
DIDS: Double Indices and Double Summarizations for Fast
Similarity Search

Han Hu
Harbin Institute of Technology

huhan@stu.hit.edu.cn

Jiye Qiu
Harbin Institute of Technology

qiujiye@stu.hit.edu.cn

Hongzhi Wang∗
Harbin Institute of Technology

wangzh@hit.edu.cn

Bin Liang
Harbin Institute of Technology

liangbin@stu.hit.edu.cn

Songling Zou
Harbin Institute of Technology
zousongling@stu.hit.edu.cn

ABSTRACT
Data series has been one of the significant data forms in various
applications. It becomes imperative to devise a data series index
that supports both approximate and exact similarity searches for
large data series collections in high-dimensional metric spaces.
The state-of-the-art works employ summarizations and indices
to reduce the accesses to the data series. However, we discover
two significant flaws that severely limit performance enhancement.
Firstly, the state-of-the-art works often employ segment-based sum-
marizations, whose lower bound distances decrease significantly
when representing a data series collection, resulting in numerous in-
valid accesses. Secondly, the disk-based indices for the exact search
mainly rely on tree-based indices, which results in low-quality
approximate answers, consequently impacting the exact search.

To address these problems, we propose a novel solution, Double
Indices and Double Summarizations (DIDS). Besides segment-based
summarizations, DIDS introduces reference-point-based summa-
rizations to improve the pruning rate by the sorted-based repre-
sentation strategy. Moreover, DIDS employs reference points and
a cost model to cluster similar data series, and uses a graph-based
approach to interconnect various regions, enhancing approximate
search capabilities. We conduct experiments on extensive datasets,
validating the superior search performance of DIDS.

PVLDB Reference Format:
Han Hu, Jiye Qiu, Hongzhi Wang, Bin Liang, and Songling Zou. DIDS:
Double Indices and Double Summarizations for Fast Similarity Search.
PVLDB, 17(9): 2198 - 2211, 2024.
doi:10.14778/3665844.3665851

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/imarcher/DIDS.

1 INTRODUCTION
Modern applications generate an abundance of data series. Inves-
tigating the efficient management and application of data series

∗Corresponding author.
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 17, No. 9 ISSN 2150-8097.
doi:10.14778/3665844.3665851

has been one of the foremost challenges [8, 28, 65, 81, 92]. Simi-
larity search, as a pivotal operation in data analysis and mining,
holds significance across various domains such as finance [76], engi-
neering [71, 73], telecommunication [67], astronomy [38], machine
learning [78] and so on [43, 62].

Firstly, we briefly review existing similarity search techniques.
The studies can primarily be classified into four categories [57]:
hash-based [32, 37, 50, 56, 80], tree-based [3, 17, 59, 84, 89], graph-
based [21, 30, 31, 40, 60], and quantization-based approaches [22,
33, 41]. Graph-based approaches achieve the highest approximate
search performance and precision with high memory cost [4].

While there are many studies on the Approximate Nearest Neigh-
bor (ANN), the number of data series indices supporting both ap-
proximate and exact searches for large data series collections re-
mains relatively scarce [24, 25]. In this domain, the EAPCA and
iSAX families [23, 66] are the state-of-the-art works [89]. Due to
their high pruning rates and training-free feature, they can signifi-
cantly reduce the search time. Their approaches can be summarized
as follows: constructing data series indices based on summariza-
tions with lower bound distances, utilizing the indices to obtain
approximate answers, with the answers, using the summarizations
that represent a data series collection for initial pruning, employing
the summarizations corresponding to one data series for further
pruning, and ultimately accessing the remaining data series.

From previous works, we find two paramount flaws that severely
limit the search capabilities of data series indices.

Firstly, for initial pruning, the EAPCA and iSAX families mainly
employ the segment-based summarizations, where data series are
segmented and each segment undergoes dimensionality reduction,
resulting in low initial pruning rate. The segment-based summa-
rizations like EAPCA [23], employ a boundary-based strategy to
represent a collection of data series, by considering the common
boundary of the collection for each dimension. The more data
series they represent, the smaller the lower bound distances. Con-
sequently, the initial pruning rate is insufficient.

Secondly, the quality of the approximate answers obtained from
these tree-based disk indices is low. The tree-based indices partition
data based on rules, and each partition step can separate numerous
similar data series alongside the partition boundary, resulting in
reduced recall rates. Additionally, the approximate answers often
serve as inputs to the exact search. The low-quality approximate
answers may result in a low pruning rate. Previous works [13, 89]
use some strategies with random access to enhance the pruning
rate, leading to performance degradation.

2198

https://doi.org/10.14778/3665844.3665851
https://github.com/imarcher/DIDS
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3665844.3665851
https://www.acm.org/publications/policies/artifact-review-and-badging-current

Segment-based

Reference-point-based

O

Q

(a) The pruning region

O1

O3

O2

(b) The graph of DIDS

Figure 1: (a) shows the pruning regions for different types of
summarizations. DIDS further partitions the data for each
reference point and constructs the graph at this level, as
shown in (b).

In conclusion, previous works suffer from low pruning rates,
resulting in excessive invalid accesses. To address these issues, we
introduce a novel approach, DIDS. DIDS employs the reference-
point-based summarizations for initial pruning. Their lower bound
distances do not decrease when representing a data series collection,
by a sorted-based representation strategy rather than a boundary-
based one. Moreover, DIDS combines reference points with graphs,
providing a data-based rather than rule-based approximate search
algorithm, enhancing the quality of approximate answers.

For the first constraint, we use reference-point-based summa-
rizations perform a swift initial pruning before employing segment-
based summarizations. DIDS selects many reference points rather
than few points in previous works, providing a higher pruning rate.
However, for large datasets, an excess of points yield unaccept-
able construction and search cost. For construction, we devise a
graph-based reference-point search algorithm, swiftly assigning a
reference point to each data series. Then, we construct a B+-tree for
each point to cluster data series. For search, we sequentially access
the B+-trees in disk order, and rely on approximate answers (from
themethod to be discussed later) to locate the boundaries of the data
series which cannot be pruned. Finally, we employ the costlier but
higher pruning-rate SAX to process the rest data series. We use the
SAX as in many previous works [23, 89], even though SAX can be
replaced here by any other more updated summarizations [75, 87]
with lower bound distances.

We improve the initial pruning rate to reduce the accesses to the
summarizations, lowering the pruning cost. Moreover, we enhance
the overall pruning rate. In Figure 1a, the circle centered at query𝑄
represents the true answers. The region that cannot be pruned by
the reference-point-based summarizations forms a ring centered
around the reference point 𝑂 . For segment-based summarizations,
the region expands outward from 𝑄 . The overlap of these two
summarizations may be a smaller area, improving the pruning rate.

For the second constraint, we introduce a novel approximate
search algorithm based on reference points and graph. In Figure 1b,
we cluster data series by reference points and employ binary trees
to partition them within a cluster into leaf nodes based on a cost
model. We represent leaf nodes with their centroids. Then, we insert
all leaf nodes into a similarity search graph (we select HNSW [60]).
Clearly, our memory is consistently maintained within a cluster
level. As a result, DIDS employs the graph to locate the nodes
nearest to the query, obtaining high-quality approximate answers.
Contributions. Our primary contributions are as follows:

• We propose an approach that combines reference-point-based
summarizations and segment-based summarizations to reduce
the pruning cost and enhance the pruning rate. We combine
the approximate answers, B+-trees, and SAX summarizations to
provide an exceptionally efficient sequential pruning method.

• We integrate the reference points and the binary trees base on
a cost model to partition the data series into numerous small
regions. Then, we leverage these regions and the graph to obtain
high-quality approximate answers rapidly.

• We conduct experiments with various datasets, offering insights
for the future research. In comparison to the state-of-the-art
works, DIDS boasts a around 60% higher recall rate in the ap-
proximate search under low execution times, and achieves a
around 90% improvement in exact search speed on average.

2 PRELIMINARIES AND RELATEDWORK
In this section, we introduce the preliminaries, discuss some re-
lated works and summarize their shortcomings. In § 2.1, we present
several related definitions. In § 2.2, we show commonly used sum-
marizations for similarity search. In § 2.3, we discuss reference-
point-based methods. Then we introduce data series indices that
support both approximate and exact similarity searches in § 2.4.
Lastly, we provide a brief overview of graph-based methods in § 2.5.

2.1 Definitions
2.1.1 Data series. A data series 𝑆 = {𝑠1, ..., 𝑠𝑑 }, is an ordered point
sequence that can be viewed as a 𝑑-dimensional vector.

2.1.2 Similarity search query. A query 𝑄 = {𝑞1, ..., 𝑞𝑑 }, also is a
𝑑-dimensional data series, employed to identify a subset from a
collection of data series.

2.1.3 Similarity search problem. The definition of the similarity
search (𝑘-NN) in metric spaces is as follows: given a data series col-
lection 𝐴𝑟𝑟𝑠 = {𝑆1, ..., 𝑆𝑛}, a query 𝑄 and a metric distance calcula-
tion formula 𝐷 (·, ·), the expected answers are 𝐴𝑟𝑟𝑎 = {𝑆𝑎1 , ..., 𝑆𝑎𝑘 },
where |𝐴𝑟𝑟𝑎 | = 𝑘 , 𝐴𝑟𝑟𝑎 ⊆ 𝐴𝑟𝑟𝑠 and ∀𝑆𝑎𝑖 ∈ 𝐴𝑟𝑟𝑎,∀𝑆 𝑗 ∈ 𝐴𝑟𝑟𝑠 −
𝐴𝑟𝑟𝑎, 𝐷 (𝑄, 𝑆𝑎𝑖) ≤ 𝐷 (𝑄, 𝑆 𝑗). Search requiring a recall rate of 1 is
referred to as exact search, otherwise approximate search [24, 25].

2.2 Summarization techniques
We often employ summarizations to represent high-dimensional
data series due to the high cost of directly manipulating them. The
distance between two summarizations approximates or is lower
than the distance between the data series they represent.

The Product Quantization (PQ) [33, 41] utilizes centroids ob-
tained through K-means to represent data series. The Discrete
Fourier Transform (DFT) [2, 46, 63] converts the time domain
into the frequency domain. The Singular Value Decomposition
(SVD) [6, 35, 49] decomposes a matrix to extract the essence of
the matrix. The Discrete Haar Wavelet Transform (DHWT) [44]
transforms data series into a multi-level structure. The Piecewise
Aggregate Approximation (PAA) [94] and its more updated vari-
ants [29, 34, 45, 87, 88] segment data series and compress them by
the the average or variance of each segment.

In data series indices for large datasets, Symbolic Aggregate Ap-
proximation (SAX) [51] is a popular summarization. SAX possesses

2199

lower bound distance, compact storage, high pruning rate, and is
training-free. To obtain SAX, the data series is divided into several
segments, and the average value for each segment is computed to
obtain PAA. Lastly, a Gaussian mapping function with equiproba-
ble divisions is employed to discretize the values of PAA. SAX has
numerous variants that can enhance pruning rates [55, 75, 79, 95],
with the cost of increased computation and storage requirements.

2.3 Works on reference points
Reference-point-based summarizations involve selecting reference
points and precomputing the distances from data series to one or
more reference points. During searching, they utilize the triangle
inequality for pruning. More specifically, for a query𝑄 , a reference
point 𝑂 , a queried data series 𝑆 and the distance of the best so
far (BSF) answers 𝐷𝑏 , if 𝐷 (𝑆,𝑂) ≤ 𝐷 (𝑄,𝑂) − 𝐷𝑏 or 𝐷 (𝑆,𝑂) ≥
𝐷 (𝑄,𝑂) + 𝐷𝑏 , we have 𝐷 (𝑄, 𝑆) ≥ 𝐷𝑏 , then we can prune the 𝑆 .

Some approaches [39, 61] cluster the data series and utilize clus-
ter centroids or boundaries as reference points. Others [9–11, 19, 83]
primarily use outliers or maximize the distances between reference
points. There are also methods [15, 36, 85, 86] that determine ref-
erence points by cost models or queries. iDistance [39] constructs
a B+-tree by K-means [58] and conducts the search outward from
the middle of the B+-tree. [15] selects a few reference points, re-
duces dimensionality using a Hilbert curve [74], and then employs
B+-trees for indexing. HD-Index [3] segments the data series, uses
a Hilbert curve and a B+-tree for each segment. The ML-Index [1]
is a learning index based on distances to reference points.

In conclusion, previous works often select few reference points.
On the contrary, we select more reference points to achieve a higher
initial pruning rate and employ approximate answers and segment-
based summarizations to perform a sequential search algorithm.

2.4 Data series indices
For large high-dimensional datasets, methods that support the ex-
act similarity search are not as abundant as ANN methods [24, 25].
Some sequential scanning methods [27, 72, 90] support similar-
ity matching of short query series against long data series. The
reference-point-based methods [16, 39, 64] can support this but
may not achieve high pruning rate. The EAPCA and iSAX families
are currently the state-of-the-art data series indices that support
both the approximate and exact similarity searches [24, 25, 89]. We
introduce their development in the following.

Many methods are built upon the binary tree and SAX. iSAX [12,
13, 77] is the first to propose using a binary tree to index SAX and to
use iSAX to represent a SAX collection. It uses iSAX for initial prun-
ing, SAX for further pruning. ADS [97, 98] introduces an adaptive
index construction method, shifting construction time to the search
phase. ParIS [69] employs multithreading. ULISSE [54] supports
variable-length data series. MESSI [68], SING [70], DPiSAX [93]
and Odyssey [14] utilize memory, GPU, and distributed system.

