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ABSTRACT
Community search has aroused widespread interest in the past

decades. Among existing solutions, the learning-based models ex-

hibit outstanding performance in terms of accuracy by leveraging

labels to 1) train the model for community score learning, and 2)

select the optimal threshold for community identification. However,

labeled data are not always available in real-world scenarios. To

address this notable limitation of learning-based models, we pro-

pose a pre-trained graph Transformer based community search

framework that uses Zero label (i.e., unsupervised), termed Tran-
sZero. TransZero has two key phases, i.e., the offline pre-training

phase and the online search phase. Specifically, in the offline pre-

training phase, we design an efficient and effective community

search graph transformer (CSGphormer) to learn node represen-

tation. To pre-train CSGphormer without the usage of labels, we
introduce two self-supervised losses, i.e., personalization loss and

link loss, motivated by the inherent uniqueness of node and graph

topology, respectively. In the online search phase, with the repre-

sentation learned by the pre-trained CSGphormer, we compute the

community score without using labels by measuring the similar-

ity of representations between the query nodes and the nodes in

the graph. To free the framework from the usage of a label-based

threshold, we define a new function named expected score gain

to guide the community identification process. Furthermore, we

propose two efficient and effective algorithms for the community

identification process that run without the usage of labels. Exten-

sive experiments over 10 public datasets illustrate the superior

performance of TransZero regarding both accuracy and efficiency.
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Table 1: Comparison among CS methods

Methods

Label

Free?

Structure

Flexibility?

Backbone

Model

Loss

Function

CST [15] ! % 𝑘-core -

EquiTruss [2] ! % 𝑘-truss -

M𝑘ECS [3] ! % 𝑘-ECC -

CTC [27] ! % 𝑘-truss -

QD-GNN [28] % ! GNN Binary Cross Entropy

COCLEP [32] % ! GNN Contrastive Loss

TransZero (our) ! !
Graph

Transformer

Contrastive Loss

& Generative Loss

1 INTRODUCTION
Graphs play a prominent role in modeling relationships between

entities in a system and are applied across diverse domains such as

social networks [9, 34, 45, 52], biology networks [39, 49] and finance

networks [8, 13, 58]. As a fundamental problem in graph analytics,

community search (CS) [19] has aroused widespread interest in the

past decades. Given a set of query nodes, CS aims to find a query-

dependent subgraph, with the resultant subgraph, also referred to

as a community, manifesting as a densely intra-connected structure.

CS is also relevant and widely applied for tasks in real-world appli-

cations, such as fraud detection in e-commerce platforms [35, 60]

and protein complex identification [19, 37]. Given the importance

and widespread applications of CS, a set of algorithms are proposed,

which include the traditional CS algorithms [2, 10, 15, 25, 26, 44]

and learning-based CS models [21, 28, 32, 33, 43].

As summarized in Table 1 and in the recent survey paper [19],

most of existing traditional CS algorithms characterize the commu-

nity structure by specific subgraph cohesiveness models such as

k-core [15, 44], k-truss [2, 26, 27] and k-edge connected component

(k-ECC) [3, 10, 25], and thus suffer from the limitation known as

structure inflexibility [21, 28, 32]. These fixed subgraph models im-

pose rigid constraints on the topological structure of communities,

making it difficult for real-world communities to meet such inflexi-

ble constraints. For example, methods based on k-core require every
node in the found community to have a degree larger than or equal

to k, which may not be met by real-world communities, particularly

for nodes located at the boundary of the community.

Recently, learning-based approaches such as QD-GNN [28] and

COCLEP [32] are emerging in this field due to their outstanding

performance in terms of accuracy. As illustrated in Figure 1(a) and
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Figure 1: Framework comparisons of learning-based methods for CS

Figure 1(b), QD-GNN trains a feature-aggregation model in a super-

vised manner where all nodes from the ground-truth community

are used for training, and COCLEP trains a feature-aggregation

model in a semi-supervised manner where only a subset nodes from

the ground-truth community is used for training. By incorporating

meticulous framework design and leveraging ground-truth infor-

mation, both QD-GNN and COCLEP can effectively alleviate the

limitation of structure inflexibility encountered by traditional CS al-

gorithms, and thus demonstrate state-of-the-art performance in the

supervised and semi-supervised settings, respectively. In a nutshell,

they both employ a two-stage framework, consisting of an offline

training phase and an online search phase, and rely on the labels

to 1) train the neural network for community score learning where

the community score reflects the membership of the corresponding

node w.r.t. the query, and 2) select the optimal threshold from the

labeled validation set for community identification.

Motivations. While learning-based approaches demonstrate phe-

nomenal performance, a notable limitation of current learning-

based methods is their dependence on ground-truth communities

which are often unavailable or of low quality in real-world sce-

narios. Additionally, the excessive dependence on ground-truth

communities makes it challenging for QD-GNN to generalize and

predict unseen communities, as evaluated in Section 6. On the other

hand, traditional CS algorithms operate without labels and thus

demonstrate good generalization abilities to discover unseen com-

munities. Therefore, a natural and promising idea is to develop

a learning-based method that inherits the favorable properties of

learning-based approaches, including flexible community struc-

tures, strong expressive capabilities and outstanding performance,

and simultaneously combines the advantages of traditional CS algo-

rithms, such as operating without labels and demonstrating good

generalization ability. Hence, in this paper, we aim to design an

efficient and effective learning-based approach for CS that runs

without using labels. The challenges are mainly two-folds: 1) Chal-

lenge I: effectively learning the community score for each query

without using labels, and 2) Challenge II: adaptively identifying the

community without label-based optimal threshold.

One promising direction for community score learning without

using labels is to use some unsupervised frameworks. However, the

objective of existing unsupervised frameworks is incompatible with

the task of community score learning, and existing works of CS can-

not be easily extended to support unsupervised community score

learning. Moreover, most of the existing unsupervised frameworks

utilize message-passing-based Graph Neural Networks (GNNs) as

the backbone. This choice inherently introduces challenges of the

over-smoothing problem [11] and over-squashing problem [4] with

the increment of model depth, consequently limiting their potential

capability for graph representation learning as highlighted in [12].

Therefore, designing a community score learning method that op-

erates without using labels presents a considerable challenge.

One direct approach for community identification without using

labels is to assign a fixed hyper-parameter as the threshold directly.

However, as demonstrated in the evaluation conducted in [28],

utilizing different fixed thresholds can result in amaximumdecrease

of ∼40% in the accuracy measured by the F1-score. Furthermore, the

optimal threshold may vary across different datasets and different

similarity metrics. Another promising approach is to select nodes

with the top-K highest community scores. However, the size of

real-world communities can differ significantly within one graph

and across different graphs. It is hard to utilize one fixed size that

suits all the communities. Therefore, it is challenging to design a

community identification method that runs without using labels.

Our approaches. Driven by the aforementioned challenges, we

propose a new pre-trained graph Transformer based community

search framework that uses Zero label (i.e., unsupervised), termed

TransZero. The overall illustration is in Figure 1(c). TransZero also
contains two phases, i.e., the offline pre-training phase and the

online search phase.

To address Challenge I, we introduce a two-step methodology

that incorporates both the offline pre-training phase and the on-

line community score computation module to obtain the commu-

nity score without using labels. First of all, we pre-train the CSG-
phormer in the offline pre-training phase. Subsequently, we calcu-

late the community score in the community score computationmod-

ule by measuring the similarity between the representation of the

query and the representation of each node within the graph where

the representation is inferred by the learned CSGphormer. Specif-
ically, we propose CSGphormer motivated by NAGphormer [12],
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the existing state-of-the-art graph transformer. NAGphormer with

other graph transformers have shown effectiveness for mitigating

the over-smoothing and over-squashing problems [12, 59, 64]. To

pre-train CSGphormer without using labels, we introduce two self-

supervised losses designed specifically for CS, i.e., personalization

loss and link loss, motivated by the inherent uniqueness of each

node and graph topology, respectively. It combines the contrast-

based self-supervised learning (i.e., personalization loss) [29, 63] and

the generation-based self-supervised learning (i.e., link loss) [36, 53]

to achieve better performance.

To solve Challenge II, we introduce a new function named ex-

pected score gain and formulate the problem of community identi-

fication as the problem of community Identification with Expected

Score Gain (IESG). Specifically, the community score reflects the

likelihood of a node being included in the community, and the ob-

jective is to identify a community where nodes exhibit high scores.

QD-GNN and COCLEP use a label-based threshold to define high

scores. To eliminate reliance on labels, we define expected score

gain. Community scores that maximize the expected score gain

are considered high. Motivated by modularity [30, 41] which is a

classical metric for community cohesiveness, the expected score

gain calculates the sum of node scores within the community minus

the sum of expected scores if nodes are chosen randomly. A higher

expected score gain value indicates a potentially better community.

