the zero vector. This characteristic in-
troduces potential sparsity within the current time window, i.e.,
∥𝑨𝑊 ∥2𝐹 < 𝑁 (assuming 𝒂𝑡 ∈ {0} ∪ [1, 𝑅]). (2) The occurrence of
bursty phenomena, characterized by abrupt increases in the rates
of data item arrivals.

Adapting Seq-DS-FD to accommodate the time-based model is
straightforward. Given that the error bound may be less than 𝜀𝑁

when ∥𝑨𝑊 ∥2𝐹 < 𝑁 , we adjust the number of parallel DS-FD layers
to 𝐿 = ⌈log2 (𝜀𝑁𝑅)⌉, as opposed to 𝐿 = ⌈log2 (𝑅)⌉ employed in
Seq-DS-FD. The dump thresholds are set to 𝜃 = 2𝑖 (1, 2, 4, . . . , 𝜀𝑁𝑅)
for all layers 0 ≤ 𝑖 ≤ 𝐿, thereby determining the memory cost as
𝑂

(︂
𝑑
𝜀 log(𝜀𝑁𝑅)

)︂
. The procedures for updates and queries remain

consistent with those described in Algorithm 6 and Algorithm 7.
Here, 𝑁𝑅 may also represent the maximal potential value that

∥𝑨𝑊 ∥2𝐹 could achieve within a time-based sliding window. In in-
stances where the arriving vectors are normalized, i.e., 𝑅 = 1

2156

and ∥𝒂𝑡 ∥22 ∈ {0, 1}, the sketch’s number of layers is modified to

𝐿 = ⌈log(𝜀𝑁)⌉, with the total size being 𝑂
(︂
𝑑
𝜀 log(𝜀𝑁)

)︂
.

Corollary 5.1. Assume that the data stream of vectors is 𝑨 =

[𝒂1, 𝒂2, ..., 𝒂𝑇], and ∥𝒂𝑖 ∥22 ∈ {0} ∪ [1, 𝑅] for ∀1 ≤ 𝑖 ≤ 𝑇 . Given the
length 𝑁 of the sliding window and the relative error 𝜀, the Time-DS-

FD algorithm returns a sketch matrix 𝑩𝑊 . If we set ℓ = min
(︂
⌈ 1𝜀 ⌉, 𝑑

)︂
and 𝛽 > 0, then we have:

cova-error(𝑨𝑊 ,𝑩𝑊) =
∥︁∥︁𝑨⊤𝑊𝑨𝑊 − 𝑩⊤𝑊 𝑩𝑊

∥︁∥︁
2 ≤ 𝛽𝜀∥𝑨𝑊 ∥2𝐹 , (3)

where 𝑨𝑊 = 𝑨𝑇−𝑁,𝑇 = [𝒂𝑇−𝑁+1, 𝒂𝑇−𝑁+2, . . . , 𝒂𝑇]⊤. Suppose the
𝛽 is constant and 𝑢 as the update time of each level; the Time-DS-

FD algorithm uses 𝑂
(︂
𝑑
𝜀 log 𝜀𝑁𝑅

)︂
space and processes an update in

𝑂 (𝑢 log 𝜀𝑁𝑅) time.

6 SPACE LOWER BOUND

In this section, we delve into the lower bounds of space require-
ments for any deterministic algorithm designed to address the
problem of matrix sketching over sliding windows. Our analysis
aims to demonstrate that the space complexities of our proposed
algorithms align with these lower bounds. This alignment confirms
the optimality of our algorithms in terms of memory requirements,
showcasing their efficiency in handling the constraints imposed by
sliding window contexts.

Lemma 2. Let 𝑩 be a ℓ ×𝑑 matrix approximating a 𝑛×𝑑 matrix𝑨
such that ∥𝑨⊤𝑨−𝑩⊤𝑩∥2 ≤ ∥𝑨−𝑨𝑘 ∥2𝐹 /(ℓ −𝑘). For any algorithm
with input as an 𝑛 ×𝑑 matrix 𝐴, the space complexity of representing
𝑩 is Ω(𝑑ℓ) bits of space.

Lemma 2, as established by Ghashami et al. [19], lays the ground-
work for understanding the space efficiency of matrix sketching
algorithms. Building upon this lemma, we aim to prove theorems
concerning the space lower bounds for both sequence-based and
time-based models of matrix sketching over sliding windows. These
theorems ensure that our algorithms not only maintain precise
sketching capabilities under the constraints of sliding window con-
texts but also adhere to the minimal possible space complexity.