Some methods employ different index structures. Tardis [96] is
a multi-way tree index, but it suffers from serious space wastage as
it splits each segment of SAX for each partition. Coconut [47, 48]
utilizes the Z-order curve [74] to sort SAX and employs a B+-tree
for searching. Dumpy [89] strikes a balance between Tardis and

Table 1: Notations for complexity analysis.

Notation Explanation

𝑧 the summarization for initial pruning
𝑥 the summarization for further pruning
𝑝𝑧 the pruning rate of 𝑧
𝑝𝑥 the pruning rate of 𝑥
𝑛 the number of data series in the dataset
𝑑 the data series dimension
𝑤 the number of segments in summarizations
𝑡ℎ the leaf size of the binary tree
𝑡ℎ𝑏 the leaf size of the B+-tree
𝑛𝑟 the number of reference points
𝑛𝑔 the number of graph nodes for approximate search
𝑒 the iterations of K-means
𝑣 the sampling rate of K-means

iSAX. It selects a portion of SAX segments to split by cost models.
When the splitting is complete, it merges the smaller nodes.

Within the EAPCA family, DS-Tree [88] employs adaptive seg-
mentation, and uses EAPCA to represent and prune a data series
collection. Hercules [23], after utilizing DS-Tree to partition data
series, further prunes them using SAX.

In summary, previous works utilize iSAX or EAPCA to repre-
sent a collection, reducing the accesses to SAX. However, iSAX
and EAPCA exhibit very small lower bound distances and nearly
lost their effectiveness as examples in § 7.3. Furthermore, they are
all tree-based indices with limited abilities to obtain approximate
answers as examples in § 7.4.

2.5 Graph-based methods
Here is a brief overview of the state-of-the-art graph-based works.
Hierarchical Navigating Small World (HNSW) [60] is based on the
navigating small-world graph and employs a multi-level structure.
Navigating Spreading-Out (NSG) [31] reduces the average node
outdegree, thereby shortening search paths. HVS [57] utilizes the
Hierarchical Voronoi structure in place of HNSW’s upper-level
structure. ELPIS [4] utilizes DS-Tree [88] to partition the data and
constructs a graph for each leaf node. There are many other works
in this field, which can be found in two comprehensive reviews on
graph methods [52, 53]. We adopt a graph-based approach since it
can yield the approximate answers with high recall rates.

3 THE STRUCTURE OF DIDS
We first discuss the design ideas of DIDS in § 3.1. Then, we propose
the specific structure of DIDS based on these ideas in § 3.2.

3.1 Motivations
We begin our analysis by the time complexity of the exact search,
elucidating howwe design appropriate strategies to address the two
issues mentioned in § 1. The notations used for analyzing algorithm
complexity are presented in Table 1.

Previous works often employ two types of summarizations, 𝑧 and
𝑥 , to conduct initial pruning and further pruning respectively, reduc-
ing the accesses to 𝑥 and data series. Hence, the cost of accessing 𝑥 is
𝑂 ((1−𝑝𝑧)𝑛𝑤) and that of accessing data series is𝑂 ((1−𝑝𝑧−𝑝𝑥)𝑛𝑑).

2200

We also assume the total cost of accessing 𝑧 is 𝑐𝑧 , the cost of the
approximate search is 𝑐𝑎 . Then, the time complexity for the exact
search is given by 𝑂 (𝑐𝑎 + 𝑐𝑧 + (1 − 𝑝𝑧)𝑛𝑤 + (1 − 𝑝𝑧 − 𝑝𝑥)𝑛𝑑).

Typically, 𝑧 represents over thousands of data series, making 𝑐𝑧
relatively small, and the 𝑐𝑎 is also low which allows us to disregard
them. Then, the complexity can be simplified to𝑂 ((1−𝑝𝑧)𝑛𝑤 + (1−
𝑝𝑧 − 𝑝𝑥)𝑛𝑑). For the comparison with previous works, we utilize
the SAX summarization as 𝑥 , so 𝑛𝑤 and 𝑛𝑑 are both constants.
Therefore, the two parameters that we can optimize are 𝑝𝑧 and 𝑝𝑥 .

3.1.1 Improving 𝑝𝑧 . Existing works employ segment-based sum-
marizations like iSAX or EAPCA as 𝑧 [23, 89]. They achieve high
pruning rate when representing an individual data series. However,
when representing a collection, iSAX and EAPCA compute the
minimum distance of the collection for each dimension, resulting in
a decrease in lower bound distances. Consequently, for challenging
real workloads, the 𝑝𝑧 tends to be quite low (around 10% in § 7.3).

The reference-point-based summarizations offer a completely
different sorted-based approach to represent a collection. Their have
lower pruning rates compared to segment-based summarizations
for an individual data series. However, their lower bound distances
don’t decrease when representing a collection. The reason is as
follows. Given a reference point𝑂 , a query𝑄 and a top distance 𝐷𝑏

of the BSF answers, we can deduce that the collection 𝐴𝑟𝑟𝑠 which
can be pruned satisfies that ∀𝑆 ∈ 𝐴𝑟𝑟𝑠 , 𝐷 (𝑆,𝑂) ≤ 𝐷 (𝑄,𝑂) − 𝐷𝑏

or 𝐷 (𝑆,𝑂) ≥ 𝐷 (𝑄,𝑂) + 𝐷𝑏 . In other words, we only need to sort
their distances to quickly prune a collection. Their lower bound
distances remain unaffected for more data series. Clearly, reference-
point-based summarizations are a superior choice for 𝑧.

3.1.2 Enhancing 𝑝𝑥 . When 𝑥 is fixed, improving 𝑝𝑥 can only be
achieved by enhancing the quality of the BSF answers. Previous
works [23, 89] often calculate the distances between queries and
summarizations of leaf nodes. They traverse the leaf nodes in as-
cending order of the distances and prioritize visiting nodes that
might contain answers, to continuously update the BSF answers.
However, it leads to random accesses.Whilewe can enhance sequen-
tial access by increasing the size of leaf nodes like Hercules [23], it
results in lower distances for iSAX or EAPCA, rendering themmore
inaccurate. Therefore, for previous work, the sequential access and
pruning rate are inversely proportional.

To address this issue, obtaining high-quality approximate an-
swers is essential. Because with high-quality approximate answers,
there is no need to prioritize visiting specific nodes. Instead, we
can sequentially traverse the entire dataset. Therefore, we consider
graph-based methods, which are widely recognized for their ca-
pability to yield high-quality answers [4]. However, graphs incur
substantial memory overhead and may not be well-suited for large
data series collections. Consequently, we devise an approach simi-
lar to quantization: further partitioning each reference point and
employing a regional centroid to represent the data series within
that region. This strategy serves to reduce memory consumption.

3.2 The structure
From the analysis above, for DIDS, it is necessary to sort reference-
point-based summarizations for each reference point for initial

Filed
Filesa
Files

Memory
Disk

Graph comprised of
centroids

B+-trees corresponding to
the reference points

Summarization
files Point

Figure 2: The structure of DIDS in memory and disk.

Algorithm 1 ClusterDataSeries
Input: Dataset𝐴𝑟𝑟𝑠 ; Reference points size 𝑛𝑟 ; Read buffer size 𝑛𝑟𝑏 ; Write buffer size

𝑛𝑟𝑤 ;
Output: The temporary files 𝐹𝑖𝑙𝑒𝑔𝑑 [𝑛𝑟], 𝐹𝑖𝑙𝑒𝑔𝑠 [𝑛𝑟];
1: 𝐴𝑟𝑟𝑟 ← Select 𝑛𝑟 reference points from𝐴𝑟𝑟𝑠 ;
2: 𝐺𝑟𝑎𝑝ℎ𝑟 ← Construct the HNSW graph by𝐴𝑟𝑟𝑟 ;
3: 𝐵𝑢𝑓 𝑓 𝑒𝑟𝑤𝑑 [𝑛𝑟], 𝐵𝑢𝑓 𝑓 𝑒𝑟𝑤𝑠 [𝑛𝑟] ← Initialize each write buffer with a size of

𝑛𝑟𝑤 ;
4: 𝐹𝑖𝑙𝑒𝑔𝑑 [𝑛𝑟], 𝐹𝑖𝑙𝑒𝑔𝑠 [𝑛𝑟] ← Create two files for each reference point;
5: for 𝑖 ← 1 to𝐴𝑟𝑟𝑠 .𝑆𝑖𝑧𝑒/𝑛𝑟 do
6: 𝐵𝑢𝑓 𝑓 𝑒𝑟𝑟 ← load 𝑛𝑟𝑏 data series from𝐴𝑟𝑟𝑠 ;
7: for all 𝑆 in 𝐵𝑢𝑓 𝑓 𝑒𝑟𝑟 do
8: 𝐼𝑑𝑟 , 𝐷𝑖𝑠 ← Obtain 1 reference point and distance from𝐺𝑟𝑎𝑝ℎ𝑟 by 𝑆 ;
9: Push 𝐷𝑖𝑠 , 𝑆 into 𝐵𝑢𝑓 𝑓 𝑒𝑟𝑤𝑑 [𝐼𝑑𝑟] and 𝐵𝑢𝑓 𝑓 𝑒𝑟𝑤𝑠 [𝐼𝑑𝑟];
10: if 𝐵𝑢𝑓 𝑓 𝑒𝑟𝑤𝑑 [𝐼𝑑𝑟] is full then
11: Write two buffers into files and clear;
12: return 𝐹𝑖𝑙𝑒𝑔𝑑 [𝑛𝑟], 𝐹𝑖𝑙𝑒𝑔𝑠 [𝑛𝑟];

pruning. Additionally, a small-memory graph is needed to provide
approximate answers.

The structure of DIDS is depicted in Figure 2. In memory, DIDS
consists of the internal nodes of some B+-trees and a graph. On
disk, there are three files: 𝐹𝑖𝑙𝑒𝑑 , which corresponds to the leaf nodes
of the B+-trees (also the reference-point-based summarizations),
𝐹𝑖𝑙𝑒𝑠𝑎 for SAX summarizations, and 𝐹𝑖𝑙𝑒𝑠 for data series. The data
in these three files are one-to-one corresponding.

The graph is utilized for quickly obtaining the approximate an-
swers firstly. Each node in the graph points to a continuous space
within the files, and uses the centroid of a subset of data series in
that space as the representative. Subsequently, the B+-trees and
summarization files are used for pruning. DIDS selects a reference
point for each data series and constructs a B+-tree for each refer-
ence point. This aids in rapidly locating the positions of data series
that cannot be pruned by reference-point-based summarizations.
Then, the SAX summarizations are loaded for further pruning.

4 THE CONSTRUCTION OF DIDS
The construction can be divided into three phases: clustering data
series, preparing summarizations and constructing the graph, as
shown in Figure 3. In the following three subsections, we introduce
them respectively.

4.1 Data series clustering
We begin by clustering data series using reference points. We em-
ploy a reference point to represent a collection of data series near
it, allowing DIDS to perform the approximate search on a cluster-
level graph in limited memory. Moreover, we compute the distances
between the data series and the reference points, for the initial prun-
ing in the exact search. Clustering the data series first also allows

2201

Memory

Disk

Data series

Ref points

① Select
reference

points

② Construct a
temporary graph

Buffer pool

③ Read in
buffer pool

④ Find a reference point,
flush the distances and data
series into the buffer pool

⑥ Load a file

⑤ Flush to disk
when buffer pool

is full

temporary files

⑦ Sort by distances,
construct a B+-tree

Filed

Filesa

Files

⑧ Compute SAX summarizations
and flush in order

Phase 2: Prepare summarizationsPhase 1: Cluster data series by
reference points

Phase 3: Partition clusters and
construct the graph

⑩ Insert the centroid
 into the graph

Point

⑨ Insert data
series into a

temporary binary tree

Distance
Date series

Distance
Date series

Distance
Date series

Distance
Date series

Distance
Date series

Distance Distance

SAX SAX

Data series Data series

Figure 3: The overall process of DIDS construction.

Algorithm 2 PrepareSummarizations
Input: The temporary files 𝐹𝑖𝑙𝑒𝑔𝑑 [𝑛𝑟], 𝐹𝑖𝑙𝑒𝑔𝑠 [𝑛𝑟]; The distance file 𝐹𝑖𝑙𝑒𝑑 ; The

SAX file 𝐹𝑖𝑙𝑒𝑠𝑎 ; The data series file 𝐹𝑖𝑙𝑒𝑠 ; The global B+-tree array𝐴𝑟𝑟𝑏 ;
1: for 𝑖 ← 1 to 𝑛𝑟 do
2: 𝐴𝑟𝑟𝑔𝑑 , 𝐴𝑟𝑟𝑔𝑠 ← Load from 𝐹𝑖𝑙𝑒𝑔𝑑 [𝑖], 𝐹𝑖𝑙𝑒𝑔𝑠 [𝑖];
3: Sort𝐴𝑟𝑟𝑔𝑑 , 𝐴𝑟𝑟𝑔𝑠 by𝐴𝑟𝑟𝑔𝑑 ;
4: 𝑇𝑟𝑒𝑒𝑏 ← Construct a B+-tree by𝐴𝑟𝑟𝑔𝑑 ;
5: Push𝑇𝑟𝑒𝑒𝑏 into𝐴𝑟𝑟𝑏 ;
6: 𝐴𝑟𝑟𝑠𝑎 ← Compute SAX summarizations for𝐴𝑟𝑟𝑔𝑠 ;
7: Write𝐴𝑟𝑟𝑔𝑑 , 𝐴𝑟𝑟𝑠𝑎, 𝐴𝑟𝑟𝑔𝑠 into 𝐹𝑖𝑙𝑒𝑑 , 𝐹𝑖𝑙𝑒𝑠𝑎, 𝐹𝑖𝑙𝑒𝑠 ;

subsequent phases to be performed at the cluster level, reducing
memory consumption.