Based on this new function and inspired by the cohesive nature of

communities and the query-dependent property of CS, IESG aims

to find a connected subgraph that includes the query while having

the maximum expected score gain value. Furthermore, we prove

that the IESG is NP-hard, indicating that it cannot be solved in

polynomial time. Therefore, we design two heuristic algorithms,

i.e., Local Search and Global Search to effectively and efficiently

identify promising communities without using labels.

Contributions. The main contributions are as follows:

• We propose a new learning-based CS framework TransZero that
runs without using ground-truth communities. It contains the

offline pre-training phase and the online search phase.

• In the offline pre-training phase, we design an efficient graph

transformer CSGphormer for CS. Two self-supervised losses in-

cluding the personalization loss and link loss are utilized to

pre-train CSGphormer without using labels.

• In the online search phase, the score computation module first

obtains the community score by measuring the similarity of the

learned representation. Based on the new proposed expected

score gain function, we model community identification as IESG,
and propose two efficient and effective algorithms, i.e., Local
Search and Global Search, to find promising communities.

• Experiments across 10 public datasets highlight the superiority

of TransZero regarding both accuracy and efficiency. Under the

hybrid training setting, TransZero that does not use labels even
outperforms COCLEP and QD-GNNwhich rely on labels with an

average F1-score improvement of 10.01% and 5.91%, respectively.

Regarding offline training efficiency, TransZero achieves an av-

erage speedup of 122.39× and 118.22× compared to COCLEP

and QD-GNN, respectively. Regarding online search efficiency,

TransZero achieves an average speedup of 10.02× and 26.77×
compared to COCLEP and QD-GNN, respectively.

Table 2: Symbols and Descriptions

Notation Description
𝐺 (𝑉 , 𝐸) an undirected graph

𝑋,𝐴 feature matrix and adjacency matrix

𝑞 = 𝑉𝑞 the query with node set 𝑉𝑞

𝐶𝑞,𝐶𝑞 the ground-truth/predicted community of 𝑞

𝑓 𝜃 (·) neural network model with parameters 𝜃

𝑆 ∈ R |𝑉 | community score vector

𝑉1\𝑉2 nodes in 𝑉1 but not 𝑉2

2 PRELIMINARIES
In this section, we introduce preliminaries and the state-of-the-art

CS models. The frequently used symbols are summarized in Table 2.

2.1 Problem Statement
We follow the typical setting of the general community search

problem and focus on the undirected graph 𝐺 (𝑉 , 𝐸) where 𝑉 is

the node set and 𝐸 ⊆ 𝑉 ×𝑉 is the edge set. We use |𝑉 | and |𝐸 | to
denote the cardinality of 𝑉 and 𝐸, respectively. The feature matrix

is denoted as 𝑋 ∈ R |𝑉 |×𝑑 where 𝑑 is the dimension of the feature.

𝐴 ∈ R |𝑉 |× |𝑉 | is the adjacency matrix where 𝐴𝑖 𝑗 = 1 indicates the

link between node 𝑣𝑖 and node 𝑣 𝑗 . 𝑆 ∈ R |𝑉 | is used to denote the

community score vector. We use𝑞 and𝑉𝑞 interchangeably to denote

the query node set. 𝐶𝑞 and 𝐶𝑞 are utilized to denote the ground-

truth community and the predicted community w.r.t. 𝑞. Next, we

give the formal definition of community search.

Definition 1. (Community Search [28, 32]). Given a data graph
𝐺 (𝑉 , 𝐸) and query 𝑞, the task of Community Search (CS) aims to
identify a query-dependent connected subgraph (i.e., community) 𝐶𝑞
where nodes in the found community are densely intra-connected.

2.2 State-of-the-art
The state-of-the-art learning-based CS models employ a framework

comprising the offline training phase and the online search phase.

Offline Training. QD-GNN models the problem of CS as binary

node classification. Specifically, given a data graph𝐺 and a training

dataset D𝑡𝑟𝑎𝑖𝑛 = {𝑞𝑖 ,𝐶𝑞𝑖 }
|D𝑡𝑟𝑎𝑖𝑛 |
𝑖=1

containing a set of queries and

the corresponding ground-truth communities, QD-GNN proposes

a neural network model, denoted as M, which takes the query,

adjacency matrix and features as inputs and outputs a community

score vector 𝑆𝑞 ∈ R |𝑉 | . This vector indicates the membership

likelihood of each node in the predicted community. And then,

the Binary Cross Entropy (BCE) function is used to measure the

divergence between 𝑆𝑞 and the ground-truth vector 𝑌𝑞 . 𝑌𝑞,𝑗 = 1 if

and only if 𝑣 𝑗 ∈ 𝐶𝑞 . Here, 𝑌𝑞,𝑗 is the 𝑗-th bit of 𝑌𝑞 .

L =
∑︁

𝑞∈D𝑡𝑟𝑎𝑖𝑛

1

|𝑉 |

|𝑉 |∑︁
𝑖=1

−
(
𝑌𝑞,𝑖𝑙𝑜𝑔𝑆𝑞,𝑖 +

(
1 − 𝑌𝑞,𝑖

)
𝑙𝑜𝑔

(
1 − 𝑆𝑞,𝑖

) )
The parameters of the model are updated by gradient descent

to minimize the loss between the predicted community score and

the ground-truth vector. It is worth noting that the loss function
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employed in COCLEP differs from the aforementioned loss. CO-

CLEP employs contrastive learning and focuses on enhancing the

prediction performance for the selected positive candidates. How-

ever, both QD-GNN and COCLEP employ ground-truth information

within their respective loss functions for model training.

Following the model training, both QD-GNN and COCLEP de-

termine the optimal parameters, particularly the community score

threshold, by evaluating the validation set. Note that, the validation

set also contains the ground-truth information.

Online search. The learned model and the selected optimal thresh-

old from the offline training phase are utilized in the online search

phase. Specifically, it first calculates the community score by the

model inference. To identify the final community, QD-GNN pro-

poses a Constrained Breadth-First Search algorithm in [28] which

requires the label-based threshold as input. It expands outward and

selects neighbors with a community score larger than the threshold.

3 OFFLINE PRE-TRAINING PHASE
Motivation. Given a graph with feature matrix 𝑋 and adjacency

matrix 𝐴, the objective of pre-training for CS is to learn a generic

encoder that can encode the community information and the graph

topology into the latent space. As we focus on the unsupervised

CS, we resort to self-supervised learning which is an important

category of unsupervised learning. Specifically, we consider both

the generative self-supervised learning and the contrastive self-

supervised learning to achieve a better performance [38].

3.1 Overview
The overall architecture of the offline pre-training phase is illus-

trated in Figure 2. Given a data graph, an augmented subgraph

sampler is applied to generate the corresponding community-level

subgraph for each select node. It aims to generate new data with

maximum consistent features from different views w.r.t. a node in

the graph as positive samples. Then, the augmented subgraph is

sent into a graph encoder (CSGphormer as in our proposed Tran-
sZero) to extract the latent features that encode both the community

information and graph topology. The graph encoder outputs both

the node-level representation and community-level representation.

The learned representations are used for loss computation which

includes the personalization loss (i.e., contrastive loss) and the link

loss (i.e., generative loss). The obtained loss is back-propagated to

update the parameters in CSGphormer.

3.2 Augmented Subgraph Sampler
Motivation. The contrast-based self-supervised learning is based

on the augmented subgraphs to design the loss function. COCLEP,

an existing state-of-the-art semi-supervised CS model, constructs

the augmented subgraphs by incorporating the ground-truth posi-

tive samples and their 𝐾-hop neighbors, where 𝐾 is a fixed value.

However, it is intuitive that various central nodes should have

different neighborhood distances, necessitating a personalized se-

lection of different hops for different nodes. To address this, we

employ conductance [5, 57], a well-established measure of commu-

nity cohesiveness, to enhance the choice of hops. The definition of

conductance is as follows:

1

5
4

7
6

Augmented
Subgraph
Sampler

Share 
Weights

,

Personalization Loss
& Link Loss

,

Loss FunctionNode Representation
& Subgraph  Representation

CSGphormerAugmented Subgraph
Sampler

3

2

Figure 2: Illustration of the offline pre-training phase

Definition 2. (Conductance [5, 57]). Given a graph𝐺 (𝑉 , 𝐸) and
a community 𝐶 , the conductance of 𝐶 is defined as:

Φ(𝐺,𝐶) = |𝑒 (𝐶,𝐶) |
𝑚𝑖𝑛(𝑑𝐶 , 𝑑𝐶 )

(1)

where 𝐶 = 𝑉 \𝐶 is complement of 𝐶 . 𝑒 (𝐶,𝐶) is the edges between
nodes in 𝐶 and nodes in 𝐶 . 𝑑𝐶 is the sum of degrees of the nodes in 𝐶 .