Theorem 6.1 (Seq-based Lower Bound). A deterministic algo-
rithm that returns 𝑩𝑊 such that

∥𝑨⊤𝑊𝑨𝑊 − 𝑩⊤𝑊 𝑩𝑊 ∥2 ≤
𝜀

3
∥𝑨𝑊 ∥2𝐹 ,

where 𝜀 = 1/ℓ ,𝑨𝑊 ∈ R𝑁×(𝑑+1) ,𝑁 ≥ 1
2𝜀 log

𝑅
𝜀 and 1 ≤ ∥𝒂∥22 ≤ 𝑅+1

for all 𝒂 ∈ 𝑨𝑊 must use Ω
(︂
𝑑
𝜀 log𝑅

)︂
bits space.

Proof. We partition a window of size 𝑁 consisting of (𝑑 + 1)-
dimensional vectors into log𝑅 + 2 blocks, as illustrated in Figure 3.
The leftmost log𝑅 + 1 blocks are labeled as log𝑅, . . . , 1, 0 from left
to right, as depicted in Figure 3. The construction of these blocks
is as follows: (1) Choose log𝑅 + 1 matrices of size ℓ

4 × 𝑑 from a set
of matrices A, where A ensures that 𝑨⊤

𝑖
𝑨𝑖 is an ℓ/4 dimensional

projection matrix and ∥𝑨⊤
𝑖
𝑨𝑖 − 𝑨⊤𝑗 𝑨 𝑗 ∥ > 1/2 for all 𝑨𝑖 ,𝑨 𝑗 ∈ A.

Ghashami et al. [19] have demonstrated the existence of such a
set A with cardinality Ω(2𝑑ℓ), making the total number of distinct
arrangements 𝐿 =

(︁Ω (2𝑑ℓ)
log𝑅+1

)︁
. Consequently, log𝐿 = Ω(𝑑ℓ log𝑅). (2)

For block 𝑖 , multiply the chosen 𝑨𝑖 ∈ R
ℓ
4 ×𝑑 by a scalar of

√︂
2𝑖𝑁
ℓ ,

making the square of the Frobenius norm of block 𝑖 , ∥𝑨𝑖 ∥2𝐹 , equal
to 2𝑖𝑁 /4. (3) For block 𝑖 where 𝑖 > log ℓ𝑅

𝑁
, increase the number of

rows from ℓ/4 to ℓ
4 ·2

𝑖−log ℓ𝑅
𝑁 to ensure that 1 ≤ ∥𝒂∥22 ≤ 𝑅. The total

number of rows is bounded by 𝑁 , thus 𝑁
2 +

ℓ
4 log

ℓ𝑅
2𝑁 ≤ 𝑁 , which

implies 𝑁 ≥ ℓ
2 log ℓ𝑅. (4) Set all the (𝑑 + 1)-dimensional vectors in

the window to be 1.
We assume the algorithm is presented with one of these 𝐿 ar-

rangements of length 𝑁 , followed by a sequence of all one-hot
vectors of length 𝑁 with only the (𝑑 + 1)-dimension set as 1. We
denote 𝑨𝑖

𝑊
as the matrix over the sliding window of length 𝑁 at

the moment when 𝑖 +1, 𝑖 +2, . . . , log𝑅 blocks have expired. Suppose
our sliding window algorithm provides estimations 𝑩𝑖

𝑊
and 𝑩𝑖−1

𝑊
of

𝑨𝑖
𝑊

and 𝑨𝑖−1
𝑊

, respectively, with a relative error of 1
3ℓ . This implies

∥𝑨𝑖
𝑊

⊤
𝑨𝑖
𝑊 − 𝑩

𝑖
𝑊

⊤
𝑩𝑖
𝑊 ∥2 ≤

1
3ℓ
∥𝑨𝑖

𝑊 ∥
2
𝐹 =

1
3ℓ

(︃
𝑁

4
· 2𝑖+1 + 3𝑁

4

)︃
,

∥𝑨𝑖−1
𝑊

⊤
𝑨𝑖−1
𝑊 − 𝑩𝑖−1

𝑊

⊤
𝑩𝑖−1
𝑊 ∥2 ≤

1
3ℓ
∥𝑨𝑖−1

𝑊 ∥
2
𝐹 =

1
3ℓ

(︃
𝑁

4
· 2𝑖 + 3𝑁

4

)︃
.

Then we can answer the block 𝑖 with 𝑩⊤
𝑖
𝑩𝑖 = 𝑩𝑖

𝑊

⊤
𝑩𝑖
𝑊
−

𝑩𝑖−1
𝑊

⊤
𝑩𝑖−1
𝑊

as below,

∥𝑨⊤𝑖 𝑨𝑖 − 𝑩⊤𝑖 𝑩𝑖 ∥2
=∥(𝑨𝑖

𝑊

⊤
𝑨𝑖
𝑊 −𝑨

𝑖−1
𝑊

⊤
𝑨𝑖−1
𝑊) − (𝑩

𝑖
𝑊

⊤
𝑩𝑖
𝑊 − 𝑩

𝑖−1
𝑊

⊤
𝑩𝑖−1
𝑊)∥2

≤∥𝑨𝑖
𝑊

⊤
𝑨𝑖
𝑊 − 𝑩

𝑖
𝑊

⊤
𝑩𝑖
𝑊 ∥2 + ∥𝑨

𝑖−1
𝑊

⊤
𝑨𝑖−1
𝑊 − 𝑩𝑖−1

𝑊

⊤
𝑩𝑖−1
𝑊 ∥2

≤ 1
3ℓ

(︃
3
4
𝑁 · 2𝑖 + 3

2
𝑁

)︃
≤ 1

ℓ
∥𝑨𝑖 ∥2𝐹 .