The pseudo code is shown in Algorithm 1. Firstly, we consider
the reference point selection. Since our objective is to cluster data
series, which can be used for the approximate search, K-means is
indeed a good choice. However, the complexity of K-means can be
too high for large data series collections, so we have resorted to
sampling to select 𝑛𝑟 reference points from the dataset (Line 1).

For each data series, we select the nearest reference point. How-
ever, given many reference points and data series, computing the
distances for all them is highly time-consuming. Therefore, we in-
sert all reference points into the HNSW graph (Line 2) and employ
this graph to identify the nearest reference point (Line 8).

We establish a read buffer for batch reading (Line 6). Additionally,
for each reference point, we create two temporary files along with
corresponding write buffers (Lines 3, 4). One is for distances to the
reference points, while the other is for data series. This separation
of storage is intended to expedite subsequent sorting. We determine
a reference point for a data series and push both the data series
and its distance to the buffers (Line 9). When the buffers reach the
capacity, we flush them into the corresponding files (Lines 10, 11).

4.2 Summarization preparation
In this section, we prepare two summarizations for the initial prun-
ing and further pruning in the exact search. For initial pruning,
based on § 3.1, we need to sort reference-point-based summariza-
tions for each reference point, to rapidly locate the boundaries of

Algorithm 3 ConstructTheGraph
Input: Data series array𝐴𝑟𝑟𝑔𝑠 ; The start position of𝐴𝑟𝑟𝑔𝑠 in 𝐹𝑖𝑙𝑒𝑠 𝑃𝑜𝑠𝑠 ; The global

HNSW graph𝐺𝑟𝑎𝑝ℎ𝑙 ;
1: 𝑇𝑟𝑒𝑒𝑏𝑖 ← Initialize a binary tree;
2: for 𝑖 ← 1 to𝐴𝑟𝑟𝑔𝑠 .𝑆𝑖𝑧𝑒 do
3: Insert 𝑖 into𝑇𝑟𝑒𝑒𝑏𝑖 with𝐴𝑟𝑟𝑔𝑠 ;
4: 𝐴𝑟𝑟𝑙 ← Obtain all leaf nodes from𝑇𝑟𝑒𝑒𝑏𝑖 ;
5: for all 𝑁𝑜𝑑𝑒 in𝐴𝑟𝑟𝑙 do
6: 𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑 ← Compute the centroid of the data series within the 𝑁𝑜𝑑𝑒 ;
7: 𝑃𝑜𝑠𝑚𝑖𝑛 , 𝑃𝑜𝑠𝑚𝑎𝑥 ← Calculate the minimum and maximum positions within

the 𝑁𝑜𝑑𝑒.𝐴𝑟𝑟𝑝 ;
8: 𝑃𝑜𝑠𝑚𝑖𝑛 , 𝑃𝑜𝑠𝑚𝑎𝑥 ← 𝑃𝑜𝑠𝑚𝑖𝑛 + 𝑃𝑜𝑠𝑠 , 𝑃𝑜𝑠𝑚𝑎𝑥 + 𝑃𝑜𝑠𝑠
9: Insert𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑, 𝑃𝑜𝑠𝑚𝑖𝑛, 𝑃𝑜𝑠𝑚𝑎𝑥 into𝐺𝑟𝑎𝑝ℎ𝑙 ;

the data that cannot be pruned. Thus, the B+-tree is a good choice
for ordered data. For further pruning, we use SAX as in the previous
works [23, 89], with a higher cost but a superior pruning rate.

In Algorithm 2, we first read in the two temporary files of a
reference point saved in the previous phase (Line 2). We then sort
distances and data series based on distances (Line 3). Next, we build
the B+-tree with the distance to the reference point as the key,
from the bottom to up using 𝐴𝑟𝑟𝑔𝑑 and record the B+-tree in the
global array 𝐴𝑟𝑟𝑏 (Lines 4, 5). For each data series, we compute
the corresponding SAX (Line 6). Finally, we write the distances,
SAX, and data series to their respective files (Line 7). All reference
points share the same three files, for sequential access to all B+-trees
during searching which is good for disk-based structures.

4.3 Graph construction
Since the cluster level remains excessively large and there are vari-
ations in the sizes of clusters, in pursuit of a more uniform parti-
tioning and more precise approximate answers, we employ a cost
model to further partition each cluster into smaller regions. Then,
we construct a graph by the centroids of small regions, to conduct
high-precision approximate search under low memory.

In Algorithm 3, we first insert the data series represented by
array subscript 𝑖 into a temporary binary tree to partition this clus-
ter (Lines 1-3). We use an example to illustrate this binary tree.
In Figure 4, we have a binary tree populated with 4 data series

2202

S1(0.1, 0.3) S2(0.05, 0.2) S3(0.08, 0.1) S4(0.15, 0.4)

(2, 0.2)

Sizep: 2
Arrp: 2, 3

Sizep: 2
Arrp: 1, 4

2.008.0
1.005.0

:~S

4.015.0
3.01.0

:~S

2.0]2[S 2.0]2[S

Figure 4: A binary tree construction example.

with 𝑑=2. The internal node stores routing information (2, 0.2),
where 2 indicates which segment to observe, and 0.2 corresponds
to the value for partitioning. The second segments of 𝑆2, 𝑆3 in the
left node are ≤ 0.2, and those of 𝑆1, 𝑆4 in the right node are > 0.2.
The leaf nodes have three attributes: (i) 𝑆 : for a data series collec-
tion 𝐴𝑟𝑟𝑠 = {𝑆1, ..., 𝑆𝑛} where 𝑆𝑖 = (𝑠𝑖1 , ..., 𝑠𝑖𝑑), the summarization

𝑆 =

[(
𝑠𝑚𝑖𝑛1

𝑠𝑚𝑎𝑥1

)
, ...,

(
𝑠𝑚𝑖𝑛𝑑

𝑠𝑚𝑎𝑥𝑑

)]
, where 𝑠𝑚𝑖𝑛 𝑗

= min
1≤𝑖≤𝑛

{𝑠𝑖 𝑗 }, 𝑠𝑚𝑎𝑥 𝑗
=

max
1≤𝑖≤𝑛

{𝑠𝑖 𝑗 }. (ii) 𝑆𝑖𝑧𝑒𝑝 : the number of data series within the leaf

node. (iii) 𝐴𝑟𝑟𝑝 : the positions of the data series in the 𝐴𝑟𝑟𝑔𝑠 .
These attributes are updated when a data series is inserted. We

partition a leaf node when it attains a threshold. Difference [88]
and variance [89] are popular reference metrics for selecting a
partitioning dimension. Here, we select difference as the reference,
sacrificing precision compared to variance, but gaining a faster
construction speed. Assuming 𝑆𝑖𝑧𝑒𝑝 = 𝑛𝑝 , we define a cost model
to assist in node partition: 𝑐𝑙 = 𝑛𝑝

∑𝑑
𝑗=1 (𝑠𝑚𝑎𝑥 𝑗

−𝑠𝑚𝑖𝑛 𝑗
). This model

represents the boundary differences of a leaf node, ensuring that
the boundaries of the resulting leaf nodes have smaller differences,
sincewe always choose the dimensionwith the largest difference for
partitioning. The theoretical reasons are as follows. If we uniformly
partition a node by a value𝑚𝑖𝑑 and the 𝑖-th segment, and only focus
on the cost of the 𝑖-th segment as the others remain unchanged,
the cost of the left node is (𝑚𝑖𝑑 − 𝑠𝑚𝑖𝑛𝑖)𝑛𝑝/2, and the cost of the
right node is (𝑠𝑚𝑎𝑥𝑖 −𝑚𝑖𝑑)𝑛𝑝/2. The total cost is reduced by (𝑠𝑚𝑎𝑥𝑖

−𝑠𝑚𝑖𝑛𝑖)𝑛𝑝/2. Thus, tomaximize the reduction, we create an internal
node (𝑖,𝑚𝑖𝑑) for partitioning, where 𝑖 = argmax

1≤ 𝑗≤𝑑
(𝑠𝑚𝑎𝑥 𝑗

− 𝑠𝑚𝑖𝑛 𝑗
)

which is also the dimension with the largest difference, and𝑚𝑖𝑑 is
the median of the 𝑖-th segment to make partitioning more uniform.
Finally, the leaf node is partitioned by the (𝑖,𝑚𝑖𝑑).

We compute the centroid 𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑 of the data series within
each leaf node and record the minimum and maximum positions
𝑃𝑜𝑠𝑚𝑖𝑛, 𝑃𝑜𝑠𝑚𝑎𝑥 within the𝐴𝑟𝑟𝑝 of each leaf node (Lines 4-7). Subse-
quently, we add the starting position 𝑃𝑜𝑠𝑠 of this cluster in 𝐹𝑖𝑙𝑒𝑠 , to
𝑃𝑜𝑠𝑚𝑖𝑛 and 𝑃𝑜𝑠𝑚𝑎𝑥 (Line 8). Thus, 𝑃𝑜𝑠𝑚𝑖𝑛 and 𝑃𝑜𝑠𝑚𝑎𝑥 can point to a
continuous spacewithin 𝐹𝑖𝑙𝑒𝑠 . Finally, we utilize {𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑, 𝑃𝑜𝑠𝑚𝑖𝑛,

𝑃𝑜𝑠𝑚𝑎𝑥 } to represent a leaf node, and employ the distances of cen-
troids to represent the distances between leaf nodes, inserting all
leaf nodes into the global HNSW graph 𝐺𝑟𝑎𝑝ℎ𝑙 (Line 9).

5 THE SEARCH IN DIDS
From § 3, DIDS employs reference-point-based summarizations
graph to enhance the pruning rate, reducing the time complexity
of the exact search. Furthermore, for disk-based indices, the se-
quential access also holds substantial significance. DIDS constructs

Algorithm 4 ApproximateSearch
Input: Query 𝑄 ; Size of graph nodes to be searched 𝑛𝑔 ; The global HNSW graph

𝐺𝑟𝑎𝑝ℎ𝑙 ; The two files 𝐹𝑖𝑙𝑒𝑠𝑎 , 𝐹𝑖𝑙𝑒𝑠 ;
Output: The approximate answers; The positions that have already been searched;
1: 𝐴𝑛𝑠𝑎 ← Initialize a priority queue;
2: 𝐴𝑟𝑟𝑠𝑔 ← Select 𝑛𝑔 nodes from𝐺𝑟𝑎𝑝ℎ𝑙 by𝑄 ;
3: Sort𝐴𝑟𝑟𝑠𝑔 by the 𝑃𝑜𝑠𝑚𝑖𝑛 of each node;
4: Merge the nodes in𝐴𝑟𝑟𝑠𝑔 that have overlapping regions for 𝑃𝑜𝑠𝑚𝑖𝑛 and 𝑃𝑜𝑠𝑚𝑎𝑥 ;

5: 𝑃𝐴𝐴𝑞 ← compute PAA summarization by𝑄 ;
6: for all 𝑁𝑜𝑑𝑒 in𝐴𝑟𝑟𝑠𝑔 do
7: 𝐴𝑛𝑠𝑎 ← PruneWithSAX(𝑄 , 𝑃𝐴𝐴𝑞 , 𝑁𝑜𝑑𝑒.𝑃𝑜𝑠𝑚𝑖𝑛 , 𝑁𝑜𝑑𝑒.𝑃𝑜𝑠𝑚𝑎𝑥 , 𝐴𝑛𝑠𝑎 ,

𝐹𝑖𝑙𝑒𝑠𝑎 , 𝐹𝑖𝑙𝑒𝑠);
8: return𝐴𝑛𝑠𝑎 ,𝐴𝑟𝑟𝑠𝑔 ;

Algorithm 5 PruneWithSAX
Input: Query𝑄 ; PAA 𝑃𝐴𝐴𝑞 ; The begin and end positions 𝑃𝑜𝑠𝑏 , 𝑃𝑜𝑠𝑒 ; The answers

𝐴𝑛𝑠 ; The two files 𝐹𝑖𝑙𝑒𝑠𝑎 , 𝐹𝑖𝑙𝑒𝑠 ;
Output: updated answers;
1: 𝐴𝑟𝑟𝑠𝑎 ← Load SAX summarizations from 𝐹𝑖𝑙𝑒𝑠𝑎 between 𝑃𝑜𝑠𝑏 and 𝑃𝑜𝑠𝑒 ;
2: for 𝑖 ← 𝑃𝑜𝑠𝑏 to 𝑃𝑜𝑠𝑒 do
3: if 𝐷 (𝑃𝐴𝐴𝑞 , 𝐴𝑟𝑟𝑠𝑎 [𝑖 − 𝑃𝑜𝑠𝑏 + 1]) < 𝐴𝑛𝑠.𝑇𝑜𝑝𝐷𝑖𝑠𝑡 then
4: 𝑆 ← Load 𝑖-th data series from 𝐹𝑖𝑙𝑒𝑠 ;
5: if 𝐷 (𝑄,𝑆) < 𝐴𝑛𝑠.𝑇𝑜𝑝𝐷𝑖𝑠𝑡 then
6: Update𝐴𝑛𝑠 by 𝑆 ;
7: return𝐴𝑛𝑠 ;

B+-trees to cluster data that cannot be pruned into a contiguous
space on disk. And with high-quality approximate answers, DIDS
sequentially accesses all B+-trees to reduce the cost of disk reads.
Figure 5 describes the search in DIDS. We discuss the details of the
approximate search in § 5.1 and the exact search in § 5.2.

