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ABSTRACT
Dataframe is a popular construct in data analysis libraries that offers
a tabular view of the data. However, data within a dataframe often
has redundancy, which can lead to high memory utilization of data
analysis libraries. Inspired by the process of normalization in rela-
tional database systems, we propose a technique called splitting that
can be applied to tabular data to reduce redundancy. Splitting in-
volves performing lossless join decomposition by explicitly adding
joining keys, and unlike normalization, splitting can be applied to
tabular data without the need to perform functional dependency
discovery. A split dataframe provides the same unified tabular view
to the data, while internally operating on split data to improve
memory efficiency. We develop SplitDF, an implementation of split
dataframes in Ibis for DuckDB backend, which enables data analy-
sis on split data with minimal changes to the Ibis API. Generation
of split tabular data is automated using an algorithm SplitGen
implemented in Velox. In our analysis involving ten handwritten
notebooks running on SplitDF, we observe a reduction in mem-
ory usage of 19-61% when operating on split data as compared to
operating on original data.
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1 INTRODUCTION
Data scientists often deal with large datasets that are tabular, dis-
tributed in open formats such as CSV, JSON, and Parquet [22]. The
working environment for many data scientists are Python note-
books, either hosted on a laptop or virtualized cloud containers.
Data scientists perform tasks such as data cleaning, feature en-
gineering, and exploration using data analysis libraries such as
Pandas [26], Ibis [20], Koalas [23], etc. to name a few.

Dataframe is a key tabular construct provided by data analysis
libraries. While different libraries offer different abstractions for the
dataframe object [55], one common aspect of all dataframe libraries
is that they operate on a tabular view of the data loaded directly
from raw data files. Dataframes have no semantics of normalization
associated with them. While loading into dataframes directly from
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Figure 1: Peakmemory usage and running time of a notebook
implemented on the NYC parking tickets 2014 CSV dataset
of size 1.9 GB.When operating on the original dataframe, the
peak memory usage of the notebook is 3× the size of the raw
CSV data. Operating on split dataframe reduces the memory
usage by 47% and the running time by 37%.

raw data files is convenient for data analysis, dataframe libraries
are known to suffer from high memory utilization [13, 30, 60] as
we also see in our work (Fig. 1).

A key contributor to high memory usage of data analysis li-
braries is redundancy in the data. Redundancy arises when the data
has correlated/dependent attributes, or attributes with few unique
values. Relational database systems have employed normalization
to systematically identify and reduce redundancy in the data by
capturing functional dependencies between attributes. Designing
an effective relational schema involves discovering functional de-
pendencies in the data and taking steps to conform to a desired
normal form to reduce the redundancy and improve the integrity of
the data, and these steps often require the involvement of a database
administrator. The key question we consider in this paper is: Can
specific principles of normalization from database theory be applied
to dataframes to improve storage efficiency and data analysis speed,
with minimal effort on the part of the data scientist?

We propose a technique called splitting which is inspired by the
lossless-join decomposition mechanism [57] from database nor-
malization theory. Splitting can be automatically performed on
tabular data, and does not require functional dependency discov-
ery (FD) and schema design on part of the user. A split dataframe
internally operates on split data, while exposing the same unified
tabular interface as if operating on the original data. To demonstrate
the effectiveness of splitting for improving memory efficiency of
dataframe libraries, we make the following contributions in the
paper:
• Formal definition of splitting: In a nutshell, splitting involves per-

forming a lossless-join decomposition [24] on a table by explicitly
introducing joining keys (Fig. 2). Splitting can be performed on
arbitrary groups of attributes without requiring FD discovery.
• Generating automatic splits with SplitGen: We developed an

algorithm SplitGen that generates attribute groups for splitting
using statistics from the data, and does not require the user to
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Figure 2: Two-way splitting of a table R = {A, B, C} into tables with schema {B, C, k} and {A, k}, where k is the joining key. In this
example, the generated split satisfies the functional dependency k→ {B, C}. Splitting is an efficient form of automatic lossless
join decomposition, i.e., the original table can be recovered by joining the split tables on attribute k. Generating the split tables
requires using aggregation and window operations. N-way splits can be generated by splitting a table (N-1) times.

perform schema design. We implemented SplitGen in Velox [54]
to automatically generate split CSV files.
• Splitting dataframes in Ibis with SplitDF : SplitDF is an implemen-
tation of split dataframes in Ibis [20] for DuckDB [56] backend.
SplitDF makes minimal changes to the Ibis API, while improving
memory efficiency by operating on split data under the hood.
• Evaluation on open datasets: We conduct our evaluation on top-
voted CSV datasets on Kaggle [22]. We implemented ten note-
books for three datasets with sizes ranging from 1.2GB to 4.8GB.
Running the notebooks on SplitDF produces a reduction in mem-
ory usage of 19-61% and a reduction in running time of 1-58%
when operating on split data as compared to operating on orig-
inal data. The improvement in memory efficiency stems from
the effectiveness of splitting. Running SplitGen on twelve open
CSV datasets shows that for six out of the twelve datasets tested,
we obtain more than an 40% reduction in total size from splitting.
We give a formal specification of splitting in §2, followed by

describing SplitDF in §3. We describe the SplitGen algorithm
in §4, followed by evaluation in §5. We discuss related work in
§6 and our conclusions are in §7. Through our work, we aim to
demonstrate the benefits of the proposed splitting mechanism in
improving the memory efficiency of dataframe libraries.