The algorithm is capable of estimating the blocks for levels 0 ≤
𝑖 ≤ log2 𝑅. According to Lemma 2, each estimation of the blocks’
levels by the algorithm necessitates Ω(𝑑ℓ) bits of space. Thus, we
derive that a fundamental lower bound for the space complexity
of any deterministic algorithm addressing the problem of matrix
sketching over sliding windows is Ω

(︂
𝑑
𝜀 log𝑅

)︂
. □

We also derive the space lower bound in the time-based model:

Theorem 6.2 (Time-based Lower Bound). Any deterministic
algorithm that returns 𝑩𝑊 such that

∥𝑨⊤𝑊𝑨𝑊 − 𝑩⊤𝑊 𝑩𝑊 ∥2 ≤
𝜀

3
∥𝑨𝑊 ∥2𝐹 ,

where 𝑨𝑊 ∈ R𝑁×𝑑 , 𝑁 ≥ 1
2𝜀 log

𝑅
2 and ∥𝒂∥22 ∈ 0 ∪ [1, 𝑅] for all

𝒂 ∈ 𝑨𝑊 , one of the space lower bound is Ω
(︂
𝑑
𝜀 log 𝜀𝑁𝑅

)︂
.

The proof of Theorem 6.2 is similar to that of Theorem 6.1 and
can be found in our technical report [36].

Gathering Theorems 3.1, 4.1, 6.1, and 6.2, Corollary 5.1, Lemma
2, we synthesize the space complexity results of the optimal algo-
rithms we’ve proposed against the proven space lower bounds for
any deterministic algorithm under four distinct models in the last
two rows of Table 1.

2157

𝑡 − 𝑁 + 1

Block log 𝑅
𝑁/4 𝑁/8 ℓ/2

𝑡

𝟎

𝑡 + 𝑁/4

𝑑
-d
im

1 1 1 1 1 1 1 1 1

𝟎…
𝑁𝑅

ℓ
𝑨

𝑁𝑅

2ℓ
𝑨 𝑅𝑨2𝑅𝑨

𝑅

2
𝑨

𝑁

ℓ
𝑨

2𝑁

ℓ
𝑨…

ℓ/4 ℓ/4 ℓ/4
Block 0
ℓ/4 𝑁/4

Figure 3: A constructive hard instance to establish a space lower bound for the sequence-based model. We initiate the sliding

window’s state by partitioning it into log𝑅 + 1 blocks, each exponentially decreasing in size, and proceed to append one-hot

vectors to the window over time. As each block expires, the algorithm is required to expend Ω (𝑑ℓ) bits to accurately estimate

the expired block, according to Lemma 2. Consequently, by considering the number of blocks log𝑅 + 1, we derive the lower

bound Ω (𝑑ℓ log𝑅). The rigorous proof is provided in the text for Theorem 6.1.

7 EXPERIMENT

7.1 Experiment Setup

Datasets. We conduct our experiments on both sequence-based
and time-based models, utilizing a combination of synthetic and
real-world datasets. For the sequence-based model, our experiments
encompass one synthetic dataset and two real-world datasets. The
characteristics and sources of these datasets are detailed below and
summarized in Table 2:

• SYNTHETIC: This dataset is a Random Noisy matrix commonly
used to evaluate matrix sketching algorithms, generated by the
formula 𝑨 = 𝑺𝑫𝑼 + 𝑵 /𝜁 . Here, 𝑺 is a 𝑛 × 𝑑 matrix of signal
coefficients, with each entry drawn from a standard normal
distribution. 𝑫 is a diagonal matrix with 𝑫𝑖,𝑖 = 1 − (𝑖 − 1)/𝑑 . 𝑼
represents the signal row space, satisfying 𝑼𝑼⊤ = 𝑰𝑑 . The matrix
𝑵 adds Gaussian noise, with 𝑵𝑖, 𝑗 drawn from N(0, 1). We set
𝜁 = 10 to ensure the signal 𝑺𝑫𝑼 is recoverable. The window size
is set to 𝑁 = 100, 000 for the SYNTHETIC dataset.

• BIBD:
1 This dataset is the incidence matrix of a Balanced Incom-

plete Block Design by Mark Giesbrecht from the University of
Waterloo. It consists of 231 columns, 319,770 rows, and 8,953,560
non-zero entries, with each entry being an integer (0 or 1) indi-
cating the presence or absence of an edge. The window size is
set to 𝑁 = 10, 000 for the BIBD dataset.