Conductance measures the fraction of the total edge volume

that points outside the community. A smaller conductance means

a higher ratio of information can be used for pre-training. Based

on conductance, we choose the subgraph induced by the 𝐾-hop

neighbors of the query nodes that has the lowest conductance

value as the augmented subgraph. It’s important to note that this

approach allows us to obtain the augmented subgraph adaptively,

without requiring a pre-set value for 𝐾 . To strike a balance between

search space and personalization, we set the upper limit for 𝐾 as 5

as suggested by the experimental results.

Example 1. Given the data graph as in Figure 1 and node 1, its
1-hop induced subgraph has nodes 1, 2 and 3. Thus, the conductance of
the 1-hop induced subgraph is 1

7
= 0.143. Similarly, the conductance

of the 2-hop induced subgraph is 3

9
= 0.333. Thus, 1-hop induced

subgraph is selected as the augmented subgraph.

3.3 CSGphormer Architecture
Motivation. The graph encoder used in the pre-training phase in-

puts the augmented subgraph and outputs both the node-level and

the community-level representations. A direct way is to use GNNs

to learn the node-level representation [17, 54, 56] and use a graph

pooling operator to aggregate the node-level representations into

community-level representations. However, GNNs possess inherent

limitations such as over-smoothing [11] and over-squashing [4]

issues, which hinder the full potential of GNNs for representa-

tion learning. On the other hand, transformers have been recently

introduced for graph analytics due to their effectiveness in address-

ing over-smoothing and over-squashing issues [12], resulting in a

strong representation learning capacity. Many graph transformer

models are proposed such as Graphormer [59] and Gophormer [64].

Here, we follow the state-of-the-art graph transformer NAG-

phormer [12] and propose CSGphormer. NAGphormer is the state-

of-the-art graph transformer with high efficiency. NAGphormer

treats each hop as one token in a sequence and uses a transformer
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to model the correlation among different hops and learn the node

representation. CSGphormer has three key distinctions from NAG-

phormer. Firstly, NAGphormer primarily targets supervised learn-

ing, while CSGphormer focuses on unsupervised learning. Secondly,

unlike the fixed value of 𝐾 used for 𝐾-hop neighbors in NAG-

phormer, we employ the conductance to dynamically determine

the value of 𝐾 . Thirdly, CSGphormer outputs both the node-level

and the community-level representations while NAGphormer just

outputs the node-level representation.

The architecture of CSGphormer is illustrated in Figure 3, and the
forward propagation of CSGphormer is summarized in Algorithm 1.

Specifically, we propagate the feature matrix 𝑋 from 1 to 𝐾 times

to obtain the token sequence X = {0𝑋, 1𝑋, · · · , 𝐾𝑋 }. Here, 0𝑋 =

𝑋 ∈ R𝑛×𝑑 is the original feature matrix.
𝑘𝑋 ∈ R𝑛×𝑑 is the 𝑘-

hop neighborhood matrix and is computed by
𝑘𝑋 = 𝐴𝑘𝑋 . Here,

𝐴 = 𝐷−
1

2𝐴𝐷−
1

2 is the normalized adjacency matrix. 𝐷 is the degree

matrix of 𝐴 where 𝐷 (𝑖, 𝑖) = ∑𝑛
𝑗=1𝐴(𝑖, 𝑗). X𝑣 = {0𝑥𝑣, · · · , 𝐾𝑥𝑣} is

the aggregated neighborhood sequence of node 𝑣 .

Then, the obtained sequence matrix X𝑣 ∈ R(𝐾+1)×𝑑 is sent into

a learnable linear projection𝑊 ∈ R𝑑×𝑑
(0)
𝑚 : 𝐻

(0)
𝑣 = X𝑣𝑊 , where

𝐻
(0)
𝑣 ∈ R(𝐾+1)×𝑑

(0)
𝑚 . Next, 𝐻

(0)
𝑣 is sent for 𝐿 layers of the trans-

former encoder. The transformer encoder contains three important

sub-structures, i.e. Positional Encoding, Multi-Head Attention and

Feed Forward Network. Specifically, given an input embedding𝐻
(𝑙 )
𝑣

in layer 𝑙 , the position encoding of the sequence 𝑃 is added to the

input embedding first 𝐻
(𝑙 )
𝑣 = 𝐻

(𝑙 )
𝑣 + 𝑃 , as in [12].

After that, 𝐻
(𝑙 )
𝑣 is sent to the multi-head attention layer (MHA):

MHA(𝐻 (𝑙 )𝑣 ) = Concat(head1, · · · , headℎ)𝑊 𝑜

where head𝑖 = Attention(𝐻 (𝑙 )𝑣 𝑊
𝑞

𝑖
, 𝐻
(𝑙 )
𝑣 𝑊 𝑘

𝑖 , 𝐻
(𝑙 )
𝑣 𝑊 𝑣

𝑖 )

and Attention(𝑄,𝐾,𝑉 ) = softmax( 𝑄𝐾𝑇√︃
𝑑
(𝑙+1)
𝑚

)𝑉
(2)

Here, 𝑊
𝑞

𝑖
∈ R𝑑

(𝑙 )
𝑚 ×𝑑 (𝑙+1)𝑚 , 𝑊 𝑘

𝑖
∈ R𝑑

(𝑙 )
𝑚 ×𝑑 (𝑙+1)𝑚 , 𝑊 𝑣

𝑖
∈ R𝑑

(𝑙 )
𝑚 ×𝑑 (𝑙+1)𝑚 ,

𝑊 𝑜 ∈ Rℎ𝑑
(𝑙+1)
𝑚 ×𝑑 (𝑙+1)𝑚 are all learnable weights to project 𝐻

(𝑙 )
𝑣 into

different matrices.

Algorithm1: Forward Propagation of CSGphormer.
Input: center node 𝑣 , feature matrix 𝑋 , adjacent matrix 𝐴,

transformer layers 𝐿.

Output: The node representation 𝑍𝑛𝑜𝑑𝑒𝑣 and

community-level representation 𝑍𝑐𝑜𝑚𝑣 .

1 X𝑣 ← {0𝑥𝑣, 1𝑥𝑣, · · · , 𝐾𝑥𝑣}
2 𝐻

(0)
𝑣 ← X𝑣𝑊
// L-layers transformer encoder.

3 for 𝑙 = 0, · · · , 𝐿 − 1 do
4 𝑃 ← Position Encoding Construction

5 𝐻
(𝑙 )
𝑣 ← 𝐻

(𝑙 )
𝑣 + 𝑃

6 𝐻
(𝑙+1)
𝑣 = MHA(LN(𝐻 (𝑙 )𝑣 )) + 𝐻

(𝑙 )
𝑣

7 𝐻
(𝑙+1)
𝑣 = FFN(LN(𝐻 (𝑙+1)𝑣 )) + 𝐻 (𝑙+1)𝑣

// Readout layer.

8 𝑍𝑛𝑜𝑑𝑒𝑣 ← 0𝐻
(𝐿)
𝑣 ; 𝑍𝑐𝑜𝑚𝑣 ← Zero Tensor

9 for 𝑘 = 1, · · · , 𝐾 do

10 𝛼𝑘 =
exp( (0𝐻 (𝐿)𝑣 | |𝑘𝐻 (𝐿)𝑣 )𝑊𝑇

𝑎 )∑𝐾
𝑖=1 exp( (0𝐻

(𝐿)
𝑣 | |𝑖𝐻 (𝐿)𝑣 )𝑊𝑇

𝑎 )
11 𝑍𝑐𝑜𝑚𝑣 ← 𝑍𝑐𝑜𝑚𝑣 + 𝛼𝑘 𝑘𝐻

(𝐿)
𝑣

12 return 𝑍𝑛𝑜𝑑𝑒𝑣 , 𝑍𝑐𝑜𝑚𝑣

The output of the multi-head self-attention layer is added to

the original input embedding followed by a layer normalization

(LN) [7]. A position-wise feed-forward network (FFN) is applied to

each position separately and identically. The FFN consists of two

linear layers with a GELU [24] non-linearity:

𝐻
(𝑙+1)
𝑣 = MHA(LN(𝐻 (𝑙 )𝑣 )) + 𝐻

(𝑙 )
𝑣

𝐻
(𝑙+1)
𝑣 = FFN(LN(𝐻 (𝑙+1)𝑣 )) + 𝐻 (𝑙+1)𝑣

(3)

After the 𝐿 layers of the transformer encoder, we can obtain

the latent representation 𝐻
(𝐿)
𝑣 ∈ R(𝐾+1)×𝑑

(𝐿)
𝑚 of node 𝑣 which

contain the center node token𝑍𝑛𝑜𝑑𝑒𝑣 = 0𝐻
(𝐿)
𝑣 ∈ R𝑑

(𝐿)
𝑚 and the latent

representation of the neighborhood tokens {1𝐻 (𝐿)𝑣 , · · · , 𝐾𝐻 (𝐿)𝑣 }.
Then, an attention-based readout function is utilized to weight the

neighborhood tokens to obtain the community-level representation:

𝛼𝑘 =
exp((0𝐻 (𝐿)𝑣 | |𝑘𝐻

(𝐿)
𝑣 )𝑊𝑎)∑𝐾

𝑖=1 exp((0𝐻
(𝐿)
𝑣 | |𝑖𝐻

(𝐿)
𝑣 )𝑊𝑎)

𝑍𝑐𝑜𝑚𝑣 =

𝐾∑︁
𝑘=1

𝛼𝑘
𝑘𝐻
(𝐿)
𝑣 .