2 WHAT IS SPLITTING?
In this section, we formally define splitting in §2 followed by de-
scribing how to generate a split in a relational engine in §2.2. We
discuss the differences between splitting and normalization in §2.3,
and describe our vision splitting dataframes in §2.4.

2.1 Definition
Given a relation schema R, a two-way split of R into schemas with
attribute sets X

⋃︁{𝑘} and Y
⋃︁{𝑘} is such that

• X
⋃︁

Y = R, X
⋂︁

Y = ∅
• 𝑘 ∉ R
• either of the FD 𝑘 → X or 𝑘 → Y hold □

In other words, a two-way split is a lossless decomposition of the
schema R

⋃︁{𝑘}, where the property of losslessness follows from
the constraint that either 𝑘 → X or 𝑘 → Y hold [57]. The unique
aspect of splitting is that we explicitly introduce a “joining" key 𝑘
in the schema that satisfies either 𝑘 → X or 𝑘 → Y allowing one

to perform the split for any disjoint attribute groups (X, Y). Given
an instance r of relation R, and a two-way split of 𝑟 into 𝑥 ′ and 𝑦′
which are respectively instances of schemas X

⋃︁{𝑘} and Y
⋃︁{𝑘}

that satisfy the above mentioned criterion, 𝑟 can be recovered as
𝜋𝑅 (𝑥 ′ ⋈︁ 𝑦′) = 𝑟 . A two-way split can easily be generalized to
obtain an n-way split of a relation schema R.

2.2 Generating a Split
Fig. 2 shows the steps involved in generating a two-way split of a
relation R = {A, B, C} into attribute groups {A} and {B, C}. The first
step is to add an unique key attribute (u) to the relation which is
supported by most major database engines [1, 11]. To generate a
split satisfying the FD k→ {B, C}, the dimension table with schema
{B, C, k} is generated by performing an aggregation over attributes
{B, C} of R. Note that k is the primary key of the dimension table.
The fact table is generated using window operation on the relation
schema R

⋃︁
{u} over attributes {B, C} . Note that both these opera-

tions involve simple aggregations. To generate an n-way split, one
could recursively apply splitting to the fact table to generate (n-1)
dimension tables. The approach shown in Fig. 2 can be implemented
in any relational DBMS.

2.3 Splitting vs Normalization
Both splitting and normalization involve decomposition of a rela-
tion to reduce redundancy in the schema. However, normalization
also accounts for integrity constraints of the database to guard
against update, insertion and deletion anomalies. Mining functional
dependencies (FDs) [52] is an important step in normalization, and
these FDs are used for generating the database schema in normal
forms [37, 38]. Thus, two properties of decompositions that are
of interest in the context of normalization are lossless-join and
dependency-preservation [57].

However, guarding against insertion, update, and delete anom-
alies is not a primary goal of data analysis, which often involves
operations such as data exploration, cleaning, and handling null
values. Thus, the key property of decompositions that is of interest
in the case of data analysis is lossless-join. Splitting enables explo-
ration of attribute groups that can reduce the overall redundancy,
thus improving memory-efficiency of data analysis pipelines. Un-
like normalization, splitting can be performed without functional
dependency discovery and schema design on part of the user.
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2.4 Splitting Dataframes
Dataframes are popular tabular structures used in data analysis
libraries. Unlike a database administrator, data scientists do not
perform schema design, which would require performing functional
dependency discovery and normalization. Data is directly loaded
from raw tabular data files into a dataframe. Thus, we propose
splitting dataframes "under the hood", i.e., exposing the same unified
tabular interface to the data scientist as if loaded directly from the
raw data file, while internally the dataframe operates on split data.

Two major benefits of splitting are – (1) it reduces redundancy
from the data, and (2) it can be applied to raw data files using auto-
mated methods (see §4) without requiring schema design. Typically,
tabular data is distributed in open formats such as CSV, Parquet,
and JSON [22], and major relational database engines support load-
ing and storing data from these formats [21]. Split data files can be
generated using a relational engine, where a split file is a collection
of (ideally) smaller files corresponding to the fact and dimension
tables generated during splitting. Thus, splitting can be performed
on raw tabular data without requiring manual intervention from
the data scientist. The data scientist can operate on the split data
by loading it into a split dataframe that exposes a unified tabular
representation to the user, as if operating on the original data file.

3 SPLITTING DATAFRAMES IN IBIS
In this section, we describe salient features of the Ibis library
(§3.1), followed by describing SplitDF, our implementation of split
dataframes in Ibis for the DuckDB backend (§3.2).

3.1 The Ibis library
The Ibis [20] library enables working on data from over fifteen
backend engines in a dataframe environment, with DuckDB being
the default backend. Ibis allows working on large datasets stored
in relational databases or big data systems. This is an increasingly
popular trend in data science libraries, also adopted by other sys-
tems [43, 46, 58] to enable working on larger than memory datasets.
Thus, we chose Ibis as the system of evaluation given its growing
popularity as a unified dataframe interface for data analysis.