• PAMAP2 Physical Activity Monitoring:
2 This dataset con-

tains data from 18 different physical activities performed by 9
subjects wearing inertial measurement units and a heart rate
monitor. For our experiments, we use data from subject 3, which
includes 252,832 rows and 52 columns (timestamps and activity
IDs removed, all missing entries set as 1). The window size is set
to 𝑁 = 10, 000 for the PAMAP2 dataset.

We also evaluate the algorithms over the time-based model on
two real-world datasets:

1University of Florida Sparse Matrix Collection
2UCI Machine Learning Repository

Table 2: Datasets for the sequence-based window.

Data Set Total Rows 𝑛 𝑑 𝑁 Ratio 𝑅
SYNTHETIC 500, 000 300 100, 000 14.75
BIBD 319, 770 231 10, 000 1
PAMAP2 252, 832 52 10, 000 1, 403

• RAIL
3 dataset is the crew scheduling matrix for the Italian rail-

ways, where the entry at row 𝑖 and column 𝑗 denotes the integer
cost for assigning crew 𝑖 to cover trip 𝑗 . For our experiments,
we selected a 200, 000 × 500 submatrix. Synthetic timestamps
for RAIL were generated following the Poisson Arrival Process
with 𝜆 = 0.5, setting the window size to 50, 000, which results in
approximately 100, 000 rows on average per window.

• YearPredictionMSD (YEAR)
4 is a subset from the “Million

Songs Dataset” [5] that includes the prediction of the release
year of songs based on their audio features. It comprises over
500, 000 rows and 𝑑 = 90 columns. For our analysis, a subset
with 𝑁 = 200, 000 rows was utilized. This matrix exhibits a high
rank. Synthetic timestamps for YEAR were similarly generated
following the Poisson Arrival Process with 𝜆 = 0.5.

Table 3: Datasets for the time-based window.

Data Set Total Rows 𝑛 𝑑 Δ 𝑁𝑊 Ratio 𝑅
RAIL 200, 000 500 50, 000 ≈ 100, 000 12
YEAR 200, 000 90 50, 000 ≈ 100, 000 1, 321

Algorithms and Parameters.We compare DS-FD algorithm with
three leading baseline competitors: Sampling algorithms, LM-FD,
and DI-FD [33]. The evaluations of Sampling algorithms included
SWR (row sampling with replacement) and SWOR (row sampling
without replacement), where, for both strategies, sampling ℓ =

𝑂
(︁
𝑑/𝜀2

)︁
rows is required to attain an 𝜀-covariance error.

3University of Florida Sparse Matrix Collection
4UCI Machine Learning Repository

2158

https://www.cise.ufl.edu/research/sparse/matrices/JGD_BIBD/bibd_22_8.html
https://archive.ics.uci.edu/dataset/231/pamap2+physical+activity+monitoring
https://www.cise.ufl.edu/research/sparse/matrices/Mittelmann/rail2586.html
https://archive.ics.uci.edu/dataset/203/yearpredictionmsd

The LM-FD algorithm is tested for sequence-based and time-
based windowmodels. For LM-FD, the space and error metrics were
adjusted by a parameter 𝑏 = 1/𝜀, the number of blocks per level,
and a parameter ℓ = min (1/𝜀, 𝑑), the size of the approximation
matrix 𝑩 (i.e., the number of rows in 𝑩), to achieve an 8𝜀 relative
covariance error. The evaluation of DI-FD is only conducted to the
sequence-based sliding window model, with the space and error
parameters determined by 𝐿 = log(𝑅/𝜀), the maximal number of
levels within the dyadic interval framework.

Furthermore, both Seq-DS-FD and Time-DS-FD are tested across
sequence-based and time-based windows. Similarly to DI-FD, it is
necessary to estimate the maximal value 𝑅 of the row vector norm
to set the number of layers as 𝐿 = log𝑅 (for sequence-based) or
𝐿 = log(𝜀𝑁𝑅) (for time-based). The parameters 𝛽 and the size of
FD sketches ℓ are adjustable, balancing space complexity and the
covariance relative error boundary.
Metrics. In our experimental study, we adjust the parameters for
each algorithm to illustrate the trade-offs between the maximum
sketch size and the observe maximum and average error.
• Sketch Size: This metric denotes the space the matrix sketching

algorithm occupies within the current window at a specific time.
Considering that the primary part of the space cost comes from
the row vectors of dimension 𝑑 , we use the maximum number
of rows to describe the space overhead for matrix sketching
algorithms across different datasets.