(4)

Here, | | is the concatenation operator [46], and𝑊𝑎 ∈ R2𝑑
(𝐿)
𝑚 ×1 is

the learnable weight matrix.

3.4 Training Objectives
Motivation. Intuitively, nodes are dependent on their communities

to learn the representation and each node is unique in the graph.

We consider the strong correlation between central nodes and their

communities to design the contrast-based loss, i.e., personalization

loss. Moreover, we design the generation-based loss, i.e., link loss,
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based on the idea that nodes that have a link should be close in the
latent space and vice versa. The generation-based loss would benefit
the preservation of local graph topology, and the contrast-based

loss would benefit the preservation of the global information and

capture the long-distance relationship, as illustrated in [38].

We model the personalization loss by the margin triplet loss [42]

to bring the representation of a selected node and its corresponding

community closer together and push away the representation of

the selected node from the communities of other nodes.

L𝑝 =
1

|𝑉 |2
∑︁
𝑣∈𝑉

∑︁
𝑢∈𝑉

(
−max

(
𝜎 (𝑍𝑛𝑜𝑑𝑒𝑣 𝑍𝑐𝑜𝑚𝑣 ) − 𝜎 (𝑍𝑛𝑜𝑑𝑒𝑣 𝑍𝑐𝑜𝑚𝑢 ) + 𝜖, 0

))
(5)

where 𝜖 is the margin value and 𝜎 (·) is the sigmoid function.

The link loss is formulated as follows to enhance the similarity

of neighboring nodes while discriminating non-adjacent nodes.

L𝑘 =
1

|𝑉 |2
∑︁
𝑣∈𝑉

∑︁
𝑢∈𝑉
−𝐴(𝑢, 𝑣) (𝑍𝑛𝑜𝑑𝑒𝑢 𝑍𝑛𝑜𝑑𝑒𝑣 )

+(1 −𝐴(𝑢, 𝑣)) (𝑍𝑛𝑜𝑑𝑒𝑢 𝑍𝑛𝑜𝑑𝑒𝑣 )
(6)

CSGphormer takes the above two losses into account together.

The overall loss function is defined as:

L = L𝑝 + 𝛼L𝑘 (7)

where 𝛼 ∈ [0, 1] is the coefficient to balance the two losses. Note

that both L𝑝 and L𝑘 do not contain label information.

With the loss defined in Equation 7, the overall offline pre-

training procedure is summarized in Algorithm 2. It first initializes

the parameters in the optimizer and divides all nodes into several

batches (lines 1 to 2). Next, it samples all the augmented subgraphs

(lines 3 to 4). It trains the model batch by batch. In the training of

each batch, it obtains the node-level representation and community-

level representation of all nodes in the batch by propagating the

CSGphormer network (lines 6 to 7). The loss containing both the

personalization loss and link loss is computed (lines 8 to 11) and is

used to update the parameters in CSGphormer(line 12).

4 ONLINE SEARCH PHASE
With the pre-trained CSGphormer in Section 3, we now introduce

the details of the online search phase devised for unsupervised

CS. We first introduce the community score computation module,

and then we introduce the problem of identification with expected

score gain (IESG), followed by two search algorithms, i.e., Local
Search and Global Search to find promising communities.

4.1 Community Score Computation
Motivation. After pre-training, the community-level information

and the graph topology are encoded into the latent representa-

tion. Nodes with similar latent representations should have similar

community-level information and should be close to each other

in the original graph. Therefore, we can compute the community

score by evaluating the similarity between the representation of

the query and the representations of nodes within the graph. A

higher similarity suggests a greater likelihood of the node being

part of the resulting community.

Algorithm2:Offline Pre-training Procedure (One Epoch)

Input: The data graph 𝐺 , batch size 𝑛𝑏𝑎𝑡𝑐ℎ , layer number 𝐿,

CSGphormer 𝑓 𝜃 (·), learning rate 𝜑 , coefficient 𝛼 .

1 Initialize optimizer 𝑜𝑝𝑡𝜃 with learning rate 𝜑

2 Separate 𝑉 into batches {𝑉𝑏 } with the batch size 𝑛𝑏𝑎𝑡𝑐ℎ

3 for each 𝑣 ∈ 𝑉 do
4 𝐺𝑣 ← augmented subgraph sampler

5 for {𝑉𝑏 } ∈ 𝑉 do
6 for each 𝑣 ∈ 𝑉𝑏 do
7 𝑍𝑛𝑜𝑑𝑒𝑣 , 𝑍𝑐𝑜𝑚𝑣 ← 𝑓 𝜃 (𝑣, 𝑋 (𝐺𝑣), 𝐴(𝐺𝑣), 𝐿)
8 for each 𝑢, 𝑣 ∈ 𝑉𝑏 do
9 L𝑝 =

−max

(
𝜎 (𝑍𝑛𝑜𝑑𝑒𝑣 𝑍𝑐𝑜𝑚𝑣 ) − 𝜎 (𝑍𝑛𝑜𝑑𝑒𝑣 𝑍𝑐𝑜𝑚𝑢 ) + 𝜖, 0

)
10 L𝑘 =

−𝐴(𝑢, 𝑣) (𝑍𝑛𝑜𝑑𝑒𝑢 𝑍𝑛𝑜𝑑𝑒𝑣 ) + (1−𝐴(𝑢, 𝑣)) (𝑍𝑛𝑜𝑑𝑒𝑢 𝑍𝑛𝑜𝑑𝑒𝑣 )
11 L+ = L𝑝 + 𝛼L𝑘
12 Update 𝜃 by 𝑜𝑝𝑡𝜃 with loss

L
|𝑉𝑏 |2

.

Algorithm3:Community Score Computation

Input: The query 𝑉𝑞 , graph 𝐺 , pre-trained network 𝑓 𝜃 (·) .
Output: The community score 𝑆 .

1 Initialize 𝑆 ← {𝑠𝑣 = 0 for 𝑣 ∈ 𝑉 }
2 for {𝑣} ∈ 𝑉 do
3 for {𝑢} ∈ 𝑉𝑞 do

4 𝑠𝑣 ← 𝑠𝑣 +
∑𝑑 (𝐿)𝑚
𝑖=0

𝑓 𝜃
𝑖
(𝑣) 𝑓 𝜃

𝑖
(𝑢 )√︂∑𝑑 (𝐿)𝑚

𝑖=0
𝑓 𝜃
𝑖
(𝑣) 𝑓 𝜃

𝑖
(𝑣)×

√︂∑𝑑 (𝐿)𝑚
𝑖=0

𝑓 𝜃
𝑖
(𝑢 ) 𝑓 𝜃

𝑖
(𝑢 )

5 𝑠𝑣 ← 𝑠𝑣
|𝑉𝑞 | ;

6 return 𝑆

The overall community score computation algorithm is shown

in Algorithm 3. It inputs the query nodes, graph and the pre-trained

graph transformer and outputs the community score w.r.t. the query.

The community score is first initialized as all zeros (line 1). It then

computes the pairwise similarity between the representation of

each node in the query and the representation of each node in the

graph (lines 2 to 5). We use the cosine similarity here. More other

similarity functions are evaluated in the experiments of Section 6.

We ensure that the obtained score is adjusted to fall within the

range of 0 to 1 by normalizing it with the cardinality of the query

node set (line 5). At last, the community score is returned.

4.2 Identification with Expected Score Gain
Motivation. The community score quantifies the likelihood of a

node being included in the community. An ideal community is one

where all nodes exhibit high community scores w.r.t. the query

nodes. In order to measure the degree to which the score is large,

QD-GNN and COCLEP use the label-based threshold, and nodes

having a community score larger than the label-based threshold

are included in the resulting communities. Under the setting of
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unsupervised community search, as analyzed in Section 1, a naive

approach like a fixed threshold or a fixed number of nodes would

potentially harm the accuracy of community identification. There-

fore, we introduce the function of expected score gain (ESG), and
community scores that maximize the ESG are considered high. The

ESG function, which centers around utilizing community scores,

computes the sum of node scores within the community, subtracted

by the sum of expected scores under random node selection. A

higher ESG suggests the potential for a superior community. This

idea is inspired by the concept of modularity, a well-established

metric of community cohesiveness. The modularity measures the

number of edges in the community minus the expected number of

edges in the community if the edges are randomly distributed. The

higher the modularity, the more cohesive the community [30].