3.2 SplitDF
We develop SplitDF, an implementation of split dataframes in Ibis
for DuckDB backend. The approach taken by SplitDF can be applied
to Ibis for other relational backend engines as well. SplitDF has the
following key features:
• Exposing split data as a unified view: To retain the same unified

tabular dataframe interface for the user, we load the split files in
the backend engine and declare a view. Ibis does not differentiate
between tables and views, so the users can operate on a dataframe
corresponding to the unified view agnostic to the underlying
storage format.
• The query rewriting layer : We implemented a query rewriting

layer in Ibis which transparently generates optimized SQL queries
when operating on split data. The query rewriting layer main-
tains information about the underlying schema of the data, and
generates SQL queries such that only the required dimension
tables that contain attributes referenced in the query are joined
with the fact table when operating on split data. While one might

import ibis

def init_from_csv(dbname , tablename , csv_file ):

'''Load from csv_file into table tablename '''

...

return schema

def init_from_split_csv(

dbname , tablename , split_csv_folder ):

'''Load the split files as individual tables ,

and declare a view with name tablename '''

...

return schema

### 1. Initializing DuckDB backend ###

dbname = "us_accidents.db"

tablename = "accidents"

### Default - Load CSV file into backend ###

# csv_file = "US_Accidents_Dec21_updated.csv"

# schema = init_from_csv(

# dbname , tablename , csv_file)

### Split - Load split CSV into backend ###

split_folder = "US_Accidents_Dec21_updated_split/"

schema = init_from_split_csv(

dbname , tablename , split_folder)

### 2. Register the schema with Ibis ###

con = ibis.duckdb.connect(dbname)

con.register_schema(schema)

### 3. Proceed with Data Analysis Agnostic ###

### to the underlying format ###

df = con.table(tablename)

agg = df.group_by('State '). aggregate(df.count ())

Listing 1: Example of data analysis with SplitDF, our imple-
mentation of split dataframes in Ibis with DuckDB backend.
After initializing the backend (step 1) and registering the
schema with Ibis (step 2), data analysis proceeds agnostic to
the underlying storage format. The only API change SplitDF
makes is registering the schema (step 2). SplitDF allows op-
eration on both original and split CSV data with no changes
to the data scientist’s experience.

expect the query optimizer in the backend engine to perform
said optimization, our analysis showed that the optimization is
missing in prominent database engines, namely PostgreSQL and
DuckDB. The query rewriting layer internally uses the SQLGlot
transpiler library [29] to generate optimized SQL queries.
• Minimal changes to the user experience: The only API change
made by SplitDF is registering the schema of the data with Ibis
to generate efficient SQL queries using the query rewriting layer.
The user can conduct data analysis on a single dataframe corre-
sponding to the unified tabular view of the data, when operating
on split data under the hood.
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Figure 3: Architecture of SplitDF when operating on split
data. Split CSV data is loaded into the backend database and
exposed as a view to Ibis. The schema of the view is regis-
tered with the Ibis query rewriting layer (introduced in our
work), which generates efficient SQL queries depending on
the schema of the data (split vs unified). The user can conduct
data analysis agnostic to the underlying storage format.

Listing 3 shows the programmer’s experience when working
with SplitDF. After (1) setting up the backend, and (2) registering
the schema with Ibis, (3) data analysis can proceed agnostic to the
underlying layout of data. Thus, SplitDF makes minimal changes
to the Ibis API. The query rewriting layer generates efficient SQL
for split data by joining only the required dimension tables with
the fact table as shown in Fig. 3.

4 GENERATING AUTOMATIC SPLITS
A critical aspect of splitting is the choice of attribute groups such
that redundancy in the data is reduced. We propose a greedy algo-
rithm to find attribute groups that reduces the total size of the split
data (§4.1). We also describe an implementation of this algorithm
in Velox [54] to generate split CSV files (§4.2).

4.1 SplitGen: A greedy algorithm
The goal of generating splits is to reduce the redundancy in the data.
We propose a greedy algorithm SplitGen which can be automati-
cally executed on a table without requiring functional dependency
discovery and schema design on part of the user. Instead, SplitGen
utilizes statistics about the data to produce attribute groups for
splitting. Splitting can subsequently be performed in a relational
engine as shown in Fig. 2. Algorithm 1 describes the SplitGen al-
gorithm, which generates attribute groups for the dimension tables
(𝑑𝑖𝑚𝑠) and the fact table (𝑓 𝑎𝑐𝑡 ) for splitting. The algorithm has the
following components/steps:

Algorithm 1 SplitGen: Generating Attribute Groups for Splitting

1: procedure GenAttributeGroups(𝑡 ) ⊲ 𝑡 is a table
2: 𝑎𝑡𝑡𝑟𝑠 ← 𝑡 .𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠

3: 𝑛𝑟𝑜𝑤𝑠 ← 𝑡 .𝑛𝑟𝑜𝑤𝑠

4: 𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡_𝑐𝑜𝑢𝑛𝑡 ← [𝐶𝑜𝑢𝑛𝑡𝐷𝑖𝑠𝑡𝑖𝑛𝑐𝑡 (𝑡 [𝑎]) for 𝑎 in 𝑎𝑡𝑡𝑟𝑠]
5: ⊲ Sorted by increasing value of distinct count
6: 𝑎𝑡𝑡𝑟𝑠 ← 𝑠𝑜𝑟𝑡 (𝑎𝑡𝑡𝑟𝑠, 𝑘𝑒𝑦 = 𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡_𝑐𝑜𝑢𝑛𝑡)
7: 𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡_𝑐𝑜𝑢𝑛𝑡 ← 𝑠𝑜𝑟𝑡 (𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡_𝑐𝑜𝑢𝑛𝑡)
8: 𝑚𝑎𝑥_𝑠𝑖𝑧𝑒 ← [𝑀𝑎𝑥𝑉𝑎𝑙𝑢𝑒𝑆𝑖𝑧𝑒 (𝑡 [𝑎]) for 𝑎 in 𝑎𝑡𝑡𝑟𝑠]
9: 𝑎𝑣𝑔_𝑠𝑖𝑧𝑒 ← [𝐴𝑣𝑔𝑉𝑎𝑙𝑢𝑒𝑆𝑖𝑧𝑒 (𝑡 [𝑎] for 𝑎 in 𝑎𝑡𝑡𝑟𝑠]
10: 𝑠𝑡𝑎𝑡𝑠 ← (𝑛𝑟𝑜𝑤𝑠, 𝑎𝑡𝑡𝑟𝑠, 𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡_𝑐𝑜𝑢𝑛𝑡, 𝑚𝑎𝑥_𝑠𝑖𝑧𝑒, 𝑎𝑣𝑔_𝑠𝑖𝑧𝑒)
11:
12: 𝑎𝑡𝑡𝑟_𝑔𝑟𝑜𝑢𝑝 ← {}, 𝑑𝑖𝑚𝑠 ← [], 𝑓 𝑎𝑐𝑡 ← [], 𝑖 ← 0
13: while 𝑖 < 𝑙𝑒𝑛(𝑎𝑡𝑡𝑟𝑠) do
14: 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 ← 𝑎𝑡𝑡𝑟_𝑔𝑟𝑜𝑢𝑝.𝑎𝑑𝑑 (𝑎𝑡𝑡𝑟𝑠 [𝑖])
15: 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑_𝑠𝑖𝑧𝑒 ← EstimateSplitSize(𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒, 𝑠𝑡𝑎𝑡𝑠)
16: 𝑎𝑐𝑡𝑢𝑎𝑙_𝑠𝑖𝑧𝑒 ← ActualSize(𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒, 𝑠𝑡𝑎𝑡𝑠)
17: if 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑_𝑠𝑖𝑧𝑒 < 𝑎𝑐𝑡𝑢𝑎𝑙_𝑠𝑖𝑧𝑒 then
18: 𝑎𝑡𝑡𝑟_𝑔𝑟𝑜𝑢𝑝 ← 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒

19: 𝑖 ← 𝑖 + 1 ⊲ Try adding the next attribute
20: else if 𝑠𝑖𝑧𝑒 (𝑎𝑡𝑡𝑟_𝑔𝑟𝑜𝑢𝑝) > 0 then
21: 𝑑𝑖𝑚𝑠.𝑎𝑑𝑑 (𝑎𝑡𝑡𝑟_𝑔𝑟𝑜𝑢𝑝)
22: 𝑎𝑡𝑡𝑟_𝑔𝑟𝑜𝑢𝑝 ← {} ⊲ Start a new group
23: else
24: 𝑓 𝑎𝑐𝑡 .𝑎𝑑𝑑 (𝑎𝑡𝑡𝑟𝑠 [𝑖]) ⊲ 𝑎𝑡𝑡𝑟 [𝑖] could not be split
25: 𝑖 ← 𝑖 + 1
26: end if
27: end while
28: return (𝑑𝑖𝑚𝑠 , 𝑓 𝑎𝑐𝑡 )
29: end procedure
30:
31: procedure ActualSize(𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒, 𝑠𝑡𝑎𝑡𝑠)
32: (𝑛𝑟𝑜𝑤𝑠, 𝑎𝑡𝑡𝑟𝑠, 𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡_𝑐𝑜𝑢𝑛𝑡,𝑚𝑎𝑥_𝑠𝑖𝑧𝑒, 𝑎𝑣𝑔_𝑠𝑖𝑧𝑒) = 𝑠𝑡𝑎𝑡𝑠

33: 𝑝𝑜𝑠 ← 𝑎𝑡𝑡𝑟𝑠.𝑔𝑒𝑡_𝑖𝑛𝑑𝑒𝑥𝑒𝑠 (𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒)
34: 𝑠𝑖𝑧𝑒 ← 0
35: for 𝑖 in 𝑝𝑜𝑠 do
36: 𝑠𝑖𝑧𝑒 ← 𝑠𝑖𝑧𝑒 + 𝑛𝑟𝑜𝑤𝑠 × 𝑎𝑣𝑔_𝑠𝑖𝑧𝑒 [𝑖]
37: end for
38: return 𝑠𝑖𝑧𝑒