• Maximum and Average Relative Errors: These metrics are
employed to assess the quality of matrix estimates for various
sketch algorithms. The relative error is defined as ∥𝑨⊤

𝑊
𝑨𝑊 −

𝑩⊤
𝑊
𝑩𝑊 ∥2/∥𝑨𝑊 ∥2𝐹 , where 𝑨𝑊 represents the accurate matrix

within the current sliding window, and 𝑩𝑊 is the estimated
matrix produced by the sketching algorithm.

Hardware. For probabilistic algorithms such as random sampling,
we employ the same random seed to guarantee the reproducibil-
ity of our experiments. All algorithms are implemented in Python
3.12.0. Experiments are conducted on a single idle core of an In-
tel® Xeon® CPU E7-4809 v4, clocked at 2.10 GHz.

7.2 Experiment Results

0 500 1000 1500
Max sketch size (rows)

0.00

0.05

0.10

0.15

0.20

Av
er

ag
e

er
ro

r

SWR
SWOR
LM-FD
DI-FD
Seq-based DS-FD

(a) Average err vs. sketch size

0 500 1000 1500
Max sketch size (rows)

0.00

0.05

0.10

0.15

0.20

0.25

M
ax

im
um

 e
rro

r

SWR
SWOR
LM-FD
DI-FD
Seq-based DS-FD

(b) Maximum err vs. sketch size

Figure 4: Error vs. sketch size on SYNTHETIC dataset.

Errors vs. Memory Cost. We begin our evaluation by comparing
the empirical relative covariance error and memory cost across all
algorithms. For each method, we adjusted a series of parameters
to modulate the theoretical upper bound of the covariance error.

0 200 400 600 800
Max sketch size (rows)

0.00

0.05

0.10

0.15

0.20

Av
er

ag
e

er
ro

r

SWR
SWOR
LM-FD
DI-FD
Seq-based DS-FD

(a) Average err vs. sketch size

0 200 400 600 800
Max sketch size (rows)

0.0

0.1

0.2

0.3

M
ax

im
um

 e
rro

r

SWR
SWOR
LM-FD
DI-FD
Seq-based DS-FD

(b) Maximum err vs. sketch size

Figure 5: Error vs. sketch size on BIBD dataset.

0 2000 4000 6000
Max sketch size (rows)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Av
er

ag
e

er
ro

r

SWR
SWOR
LM-FD
DI-FD
Seq-based DS-FD

(a) Average err vs. sketch size

0 2000 4000 6000
Max sketch size (rows)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

M
ax

im
um

 e
rro

r

SWR
SWOR
LM-FD
DI-FD
Seq-based DS-FD

(b) Maximum err vs. sketch size

Figure 6: Error vs. sketch size on PAMAP2 dataset.

We report the maximum sketch sizes, along with the average and
maximum empirical relative covariance error across all queries. The
evaluation was conducted on the three datasets for the sequence-
based sliding window model. Figures 4, 5, and 6 illustrate the trade-
offs between maximum sketch size and average error, and between
maximum sketch size and maximum error, respectively. From these
observations, we infer the following points:

(1) In the sequence-based scenario, the error-space trade-off of
LM-FD, DI-FD, and DS-FD outperforms that of the sampling algo-
rithms SWR and SWOR. Notably, DI-FD exhibits a performance
decline in skewed data streaming (PAMAP2), as depicted in Fig-
ures 6a and 6b, aligning with observations in [33].

(2) The trade-off between error and space for DS-FD is con-
sistently superior to other competitors across both synthetic and
real-world datasets in the sequence-based model. DS-FD achieves
the same covariance error with less memory overhead than other
methods. Furthermore, no empirical error was observed to exceed
the theoretical bound, i.e., ∥𝑨⊤

𝑊
𝑨𝑊 − 𝑩⊤

𝑊
𝑩𝑊 ∥2 > 𝜀∥𝑨𝑊 ∥2𝐹 , af-

firming our theoretical analysis and underscoring the efficiency
and correctness of our algorithm.

(3) The trade-off advantage of DS-FD becomes more pronounced
as the ratio 𝑅 (the ratio between the maximum and minimum
squared norms in the dataset) decreases. For example, in Figures 5a
and 5b, when row vectors are fully normalized in the BIBD dataset,
DS-FD consumes significantly less memory to achieve a certain
level of covariance error compared to other algorithms. Addition-
ally, the average and maximum relative errors nearly approach 0
when the maximum sketch size exceeds 200 rows.

Subsequently, we evaluate four time-based algorithms on the two
datasets tailored for time-based sliding windows. Figure 7 depicts

2159

50 100 150 200
1/ε

2500

5000

7500

10000

12500

15000

M
ax

 sk
et

ch
 si

ze
 (r

ow
s)

LM-FD
Time-based DS-FD

(a) RAIL

40 60 80 100
1/ε

8000

10000

12000

14000

16000

M
ax

 sk
et

ch
 si

ze
 (r

ow
s) LM-FD

Time-based DS-FD

(b) YEAR

Figure 7: Setups of parameter 1/𝜀 vs. maximum sketch size

of LM-FD and DS-FD.