Definition 3. (Expected Score Gain). Given a graph 𝐺 (𝑉 , 𝐸), a
community 𝐶 = (𝑉𝐶 , 𝐸𝐶 ) and the community score 𝑆 , the expected
score gain of 𝐶 is defined as:

ESG(𝑆,𝐶,𝐺) = 1

|𝑉𝐶 |𝜏
(
∑︁
𝑣∈𝑉𝐶

𝑠𝑣 −
∑
𝑢∈𝑉 𝑠𝑢
|𝑉 | |𝑉𝐶 |) (8)

where 𝜏 ∈ [0, 1] is a hyper-parameter to control the granularity of the
subgraph, and a higher 𝜏 value leads to a more fine-grained subgraph.

The first term

∑
𝑣∈𝑉𝐶 𝑠𝑣 is the sum of the community score of

nodes in the selected community.

∑
𝑢∈𝑉 𝑠𝑢
|𝑉 | |𝑉𝐶 | is the expected com-

munity score where nodes randomly selected have an expected

score the same as the average score of the graph. We set 𝜏 = 0.5 as

suggested by our experiments in Section 6.

Example 2. Given the data graph as in Figure 1 with the com-
munity containing nodes 4 5, 6 and 7, and supposing the community
scores are 0.1, 0.2, 0.4, 0.7, 0.9, 0.6, 0.8 for nodes 1 to 7 respectively, the
expected score gain can be calculated as 1

4
0.5 (3.0 − 3.7

7
× 4) = 0.443.

Besides the preference for nodes in the resulting community to

exhibit high community scores, we aim to search for a cohesive

subgraph, and connected components are more cohesive than un-

connected subgraphs. Furthermore, the identified community is

query-dependent and should therefore include the query nodes.

Based on these considerations, we formally define the problem of

identification with expected score gain (IESG).

Definition 4. (Identification with Expected Score Gain). Given
a graph 𝐺 (𝑉 , 𝐸), the query 𝑉𝑞 , the community score 𝑆 and a profit
function ESG(·), IESG aims to select a community 𝐶 of 𝐺 , such that:

(1) 𝑉𝐶 contains nodes in 𝑉𝑞 , and 𝐶 is connected;
(2) ESG(𝑆,𝐶,𝐺) is maximized among all feasible choices for 𝐶 .

We give the hardness of IESG in Lemma 1, and the proof can be

found in Section 5.

Lemma 1. The problem of IESG is NP-hard.

4.3 Heuristic Algorithms
As IESG is NP-hard which means it cannot be solved in polynomial

time, heuristic algorithms are proposed to effectively and efficiently

find promising communities without labels. A direct approach (Lo-
cal Search) starts from the query nodes and greedily incorporates

the node which is of the highest community score and is in the

Algorithm4: Local Search Algirithm

Input: The community score 𝑆 , graph 𝐺 and query 𝑉𝑞 .

Output: The identified community 𝐶𝑞 .

1 𝐶𝑞, 𝑄 ← 𝑉𝑞 ;𝑚𝑎𝑥_𝑒𝑠𝑔← −𝑖𝑛𝑓
2 while |𝑄 | < |𝑉 | do
3 𝑢 ← argmax

𝑣∈𝜁𝑄𝑠𝑣
4 𝑄 = 𝑄 ∪ 𝑢;
5 if ESG(𝑆,𝐶𝑞 ∪ {𝑢},𝐺) > 𝑚𝑎𝑥_𝑒𝑠𝑔 then
6 𝑚𝑎𝑥_𝑒𝑠𝑔← ESG(𝑆,𝐶𝑞 ∪ {𝑢},𝐺)
7 𝐶𝑞 = 𝐶𝑞 ∪ {𝑢}
8 else
9 Terminate

10 return 𝐶𝑞

neighborhood of the intermediate subgraph. The subgraph with

the largest ESG encountered during the search process is returned.

In this way, we do not need the label-based threshold, and thus

Local Search does not require labels for community identification.

The overall algorithm of Local Search is summarized in Algo-

rithm 4. It inputs the community score, graph and query nodes, and

outputs the identified community. We use𝑄 to store the nodes that

have been traversed and designate the maximum expected score

gain value as negative infinity during initialization (line 1). The al-

gorithm terminates until all the nodes have been traversed or early

stops when there are no promising candidates (lines 2 to 9). In each

loop, we first select the node with the highest community score that

has not been traversed and is located at the boundary of the node set

that has been traversed (line 3). 𝜁𝑄 = {𝑣 ∈ 𝑄 |∃𝑖 ∈ 𝑁 (1) (𝑣) ∩𝑄} is
the boundary of 𝑄 and 𝑄 = 𝑉 \𝑄 . If the selected nodes can increase

the expected score gain of the previous intermediate subgraph, we

incorporate it into the community. Otherwise, the algorithm early

stops (lines 5 to 9). At last, the community returns.

Motivations for Global Search. The motivations behind Global
Search can be outlined in three aspects. Firstly, by incorporating

link loss, the learned representation effectively preserves graph

topology information. Nodes with high similarities to the query

nodes exhibit high community scores and are likely connected to

the query nodes. This suggests that optimizing the expected score

gain first can also provide a favorable priority for connected nodes.

Secondly, the time complexity of Local Search is 𝑂 ( |𝑉 |2 log( |𝑉 |)),
as detailed in Section 5. This quadratic logarithmic time complexity

presents challenges when applying Local Search to large graphs.

Thirdly, as detailed in Lemma 2, the expected score gain of the first

𝑝 nodes in the queue sorted by community score initially increases

and then decreases with the increase of 𝑝 .

Lemma 2. Given sorted scores 𝑆 from large to small, size 𝑝 >

0,𝐶𝑝 = {𝑣𝑖 |𝑠𝑖 ≥ 𝑠𝑝 }, 𝑆𝑝 = {𝑠𝑖 |𝑖 ≤ 𝑝}, assuming
∑
𝑠𝑖 ∈𝑆𝑝 𝑠𝑖 =

𝜇 |𝑆𝑝 |𝜎𝜏 where 𝜇, 𝜎 are hyperparmeters and 𝜇, 𝜎 > 0 and, 𝜎𝜏 < 1,
𝐸𝑆𝐺 (𝑆,𝐶𝑝 ,𝐺) first increases and then decreases as 𝑝 increases.

As 𝑆 is learned, there lacks a functional expression for 𝑆 . Since

𝑆𝑝 gets the first 𝑝 scores from a sorted queue 𝑆 , we assume that the

sum of 𝑆𝑝 exhibits a decreasing growth rate as size increases, i.e.
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Algorithm5:Global Search Algorithm

Input: The community score 𝑆 , graph 𝐺 and query 𝑉𝑞 .

Output: The identified community 𝐶𝑞 .

1 𝐶𝑞 ← 𝑉𝑞 ;𝑡𝑠 = 0; 𝑡𝑒 = |𝑆 |
2 𝑆 ← sort 𝑆 from large to small

3 while 𝑡𝑠 < 𝑡𝑒 do
4 𝐶𝑚𝑖𝑑 = {𝑣𝑖 |𝑠𝑖 ≥ 𝑠 𝑡𝑠+𝑡𝑒

2

}
5 𝐶𝑙𝑒 𝑓 𝑡 = {𝑣𝑖 |𝑠𝑖 ≥ 𝑠 𝑡𝑠+𝑡𝑒

2
−1}

6 if ESG(𝑆,𝐶𝑚𝑖𝑑 ,𝐺) > ESG(𝑆,𝐶𝑙𝑒 𝑓 𝑡 ,𝐺) then
7 𝑡𝑠 ← 𝑡𝑠+𝑡𝑒

2

8 else
9 𝑡𝑒 ← 𝑡𝑠+𝑡𝑒

2

10 return 𝐶𝑞 = 𝐶𝑞 ∪ {𝑣𝑖 |𝑠𝑖 ≥ 𝑠𝑡𝑒 }

∑
𝑠𝑖 ∈𝑆𝑝 𝑠𝑖 = 𝜇 |𝑆𝑝 |

𝜎𝜏
. Lemma 2 provides theoretical support for the

binary search optimization, and the proof is in Section 5.

Given these motivations and the theoretical foundation, we intro-

duce Global Search in Algorithm 5, which prioritizes candidates that

enhance the ESG from a global perspective. It inputs the learned

community score, graph and query nodes, and outputs the found

community. The community is initialed as the query nodes, and

we designate the search start point 𝑡𝑠 as 0 and the search end point

𝑡𝑒 as the maximum number of nodes during initialization (line 1).

The algorithm sorts all the community scores (line 2). It loops until

the start point equals the end point (lines 3 to 9). In each loop, it

selects the candidate community 𝐶𝑚𝑖𝑑 from 0 to
𝑡𝑠+𝑡𝑒
2

and selects

the candidate community𝐶𝑙𝑒 𝑓 𝑡 from 0 to
𝑡𝑠+𝑡𝑒
2
− 1 which lies at the

left of 𝐶𝑚𝑖𝑑 (lines 4 and 5). If the ESG of 𝐶𝑚𝑖𝑑 is larger than that of

𝐶𝑙𝑒 𝑓 𝑡 which means there may be promising candidates in the index

range of [ 𝑡𝑠+𝑡𝑒
2
, 𝑡𝑒 ], we set the new start point as

𝑡𝑠+𝑡𝑒
2

(lines 6 and

7). Otherwise, the end point is set as
𝑡𝑠+𝑡𝑒
2

(lines 8 and 9). At last,

the identified community returns (line 10).