39: end procedure
40:
41: procedure EstimateSplitSize(𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒, 𝑠𝑡𝑎𝑡𝑠)
42: (𝑛𝑟𝑜𝑤𝑠, 𝑎𝑡𝑡𝑟𝑠, 𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡_𝑐𝑜𝑢𝑛𝑡,𝑚𝑎𝑥_𝑠𝑖𝑧𝑒, 𝑎𝑣𝑔_𝑠𝑖𝑧𝑒) = 𝑠𝑡𝑎𝑡𝑠

43: 𝑝𝑜𝑠 ← 𝑎𝑡𝑡𝑟𝑠.𝑔𝑒𝑡_𝑖𝑛𝑑𝑒𝑥𝑒𝑠 (𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒)
44: 𝑒𝑠𝑡_𝑛𝑟𝑜𝑤𝑠 ← 1
45: 𝑒𝑠𝑡_𝑡𝑢𝑝𝑙𝑒_𝑠𝑖𝑧𝑒 ← 0
46: for 𝑖 in 𝑝𝑜𝑠 do
47: 𝑒𝑠𝑡_𝑛𝑟𝑜𝑤𝑠 ← 𝑒𝑠𝑡_𝑛𝑟𝑜𝑤𝑠 × 𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡_𝑐𝑜𝑢𝑛𝑡 [𝑖]
48: 𝑒𝑠𝑡_𝑡𝑢𝑝𝑙𝑒_𝑠𝑖𝑧𝑒 ← 𝑒𝑠𝑡_𝑡𝑢𝑝𝑙𝑒_𝑠𝑖𝑧𝑒 +𝑚𝑎𝑥_𝑠𝑖𝑧𝑒 [𝑖]
49: end for
50: 𝑒𝑠𝑡_𝑡𝑢𝑝𝑙𝑒_𝑠𝑖𝑧𝑒 ← 𝑒𝑠𝑡_𝑡𝑢𝑝𝑙𝑒_𝑠𝑖𝑧𝑒 + 8 ⊲ 8-byte joining key
51: 𝑠𝑖𝑧𝑒 ← 𝑒𝑠𝑡_𝑡𝑢𝑝𝑙𝑒_𝑠𝑖𝑧𝑒 × 𝑒𝑠𝑡_𝑛𝑟𝑜𝑤𝑠 + 𝑛𝑟𝑜𝑤𝑠 × 8
52: return 𝑠𝑖𝑧𝑒

53: end procedure
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(a) (b)

Figure 4: We developed a fully automatic module that implements SplitGen (cf. §4.1) using the HyperLogLog approximate
count distinct aggregate function [42] in Velox. The workflow of the module is shown in (a). The split schema generated for the
911 dataset (see Table 1) is shown in (b), which yields 33% reduction in raw CSV file size compared to the original dataset.

(1) Statistics: The SplitGen algorithm utilizes three key statistics
about the data: the number of distinct values, the maximum
value size, and the average value size of each of the attributes.

(2) Sliding window over attributes: The attributes are sorted in as-
cending order of their distinct count. The algorithm attempts
to group together attributes starting from the attribute with
least number of distinct values. For each candidate attribute
group, the size of the split is estimated and compared to the ac-
tual size of the attribute group. The algorithm continues to add
attributes to the candidate attribute group, until the estimated
split size is less than the actual size.

(3) Generating attribute groups for dimension and fact tables: At-
tribute groups for which the estimated split size is less than the
actual size are added to the 𝑑𝑖𝑚𝑠 array, which will correspond
to a dimension table. Note that dictionary encoding is a special
case of this algorithm when the size of the attribute group is
one. Any attributes that are not estimated to generate benefit
from dictionary encoding (which is the minimal split possible)
are retained in the fact table.

(4) Estimating the size of the split: The algorithm uses a conserva-
tive estimate of the size of the generated dimension table. The
cardinality of the dimension table is estimated as the product
of number distinct values of each of the attributes (which is the
upper limit as not all combinations of attribute values might
occur in the data) times the tuple size (estimated as the sum
of the maximum value size for each of the attributes, plus the
size of the joining key, which is again an upper limit). Extra
space needed for the joining key attribute in the fact table is
also accounted for. Thus, the estimated size of the split is an
upper limit on the real size of the split.

The algorithm is guaranteed to generate attribute groups for
splitting that lead to a net reduction in size, as the estimated size of
the split assumes independence between attributes to estimate the
cardinality of the split table, and uses the max value size of each
attribute to estimate the tuple size, both of which are conservative
estimates. The statistics utilized by SplitGen (distinct values and
max value size) can be obtained by performing a single pass over

the data, i.e., using𝑂 (𝑁 ) time and space where 𝑁 is the number of
rows. The next step involves sorting the attributes by their distinct
value count, and the complexity of this part of the algorithm is
𝑂 (𝑎 · 𝑙𝑜𝑔(𝑎)), where 𝑎 is the number of attributes. While running
a sliding window to generate attributes groups, each attribute is
considered at most twice to be added to a candidate attribute group,
and the complexity of this part of the algorithm is 𝑂 (𝑎). Thus, the
overall complexity of the algorithm is 𝑂 (𝑁 + 𝑎 · 𝑙𝑜𝑔(𝑎)).