0 5000 10000 15000
Max sketch size (rows)

0.00

0.01

0.02

0.03

0.04

0.05

Av
er

ag
e

er
ro

r

SWR
SWOR
LM-FD
Time-based DS-FD

(a) Average err vs. sketch size

0 5000 10000 15000
Max sketch size (rows)

0.0

0.1

0.2

0.3

M
ax

im
um

 e
rro

r

SWR
SWOR
LM-FD
Time-based DS-FD

(b) Maximum err vs. sketch size

Figure 8: Error vs. sketch size on RAIL dataset.

8000 10000 12000 14000 16000
Max sketch size (rows)

0.000

0.005

0.010

0.015

0.020

Av
er

ag
e

er
ro

r

SWR
SWOR
LM-FD
Time-based DS-FD

(a) Average err vs. sketch size

8000 10000 12000 14000 16000
Max sketch size (rows)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

M
ax

im
um

 e
rro

r

SWR
SWOR
LM-FD
Time-based DS-FD

(b) Maximum err vs. sketch size

Figure 9: Error vs. sketch size on YEAR dataset.

the space overhead for LM-FD and Time-BasedDS-FDwith varying
parameters ℓ on the RAIL and YEAR datasets. Additionally, Figures 8
and 9 illustrate the trade-offs between the maximum sketch size
and the average error, and between the maximum sketch size and
the maximum error, respectively. The experiments conducted on
the time-based window model yield the following observations:

(1) As shown in Figure 7, the space cost of LM-FD escalates
more rapidly than that of DS-FD as 1/𝜀 increases. The actual space
overheads for both LM-FD and Time-Based DS-FD align with their
theoretical predictions of 𝑂

(︂
𝑑
𝜀2

log 𝜀𝑁𝑅

)︂
and 𝑂

(︂
𝑑
𝜀 log 𝜀𝑁𝑅

)︂
, re-

spectively, corroborating the theoretical analyses.
(2) Figures 8 and 9 show that Time-Based DS-FD exhibits a supe-

rior space-error trade-off compared to other algorithms on both the
RAIL and YEAR datasets. This indicates that our algorithm effec-
tively adapts to the time-based sliding window model, maintaining
its performance and efficiency.

Table 4: Update time and query time of all methods with a

relative error bound of 𝜀 = 1/100 on the BIBD dataset.

Time(ms) Update time Query Time
SWR 65.722 157.500
SWOR 3.143 291.936
LM-FD 0.061 3599.310
DI-FD 2.428 59.904
DS-FD 1.053 27.655

Update and Query Time. We also record the average one-step
update time and query time of all algorithms on BIBD dataset,
as detailed in Table 4. Based on these observations, we draw the
following conclusions:

(1) LM-FD requires the least amount of time for average up-
dates, a finding that is in line with its update time complexity of
𝑂 (𝑑 log 𝜀𝑁𝑅) as reported byWei et al. [33]. Conversely, the average
query time for LM-FD is the highest among the evaluated methods.
This increase in query time can be attributed to the time-consuming
merging operation of all sketches in non-expiring blocks.

(2) Our DS-FD algorithm shows an acceptable average update
time, while its average query time is the lowest among all the meth-
ods. This performance indicates that DS-FD effectively balances
update and query times, making it an advantageous choice for
matrix sketching over sliding windows.

8 CONCLUSION

In this paper, we delve into the challenge of matrix sketching over
sliding windows, introducing a novel method, denoted as DS-FD.
This method achieves space costs of𝑂

(︂
𝑑
𝜀 log𝑅

)︂
and𝑂

(︂
𝑑
𝜀 log 𝜀𝑁𝑅

)︂
for estimating covariance matrices in sequence-based and time-
based sliding windows, respectively. Furthermore, we establish and
validate a space lower bound for the covariance matrix estimation
problemwithin slidingwindows, demonstrating the space efficiency
of our algorithm. Through extensive tests on large-scale synthetic
and real-world datasets, we empirically validate the accuracy and
efficiency of DS-FD, corroborating our theoretical analyses.

ACKNOWLEDGMENTS

This research was supported in part by National Science and
Technology Major Project (2022ZD0114802), by National Natu-
ral Science Foundation of China (No. U2241212, No. 61932001,
No. 62276066, No. 62376275), by Beijing Natural Science Founda-
tion No. 4222028, by Beijing Outstanding Young Scientist Program
(No.BJJWZYJH012019100020098), by Alibaba Group through Al-
ibaba Innovative Research Program. We also wish to acknowledge
the support provided by the fund for building world-class univer-
sities (disciplines) of Renmin University of China, by Engineering
Research Center of Next-Generation Intelligent Search and Recom-
mendation, Ministry of Education, Intelligent Social Governance
Interdisciplinary Platform, Major Innovation & Planning Interdis-
ciplinary Platform for the “Double-First Class” Initiative, Public
Policy and Decision-making Research Lab, and Public Computing
Cloud, Renmin University of China.