5.1 Approximate search
DIDS employs a centroid to represent a data series collection. By a
graph, DIDS can obtain the high-quality approximate answers in
the limited memory. The high-quality approximate answers provide
enough pruning opportunities for subsequent steps.

The algorithm for the approximate search is shown in Algo-
rithm 4. We first initialize a priority queue for approximate answers
(Line 1). Then, we search 𝑛𝑔 nodes near to the 𝑄 from the 𝐺𝑟𝑎𝑝ℎ𝑙
(Line 2). We sort the nodes in ascending order of the 𝑃𝑜𝑠𝑚𝑖𝑛 , and
merge nodes with intersecting position ranges (Lines 3, 4). Merging
nodes enables sequential access, thereby expediting the approxi-
mate search. Next, We compute the PAA of the query to prepare
for subsequent pruning (Line 5). We iterate through each node, and
process the data series between 𝑁𝑜𝑑𝑒.𝑃𝑜𝑠𝑚𝑖𝑛 and 𝑁𝑜𝑑𝑒.𝑃𝑜𝑠𝑚𝑎𝑥

using SAX summarizations sequentially (Lines 6, 7).
The algorithm for using the SAX to process the data series is

shown in Algorithm 5. We read the corresponding SAX from the
disk (Line 1). Next, we access each SAX, compute the lower bound
distance between the PAA of the query and each SAX with the
formula from [77] (Lines 2, 3). If the distance is lower than the top
distance of the BSF answers, we load the data series from 𝐹𝑖𝑙𝑒𝑠 ,
compute the actual distance, and update the answers (Lines 4-6).

5.2 Exact search
With high-quality approximate answers and a well-structured DIDS
index, the exact search as depicted in Figure 5, just sequentially
accesses continuous spaces and achieves the high pruning rate.

2203

Query

Filed

Filesa

Files

Memory

Disk

① Get graph nodes
③ Visit B+-trees in order, get the begin and end positions to visit using the approximate answers

④ Visit in order and prune using SAX summarizationsSpaces to search

② Merge nodes and get the
approximate answers

Phase 1: Approximate search Phase 2: Exact search

Figure 5: The overall process of the exact search in DIDS.

Algorithm 6 ExactSearch
Input: Query 𝑄 ; Size of graph nodes to be searched 𝑛𝑔 ; The global B+-tree array

𝐴𝑟𝑟𝑏 ; The global HNSW graph𝐺𝑟𝑎𝑝ℎ𝑙 ; The three files 𝐹𝑖𝑙𝑒𝑑 , 𝐹𝑖𝑙𝑒𝑠𝑎 , 𝐹𝑖𝑙𝑒𝑠 ;
Output: Exact answers;
1: 𝐴𝑛𝑠,𝐴𝑟𝑟𝑠𝑔 ← ApproximateSearch(𝑄 , 𝑛𝑔 ,𝐴𝑟𝑟𝑏 ,𝐺𝑟𝑎𝑝ℎ𝑙 , 𝐹𝑖𝑙𝑒𝑠𝑎 , 𝐹𝑖𝑙𝑒𝑠);
2: for all𝑇𝑟𝑒𝑒𝑏 in𝐴𝑟𝑟𝑏 do
3: 𝐴𝑛𝑠 ← SearchTheB+-tree(𝑄 , 𝑇𝑟𝑒𝑒𝑏 , 𝑇𝑟𝑒𝑒𝑏 .𝑅𝑒 𝑓 𝑃𝑜𝑖𝑛𝑡 , 𝐴𝑟𝑟𝑠𝑔 , 𝐴𝑛𝑠 , 𝐹𝑖𝑙𝑒𝑑 ,

𝐹𝑖𝑙𝑒𝑠𝑎 , 𝐹𝑖𝑙𝑒𝑠);
4: return𝐴𝑛𝑠 ;

Algorithm 7 SearchTheB+-tree
Input: Query 𝑄 ; The B+-tree 𝑇𝑟𝑒𝑒𝑏 ; The reference point 𝑂 ; The positions

that have already been searched 𝐴𝑟𝑟𝑠𝑔 ; The BSF answers 𝐴𝑛𝑠 ; Three files
𝐹𝑖𝑙𝑒𝑑 , 𝐹𝑖𝑙𝑒𝑠𝑎, 𝐹𝑖𝑙𝑒𝑠 ;

Output: The updated answers;
1: 𝑃𝑜𝑠𝑏 , 𝑃𝑜𝑠𝑒 ← Search the positions of𝐷 (𝑄,𝑂) −𝐴𝑛𝑠.𝑇𝑜𝑝𝐷𝑖𝑠𝑡 and𝐷 (𝑄,𝑂) +

𝐴𝑛𝑠.𝑇𝑜𝑝𝐷𝑖𝑠𝑡 in𝑇𝑟𝑒𝑒𝑏 by 𝐹𝑖𝑙𝑒𝑑 ;
2: 𝐴𝑟𝑟𝑟𝑎𝑛𝑔𝑒 ← Utilize 𝐴𝑟𝑟𝑠𝑔 to eliminate the positions between 𝑃𝑜𝑠𝑏 and 𝑃𝑜𝑠𝑒

that have already been searched in the approximate search.
3: 𝑃𝐴𝐴𝑞 ← compute PAA summarization by𝑄 ;
4: for all 𝑃𝑜𝑠𝑏𝑖 , 𝑃𝑜𝑠𝑒𝑖 in𝐴𝑟𝑟𝑟𝑎𝑛𝑔𝑒 do
5: 𝐴𝑛𝑠 ← PruneWithSAX(𝑄 , 𝑃𝐴𝐴𝑞 , 𝑃𝑜𝑠𝑏𝑖 , 𝑃𝑜𝑠𝑒𝑖 ,𝐴𝑛𝑠 , 𝐹𝑖𝑙𝑒𝑠𝑎 , 𝐹𝑖𝑙𝑒𝑠);
6: return𝐴𝑛𝑠 ;

The algorithm is shown in Algorithm 6. We first obtain the
approximate answers and the positions that have been searched
by the approximate search (Line 1). Then, we search each B+-tree
in disk order (Lines 2, 3). The algorithm for accessing the B+-tree
is shwon in Algorithm 7. From § 3.1, data series with distances
from 𝐷 (𝑄,𝑂) −𝐴𝑛𝑠.𝑇𝑜𝑝𝐷𝑖𝑠𝑡 to 𝐷 (𝑄,𝑂) +𝐴𝑛𝑠.𝑇𝑜𝑝𝐷𝑖𝑠𝑡 cannot be
pruned using reference-point-based summarizations. Thus, we use
B+-tree to locate the positions of these two distances (exclusive),
and only process data in between (Line 1). Then, we remove the
positions that have been searched during the approximate search,
obtaining several smaller ranges (Line 2). Finally, we compute the
PAA of the query and sequentially employ SAX to prune data series
within each of the small ranges (Lines 3-5).

Note that the algorithms are used for SSD, which allows for
simultaneous access to all three files. However, for HDD, DIDS
should access a whole file to obtain all results before next file.

6 COMPLEXITY ANALYSIS
The notations are shown in Table 1 and we have discussed the exact
search complexity in § 3.1, here we discuss the construction in
§ 6.1 and the approximate search in § 6.2. From [60], for the HNSW
graph with𝑚 nodes, the search complexity is around 𝑂 (𝑑log𝑚),
the construction is 𝑂 (𝑚𝑑log𝑚), and the space is around 𝑂 (𝑚𝑑).

6.1 Construction complexity
6.1.1 Time complexity. The original complexity of the K-means is
𝑂 (𝑒𝑣𝑛𝑟𝑛𝑑). We can construct a graph with means for search pur-
poses during each iteration like § 4.1, and degrade it to𝑂 (𝑒𝑣𝑛𝑑log𝑛𝑟).
The total complexity for selecting reference points for 𝑛 data se-
ries is 𝑂 (𝑛𝑑log𝑛𝑟). In the latter two phases of construction, we
construct a B+-tree and a binary tree for each cluster (𝑂 (𝑛/𝑛𝑟)
data series), with the cost of around𝑂 (𝑛𝑑/𝑛𝑟 log𝑛/𝑛𝑟) for one clus-
ter. Computing training-free summarizations takes approximately
𝑂 (𝑛𝑑). With 𝑂 (𝑛/𝑡ℎ) centroids, the complexity of constructing a
graph is𝑂 (𝑛𝑑/𝑡ℎlog𝑛/𝑡ℎ). In summary, the total time complexity is
𝑂(𝑛𝑑((𝑒𝑣 +1)log𝑛𝑟+log𝑛/𝑛𝑟 +1+1/𝑡ℎ log𝑛/𝑡ℎ)). We often set 𝑒𝑣 < 1,
and 𝑡ℎ > 1000 which makes 1/𝑡ℎlog𝑛/𝑡ℎ < 1. As a result, the time
complexity can be simplified to the 𝑂 (𝑛𝑑 (log𝑛𝑟+log𝑛/𝑛𝑟)).

Subsequently, we consider disk writes in DIDS. DIDS writes tem-
porary files firstly, then constructs three final files, with a volume
of writes slightly exceeding 𝑂 (2𝑛𝑑). Note that DIDS performs a
sequential appending for each file. The disk reads are similar.

Evidently, the complexity of DIDS is lower than that of graph-
based methods, which is𝑂 (𝑛𝑑log𝑛). Given that the search in graph
entails higher constants, DIDS often exhibits a longer construction
time compared to tree-based indices.

6.1.2 Space complexity. In memory, we have two structures, the
internal nodes of the B+-trees, which occupy 𝑂 (𝑛/𝑡ℎ𝑏) space, and
𝐺𝑟𝑎𝑝ℎ𝑙 , which occupies around 𝑂 (𝑛𝑑/𝑡ℎ) space. Furthermore, we
store reference points which occupy𝑂 (𝑛𝑟𝑑) space. Since 𝑡ℎ𝑏 and 𝑡ℎ
are often similar, 𝑛/𝑡ℎ𝑏 is much smaller than 𝑛𝑑/𝑡ℎ. And we often
set 𝑛𝑟 smaller than 𝑛/𝑡ℎ. Therefore, the total memory consumption
is 𝑂 (𝑛𝑑/𝑡ℎ). We often set 𝑡ℎ > 1000, making the memory around
0.1% of the dataset size. On disk, we have three files: 𝐹𝑖𝑙𝑒𝑑 with a
size of 𝑂 (𝑛), 𝐹𝑖𝑙𝑒𝑠𝑎 with a size of 𝑂 (𝑛𝑤), and 𝐹𝑖𝑙𝑒𝑠 with a size of
𝑂 (𝑛𝑑). In total, the disk space required is around 𝑂 (𝑛(𝑤 + 𝑑)).

2204

Table 2: Data statistics.

Dataset 𝑛 𝑑 Storage Type 𝑛𝑟 𝑡ℎ 𝑛𝑔

DEEP500M-1B 500M-1B 96 192-384GB Image 20000 8000 200

SIFT 100M 128 51.2GB Image

10000 2000 200
SALD 100M 128 51.2GB Neuro

SPACEV 100M 100 40GB Text
DEEP 100M 96 38.4GB Image
TINY 79M 150 47.5GB Image

DEEP10M-50M 10M-50M 96 3.8-19.2GB Image 5000 2000 50SYNTHETIC10-1024 10M 10-1024 0.4-38GB Synthetic

IMAGENET 2.3M 150 1.3GB Image 1000 800 10MSONG 1M 420 1.5GB Audio

6.2 Approximate search complexity
The majority of the approximate search time is spent on process-
ing the data series from the graph nodes. When we search a leaf
node, we search all data series that fall between the minimum and
maximum positions of that node. Therefore, the size of a node is
no more than a cluster 𝑂 (𝑛/𝑛𝑟). So, the upper bound of accessed
data series is𝑂 (𝑛𝑔𝑛/𝑛𝑟). However, due to the overlapping of many
nodes, the actual complexity is much smaller. The complexity is
similar to tree-based indices, involving the accesses to data within
several leaf nodes. However, DIDS offers higher recall rates.

7 EXPERIMENTS
7.1 Experimental setup
7.1.1 Environment. We conduct the experiments on a server with
an Intel Core i9-13900, 128GB of RAM, a 2T NVMe SSD with
3GB/sec sequential access throughput and 1GB/sec random ac-
cess throughput. We implement all algorithms in C++, and use the
GCC 9.4.0 with the O3 optimization flag on Ubuntu Linux 20.04.

7.1.2 Datasets. As shown in Table 2, we leverage 8 datasets. These
datasets have been extensively employed in prior experiments: (i)
SIFT [42] comprises a collection of SIFT vectors for image repre-
sentation. (ii) SALD [91] contains a collection of neuroscience MRI
samples. (iii) SPACEV [18] encompasses natural language encodings
from the commercial search engine. (iv) DEEP [5] contains deep
learning network vectors associated with images. (v) TINY [82] com-
prises images for the detection of small targets. (vi) IMAGENET [20]
is a popular image dataset. (vii) MSONG [7] contains the feature
analysis for one million songs. (viii) SYNTHETIC [26] is a random
dataset to model the financial data. For each new number, we add a
new number from a Gaussian distribution to the last number.