4.2 Splitting CSV files in Velox
We developed a module in Velox [54] that automatically generates
split CSV files. A split CSV file is a collection of CSV files corre-
sponding to the fact and dimension tables generated during splitting.
Below are the important components of our implementation:

• Reading/Writing CSV files using Apache Arrow: Velox currently
does not support reading/writing CSV files. The module use
Apache Arrow [6] to ingest CSV files and write split CSV files.
• Implementing SplitGen: The statistics utlized by SplitGen are
obtained using aggregate functions in Velox. To estimate the
distinct count of each attribute, we use the HyperLogLog [41,
42] aggregate function in Velox, which provides an estimate
of the distinct count with a standard error of 2.3%. Thus, our
implementation does not provide the strict guarantee of yielding
a split that produces a net reduction in size, but in practice we
find have found it to produce effective splits (see §5.2).
• Generating split tables: The module uses aggregation and win-
dow operations as shown in Fig. 2 to generate dimension and
fact tables respectively. To generate N-way splits, splitting is
recursively applied to generated fact table (N-1) times.

Thus, splitting can be applied automatically to CSV files with-
out manual intervention and schema design using the developed
module in Velox (see Fig. 4 for the workflow of the module, and an
example of a split schema). In general, splitting is performed using
aggregate and window operations (see Fig. 2), and can be imple-
mented in any relational engine that supports these operations.

2179



-1% -23% -21% -25% -16%

-55%

+37%

-52% -52% -54% -52%

+21% +24%
-5%

+26%

-19% -22% -19% -23% -22%

Figure 5: Notebooks for the ACCIDENT dataset. When operating on the split dataframes, we observe a 19-23% reduction in
peak memory usage across all notebooks, while the total running time of the notebooks reduces by 1-25%. A large portion of
the reduction can be attributed to faster data loading time (52-55% lower), as the size of the split dataset is 44% smaller.
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Figure 6: Notebooks for the NYC and FLIGHT datasets. When operating on split dataframes, we observe large reduction in peak
memory usage ranging from 35-61%, while the overall running times of these notebooks reduces by 13-58%. A large portion of
the reduction can be attributed to faster data loading time (36-41% lower for NYC dataset and 66-70% lower for FLIGHT dataset),
as the size of the split dataset is 29% and 54% lower for the NYC and FLIGHT datasets respectively.

5 EVALUATION
In this section, we evaluate the performance of notebooks run-
ning on SplitDF (§5.1), followed by the efficiency of SplitGen for
generating split data (§5.2), on the datasets listed in Table 1.

5.1 Running notebooks on SplitDF
To evaluate the effectiveness of split dataframes, we implemented
ten Ibis notebooks spanning over three datasets (Table 1) – US
Accidents (ACCIDENT), NYC parking tickets (NYC), and Flight
status prediction (FLIGHT) with sizes ranging from 1.2GB to 4.8GB.
These notebooks are re-implementations of top-voted notebooks
on Kaggle for each of these datasets, and they cover the wide range
of operations typically conducted for data analysis such as feature
engineering, handling null values, and aggregations to name a few
(see Fig. 5 and 6). These notebooks are available on GitHub [28], and
the split datasets for these notebooks have been generated using
the implementation of SplitGen in Velox (§4.2).

The results shown in Fig. 5 and 6 have been obtained by running
the notebooks on a laptop machine with 16GB RAM, which is a
popular environment for data scientists [2]. Memory usage reported
in all experiments is the peak resident set size during the process’
lifetime, obtained using the GNU time tool [31]. Overall, we find
that the peak memory usage reduces by a significant amount of
19-61% when running on split dataframes compared to running on
original dataframes.

Table 1: Top-voted CSV datasets from Kaggle. We analyze
datasets with sizes ranging from 50MB to 4.8GB.

CSV Dataset Name Size #Attrs.
FIFA 20 complete player dataset (FIFA) [16] 51 MB 626
COVID-19 dataset (COVID) [10] 75 MB 77
Emergency - 911 Calls (911) [15] 123 MB 9
Brazilian E-Commerce Public
Dataset by Olist (ECOMM) [9] 126 MB 52

Football Events (FBALL) [19] 183 MB 40
Data Science for Good:
Kiva Crowdfunding (DSG) [14] 233 MB 54

515k Hotel Reviews in Europe (HOTEL) [5] 238 MB 17
Bitcoin Historical Data (BITCOIN) [8] 318 MB 8
FitBit Fitness Tracker Data (FITBIT) [17] 338 MB 259
US Accidents (2016-19) (ACCIDENT) [32] 1.2 GB 47
NYC Parking Tickets 2014 (NYC) [25] 1.9 GB 51
Flight Status Prediction (2018-19) (FLIGHT) [18] 4.8 GB 122

The running time of these notebooks reduces by 1-58%. A large
portion of this reduction can be attributed to the reduction in data
loading time, as the size of the split dataset is considerably smaller
(44%, 29%, and 54% smaller for the ACCIDENT, NYC, and FLIGHT
datasets respectively). The median reduction in data loading time
for the three datasets is 52%, 41%, and 68% respectively. The running
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time of the data analysis portion of the notebooks increases by 18-
316%, as the queries now involve performing joins between the fact
and dimension tables when operating on split dataframes. For each
of the three datasets, the highest increase in data analysis time is
observed for notebooks where a join involving all the dimension
tables is performed (37%, 52% and 316% increase respectively for
the ACCIDENT, NYC, and FLIGHT datasets).