2160

REFERENCES

[1] Mustapha Ammiche, Abdelmalek Kouadri, and Abderazak Bensmail. 2018. A
modified moving window dynamic PCA with fuzzy logic filter and application
to fault detection. Chemometrics and intelligent laboratory systems 177 (2018),
100–113.

[2] Arvind Arasu and Gurmeet Singh Manku. 2004. Approximate counts and quan-
tiles over sliding windows. In Proceedings of the twenty-third ACM SIGMOD-
SIGACT-SIGART symposium on Principles of database systems. 286–296.

[3] Sanjeev Arora, Elad Hazan, and Satyen Kale. 2006. A fast random sampling
algorithm for sparsifying matrices. In International Workshop on Approximation
Algorithms for Combinatorial Optimization. Springer, 272–279.

[4] Ainesh Bakshi and ShyamNarayanan. 2023. KrylovMethods are (nearly) Optimal
for Low-Rank Approximation. arXiv preprint arXiv:2304.03191 (2023).

[5] Thierry Bertin-Mahieux, Daniel PW Ellis, Brian Whitman, and Paul Lamere.
2011. The million song dataset. (2011).

[6] Christos Boutsidis, Petros Drineas, andMalik Magdon-Ismail. 2014. Near-optimal
column-based matrix reconstruction. SIAM J. Comput. 43, 2 (2014), 687–717.

[7] Vladimir Braverman, Petros Drineas, Cameron Musco, Christopher Musco, Jalaj
Upadhyay, David P Woodruff, and Samson Zhou. 2020. Near optimal linear
algebra in the online and sliding window models. In 2020 IEEE 61st Annual
Symposium on Foundations of Computer Science (FOCS). IEEE, 517–528.

[8] Cheng Chen, Luo Luo, Weinan Zhang, Yong Yu, and Yijiang Lian. 2021. Effi-
cient and robust high-dimensional linear contextual bandits. In Proceedings of
the Twenty-Ninth International Conference on International Joint Conferences on
Artificial Intelligence. 4259–4265.

[9] Ranak Roy Chowdhury, Muhammad Abdullah Adnan, and Rajesh K Gupta. 2020.
Real-time principal component analysis. ACM Transactions on Data Science 1, 2
(2020), 1–36.

[10] Kenneth L Clarkson and David P Woodruff. 2017. Low-rank approximation and
regression in input sparsity time. Journal of the ACM (JACM) 63, 6 (2017), 1–45.

[11] Graham Cormode and Ke Yi. 2020. Small summaries for big data. Cambridge
University Press.

[12] Mayur Datar, Aristides Gionis, Piotr Indyk, and Rajeev Motwani. 2002. Main-
taining stream statistics over sliding windows. SIAM journal on computing 31, 6
(2002), 1794–1813.

[13] Amit Deshpande and Santosh Vempala. 2006. Adaptive sampling and fast low-
rank matrix approximation. In International Workshop on Approximation Algo-
rithms for Combinatorial Optimization. Springer, 292–303.

[14] Charlie Dickens. 2020. Ridge Regression with Frequent Directions: Statistical
and Optimization Perspectives. arXiv preprint arXiv:2011.03607 (2020).

[15] Petros Drineas and Anastasios Zouzias. 2011. A note on element-wise matrix
sparsification via a matrix-valued Bernstein inequality. Inform. Process. Lett. 111,
8 (2011), 385–389.

[16] Vladimir Feinberg, Xinyi Chen, Y Jennifer Sun, Rohan Anil, and Elad Hazan.
2024. Sketchy: Memory-efficient adaptive regularization with frequent directions.
Advances in Neural Information Processing Systems 36 (2024).

[17] Mohamed Medhat Gaber, Arkady Zaslavsky, and Shonali Krishnaswamy. 2005.
Mining data streams: a review. ACM Sigmod Record 34, 2 (2005), 18–26.

[18] Aurélien Garivier and Eric Moulines. 2011. On upper-confidence bound poli-
cies for switching bandit problems. In International Conference on Algorithmic
Learning Theory. Springer, 174–188.

[19] Mina Ghashami, Edo Liberty, Jeff M Phillips, and David P Woodruff. 2016. Fre-
quent directions: Simple and deterministic matrix sketching. SIAM J. Comput.
45, 5 (2016), 1762–1792.

[20] Lap-Kei Lee and HF Ting. 2006. A simpler and more efficient deterministic
scheme for finding frequent items over sliding windows. In Proceedings of the

twenty-fifth ACM SIGMOD-SIGACT-SIGART symposium on Principles of database
systems. 290–297.