All datasets are z-normalized, a prerequisite for SAX.
Queries consist of data series with dimensions identical to the

datasets but are not present in the datasets (except for SPACEV
and TINY). We extract 100 queries from the original query sets of
datasets. Unless otherwise specified, we set 𝑘 to 10 and set memory
to 25% of the size of datasets, ensuring that all methods are disk-
based. Experimental results represent the averages across these 100
queries.

7.1.3 Competitors and parameters. In § 2, we introduce previous
works. For each category of works, we select a representative. All
parameters used are adopted from the respective papers. We use

0 20 40 60 80 100120140

20
40
60
80

100

 SIFT SALD SPACEV DEEP TINY IMAGENET MSONG SYNTHETIC1024

Pr
un

in
g(

%
)

Segments

0 20 40 60 80 100120140

20
40
60
80

100

 SIFT SALD SPACEV DEEP TINY IMAGENET MSONG SYNTHETIC1024

Pr
un

in
g(

%
)

Segments

(a) k=10

0 20 40 60 80 100120140

20
40
60
80

100

Pr
un

in
g(

%
)

Segments

(b) k=100

Figure 6: The theoretical maximum pruning rates for differ-
ent SAX segments when k=10 and k=100. We use the exact
answers for pruning.

DIDS
Dumpy

Hercules
iSAX2+

iDistance
0
3
6
9

12
15
18
21
24

Ti
m

e(
m

in
)

Work

 K-means
 Cluster
 Other

(a) Time

DIDS
Dumpy

Hercules
iSAX2+

iDistance
50

52

54

56

58

Si
ze

(G
B

)

Work

 Index
 Dataset

(b) Disk

DIDS
Dumpy

Hercules
iSAX2+

iDistance
0

10
20
30
40
50
60

Si
ze

(M
B

)

Work

 Graph
 Other

(c) Memory

Figure 7: The construction time and the index size in disk
and memory for SIFT.

euclidean distance and disable multithreading and SIMD since they
introduce inaccuracies in our evaluations.

• Dumpy [89]: the latest work that introduces a novel multi-way
tree index structure based on iSAX. The leaf size is set to 10,000.

• Hercules [23]. It claims the fastest data series index for exact
search, and is the latest EAPCA work. The leaf size is set to
100,000, and 𝑆𝐴𝑋_𝑇𝐻 is set to 0.5. For 𝐸𝐴𝑃𝐶𝐴_𝑇𝐻 , while the
original setting was 0.25, in our more challenging workload, the
pruning rate of EAPCA always falls below 0.25, leading to full
sequential scan of data series. Consequently, we set it to 0.

• iSAX2+ [13]: the most classic work with a binary tree index on
SAX. The leaf size is set to 2,000. We delete the first level of
iSAX2+ due to our longer SAX segment configuration, since the
first level results in fewer than 5 data series per node.

• iDistance [39]: a classic reference-point-based exact similarity
search index. The number of reference points is set to 64, and
the initial radius 𝑟 is set to 0.01, with a Δ𝑟 of 0.01.

The SAX cardinality is set to 256. Although prior works set SAX
segments to 16, the choice of SAX segments heavily depends on
the dataset and cannot be uniformly applied. In Figure 6, we vary
the number of SAX segments and compute the exact answers for
queries when 𝑘=10 and 𝑘=100. Then, we use the exact answers and
SAX to perform pruning. The resulting pruning rates represent the
theoretical maximum pruning rates achievable with SAX. These
pruning rates must be sufficiently high. Otherwise, SAX would
become ineffective. The final segments selected for each dataset
are as follows: SIFT, DEEP: 32; SALD, SYNTHETIC: 16 (5 for SYN-
THETIC10); SPACEV 34; TINY, IMAGENET: 50; MSONG: 140.

As shown in Table 2, we select the DIDS parameters mainly
based on the size (𝑛) of the dataset. We sample 1% for each dataset

2205

0 10 20 30

20

40

60

80

100

 DIDS Dumpy Hercules iSAX2+ iDistance

R
ec

al
l(%

)

Time(ms)

1 5 10 25 100

10
20
30
40
50
60

Ti
m

e(
s)

k

(a) SIFT

1 5 10 25 100

5
10
15
20
25
30
35

Ti
m

e(
s)

k

(b) SALD

1 5 10 25 100

10
20
30
40
50
60

Ti
m

e(
s)

k

(c) SPACEV

1 5 10 25 100

10
20
30
40
50
60

Ti
m

e(
s)

k

(d) DEEP

1 5 10 25 100

10

20

30

40

50

Ti
m

e(
s)

k

(e) TINY

1 5 10 25 100

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Ti
m

e(
s)

k

(f) IMAGENET

1 5 10 25 100

0.2
0.4
0.6
0.8
1.0
1.2

Ti
m

e(
s)

k

(g) MSONG

1 5 10 25 100

10

20

30

40

50

In
i p

ru
ni

ng
(%

)

k

(h) SIFT

1 5 10 25 100

10
20
30
40
50
60
70

In
i p

ru
ni

ng
(%

)

k

(i) SALD

1 5 10 25 100

10
20
30
40
50
60
70

In
i p

ru
ni

ng
(%

)

k

(j) SPACEV

1 5 10 25 100

10
20
30
40
50
60

In
i p

ru
ni

ng
(%

)

k

(k) DEEP

1 5 10 25 100

20

40

60

80

100

In
i p

ru
ni

ng
(%

)

k

(l) TINY

1 5 10 25 100

5
10
15
20
25
30
35
40
45

In
i p

ru
ni

ng
(%

)

k

(m) IMAGENET

1 5 10 25 100

5
10
15
20
25
30

In
i p

ru
ni

ng
(%

)

k

(n) MSONG

1 5 10 25 100

80

85

90

95

Pr
un

in
g(

%
)

k

(o) SIFT

1 5 10 25 100

93

94

95

96

97

Pr
un

in
g(

%
)

k

(p) SALD

1 5 10 25 100

75
80
85
90
95

100

Pr
un

in
g(

%
)

k

(q) SPACEV

1 5 10 25 100

80

85

90

95

100

Pr
un

in
g(

%
)

k

(r) DEEP

1 5 10 25 100

88
90
92
94
96
98

100

Pr
un

in
g(

%
)

k

(s) TINY

1 5 10 25 100

84
86
88
90
92
94
96

Pr
un

in
g(

%
)

k

(t) IMAGENET

1 5 10 25 100

70

75

80

85

90

Pr
un

in
g(

%
)

k

(u) MSONG

Figure 8: The exact similarity search performance of various works under different values of k and across different datasets.
(a)-(g) represent the execution time. (h)-(n) denote the initial pruning rate. (o)-(u) show the overall pruning rate.

to execute the K-means algorithm with at most 30 iterations. We
discuss how to select parameters for DIDS in § 7.5.

7.2 Index construction
We conduct experiments for index construction using SIFT, which is
independent of the dataset. In Figure 7a, we record the construction
times. The construction time for DIDS is 2-3 times longer than that
of other works due to its more complex structures, with the K-means
and cluster phases consuming 88%. Since DIDS targets scenarios
involving offline construction for multiple queries, the construction
time is entirely acceptable. And these two principal time-consuming
phases can be easily parallelized in an offline environment.

Regarding the index size on disk in Figure 7b, there is not a
significant difference between DIDS and other works, since the
most of files primarily consist of SAX summarizations. For the size
of the index structures in memory in Figure 7c, DIDS is larger than
other works, with the graph structure accounting for 84%. However,
the size of DIDS is around 0.1% of the overall dataset size, which is
entirely acceptable for the size of memory, often measured in GB.

7.3 Exact search performance
We evaluate the exact search performance across various workloads,
which is the foremost functionality of these works.

7.3.1 The 𝑘 of queries. In Figure 8, we vary the value of 𝑘 in the
queries which is also equivalent to altering the query difficulty
across 7 distinct datasets for the exact similarity search. We record
three metrics: (i) execution time; (ii) initial pruning rate; (iii) overall
pruning rate = initial pruning rate + further pruning rate. The

overall pruning rate is usually above 80%, so the percentage of the
initial pruning rate to the overall pruning rate is approximately
similar to the initial pruning rate itself. Subsequently, we proceed
to analyze each of these three metrics.

Figure 8a-Figure 8g illustrate execution time, a paramount met-
ric for gauging the efficacy of a work. DIDS significantly outper-
forms the previous works. On average, DIDS achieves search speeds,
which are 2.16 times that of Dumpy, 1.7 times that of Hercules, 2.98
times that of iSAX2+, and 3.37 times that of iDistance.

Figure 8h-Figure 8n illustrate the initial pruning rate. For ini-
tial pruning, DIDS and iDistance employ reference-point-based
summarizations, Dumpy and iSAX2+ utilize iSAX, and Hercules
employs EAPCA. Evidently, a higher initial pruning rate translates
to fewer SAX visits and, consequently, faster search speed. DIDS
significantly outperforms its competitors in initial pruning rate.
On average, DIDS boasts an initial pruning rate that is 12 times
over Dumpy, 9.36 times over Hercules, 10.35 times over iSAX2+,
and 11.26 times over iDistance. The initial pruning rates of Dumpy,
Hercules and iSAX2+ are often less than 10%. This observation un-
derscores that while segment-based summarizations have the tight
lower bound distance for individual data series, they prove ineffec-
tive in representing a collection. In contrast, reference-point-based
summarizations exhibit higher pruning rate for initial pruning.

Figure 8o-Figure 8u represent the overall pruning rate. iDis-
tance’s overall pruning rate is identical to its initial pruning rate,
and significantly differs from the other works. Hence, we don’t
include iDistance in these graphs. The overall pruning rates of
the remaining works are close, because they all rely on SAX for
pruning. DIDS exhibits a slight advantage over the others due to its

2206

0 10 20 30

20

40

60

80

100

 DIDS Dumpy Hercules iSAX2+ iDistance

R
ec

al
l(%

)

Time(ms)

Inf 75 50 25 10

10
20
30
40
50
60

Ti
m

e(
s)

Memory(%)

(a) SIFT

Inf 75 50 25 10

5
10
15
20
25
30
35

Ti
m

e(
s)

Memory(%)

(b) SALD

Inf 75 50 25 10

10
20
30
40
50
60

Ti
m

e(
s)

Memory(%)

(c) SPACEV

Inf 75 50 25 10

10
20
30
40
50
60

Ti
m

e(
s)

Memory(%)

(d) DEEP

Inf 75 50 25 10

10
20
30
40
50

Ti
m

e(
s)

Memory(%)

(e) TINY

Figure 9: The exact search performance of different works under different memory sizes.

0 10 20 30

20

40

60

80

100

 DIDS Dumpy Hercules iSAX2+ iDistance

R
ec

al
l(%

)

Time(ms)

10 50 100 5001000

10

100

1000

Ti
m

e(
s)

Tuples(M)

(a) Time

10 50 100 5001000

10
20
30
40
50
60
70

In
i p

ru
ni

ng
(%

)

Tuples(M)

(b) Initial pruning

10 50 100 5001000

75
80
85
90
95

100
Pr

un
in

g(
%

)

Tuples(M)

(c) Overall pruning

Figure 10: The exact search performance of works on datasets
with various sizes.

0 10 20 30

20

40

60

80

100

 DIDS Dumpy Hercules iSAX2+ iDistance

R
ec

al
l(%

)

Time(ms)

10 64 128 5121024

0.1

1

10

 iDistance
 iSAX
 Hercules
 Dumpy
 DIDS

Ti
m

e(
s)

d

(a) Time

10 64 128 5121024

20

40

60

80

100

In
i p

ru
ni

ng
(%

)

d

(b) Initial pruning

10 64 128 5121024
88
90
92
94
96
98

100

Pr
un

in
g(

%
)

d

(c) Overall pruning

Figure 11: The exact search performance of works on datasets
with various dimensions.

reference-point-based summarizations and highest-quality approx-
imate answers. Hercules exhibits notably lower pruning rate, but
achieves faster search speed. This is attributed to Hercules having
larger leaf size, resulting in lower pruning rate but more sequential
accesses. In summary, both the pruning rate and sequential access
are crucial factors. However, in previous works, they tend to be in-
versely proportional. DIDS has successfully optimized both aspects,
thereby attaining the fastest search speed.

7.3.2 The runtime memory. In Figure 9, we vary the memory size
as a certain proportion of the datasets and record the times. On
average, the search speed for DIDS is 1.9 times that of Dumpy, 1.68
times that of Hercules, 2.54 times that of iSAX2+, and 2.9 times that
of iDistance. While the memory of DIDS index is larger than that of
other works, it remains just under 100MB. In the context of modern
memory, typically measured in GB, the memory of DIDS is less than
1%, so the impact of runtime memory is independent of the index
size. For DIDS, the impact of memory size is not significant, and it
does not degrade as severely as it does for iDistance and iSAX2+.
iDistance exhibits similar performance to DIDS when running in
memory, indicating that SAX is less suitable in memory scenarios.

7.3.3 The size of dataset. In Figure 10, we vary the size of the DEEP
dataset to assess the performance of various works. The larger the
size, the faster the performance of DIDS compared to other works,
ranging from 1.7x to 4.6x on average. We can find the reason from
Figure 10b, where the initial pruning rates of DIDS exhibit greater
superiority at larger sizes. This is reasonable, as larger datasets
typically make the reference points of DIDS more effective.