Running the notebooks for the US Accidents dataset on a server
machine with 160GB of RAM yielded a 55% median reduction in
memory usage compared to the 22% median reduction we observe
on the laptop machine with 16GB of RAM. While the exact reduc-
tion in memory usage is influenced by the behavior of the garbage
collector in Python3 on different experimental setups, it is safe to
say that operating on split dataframes results in significant reduc-
tion in memory usage. Larger RAM size on the server machine
allowed experimenting with larger datasets as well. Running the
FLIGHT NB1 (see Fig. 6) notebook on an expanded version of the
Flight Delays and Cancellations dataset [18] of size 10GB yielded a
net reduction in running time of 12%, and a net reduction in data
loading time of 14% when running on split dataframes.

5.2 Splitting CSV Data with SplitGen
We perform splitting on twelve top-voted CSV datasets collected
from Kaggle listed in Table 1. We chose a range of datasets with
sizes ranging from 50MB to 4.8GB. We evaluate the reduction in
size/memory arising from SplitGen in §5.2.1, followed by compar-
ing SplitGen to dictionary encoding and normalization in §5.2.2.

5.2.1 Improvements in Size and Memory Utilization. To demon-
strate the efficiency of the SplitGen algorithm, we compare the
relative sizes of original vs split CSV datasets. Splitting is a one-time
offline operation, executed on a server machine with 160GB of RAM.
The time taken by SplitGen ranges from 1 minute for the smallest
dataset (FIFA) to 38 minutes for the largest dataset (FLIGHT). Fig. 7
shows the reduction in raw data size from splitting – for six out of
the twelve datasets tested, we obtain a substantial reduction in total
size of more than 40% (median reduction of 39.5%), which shows
the effectiveness of SplitGen in reducing redundancy.

To show the promise of working with split tabular data, we com-
pare the memory footprint of three prominent libraries in the data
science ecosystem – PyArrow [7] (Fig. 8a), DuckDB [56] (Fig. 8c),
and Pandas [26] (Fig. 8b) – when loading the original vs the split
CSV dataset on a laptop with 16GB RAM [2]. For the three libraries,
we obtain a median reduction in memory usage of 39.0%, 33.5%,
and 35.2% respectively. Note that for the FLIGHT dataset, both
PyArrow and Pandas run out of memory when loading the original
raw data, while Pandas runs out of memory for the NYC dataset as
well. Splitting reduces the memory footprint, enabling Pandas and
PyArrow to load these large datasets.

5.2.2 Comparison to Dictionary Encoding andNormalization. Given
that the goal of splitting is to reduce the size of the data, splitting
is also related to compression. Dictionary encoding [4] is a special
case of splitting where individual attributes are split into dimension
tables. We compared SplitGen to 1) naive, and 2) improved dic-
tionary encoding. A naive implementation of dictionary encoding
involved splitting each attribute of the dataset into a dimension
table, and we found that this strategy increases the dataset size for

FIFA

COVID

911

ECOMM

FBALL

DSG

HOTEL

BITCOIN

FITBIT

ACCIDENT

NYC

FLIGHT

Figure 7: Reduction in CSV dataset size from splitting. For
six of the twelve datasets, we obtain a large reduction in size
of over 40% from splitting using the SplitGen algorithm.

four out of the twelve datasets tested (Table 1). For rest of the eight
datasets, we found that SplitGen yielded a 7-51% further reduction
in dataset size compared to naive dictionary encoding. To improve
the implementation of dictionary encoding, we modified SplitGen
to only consider attribute groups of size one, i.e, each attribute is
evaluated to estimate if dictionary encoding is likely to result in a
net reduction in size. Compared to the improved implementation of
dictionary encoding, SplitGen yields a 8-28% further reduction in
dataset size for six out of the twelve datasets, while the performance
is very similar (within 3%) for the rest of the datasets.

Normalization is yet another technique that has the dual goal
of reducing redundancy and improving the integrity of the data.
Normalization is expensive (noted to be 𝑂 (𝑛2𝑚2

22𝑚) [48], i.e., qua-
dratic in the number of rows 𝑛 and exponential in the number of
attributes𝑚), and often involves manual intervention to obtain an
effective schema. The only end-to-end automatic normalization
tool we found was Metanome [51] which performs normalization
to BCNF [38]. In practice, we found automatic normalization to be
not very effective when it comes to reducing the size of the dataset,
as in some cases the generated schema contained compound keys
resulting in duplication of attributes across tables. For instance, the
normalized schema for the Football Events (FBALL) dataset yielded
a 130% increase in size of the dataset, unlike SplitGen that yields
a 50% reduction in size for the FBALL dataset.

6 RELATEDWORK
The issues related to highmainmemory usage of dataframe libraries
such as Pandas [26, 60] are well known, making it challenging to
analyze large datasets. Consequently, there have been multiple ef-
forts in the community to scale data analysis to larger datasets.
Modin [55] and Dask [3] leverage a distributed runtime such as
Ray [49] to perform operations on distributed dataframes. Other
efforts are Vaex [33] which uses lazy evaluation and memory map-
ping, and RAPIDS cuDF [12] which utilizes the GPU to enable data
scientists to work with larger datasets on a single machine. The
primary goal of these efforts remains scaling to larger datasets, and
not necessarily optimizing memory usage [13, 30].