While the community found by Global Searchmay not always be

guaranteed to be connected, it prioritizes connected nodes since link

loss is used for pre-training, as shown in our earlier motivation. Ad-

ditionally,Global Search has a time complexity of𝑂 (2×|𝑉 | log( |𝑉 |)),
as analyzed in Section 5, making it well-suited for large datasets.

Lemma 3. Global Search runs at most 𝑙𝑜𝑔2 ( |𝑉 |) iterations.

The proof of Lemma 3 is immediate as Global Search reduces the

search space by half each iteration.

5 ANALYSIS
5.1 Theoretical Analysis
Proof of Lemma 1.We reduce the problem of IESG from the set

cover problem which is a well-known NP-hard problem [6]. The

following gives the formal definition of the set cover problem.

Definition 5 (Set Cover Problem). Given a finite set 𝑀 =

{𝑚1,𝑚2, . . . ,𝑚 |𝑀 | } and a collectionN = {𝑁1, 𝑁2, . . . , 𝑁 |N | } of sub-
sets of𝑀 , the Set Cover Problem aims to find a minimum-size subcol-
lectionN𝑜𝑝𝑡 such that the union of all sets inN𝑜𝑝𝑡 covers all elements
in𝑀 , i.e.,

⋃
𝑁𝑖 ∈N𝑜𝑝𝑡 𝑁𝑖 = 𝑀 .

Set cover
Instance

Solution
 

Query

Found Community

Figure 4: Graph construction for the set cover problem

We then follow [55] to construct a graph. We create one node𝑚𝑖
for each element in𝑚𝑖 ∈ 𝑀 and a node 𝑁𝑖 for each set in 𝑁𝑖 ∈ N .

One edge is added between𝑚𝑖 and 𝑁𝑖 if𝑚𝑖 ∈ 𝑁𝑖 . Another node 𝑣
is added with edges between 𝑣 and each set inN . Figure 4 presents

an example of graph construction.

We use𝑤 (𝐶) = ∑
𝑣∈𝐶 𝑠𝑣 to denote the sum of scores in𝐶 and set

𝜏 = 1 in ESG(𝑆,𝐶,𝐺). Therefore, we have ESG(𝑆,𝐶,𝐺) = 𝑤 (𝐶 )
|𝑉𝐶 | −

𝑤 (𝐺 )
|𝑉 | . We omit the second term as it is a fixed value for communities

in one graph. We use 𝑔(·) to denote the simplified function, i.e.,

𝑔(𝑆,𝐶,𝐺) = 𝑤 (𝐶 )
|𝑉𝐶 | and assume the community score of nodes in𝑀

and {𝑣} is 1

|𝑀 |+1 , and the community score of nodes inN is
1

|𝑀 | |N | .
We set the query nodes as 𝑞 = 𝑀 ∪ {𝑣}. To make the return com-

munity connected, we need to select some nodes inN . LetN∗ ⊆ N
be a feasible solution for the set cover problem given the element

collection𝑀 and the set collectionN . Let𝐶 = 𝑞∪N∗ = 𝑀∪{𝑣}∪𝑁∗.
Then, C is connected, contains the query nodes and has the expected

weight gain 𝑔(𝑆, 𝑞∪N∗,𝐺) = 𝑤 (𝐶 )
|𝑉𝐶 | =

1+ |N∗ ||𝑀 | |N|
|𝑀 |+1+|N∗ | . The derivative of

𝑔(𝑆, 𝑞∪N∗,𝐺) is𝑔′ (𝑆, 𝑞∪N∗,𝐺) = ( |𝑀 | |N |+|N∗|
|𝑀 |2 |N |+|𝑀 | |N |+|𝑀 | |N | |N∗ | )

′ =
1

|𝑀 |2 |N |+|𝑀 | |N |+|𝑀 | |N | |N∗ | −
( |𝑀 | |N |+|N∗ | ) |𝑀 | |N |

( |𝑀 |2 |N |+|𝑀 | |N |+|𝑀 | |N | |N∗ | )2 . Thus,

𝑔′ (𝑆, 𝑞 ∪ N∗,𝐺) =
|𝑀 | |N | ( |𝑀 |+1−|𝑀 | |N | )

( |𝑀 |2 |N |+|𝑀 | |N |+|𝑀 | |N | |N∗ | )2 . As |𝑀 |, |N | >
1, then |𝑀 | + 1 − |𝑀 | |N | < 0 and 𝑔′ (𝑆, 𝑞 ∪ N∗,𝐺) < 0. Thus

𝑔(𝑆, 𝑞 ∪ N∗,𝐺) is monotonically decreasing with regard to |N∗ |.
Since |N∗ | ≥ |N𝑜𝑝𝑡 |, the subgraph 𝑞 ∪ N𝑜𝑝𝑡 contains the query

nodes, is connected, and has the highest expected score gain. Note

thatN𝑜𝑝𝑡 is the optimal solution to the set cover problem. Therefore,

we can reduce the problem of IESG from the set cover problem.

Given a community 𝐶 , 𝑔(𝑆,𝐶,𝐺) is monotonically decreasing as

demonstrated above. With an optimal community 𝐶𝑜𝑝𝑡 , its ESG is

highest. Hence, |𝐶𝑜𝑝𝑡\𝑞 | is the minimum among feasible solutions.

According to the graph constructed above,𝐶𝑜𝑝𝑡\𝑞 is connected to all
elements in𝑀 and has the minimum size. Thus, the corresponding

sets of 𝐶𝑜𝑝𝑡\𝑞 is the optimal solution for the set cover. Moreover,

according to the map, the time complexity of the reduction is linear.

Proof of Lemma2. ESG(𝑆,𝐶𝑝 ,𝐺) =
𝜇 |𝑆𝑝 |𝜎𝜏
|𝑉𝐶𝑝 |𝜏

− |𝑉𝐶𝑝 ||𝑉𝐶𝑝 |𝜏
𝜆 =

𝜇 |𝑉𝐶𝑝 |𝜎𝜏
|𝑉𝐶𝑝 |𝜏

−
|𝑉𝐶𝑝 |
|𝑉𝐶𝑝 |𝜏

𝜆 where 𝜆 =

∑
𝑢∈𝑉 𝑠𝑢
|𝑉 | . Then the derivative is ESG′ (𝑆,𝐶𝑝 ,𝐺) =

𝜇 (𝜎𝜏−𝜏) |𝑉𝐶𝑝 |𝜎𝜏−𝜏−1−(1−𝜏)𝜆 |𝑉𝐶𝑝 |−𝜏 . By setting ESG′ (𝑆,𝐶𝑝 ,𝐺) =
0, we can prove that ESG(𝑆,𝐶𝑝 ,𝐺) increases in [0, ( (1−𝜏 )𝜆𝜇 (𝜎𝜏−𝜏 ) )

1

𝜎𝜏−1 ]

and decreases in [( (1−𝜏 )𝜆
𝜇 (𝜎𝜏−𝜏 ) )

1

𝜎𝜏−1 , |𝑉 |].

5.2 Time Complexity And Extension
Time complexity of pre-training. The time complexity of the

projection of three matrices is𝑂 (3×(𝐾+1)×𝑑2). The dot product of
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Table 3: Statistics of the datasets

Datasets |𝑉 | |𝐸 | |𝐶 | 𝑑

Texas 183 325 5 1,703

Cornell 183 298 5 1,703

Wisconsin 251 515 5 1,703

Cora 2,708 10,556 7 1,433

Citeseer 3,327 9,104 6 3,703

Photo 7,650 238,162 8 745

DBLP 17,716 105,734 4 1,639

CoCS 18,333 163,788 15 6,805

Physics 34,493 495,924 5 8,415

Reddit 232,965 114,615,892 41 602

query and key takes𝑂 ((𝐾+1)2×𝑑) and the dot product of attention
and value also takes 𝑂 ((𝐾 + 1)2 × 𝑑). Therefore, the self-attention
has a time complexity of 𝑂 (3 × (𝐾 + 1) × 𝑑2 + 2 × (𝐾 + 1)2 × 𝑑).
There are |𝑉 | nodes in the graph and the number of transformer

encoders is 𝐿, thus the time complexity of CSGphormer is 𝑂 (𝐿 ×
|𝑉 | × (3× (𝐾 + 1) ×𝑑2 + 2× (𝐾 + 1)2 ×𝑑)). It is trained for 𝑡 epochs,
therefore, the total time complexity of the offline pre-training is