[21] Edo Liberty. 2013. Simple and deterministic matrix sketching. In Proceedings of
the 19th ACM SIGKDD international conference on Knowledge discovery and data
mining. 581–588.

[22] Luo Luo, Cheng Chen, Zhihua Zhang, Wu-Jun Li, and Tong Zhang. 2019. Robust
frequent directions with application in online learning. The Journal of Machine
Learning Research 20, 1 (2019), 1697–1737.

[23] Jayadev Misra and David Gries. 1982. Finding repeated elements. Science of
computer programming 2, 2 (1982), 143–152.

[24] Cameron Musco and Christopher Musco. 2015. Randomized block krylov meth-
ods for stronger and faster approximate singular value decomposition. Advances
in neural information processing systems 28 (2015).

[25] Shanmugavelayutham Muthukrishnan et al. 2005. Data streams: Algorithms
and applications. Foundations and Trends® in Theoretical Computer Science 1, 2
(2005), 117–236.

[26] Mark Rafferty, Xueqin Liu, David M Laverty, and Sean McLoone. 2016. Real-time
multiple event detection and classification using moving window PCA. IEEE
Transactions on Smart Grid 7, 5 (2016), 2537–2548.

[27] Mark Rudelson and Roman Vershynin. 2007. Sampling from large matrices: An
approach through geometric functional analysis. Journal of the ACM (JACM) 54,
4 (2007), 21–es.

[28] Tamas Sarlos. 2006. Improved approximation algorithms for large matrices
via random projections. In 2006 47th annual IEEE symposium on foundations of
computer science (FOCS’06). IEEE, 143–152.

[29] M Ziyan Sheriff, Majdi Mansouri, M Nazmul Karim, Hazem Nounou, and Mo-
hamed Nounou. 2017. Fault detection using multiscale PCA-based moving
window GLRT. Journal of Process Control 54 (2017), 47–64.

[30] Benwei Shi, Zhuoyue Zhao, Yanqing Peng, Feifei Li, and Jeff M Phillips. 2021.
At-the-time and back-in-time persistent sketches. In Proceedings of the 2021
International Conference on Management of Data. 1623–1636.

[31] Jalaj Upadhyay and Sarvagya Upadhyay. 2021. A framework for private ma-
trix analysis in sliding window model. In International Conference on Machine
Learning. PMLR, 10465–10475.

[32] Santosh S Vempala. 2005. The random projection method. Vol. 65. American
Mathematical Soc.

[33] Zhewei Wei, Xuancheng Liu, Feifei Li, Shuo Shang, Xiaoyong Du, and Ji-Rong
Wen. 2016. Matrix sketching over sliding windows. In Proceedings of the 2016
International Conference on Management of Data. 1465–1480.

[34] Kilian Weinberger, Anirban Dasgupta, John Langford, Alex Smola, and Josh
Attenberg. 2009. Feature hashing for large scale multitask learning. In Proceedings
of the 26th annual international conference on machine learning. 1113–1120.

[35] David P Woodruff et al. 2014. Sketching as a tool for numerical linear algebra.
Foundations and Trends® in Theoretical Computer Science 10, 1–2 (2014), 1–157.

[36] Hanyan Yin, Dongxie Wen, Jiajun Li, Zhewei Wei, Xiao Zhang, Zengfeng
Huang, and Feifei Li. 2024. Optimal Matrix Sketching over Sliding Windows.
arXiv:2405.07792 [cs.DB]

[37] Tianjing Zeng, Zhewei Wei, Ge Luo, Ke Yi, Xiaoyong Du, and Ji-Rong Wen. 2022.
Persistent Summaries. ACM Transactions on Database Systems (TODS) 47, 3
(2022), 1–42.

[38] Haida Zhang, Zengfeng Huang, Zhewei Wei, Wenjie Zhang, and Xuemin Lin.
2017. Tracking matrix approximation over distributed sliding windows. In 2017
IEEE 33rd International Conference on Data Engineering (ICDE). IEEE, 833–844.

[39] Linfeng Zhang and Yong Guan. 2008. Frequency estimation over sliding windows.
In 2008 IEEE 24th International Conference on Data Engineering. IEEE, 1385–1387.

[40] Zhi-Hua Zhou. 2023. Stream efficient learning. arXiv preprint arXiv:2305.02217
(2023).

2161

https://arxiv.org/abs/2405.07792

	Abstract
	1 Introduction
	1.1 Our Contributions

	2 Preliminaries
	2.1 Problem Definition
	2.2 FrequentDirections

	3 Our method
	3.1 Algorithm Description
	3.2 Analysis

	4 Sequence-based model
	4.1 High-Level Ideas
	4.2 Algorithm descriptions.
	4.3 Analysis

	5 Time-based model
	6 Space Lower bound
	7 Experiment
	7.1 Experiment Setup
	7.2 Experiment Results

	8 Conclusion
	Acknowledgments
	References