Inspired by pandas, newer dataframe APIs have been developed
that run atop relational database systems to draw benefits off their
performance and efficiency. The Ibis [20] API is supported over mul-
tiple backends ranging from in-process DBMS such as DuckDB [56],
to cloud-based solutions such as Snowflake [39]. Grizzly [43] utilizes
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(a) For six out of twelve datasets tested, we ob-
tain over 40% reduction in memory usage when
loading split CSV datasets. For the FLIGHT
dataset (marked red, in which case the x-axis
indicates memory usage for the split dataset),
PyArrow ran out of memory when loading the
original dataset.
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(b) For six out of twelve datasets tested, we ob-
tain over 40% reduction in memory usage when
loading split CSV datasets. For the FLIGHT and
NYC datasets (marked red, in which case the
x-axis indicates memory usage for the split
dataset), Pandas ran out of memory when load-
ing the original datasets.
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(c) For five out of twelve datasets tested, we ob-
tain over 40% reduction in memory usage when
loading split CSV datasets.

Figure 8: Reduction in memory usage of (a) PyArrow, (b) Pandas, and (c) DuckDB when loading from split vs original dataset.

a transpiler to convert pandas-like API to SQL. A similar approach
is taken by the PyFroid compiler of Magpie [46], which converts
pandas expressions into language agnostic IR utilizing Ibis, and
leverages optimized relational backends in the cloud whenever
possible. Other notable solutions that run atop relational DBMS
are PySpark [27] and Koalas [23]. While these efforts recognize
the performance and efficiency of relational DBMS, they do not
leverage the fundamental optimization of lossless decomposition
employed by relational DBMS.

There is a rich theory of normalization [36–38, 40] for removing
redundancy and improving the integrity of relational databases.
The key distinction between normalization and splitting is that
normalization requires obtaining functional dependencies (FDs)
from the data. Authors of [52] conduct a thorough evaluation of
prominent functional dependency discovery algorithms. In gen-
eral, FD discovery is an expensive operation and its complexity
has been shown to be 𝑂 (𝑛2 (𝑚2 )

22𝑚) [48], and different algorithms
can broadly be classified based on finding 1) exact FDs, such as
DFD [35], GORDIAN [59], and HyFD [53], and 2) approximate FDs
(where a dependency can be violated by only a fraction of the rows)
such as PYRO [47], FDX [61], and TANE [44]. Although obtain-
ing functional dependencies from the data is strictly not required
for splitting, functional dependencies can help generate attribute
groups with correlated/dependent attributes grouped together to
further improve the efficiency of splitting. Given the expensive
nature of FD discovery, techniques involving sampling and discov-
ering correlation between columns (“soft" FDs) such as CORDS [45]
can potentially be used to improve upon SplitGen.

Splitting can be interpreted as a compression technique. Unlike
syntactic compression techniques such as Lempel-Ziv encoding [62]
that treat data as a string, splitting involves extracting structure
out of the data by decomposing it into smaller tables. Splitting can
be used in conjunction with techniques for compression, as well
as techniques for efficient storage such as compressed columnar
storage [4]. Factorization [50] is yet another technique used for
reducing redundancy in relational database systems which involves
representing query results as compact cartesian products, and is
thus orthogonal to splitting.

7 CONCLUSIONS AND FUTUREWORK
Inspired by the practice of normalization in relational databases,
in this work we introduced a technique called splitting. Splitting
involves performing lossless-join decomposition by explicitly intro-
ducing joining keys, and thus does not require the user to perform
functional dependency discovery and schema design. We propose
splitting dataframes to reduce redundancy in the data, thus improv-
ing memory efficiency.We developed SplitDF, an implementation of
split dataframes in Ibis, that makes minimal changes to the Ibis API
providing the impression of a unified dataframe while operating on
split data to improve memory efficiency. Choosing efficient splits is
a critical aspect to reduce redundancy in the data, and we developed
a greedy algorithm SplitGen that automatically produces efficient
splits without requiring the data scientist to perform schema design.
We implemented SplitGen in Velox to generate split CSV files.

For evaluating the effectiveness of splitting dataframes, we im-
plemented ten notebooks spanning over the largest three datasets
– US Accidents (1.2GB), NYC parking tickets (1.9GB), and Flight
status prediction (4.9GB). We find that across all the notebooks,
peak memory consumption reduces by 19-61%, while the running
time reduces by 1-58%, showing the promise of splitting dataframes.
We evaluated SplitGen on twelve top-voted CSV datasets from
Kaggle, and found that for six out of twelve datasets, we obtain a
substantial reduction of over 40% in size. Future work can involve
implementing split dataframes in other libraries such as Pandas [26].
Splitting can also be implemented in distributed dataframe libraries
such as Modin [55] and Dask [3]. One could explore the appli-
cation of techniques such as vertical partitioning [34] to group
together frequently co-accessed attributes while generating a split
schema. Such a workload-aware approach can benefit not just dis-
tributed frameworks, but can also help improve the running time
of notebooks on a single machine by reducing the number of joins
required.
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