𝑂 (𝑡 × 𝐿 × |𝑉 | × (3 × (𝐾 + 1) × 𝑑2 + 2 × (𝐾 + 1)2 × 𝑑)).
Time complexity of community score computation. The time

complexity of pair-wise similarity computation is𝑂 (𝑑𝑚) where 𝑑𝑚
is the dimension of the latent representation. We need to compute

for |𝑉𝑞 | × |𝑉 |. Therefore, the overall time complexity of community

score computation is 𝑂 ( |𝑉𝑞 | × |𝑉 | × 𝑑𝑚).
Time complexity of Local Search.The computation of nodes with

the highest score needs 𝑂 ( |𝑉 |𝑙𝑜𝑔|𝑉 |) times. We need to compute

at most by |𝑉 | times. Thus, the overall time complexity of Local
Search is 𝑂 ( |𝑉 |2𝑙𝑜𝑔|𝑉 |).
Time complexity ofGlobal Search. Sorting needs𝑂 ( |𝑉 |𝑙𝑜𝑔 |𝑉 |) [1,
14]. It iterates at most 𝑙𝑜𝑔|𝑉 | iterations, and each iteration needs

𝑂 ( |𝑉 |) operations. Therefore, the total time complexity of Global
Search is 𝑂 (2 × |𝑉 |𝑙𝑜𝑔|𝑉 |).
Extension and future works. TransZero is designed for general

CS without labels, and it can be extended to support other related

settings of CS. With a specific score computation module to hand

additional query input, TransZero can be extended to support at-

tributed CS [31, 47, 51]. With a specific pretraining model, Tran-
sZero can be extended to support other types of graph, e.g., temporal

graph [23, 61]. We leave these promising fields in the future works.

6 EXPERIMENTAL EVALUATION
6.1 Dataset Description
We use 10 public datasets from Pytorch Geometric [20] following

existing work [28] to comprehensively evaluate the performance.

The statistics information of the datasets is summarized in Table 3.

Datasets are characterized by varying numbers of nodes (i.e., |𝑉 |),
numbers of edges (i.e., |𝐸 |), numbers of communities (i.e., |𝐶 |) and
dimensionalities of features (i.e., 𝑑).

6.2 Experimental Setup
Baselines:We focus on the general CS task. Following [28, 32], we

use the existing learning-based models including 1) QD-GNN [28],

Inductive Transductive Hybrid

Train Test Community provided
for model training

Figure 5: Illustration for the query generation settings

which is a supervised state-of-the-art for CS; 2) COCLEP [32], which

is a semi-supervised state-of-the-art for CS, and the traditional CS

methods including 3) CST [15] that uses k-core to model the com-

munity; 4) EquiTruss [2] that uses k-truss to model the community;

5) M𝑘ECS [3] that uses k-ECC to model the community; and 6)

CTC [27] that aims to find the closest truss community.

Query generation: We use the following three generation mecha-

nisms to generate queries for training, validation and testing.

• Inductive Setting.We randomly partition all ground-truth com-

munities into two groups including training communities and

testing communities with a ratio of about 1: 1. And we generate

training and validation queries from the training communities

and generate test queries from the testing communities. This

setting aims to test the ability to predict unseen communities.

• Transductive Setting. We generate all the queries randomly

from all the ground-truth communities.

• Hybrid Setting.We randomly divide ground-truth communities

into training and testing groups (∼1:1 ratio). Training and valida-
tion queries are generated from the training communities, while

test queries are generated from all ground-truth communities.

This setting closely simulates real-world scenarios by training

on a subset of known ground-truth communities and evaluating

across all the ground-truth communities.

An illustration of the above three settings is shown in Figure 5. Note

that QD-GNN is evaluated in a transductive manner in the original

paper, and COCLEP is evaluated in a transductive (resp. inductive)
manner when the number of ground-truth communities is small

(resp. large) as in the original paper. Consistent with [28], the num-

ber of training queries, validation queries and testing queries are

150, 100 and 100, respectively. Following [28], we randomly select

1 to 3 nodes from the ground-truth community as the query nodes.

As in the original paper of COCLEP [32], we generate 3 positive

samples beside the query node for COCLEP.

Metrics: In this paper, we mainly focus on F1-score [40] that is

commonly used by existing works [28, 32] to evaluate the qual-

ity of the found community. Besides the F1-score, we also utilize

Normalized Mutual Information (NMI) [16] and Jaccard similarity

(JAC) [62] aligned with COCLEP [32] for evaluation. We follow the

calculation of F1-score used in [28]. For all the F1-score, NMI and

Jaccard, a higher value indicates a better found community.

Implementation Details: We run TransZero for 100 epoches with
early stopping. The maximum number of hops used in the aug-

mented subgraph sampler is 5. The value of 𝜏 is set as 0.5 for all

datasets. The value of 𝛼 is set as 0.1 for all datasets. The batch size

is set as the number of nodes in the graph or 4000 if it runs out

of memory. We limit our search to a maximum of 50% of the total
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Table 4: F1-score results under different settings

Settings Models Texas Cornell Wisconsin Cora Citeseer Photo DBLP CoCS Physics Reddit Average +/-

Inductive

CST 0.1986 0.1975 0.2251 0.2111 0.1423 0.2019 0.2854 0.1252 0.2276 0.1463 -27.12%

EquiTruss 0.3120 0.3168 0.3079 0.2384 0.2240 0.2166 0.3252 0.1225 0.2471 0.2163 -21.46%

M𝑘ECS 0.3581 0.3177 0.3404 0.2364 0.2015 0.1975 0.2768 0.1152 0.2193 0.2068 -22.03%

CTC 0.3211 0.3482 0.3327 0.2558 0.2418 0.2626 0.3417 0.1059 0.2511 0.2431 -19.69%

QD-GNN 0.0821 0.0669 0.0683 0.0322 0.0536 0.0018 0.0372 0.0145 OOM OOM -41.50%

COCLEP 0.4044 0.2960 0.1804 0.3094 0.3058 0.4413 0.3066 0.4253 0.3389 0.2696 -13.95%

TransZero-LS 0.1801 0.1583 0.2074 0.5467 0.3906 0.5725 0.4407 0.4292 0.5075 0.4879 -7.52%

TransZero-GS 0.4283 0.3716 0.3755 0.5764 0.4535 0.6018 0.4326 0.4374 0.5113 0.4848 -

Transductive QD-GNN 0.6703 0.8408 0.6247 0.5062 0.4726 0.2205 0.4918 0.6356 OOM OOM +9.81%

COCLEP 0.4020 0.3167 0.3206 0.3685 0.3331 0.5060 0.3763 0.3549 0.4388 0.3270 -9.29%

Hybrid QD-GNN 0.3852 0.3644 0.5956 0.4789 0.4097 0.0833 0.3902 0.4969 OOM OOM -5.91%

COCLEP 0.3883 0.3313 0.2938 0.3615 0.3067 0.4388 0.3733 0.4027 0.4693 0.3071 -10.01%

∗ CST, EquiTruss, M𝑘ECS, CTC and TransZero have consistent results under three settings as they are label-free. TransZero with Local Search is denoted as TransZero-LS, and
TransZero with Global Search is denoted as TransZero-GS. OOM indicates out-of-memory. The last column presents the average margin compared to TransZero-GS.
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Figure 6: NMI and JAC results under different settings

nodes and do not exceed 10,000 nodes. The number of transformer

layer is the same with [12]. Global Search is used as the default

online search method. The hyper-parameters of QD-GNN and CO-

CLEP are the same as in their original paper. For the new graphs,

the number of clusters in COCLEP is set to 10 (resp. 2) for large
(resp. small) graphs. Experiments are conducted on a server with

Intel(R) Xeon(R) Gold 6342 CPU and Nvidia RTX 4090 (GPU).

6.3 Effectiveness Evaluation
Exp-1: F1-score results. We first present the F1-score results

across three settings in Table 4. Note that traditional CS meth-

ods and TransZero have consistent results across three settings

as they are label-free, and we solely present their performance in

the inductive setting to avoid redundancy. TransZero with Local
Search (resp. Global Search) is denoted as TransZero-LS (resp. Tran-
sZero-GS). OOM indicates out-of-memory. Among the traditional

methods, both EquiTruss and CTC demonstrate competitive perfor-

mances, and TransZero-GS outperforms EquiTruss by 21.46% and

surpasses CTC by 19.69%. Among the learning-based models, the

performance of QD-GNN varies significantly across settings. QD-

GNN needs all nodes in the ground-truth communities for training

and thus good at the transductive setting as it can memorize all

the communities. However, it is hard to generalize its performance

to settings with unseen communities (i.e., inductive setting and

hybrid setting). In the inductive setting, TransZero-GS significantly
outperforms QD-GNN and COCLEP with an average F1-score en-

hancement of 41.50% and 13.95%, respectively. In the hybrid setting,

TransZero-GS outperforms QD-GNN and COCLEP by an average

F1-score of 5.91% and 10.01%, respectively.