7.3.4 The dimension of data series. In Figure 11, we alter the di-
mensions of the SYNTHETIC dataset to examine the scalability.
We find when 𝑑=10 and 𝑑=1024, the performance of DIDS exhibits
no discernible difference compared to Dumpy and iSAX2+. We
explicate the reason from the perspective of time complexity. The
complexity of the exact search is 𝑂 ((1 − 𝑝𝑧)𝑛𝑤 + (1 − 𝑝𝑧 − 𝑝𝑥)𝑛𝑑).
DIDS reduces complexity by improving 𝑝𝑧 and 𝑝𝑥 . For𝑑=10, the low
dimension obscures the degradation of the lower bound distances
in segment-based summarizations that consider each dimensional
boundary, thereby improving the 𝑝𝑧 of other works in Figure 11b.
For 𝑑=1024, we always set𝑤=16, leading to a high 𝑑/𝑤=64. Then,
(1 − 𝑝𝑧)𝑛𝑤 is significantly smaller than (1 − 𝑝𝑧 − 𝑝𝑥)𝑛𝑑 , thereby
weakening the impact of 𝑝𝑧 . In summary, a small 𝑑 or a large 𝑑/𝑤
reduces the gap in complexity between DIDS and other works.

7.4 Approximate search performance
In this subsection, we examine the approximate search capabili-
ties of various works. Although the approximate search is not a
forte of disk-based data series indices compared to memory-based
graph methods, the approximate answers serve as the inputs to
the exact search, influencing the search strategies and pruning rate
significantly. In Figure 12, when 𝑘=10 and 𝑘=100, we vary certain
parameters (𝑛𝑔 of DIDS, the number of iterations of iDistance, and
the number of leaf nodes to be searched in other works) to control
the time of the search. We record the corresponding recall rates, a
vital metric for evaluating the quality of approximate answers.

As demonstrated in Figure 12, on recall rates, DIDS significantly
outperforms other works. Under the same execution time (we con-
sider the median time for each graph), on average, DIDS exhibits a
recall rate 67% higher than Dumpy, 59% higher than Hercules, 69%
higher than iSAX2+, and 73% higher than iDistance. DIDS stands
as the sole work within exact data series indices that can achieve a
high recall rate, with the relatively short execution time. Relying on
the high-quality approximate answers, DIDS manages to maintain
the highest overall pruning rate in Figure 8, while simultaneously
enabling efficient sequential access to all B+-trees.

2207

0 10 20 30

20

40

60

80

100

 DIDS Dumpy Hercules iSAX2+ iDistance

R
ec

al
l(%

)

Time(ms)

0 100 200 300

20

40

60

80

100

R
ec

al
l(%

)

Time(ms)

(a) SIFT,10

0 80 160 240

20

40

60

80

100

R
ec

al
l(%

)

Time(ms)

(b) SALD,10

0 50 100 150 200

20

40

60

80

100

R
ec

al
l(%

)

Time(ms)

(c) SPACEV,10

0 50 100 150 200

20

40

60

80

100

R
ec

al
l(%

)

Time(ms)

(d) DEEP,10

0 80 160 240 320

20

40

60

80

100

R
ec

al
l(%

)

Time(ms)

(e) TINY,10

0 10 20 30

20

40

60

80

100

R
ec

al
l(%

)

Time(ms)

(f) IMAGENET,10

0 20 40 60 80

20

40

60

80

100

R
ec

al
l(%

)

Time(ms)

(g) MSONG,10

0 80 160 240 320

20

40

60

80

100

R
ec

al
l(%

)

Time(ms)

(h) SIFT,100

0 70 140 210

20

40

60

80

100

R
ec

al
l(%

)

Time(ms)

(i) SALD,100

0 50 100 150 200

20

40

60

80

100

R
ec

al
l(%

)

Time(ms)

(j) SPACEV,100

0 50 100 150 200

20

40

60

80

100

R
ec

al
l(%

)

Time(ms)

(k) DEEP,100

0 100 200 300

20

40

60

80

100

R
ec

al
l(%

)

Time(ms)

(l) TINY,100

0 10 20 30

20

40

60

80

100

R
ec

al
l(%

)

Time(ms)

(m) IMAGENET,100

0 20 40 60 80

20

40

60

80

100

R
ec

al
l(%

)

Time(ms)

(n) MSONG,100

Figure 12: The recall rates of various works for the approximate search at different execution times. (a)-(g) present the search
results for k=10, while (h)-(n) illustrate the search results for k=100.

100 1K 5K 10K 20K
10
20
30
40
50
60
70

SIFT SALD SPACEV DEEP TINY

In
i p

ru
ni

ng
(%

)

Ref points 100500 1K 2K 5K

0.2
0.4

1.6
2.0
2.4

8
10

DEEP50M DEEP10M IMAGENET MSONG

Ti
m

e(
s)

Ref points

100 1K 5K10K20K
2
4
6
8

10
12
14
16
18
20
22
24

Ti
m

e(
s)

Ref points

(a) Time

100 1K 5K10K20K

10
20
30
40
50
60
70

In
i p

ru
ni

ng
(%

)

Ref points

(b) Ini pruning

100500 1K 2K 5K

0.2
0.4

1.6
2.0
2.4

8
10

DEEP50M DEEP10M IMAGENET MSONG

Ti
m

e(
s)

Ref points

(c) Time

100500 1K 2K 5K

5
10
15
20
25
30
35
40
45

In
i p

ru
ni

ng
(%

)

Ref points

(d) Ini pruning

Figure 13: The exact search time and initial pruning rate for
DIDS at different numbers of reference points. Large datasets
are in (a)-(b) and small datasets are in (c)-(d).0 50 100 150 200

10
20
30
40
50
60
70
80
90

100

100 500 1000 2000 4000

R
ec

al
l(%

)

Time(ms)
0 20 40 60 80

10
20
30
40
50
60
70
80
90

100

100 200 400 800 1200

R
ec

al
l(%

)

Time(ms)

0 100 200 300

10
20
30
40
50
60
70
80
90

100

R
ec

al
l(%

)

Time(ms)

(a) SIFT

0 50 100 150 200

10
20
30
40
50
60
70
80
90

100

100 500 1000 2000 4000

R
ec

al
l(%

)

Time(ms)

(b) SALD

0 10 20 30

10
20
30
40
50
60
70
80
90

100

R
ec

al
l(%

)

Time(ms)

(c) IMAGENET

0 20 40 60 80

10
20
30
40
50
60
70
80
90

100

100 200 400 800 1200

R
ec

al
l(%

)

Time(ms)

(d) MSONG

Figure 14: The recall rates of DIDS with different leaf size of
the binary tree on four datasets.

7.5 The impact of parameters
In this subsection, we investigate the influence of various parame-
ters on the performance of DIDS and discuss how to choose them.

7.5.1 The number of reference points 𝑛𝑟 . In Figure 13, an increased
𝑛𝑟 yields faster exact search speed, since it improves the initial
pruning rate in Figure 13b and Figure 13d. However, excessively
large𝑛𝑟 results in a decrease in the average cluster size𝑛/𝑛𝑟 , leading
to a decline in sequential access. We hope that both 𝑛𝑟 and 𝑛/𝑛𝑟
are substantial, concurrently enhancing the initial pruning rate and

100 1K 5K 10K 20K
10
20
30
40
50
60
70

SIFT SALD SPACEV DEEP TINY

In
i p

ru
ni

ng
(%

)
Ref points 100500 1K 2K 5K

0.2
0.4

1.6
2.0
2.4

8
10

DEEP50M DEEP10M IMAGENET MSONG

Ti
m

e(
s)

Ref points

1 10 50 200500

2
4
6
8

10
12
14
16
18

Ti
m

e(
s)

Graph nodes

(a) Time

1 10 50 200500

91

92

93

94

95

Pr
un

in
g(

%
)

Graph nodes

(b) Overall

1 10 50 100200

0.2
0.4
0.6
1.4
1.6
1.8
7.2
7.6
8.0
8.4

Ti
m

e(
s)

Graph nodes

(c) Time

1 10 50 100200

84

86

88

90

92

94

Pr
un

in
g(

%
)

Graph nodes

(d) Overall

Figure 15: The exact search performance of DIDS under vary-
ing numbers of graph nodes for the approximate search.
Large datasets are in (a)-(b) and small datasets are in (c)-(d).

sequential access. Hence, from both theoretical and experimental
perspectives, we set 𝑛𝑟 to around

√
𝑛, ensuring that 𝑛𝑟 and 𝑛/𝑛𝑟

increase or decrease simultaneously with variations in dataset size.
The leaf size in previous works is like 𝑛/𝑛𝑟 , and improving them
makes a lower pruning rate and an increase in sequential access.

7.5.2 The leaf size of the binary tree 𝑡ℎ. In Figure 14, we find that
the approximate search ability of DIDS exhibits a relatively insensi-
tivity to 𝑡ℎ, with the disparity in recall rates within 10%. 𝑡ℎ is used
to achieve a more equitable partitioning of clusters, so it is less than
the average cluster size 𝑛/𝑛𝑟 . An excessively small 𝑡ℎ results in an
increase in the number of graph nodes, improving the cost of search
on the graph. Thus, we set 𝑡ℎ slightly less than 𝑛/𝑛𝑟 , as DIDS often
demonstrates commendable performance with it in Figure 14.

7.5.3 The number of graph nodes 𝑛𝑔 . In Figure 15, more graph
nodes slightly enhance the exact search speed because they yield
higher-quality approximate answers and a greater overall pruning
rate in Figure 15b and Figure 15d. A graph node accesses 𝑡ℎ data
series on average.We hope the accessed data series𝑛𝑔𝑡ℎ is much less
than the dataset size 𝑛 like 1%, preventing a performance decline
due to the inability to apply the exact search pruning on them.
Considering the experiments, we set 𝑛𝑔 slightly less than (𝑛/𝑡ℎ)%.

2208

0 70 140 210

20
40
60
80

100

SIFT SALD SPACEV

R
ec

al
l(%

)
Time(ms)

100 1K 5K 10K 20K
10
20
30
40
50
60
70

SIFT SALD SPACEV DEEP TINY

In
i p

ru
ni

ng
(%

)

Ref points

0 70 140 210

20
40
60
80

100

SIFT SALD SPACEV

R
ec

al
l(%

)

Time(ms)

(a) Approximate search

0 25 50 75 100
3
6
9

12
15
18
21

Ti
m

e(
s)

Sequential rate(%)

(b) Exact search

Figure 16: The search performance of DIDS under the vari-
ous degrees of sequential access. The hollow symbols in (a)
signifies the omission of sequential access.

SIFT SALD SPACEV DEEP TINY

2
4
6
8

10
12
14
16
18

Ti
m

e(
s)

Dataset

 1% 0.1% Random

SIFT SALD SPACEV DEEP TINY

2
4
6
8

10
12
14
16
18

Ti
m

e(
s)

Dataset

 1% 0.1% Random

(a) Time

SIFT SALD SPACEV DEEP TINY

10
20
30
40
50
60
70

In
i p

ru
ni

ng
(%

)

Dataset

 1% 0.1%
 Random

(b) Initial pruning rate

Figure 17: The exact search performance of DIDS under K-
means and random reference point selection strategies.

SIFT SALD SPACEV DEEP TINY

4
8

12
16
20

 DIDS NoSequence NoB+-tree NoSAX

Ti
m

e(
s)

Dataset

SIFT SALD SPACEV DEEP TINY

4
8

12
16
20

 NoSAX NoB+-tree NoSequence DIDS

Ti
m

e(
s)

Dataset

(a) Time

SIFT SALD SPACEV DEEP TINY

91
92
93
94
95
96

Pr
un

in
g(

%
)

Dataset

(b) Overall pruning rate

Figure 18: An ablation experiment about the exact search for
DIDS at different datasets.

7.5.4 The sequential access. In Figure 16, we assess the impact of
sequential access on the approximate and exact performance. In
Figure 16a, we evaluate two approximate search methods: sequen-
tial access nodes in § 5.1 and access based on the distances between
graph nodes and query. As the recall rate increases, sequential
access outperforms the other one 5%-10% in performance. In Fig-
ure 16b, we conduct sequential access on partial B+-trees, while
accessing the rest based on the distances between reference points
and query, to explore the impact on exact search. Evidently, as the
degree of sequential access increases, the performance improves.

7.5.5 The reference point selection algorithm. In Figure 17, we con-
duct data sampling at rates of 1% and 0.1% to employ K-means and
compare it to random selection, recording the exact search times
in Figure 17a and initial pruning rates in Figure 17b. We find that,
as the sampling rate increases, both the exact search speed and the
initial pruning rate, overall improves. Furthermore, it is evident
that K-means outperforms random selection.

7.5.6 An ablation experiment. 𝑁𝑜𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 signifies accessing B+-
trees in ascending order of the distances between query and ref-
erence points. 𝑁𝑜𝐵+-𝑡𝑟𝑒𝑒 entails the omission of B+-tree pruning.
𝑁𝑜𝑆𝐴𝑋 indicates the omission of SAX pruning. In Figure 18a, the
incomplete DIDS exhibits varying degrees of performance degra-
dation. Apart from DEEP, since it achieves a high initial pruning
rate, further utilization of SAX summarizations may not provide
significant benefits. In Figure 18b (𝑁𝑜𝑆𝐴𝑋 is not included here
due to its significantly lower pruning rate), we observe that when
DIDS employs sequential scanning directly, its pruning rates are
comparable to that of 𝑁𝑜𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 with optimization approach.
This demonstrates the high quality of DIDS’s approximate answers.
𝑁𝑜𝐵+-𝑡𝑟𝑒𝑒 exhibits a lower pruning rate, indicating that using both
summarizations concurrently can enhance the pruning rate.

7.6 Experimental summary
Our experiments provide insights into how to design an effective
data series index that supports both approximate and exact searches.

Firstly, the reference-point-based summarizations are more suit-
able for initial pruning. Segment-based summarizations, like iSAX
or EAPCA, provide very small lower bound distances, resulting in
limited initial pruning rates in § 7.3. The lower bound distances of
reference-point-based summarizations don’t decrease when repre-
senting a collection, so their initial pruning rates are much higher.

Secondly, the high-quality approximate answers are important.
In previous works, the pruning rate and sequential access are in-
versely proportional, since they cannot obtain the high-quality
approximate answers in a short time, requiring optimizing answers
by various strategies during the exact search, leading to random
accesses. Thus, we introduce graph-based methods to obtain high-
quality approximate answers as a solution to this issue.

8 CONCLUSION
We initially identify two flaws in existing data series indices sup-
porting both approximate and exact similarity searches: one being
the use of segment-based summarizations leading to lower initial
pruning rates, and the other being the reliance on tree-based indices
resulting in inferior quality of the approximate answers.

We introduce a novel approach, DIDS, to address these flaws.
DIDS employs reference-point-based summarizations, whose lower
bound distances remains unaffected for initial pruning, reducing
the pruning cost. Moreover, DIDS combines reference points and a
graph to obtain the high-quality approximate answers in limited
memory. The high-quality approximate answers contribute to DIDS
higher pruning rate and more sequential accesses. Based on exten-
sive experiments, DIDS outperforms previous works in terms of the
pruning cost, pruning rate, and sequential access. Consequently, it
exhibits superior search performance.

In the future, we will parallelize DIDS and explore the possibility
of adopting more advanced segment-based summarizations.

ACKNOWLEDGMENTS
This paper was supported by NSFC grant (62232005, 62202126) and
The National Key Research and Development Program of China
(2020YFB1006104).

2209

REFERENCE
[1] E. Milchevski A. Davitkova and S. Michel. 2020. The ML-Index: A multidimen-

sional, learned index for point, range, and nearest-neighbor queries. EDBT (2020),
407–410.

[2] Rakesh Agrawal, Christos Faloutsos, and Arun Swami. 1993. Efficient similarity
search in sequence databases. In Foundations of Data Organization andAlgorithms:
4th International Conference, FODO’93 Chicago, Illinois, USA, October 13–15, 1993
Proceedings 4. Springer, 69–84.

[3] Akhil Arora, Sakshi Sinha, Piyush Kumar, and Arnab Bhattacharya. 2018. HD-
Index: Pushing the Scalability-Accuracy Boundary for Approximate kNN Search
in High-Dimensional Spaces. Proceedings of the VLDB Endowment 11, 8 (2018).

[4] Ilias Azizi, Karima Echihabi, and Themis Palpanas. 2023. ELPIS: Graph-Based
Similarity Search for Scalable Data Science. Proceedings of the VLDB Endowment
16, 6 (2023), 1548–1559.

[5] Artem Babenko and Victor Lempitsky. 2016. Efficient indexing of billion-scale
datasets of deep descriptors. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 2055–2063.

[6] Štěpán Beneš and Jaroslav Kruis. 2018. Singular value decomposition used for
compression of results from the finite element method. Advances in Engineering
Software 117 (2018), 8–17.

[7] Thierry Bertin-Mahieux, Daniel P.W. Ellis, Brian Whitman, and Paul Lamere.
2011. TheMillion Song Dataset. In Proceedings of the 12th International Conference
on Music Information Retrieval (ISMIR 2011).

[8] Paul Boniol, Michele Linardi, Federico Roncallo, and Themis Palpanas. 2020.
Automated anomaly detection in large sequences. In 2020 IEEE 36th international
conference on data engineering (ICDE). IEEE, 1834–1837.

[9] Nieves R Brisaboa, Antonio Farina, Oscar Pedreira, and Nora Reyes. 2006. Simi-
larity search using sparse pivots for efficient multimedia information retrieval.
In Eighth IEEE International Symposium on Multimedia (ISM’06). IEEE, 881–888.

[10] Benjamin Bustos, Gonzalo Navarro, and Edgar Chávez. 2003. Pivot selection
techniques for proximity searching in metric spaces. Pattern Recognition Letters
24, 14 (2003), 2357–2366.

[11] Benjamin Bustos, Oscar Pedreira, and Nieves Brisaboa. 2008. A dynamic pivot se-
lection technique for similarity search. In 2008 IEEE 24th International Conference
on Data Engineering Workshop. IEEE, 394–401.

[12] Alessandro Camerra, Themis Palpanas, Jin Shieh, and Eamonn Keogh. 2010.
isax 2.0: Indexing and mining one billion time series. In 2010 IEEE International
Conference on Data Mining. IEEE, 58–67.

[13] Alessandro Camerra, Jin Shieh, Themis Palpanas, Thanawin Rakthanmanon, and
Eamonn Keogh. 2014. Beyond one billion time series: indexing and mining very
large time series collections with SAX2+. Knowledge and information systems 39,
1 (2014), 123–151.

[14] Manos Chatzakis, Panagiota Fatourou, Eleftherios Kosmas, Themis Palpanas,
and Botao Peng. 2023. Odyssey: A Journey in the Land of Distributed Data Series
Similarity Search. Proceedings of the VLDB Endowment 16, 5 (2023), 1140–1153.

[15] Lu Chen, Yunjun Gao, Xinhan Li, Christian S Jensen, and Gang Chen. 2015.
Efficient metric indexing for similarity search. In 2015 IEEE 31st International
Conference on Data Engineering. IEEE, 591–602.

[16] Lu Chen, Yunjun Gao, Xuan Song, Zheng Li, Yifan Zhu, Xiaoye Miao, and Chris-
tian S Jensen. 2022. Indexing metric spaces for exact similarity search. Comput.
Surveys 55, 6 (2022), 1–39.

[17] Qi Chen, Haidong Wang, Mingqin Li, Gang Ren, Scarlett Li, Jeffery Zhu, Jason
Li, Chuanjie Liu, Lintao Zhang, and Jingdong Wang. 2018. SPTAG: A library for
fast approximate nearest neighbor search.

[18] Qi Chen, Bing Zhao, Haidong Wang, Mingqin Li, Chuanjie Liu, Zengzhong
Li, Mao Yang, and Jingdong Wang. 2021. Spann: Highly-efficient billion-scale
approximate nearest neighborhood search. Advances in Neural Information
Processing Systems 34 (2021), 5199–5212.

[19] Sanjoy Dasgupta and Philip M Long. 2005. Performance guarantees for hierar-
chical clustering. J. Comput. System Sci. 70, 4 (2005), 555–569.

[20] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Im-
agenet: A large-scale hierarchical image database. In 2009 IEEE conference on
computer vision and pattern recognition. Ieee, 248–255.

[21] Wei Dong. 2014. Kgraph, an open source library for k-nn graph construction
and nearest neighbor search.

[22] Matthys Douze, Alexandre Sablayrolles, and Hervé Jegou. 2021. Fast indexing
with graphs and compact regression codes on online social networks. US Patent
11,093,561.

[23] Karima Echihabi, Panagiota Fatourou, Kostas Zoumpatianos, Themis Palpanas,
and Houda Benbrahim. 2022. Hercules against data series similarity search.
Proceedings of the VLDB Endowment 15, 10 (2022), 2005–2018.

[24] Karima Echihabi, Kostas Zoumpatianos, Themis Palpanas, and Houda Benbrahim.
2020. The lernaean hydra of data series similarity search: An experimental
evaluation of the state of the art. arXiv preprint arXiv:2006.11454 (2020).

[25] Karima Echihabi, Kostas Zoumpatianos, Themis Palpanas, and Houda Benbrahim.
2020. Return of the lernaean hydra: Experimental evaluation of data series
approximate similarity search. arXiv preprint arXiv:2006.11459 (2020).

[26] Christos Faloutsos, Mudumbai Ranganathan, and Yannis Manolopoulos. 1994.
Fast subsequence matching in time-series databases. ACM Sigmod Record 23, 2
(1994), 419–429.

[27] Hakan Ferhatosmanoglu, Ertem Tuncel, Divyakant Agrawal, and Amr El Abbadi.
2000. Vector approximation based indexing for non-uniform high dimensional
data sets. In Proceedings of the ninth international conference on Information and
knowledge management. 202–209.

[28] Luciano Floridi and Massimo Chiriatti. 2020. GPT-3: Its nature, scope, limits, and
consequences. Minds and Machines 30 (2020), 681–694.

[29] Vanel Steve Siyou Fotso, Engelbert Mephu Nguifo, and Philippe Vaslin. 2019.
Grasp heuristic for time series compression with piecewise aggregate approxi-
mation. RAIRO-Operations Research 53, 1 (2019), 243–259.

[30] Cong Fu, Changxu Wang, and Deng Cai. 2021. High dimensional similarity
search with satellite system graph: Efficiency, scalability, and unindexed query
compatibility. IEEE Transactions on Pattern Analysis and Machine Intelligence 44,
8 (2021), 4139–4150.

[31] Cong Fu, Chao Xiang, Changxu Wang, and Deng Cai. 2019. Fast approximate
nearest neighbor search with the navigating spreading-out graph. Proceedings of
the VLDB Endowment 12, 5 (2019), 461–474.

[32] Junhao Gan, Jianlin Feng, Qiong Fang, and Wilfred Ng. 2012. Locality-sensitive
hashing scheme based on dynamic collision counting. In Proceedings of the 2012
ACM SIGMOD international conference on management of data. 541–552.

[33] Tiezheng Ge, Kaiming He, Qifa Ke, and Jian Sun. 2013. Optimized product
quantization. IEEE transactions on pattern analysis and machine intelligence 36, 4
(2013), 744–755.

[34] Chonghui Guo, Hailin Li, and Donghua Pan. 2010. An improved piecewise
aggregate approximation based on statistical features for time series mining. In
Knowledge Science, Engineering and Management: 4th International Conference,
KSEM 2010, Belfast, Northern Ireland, UK, September 1-3, 2010. Proceedings 4.
Springer, 234–244.

[35] Jiangfeng Guo, Ranhong Xie, and Guowen Jin. 2018. An efficient method for NMR
data compression based on fast singular value decomposition. IEEE Geoscience
and Remote Sensing Letters 16, 2 (2018), 301–305.

[36] Christian Hennig and Longin Jan Latecki. 2003. The choice of vantage objects
for image retrieval. Pattern Recognition 36, 9 (2003), 2187–2196.

[37] Qiang Huang, Jianlin Feng, Qiong Fang, Wilfred Ng, andWei Wang. 2017. Query-
aware locality-sensitive hashing scheme for lp norm. The VLDB Journal 26, 5
(2017), 683–708.

[38] Pablo Huijse, Pablo A Estevez, Pavlos Protopapas, Jose C Principe, and Pablo
Zegers. 2014. Computational intelligence challenges and applications on large-
scale astronomical time series databases. IEEE Computational Intelligence Maga-
zine 9, 3 (2014), 27–39.

[39] Hosagrahar V Jagadish, Beng Chin Ooi, Kian-Lee Tan, Cui Yu, and Rui Zhang.
2005. iDistance: An adaptive B+-tree based indexing method for nearest neighbor
search. ACM Transactions on Database Systems (TODS) 30, 2 (2005), 364–397.

[40] Suhas Jayaram Subramanya, FnuDevvrit, Harsha Vardhan Simhadri, Ravishankar
Krishnawamy, and Rohan Kadekodi. 2019. Diskann: Fast accurate billion-point
nearest neighbor search on a single node. Advances in Neural Information
Processing Systems 32 (2019).

[41] Herve Jegou, Matthijs Douze, and Cordelia Schmid. 2010. Product quantization
for nearest neighbor search. IEEE transactions on pattern analysis and machine
intelligence 33, 1 (2010), 117–128.

[42] Hervé Jégou, Romain Tavenard, Matthijs Douze, and Laurent Amsaleg. 2011.
Searching in one billion vectors: re-rank with source coding. In 2011 IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE,
861–864.

[43] K. Kashino, G. Smith, and H. Murase. 1999. Time-series active search for quick
retrieval of audio and video. In Acoustics, Speech, and Signal Processing, 1999.
Proceedings., 1999 IEEE International Conference on.

[44] Shrikant Kashyap and Panagiotis Karras. 2011. Scalable knn search on vertically
stored time series. In Proceedings of the 17th ACM SIGKDD international conference
on Knowledge discovery and data mining. 1334–1342.

[45] Eamonn Keogh, Kaushik Chakrabarti, Michael Pazzani, and Sharad Mehrotra.
2001. Locally adaptive dimensionality reduction for indexing large time series
databases. In Proceedings of the 2001 ACM SIGMOD international conference on
Management of data. 151–162.

[46] Chamari I Kithulgoda, Russel Pears, and M Asif Naeem. 2018. The incremental
Fourier classifier: Leveraging the discrete Fourier transform for classifying high
speed data streams. Expert Systems with Applications 97 (2018), 1–17.

[47] Haridimos Kondylakis, Niv Dayan, Kostas Zoumpatianos, and Themis Palpanas.
2018. Coconut: A Scalable Bottom-Up Approach for Building Data Series Indexes.
PVLDB 11, 6 (2018), 677–690.