Exp-2: NMI and JAC results under different settings. In this

part, we use the NMI and JAC to measure the learning-based meth-

ods as their high performance demonstrated in Exp-1. The results
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Figure 7: Efficiency results
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Figure 8: Hyper-parameter analysis results

are presented in Figure 6. The figure shows that QD-GNN still has

the best performance under the transductive setting, and the perfor-

mance is hard to generalize to the inductive setting and the hybrid

setting. In terms of NMI, TransZero-GS outperforms QD-GNN with

an average enhancement of 9.75% and surpasses COCLEP by 5.86%

under the hybrid setting. In terms of JAC, TransZero-GS outper-

forms QD-GNN by an average of 3.27% and surpasses COCLEP by

6.75% under the hybrid setting.

6.4 Efficiency Evaluation
Exp-3: Efficiency evaluation. In Figure 7, we report the efficiency

results of both the training phase and the search phase. Note that

there is no training phase for the traditional CS methods, and thus

we only report their efficiency of the search phase. In terms of the

training phase, TransZero significantly outperforms the existing

learning-based methods. It achieves an average speedup of 118.22×
and up to 235.83× in dataset CoCS compared to QD-GNN. When

compared to COCLEP, TransZero achieves an average speedup of

122.39× and up to 486.07× in Wisconsin. Regarding the search

phase, TransZero-GS achieves an average speedup of 26.77× and

reaches up to 56.48× in the CoCS dataset when compared to QD-

GNN. When compared to COCLEP, TransZero achieves an average

speedup of 10.02× and up to 20.41× in Wisconsin. Compared to

the traditional CS methods, TransZero-GS also shows a competitive

performance, particularly on large datasets.

6.5 Hyper-parameter Analysis
Exp-4: Varying 𝛼 . In Figure 8(a), we evaluate TransZero with vary-

ing values of 𝛼 . Note that 𝛼 is utilized to balance the personalization

loss and the link loss in Equation 7. We set the value equal to 0.01,

0.1, 0.3, 0.5, 0.7 and 0.9 respectively. The figure shows that the value

of 𝛼 has a different impact on different datasets. In Cornell and

DBLP, the performance of TransZero improves with the increase

of 𝛼 . On the datasets like Reddit and Photo, the performance de-

creases with the increase of 𝛼 . In general, 𝛼 with a value of 0.1 could

effectively balance the two losses and achieve a good performance.

Exp-5: Varying 𝜏 . In Figure 8(b), we evaluate TransZero across

various values of 𝜏 . 𝜏 is utilized to regulate the granularity of the sub-

graph, as defined in Definition3, with higher 𝜏 resulting in a more

fine-grained subgraph. We consider 𝜏 values of 0.1, 0.3, 0.5, 0.7, and

0.9. The results show that the performance of TransZero experiences
a decrease with the increase of 𝜏 for smaller datasets such as Texas.

Conversely, for datasets like CoCS and Reddit, the performance of

TransZero improves with higher 𝜏 values. In general, 𝜏 with a value

of 0.5 consistently demonstrates excellent performance.

Exp-6: Varying similarity definitions. In this part, we evaluate

TransZero using different similarity definitions. We replace line 4 in

Algorithm 3 with L1-similarity and L2-similarity [48]. The results

are in Figure 8(c). The results show that the performance using dif-

ferent similarities achieves a close performance. The results validate

the robustness of TransZero to different similarity definitions.
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Table 5: Ablation study

Models Texas Cornell Wisconsin Cora Citeseer Photo DBLP CoCS Physics Reddit Average +/−
Full model 0.4283 0.3716 0.3755 0.5764 0.4535 0.6018 0.4326 0.4374 0.5113 0.4848 -

w/o L𝑝 0.4215 0.3749 0.3773 0.5462 0.4259 0.5716 0.4501 0.3502 0.5183 0.2981 -3.19%

w/o L𝑘 0.3894 0.3576 0.3579 0.4203 0.3044 0.6116 0.4087 0.4532 0.3506 0.5076 -5.12%

w/o Conductance Aug 0.4212 0.3692 0.3848 0.4755 0.4019 0.5935 0.3708 0.3766 0.4738 0.4167 -3.89%

w/o CSGphormer 0.3317 0.2421 0.2169 0.4048 0.2780 0.4473 0.2708 0.3074 0.3435 0.3649 -14.65%

Exp-7: Varying hop numbers. In Figure 8(d), we evaluate Tran-
sZero across varying numbers of hops, which are employed in the

augmented subgraph sampler. We consider the number of hops as 1,

2, 3, 4, 5, and 6, respectively. The results show that 1 hop information

proves sufficient for small graphs such as Wisconsin. Conversely,

for medium and large graphs, a larger number of hops is necessary.

For instance, in the case of Reddit, TransZero achieves optimal per-

formance with 4 hops and 5 hops. In summary, 5 hops are generally

sufficient for TransZero to achieve optimal performance.

Exp-8: Varying epochnumbers. In Figure 8(e), we present the per-
formance of TransZero across varying numbers of training epochs

during the pre-training phase. We consider the number of epochs

as 25, 50, 100, 150, and 200, respectively. As depicted in the figure,

the performance exhibits similarity after 50 epochs, suggesting that

the model has reached convergence within the first 50 epochs, and

100 epochs prove to be sufficient for effective model training.

Exp-9: Varying identification strategies. In Figure 8(f), we present
the results of various identification strategies discussed in Section 1.

We compare the fixed number strategy and the fixed threshold strat-

egy. The fixed number is set as 50 and 100, and the fixed threshold

is set as 0.3, 0.5, and 0.7, respectively. The figure indicates that nei-

ther the fixed-number-based strategy nor the fixed-threshold-based

strategy generalizes well across all evaluated datasets. In contrast,

our proposed IESG consistently demonstrates strong performance.

These findings highlight the effectiveness of our proposed IESG.

6.6 Ablation Study
Exp-10: Ablation study. In this section, we investigate the ef-

fectiveness of components employed in TransZero, including the

personalized loss L𝑝 , the link loss L𝑘 , the conductance-based sub-

graph sampler and the CSGphormer. The results are presented in

Table 5. Regarding the personalization loss, its impact becomes

apparent in scenarios involving medium and large graphs. Espe-

cially, when applied to the Reddit dataset, L𝑝 exhibits a remarkable

enhancement in the F1-score, enabling an F1-score increase of 18.67.

In general, it delivers an average F1-score improvement of 3.19%. In

terms of the link loss, it delivers an average F1-score improvement

of 5.12%. For the Physics dataset, it can enhance the F1-score by

16.07%. To evaluate the effectiveness of our proposed conductance-

based augmented subgraph sampler, we replace it with the sampler

in COCLEP [32], the previous state-of-the-art CS model. The results

show that the conductance-based sampler can enhance the F1-score

with an average of 3.89%. Furthermore, to evaluate the effectiveness

of the CSGphormer architecture, we replace it with the Subg-Con

model [29] which is a classical contrast-based self-supervised ap-

proach to pre-train the node representation. The results show that

our CSGphormer significantly improves the F1-score, with an aver-

age improvement of 14.65%. These results collectively demonstrate

the effectiveness of the modules designed in TransZero.

7 RELATEDWORK
Existing methods for CS can be classified into two categories: tradi-

tional CS methods and learning-based techniques. Traditional CS

methods aim to identify a cohesively connected subgraph within a

given graph that contains specific query nodes and satisfies given

constraints. They model the community by pre-defined cohesive

subgraph models such as k-core [15, 44], k-truss [2, 26] and k-edge
connected component (k-ECC) [10, 25]. Nevertheless, these ap-

proaches encounter a limitation known as structure inflexibility.
Recently, there is a growing interest towards learning-based CS

methods. ICS-GNN [21] proposes a lightweight interactive commu-

nity search model via graph neural network. QD-GNN and AQD-

GNN are proposed in [28] for CS and attributed community search

in a supervised manner. COCLEP is proposed in [32] for CS in

a semi-supervised manner that only needs a few labels of nodes

rather than all labels of nodes in the ground-truth community. Meta-

learning is used for CS in [18]. One parallel work is designed in [22].

Althrough it does not use the ground-truth community information,

it uses the K-core information as labels for pretraining and predicts

the K-core community. Moreover, it selects fixed-size nodes as the

prediction. Another parallel work [50] uses graph transformer for

CS. However, it is designed for supervised learning.

8 CONCLUSION
In this paper, we study the problem of general community search

and propose an efficient and learning-based community search

framework TransZero that runs without using labels. It contains the
offline pre-training phase and the online search phase. In the offline

pre-training phase, we pre-train CSGphormer. We compute the com-

munity score without using labels by measuring the similarity of

the learned representations. In the online search phase, we model

the task of community identification as the task of IESG. We prove

that the problem of IESG is NP-hard, and propose two heuristic

algorithms including the Local Search and Global Search to effec-

tively and efficiently find communities. Experiments over 10 public

datasets highlight the effectiveness and efficiency of TransZero.
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