[48] Haridimos Kondylakis, Niv Dayan, Kostas Zoumpatianos, and Themis Palpanas.
2019. Coconut: sortable summarizations for scalable indexes over static and
streaming data series. The VLDB Journal 28 (2019), 847–869.

[49] Flip Korn, Hosagrahar V Jagadish, and Christos Faloutsos. 1997. Efficiently
supporting ad hoc queries in large datasets of time sequences. Acm Sigmod
Record 26, 2 (1997), 289–300.

2210

[50] Yifan Lei, Qiang Huang, Mohan Kankanhalli, and Anthony KH Tung. 2020.
Locality-sensitive hashing scheme based on longest circular co-substring. In
Proceedings of the 2020 ACM SIGMOD International Conference on Management
of Data. 2589–2599.

[51] Jessica Lin, Eamonn Keogh, Stefano Lonardi, and Bill Chiu. 2003. A symbolic
representation of time series, with implications for streaming algorithms. In
Proceedings of the 8th ACM SIGMOD workshop on Research issues in data mining
and knowledge discovery. 2–11.

[52] Peng-Cheng Lin and Wan-Lei Zhao. 2019. A comparative study on hierar-
chical navigable small world graphs. Computing Research Repository (CoRR)
abs/1904.02077 (2019).

[53] Peng-Cheng Lin and Wan-Lei Zhao. 2019. Graph based nearest neighbor search:
Promises and failures. arXiv preprint arXiv:1904.02077 (2019).

[54] Michele Linardi and Themis Palpanas. 2020. Scalable data series subsequence
matching with ULISSE. The VLDB Journal 29, 6 (2020), 1449–1474.

[55] Battuguldur Lkhagva, Yu Suzuki, and Kyoji Kawagoe. 2006. New time series data
representation ESAX for financial applications. In 22nd International Conference
on Data Engineering Workshops (ICDEW’06). IEEE, x115–x115.

[56] Kejing Lu and Mineichi Kudo. 2020. R2LSH: A nearest neighbor search scheme
based on two-dimensional projected spaces. In 2020 IEEE 36th International
Conference on Data Engineering (ICDE). IEEE, 1045–1056.

[57] Kejing Lu, Mineichi Kudo, Chuan Xiao, and Yoshiharu Ishikawa. 2021. HVS:
hierarchical graph structure based on voronoi diagrams for solving approximate
nearest neighbor search. Proceedings of the VLDB Endowment 15, 2 (2021), 246–
258.

[58] James MacQueen et al. 1967. Some methods for classification and analysis of
multivariate observations. In Proceedings of the fifth Berkeley symposium on
mathematical statistics and probability, Vol. 1. Oakland, CA, USA, 281–297.

[59] Gloria Mainar-Ruiz and J Perez-Cortes. 2006. Approximate nearest neighbor
search using a single space-filling curve and multiple representations of the data
points. In 18th International Conference on Pattern Recognition (ICPR’06), Vol. 2.
IEEE, 502–505.

[60] Yu A Malkov and Dmitry A Yashunin. 2018. Efficient and robust approximate
nearest neighbor search using hierarchical navigable small world graphs. IEEE
transactions on pattern analysis and machine intelligence 42, 4 (2018), 824–836.

[61] Mauricio Marin, Veronica Gil-Costa, and Roberto Uribe. 2008. Hybrid index for
metric space databases. In Computational Science–ICCS 2008: 8th International
Conference, Kraków, Poland, June 23-25, 2008, Proceedings, Part I 8. Springer,
327–336.

[62] Katsiaryna Mirylenka, Vassilis Christophides, Themis Palpanas, Ioannis Pe-
fkianakis, andMartinMay. 2016. Characterizing home device usage fromwireless
traffic time series. In 19th International Conference on Extending Database Tech-
nology (EDBT).

[63] Pravin Nair, Anmol Popli, and Kunal N Chaudhury. 2017. A fast approximation
of the bilateral filter using the discrete Fourier transform. Image Processing On
Line 7 (2017), 115–130.

[64] David Novak, Michal Batko, and Pavel Zezula. 2011. Metric index: An efficient
and scalable solution for precise and approximate similarity search. Information
Systems 36, 4 (2011), 721–733.

[65] Themis Palpanas. 2015. Data series management: The road to big sequence
analytics. ACM SIGMOD Record 44, 2 (2015), 47–52.

[66] Themis Palpanas. 2020. Evolution of a Data Series Index: The iSAX Family
of Data Series Indexes: iSAX, iSAX2. 0, iSAX2+, ADS, ADS+, ADS-Full, ParIS,
ParIS+, MESSI, DPiSAX, ULISSE, Coconut-Trie/Tree, Coconut-LSM. In Informa-
tion Search, Integration, and Personalization: 13th International Workshop, ISIP
2019, Heraklion, Greece, May 9–10, 2019, Revised Selected Papers 13. Springer,
68–83.

[67] Pavlos Paraskevopoulos, Thanh-Cong Dinh, Zolzaya Dashdorj, Themis Palpanas,
Luciano Serafini, et al. 2013. Identification and characterization of human be-
havior patterns from mobile phone data. D4D Challenge session, NetMob (2013).

[68] Botao Peng, Panagiota Fatourou, and Themis Palpanas. 2020. Messi: In-memory
data series indexing. In 2020 IEEE 36th International Conference on Data Engineer-
ing (ICDE). IEEE, 337–348.

[69] Botao Peng, Panagiota Fatourou, and Themis Palpanas. 2020. Paris+: Data series
indexing on multi-core architectures. IEEE Transactions on Knowledge and Data
Engineering 33, 5 (2020), 2151–2164.

[70] Botao Peng, Panagiota Fatourou, and Themis Palpanas. 2021. SING: Sequence
Indexing Using GPUs. In 2021 IEEE 37th International Conference on Data Engi-
neering (ICDE). IEEE, 1883–1888.

[71] Thanawin Rakthanmanon, Bilson Campana, Abdullah Mueen, Gustavo Batista,
Brandon Westover, Qiang Zhu, Jesin Zakaria, and Eamonn Keogh. 2012. Search-
ing andmining trillions of time series subsequences under dynamic time warping.
In Proceedings of the 18th ACM SIGKDD international conference on Knowledge
discovery and data mining. 262–270.

[72] Thanawin Rakthanmanon and Eamonn J Keogh. 2013. Data Mining a Trillion
Time Series Subsequences Under Dynamic Time Warping.. In IJCAI. 3047–3051.

[73] Usman Raza, Alessandro Camerra, Amy L Murphy, Themis Palpanas, and
Gian Pietro Picco. 2015. Practical data prediction for real-world wireless sensor

networks. IEEE Transactions on Knowledge and Data Engineering 27, 8 (2015),
2231–2244.

[74] Hans Sagan. 1994. Space-Filling Curves. Universitext (1994).
[75] Patrick Schäfer and Mikael Högqvist. 2012. SFA: a symbolic fourier approxima-

tion and index for similarity search in high dimensional datasets. In Proceedings
of the 15th international conference on extending database technology. 516–527.

[76] Dennis Shasha. 1999. Tuning time series queries in finance: Case studies and
recommendations. IEEE Data Eng. Bull. 22, 2 (1999), 40–46.

[77] Jin Shieh and Eamonn Keogh. 2008. i SAX: indexing and mining terabyte sized
time series. In Proceedings of the 14th ACM SIGKDD international conference on
Knowledge discovery and data mining. 623–631.

[78] Shaden Smith, Mostofa Patwary, Brandon Norick, Patrick LeGresley, Samyam
Rajbhandari, Jared Casper, Zhun Liu, Shrimai Prabhumoye, George Zerveas, Vijay
Korthikanti, et al. 2022. Using deepspeed and megatron to train megatron-turing
nlg 530b, a large-scale generative languagemodel. arXiv preprint arXiv:2201.11990
(2022).

[79] Youqiang Sun, Jiuyong Li, Jixue Liu, Bingyu Sun, and Christopher Chow. 2014.
An improvement of symbolic aggregate approximation distance measure for
time series. Neurocomputing 138 (2014), 189–198.

[80] Yifang Sun, Wei Wang, Jianbin Qin, Ying Zhang, and Xuemin Lin. 2014. SRS:
solving c-approximate nearest neighbor queries in high dimensional euclidean
space with a tiny index. Proceedings of the VLDB Endowment (2014).

[81] Chang Wei Tan, Geoffrey I Webb, and François Petitjean. 2017. Indexing and
classifying gigabytes of time series under time warping. In Proceedings of the
2017 SIAM international conference on data mining. SIAM, 282–290.

[82] Antonio Torralba, Rob Fergus, and William T Freeman. 2008. 80 million tiny
images: A large data set for nonparametric object and scene recognition. IEEE
transactions on pattern analysis and machine intelligence 30, 11 (2008), 1958–1970.

[83] Caetano Traina, Roberto F Santos Filho, Agma JM Traina, Marcos R Vieira, and
Christos Faloutsos. 2007. The omni-family of all-purpose access methods: a
simple and effective way to make similarity search more efficient. The VLDB
Journal 16 (2007), 483–505.

[84] Eduardo Valle, Matthieu Cord, and Sylvie Philipp-Foliguet. 2008. High-
dimensional descriptor indexing for large multimedia databases. In Proceedings
of the 17th ACM conference on Information and knowledge management. 739–748.

[85] Reinier H Van Leuken and Remco C Veltkamp. 2011. Selecting vantage objects
for similarity indexing. ACM Transactions on Multimedia Computing, Communi-
cations, and Applications (TOMM) 7, 3 (2011), 1–18.

[86] Jayendra Venkateswaran, Tamer Kahveci, Christopher Jermaine, and Deepak
Lachwani. 2008. Reference-based indexing for metric spaces with costly distance
measures. The VLDB Journal 17, 5 (2008), 1231–1251.

[87] Haiquan Wang. 2017. An APCA-enhanced compression method on large-scale
time-series data. In Proceedings of the ACM Turing 50th Celebration Conference-
China. 1–6.

[88] Yang Wang, Peng Wang, Jian Pei, Wei Wang, and Sheng Huang. 2013. A data-
adaptive and dynamic segmentation index for whole matching on time series.
Proceedings of the VLDB Endowment 6, 10 (2013), 793–804.

[89] Zeyu Wang, Qitong Wang, Peng Wang, Themis Palpanas, and Wei Wang. 2023.
Dumpy: A compact and adaptive index for large data series collections. Proceed-
ings of the ACM on Management of Data 1, 1 (2023), 1–27.

[90] Roger Weber, Hans-Jörg Schek, and Stephen Blott. 1998. A quantitative analysis
and performance study for similarity-search methods in high-dimensional spaces.
In VLDB, Vol. 98. 194–205.

[91] Dongtao Wei, Kaixiang Zhuang, Lei Ai, Qunlin Chen, Wenjing Yang, Wei Liu,
Kangcheng Wang, Jiangzhou Sun, and Jiang Qiu. 2018. Structural and functional
brain scans from the cross-sectional Southwest University adult lifespan dataset.
Scientific data 5, 1 (2018), 1–10.

[92] Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya
Siddhant, Aditya Barua, and Colin Raffel. 2020. mT5: A massively multilingual
pre-trained text-to-text transformer. arXiv preprint arXiv:2010.11934 (2020).

[93] Djamel Edine Yagoubi, Reza Akbarinia, Florent Masseglia, and Themis Palpanas.
2017. Dpisax: Massively distributed partitioned isax. In 2017 IEEE International
Conference on Data Mining (ICDM). IEEE, 1135–1140.

[94] Byoung-Kee Yi and Christos Faloutsos. 2000. Fast time sequence indexing for
arbitrary Lp norms. (2000).

[95] Chaw Thet Zan and Hayato Yamana. 2016. An improved symbolic aggregate
approximation distance measure based on its statistical features. In Proceedings
of the 18th international conference on information integration and web-based
applications and services. 72–80.

[96] Liang Zhang, Noura Alghamdi, Mohamed Y Eltabakh, and Elke A Rundensteiner.
2019. TARDIS: Distributed indexing framework for big time series data. In 2019
IEEE 35th International Conference on Data Engineering (ICDE). IEEE, 1202–1213.

[97] Kostas Zoumpatianos, Stratos Idreos, and Themis Palpanas. 2014. Indexing for
interactive exploration of big data series. In Proceedings of the 2014 ACM SIGMOD
international conference on Management of data. 1555–1566.

[98] Kostas Zoumpatianos, Stratos Idreos, and Themis Palpanas. 2016. ADS: the
adaptive data series index. The VLDB Journal 25 (2016), 843–866.

2211

	Abstract
	1 INTRODUCTION
	2 PRELIMINARIES AND RELATED WORK
	2.1 Definitions
	2.2 Summarization techniques
	2.3 Works on reference points
	2.4 Data series indices
	2.5 Graph-based methods

	3 THE STRUCTURE OF DIDS
	3.1 Motivations
	3.2 The structure

	4 THE CONSTRUCTION OF DIDS
	4.1 Data series clustering
	4.2 Summarization preparation
	4.3 Graph construction

	5 THE SEARCH IN DIDS
	5.1 Approximate search
	5.2 Exact search

	6 COMPLEXITY ANALYSIS
	6.1 Construction complexity
	6.2 Approximate search complexity

	7 EXPERIMENTS
	7.1 Experimental setup
	7.2 Index construction
	7.3 Exact search performance
	7.4 Approximate search performance
	7.5 The impact of parameters
	7.6 Experimental summary

	8 CONCLUSION
	Acknowledgments
	REFERENCE

