
BIRD: Efficient Approximation of Bidirectional Hidden
Personalized PageRank

Haoyu Liu

haoyu.liu@ntu.edu.sg

Nanyang Technological University

Singapore

Siqiang Luo
∗

siqiang.luo@@ntu.edu.sg

Nanyang Technological University

Singapore

ABSTRACT
In bipartite graph analysis, similarity measures play a pivotal role

in various applications. Among existing metrics, the Bidirectional

Hidden Personalized PageRank (BHPP) stands out for its superior

query quality. However, the computational expense of BHPP re-

mains a bottleneck. Existing approximation methods either demand

significant matrix storage or incur prohibitive time costs. For ex-

ample, current state-of-the-art methods require over 3 hours to

process a single-source BHPP query on the real-world bipartite

graph Orkut, which contains approximately 3 × 108 edges.
We introduce BIRD, a novel algorithm designed for answering

single-source BHPP queries on weighted bipartite graphs. Through

meticulous theoretical analysis, we demonstrate that BIRD sig-

nificantly improves time complexity to
˜︁O(𝑛), as compared to the

previous best one,
˜︁O(𝑚), under typical relative error setting and

constant failure probability. (𝑛,𝑚 denote the number of nodes and

edges respectively.) Extensive experiments confirm that BIRD out-

performs existing baselines by orders of magnitude in large-scale

bipartite graphs. Notably, our proposed method accomplishes a

single-source BHPP query on Orkut using merely 7 minutes.

PVLDB Reference Format:
Haoyu Liu and Siqiang Luo. BIRD: Efficient Approximation of Bidirectional

Hidden Personalized PageRank. PVLDB, 17(9): 2255 - 2268, 2024.

doi:10.14778/3665844.3665855

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at

https://github.com/hyLiu-777/BIRD.

1 INTRODUCTION
In the vast domain of graph theory, bipartite graph is a ubiquitous

structure that garners significant interest from both academic and

industrial communities. A bipartite graph𝐺 consists of two distinct

sets of nodes, 𝑈 and 𝑉 , and edges only exist between nodes from

different sets. The fundamental task — similarity measurement in bi-

partite graphs, aims to identify nodes within𝑈 that are similar to a

given node𝑢 based on a specific metric, and finds various real-world

applications including E-commerce advertising [8, 11, 19], recom-

mendation systems [26, 31, 32], and biomedical analysis [17, 51].

∗
Siqiang Luo is the corresponding author.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 17, No. 9 ISSN 2150-8097.

doi:10.14778/3665844.3665855

Despite its wide applicability, similarity measurement on bipar-

tite graphs remains relatively under-explored compared to general

graphs. Traditional metrics such as the Jaccard’s coefficient [28]

and Pearson’s correlation coefficient [53] are not directly applicable

or produce sub-optimal results on the intricate structure of bipar-

tite graphs [54]. Meanwhile, measurements designed for general

graphs, including Personalized PageRank (PPR) [24], SimRank [30],

and others [18, 19, 61], either fail to capture the unique properties

with inferior performance in mining tasks, or entail significant com-

putational overheads. This underscores the pressing need for an

effective bipartite similarity measurement that can provide precise

measures for analysis and decisions in real-world applications.

In a recent study [64], the Bidirectional Hidden Personalized
PageRank (BHPP), a strengthened variant of HPP [20], is shown

to be effective in bipartite similarity measurement. Specifically,

BHPP is defined based on the Personalized PageRank (PPR) [30,

38] on the graph ˆ︁𝐺 constructed from the bipartite graph 𝐺 with

only nodes in 𝑈 . Given two nodes 𝑢𝑖 , 𝑢 𝑗 ∈ 𝑈 , the BHPP value

B(𝑢𝑖 , 𝑢 𝑗) on 𝐺 equals the summation of forward and reverse PPR

value, i.e. 𝝅 (𝑢𝑖 , 𝑢 𝑗) + 𝝅 (𝑢 𝑗 , 𝑢𝑖) over ˆ︁𝐺 . Inheriting the nature of sim-

ilarity measurement, BHPP can be applied widely in real-world

bipartite applications. For example, in query rewriting on spon-

sored search of BING [19], we can use BHPP to find similar queries

according to a specific user’s query submitted to the search en-

gine. Also, in recommendation systems such as Amazon [6], similar

items can be searched by the single-source BHPP similarities and

thus generate item-based recommendations for users. Besides, in

drug-target bipartite graph [17], new drug-target interactions can

be predicted by computing the BHPP similarity for a given set of

interested drugs. Upon our evaluation in Sec 7, BHPP achieves supe-

rior results against seven competitive measurements in above two

scenarios. This demonstrates its superiority in bipartite domain.

While BHPP excels in effectiveness, its computational aspects

can present challenges when scaling to larger graphs. Prior methods

for HPP computation require up to 𝑂 (𝑛2𝑢) (𝑛𝑢 denotes the number

of nodes in 𝑈) space cost for the materialization of ˆ︁𝐺 , which is

prohibitive for large graphs. As such, advanced techniques for PPR

computation on general graphs cannot be applied to solve the prob-

lem efficiently, posing a great technical challenge. Additionally, the

localpush [9] can bemodified to answer the reverse HPP query, lead-

ing to a technique called selectpush. Further combining techniques

such as the power method [49] or the Monte Carlo [21] for forward

HPP calculation, the BHPP query can be approximated in an overall

time of 𝑂 (𝑚
𝜖
) , where𝑚 denotes the number of edges and 𝜖 is the

result estimation error threshold. However, such time complexity is

unsatisfying especially when calculating relatively high-precision

results with 𝜖 = 𝑂 (1

|𝑛𝑢 |) . To overcome the linear reliance on the

2255

https://doi.org/10.14778/3665844.3665855
https://github.com/hyLiu-777/BIRD
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3665844.3665855
https://www.acm.org/publications/policies/artifact-review-and-badging-current

error requirement, Yang [64] proposed an approximation method,

namely ABHPP to speed up the computation process by utilizing a se-

quential push strategy after a sufficient period of selectpush, which

further reduces the time cost to 𝑂 (𝑚 log
1

𝜖). Nonetheless, current
methods are hard to break the ˜︁𝑂 (𝑚) complexity bound, which is

rather inefficient for massive graphs with billion scale edges. For

example, to answer a single-source BHPP query on Orkut with
roughly 3 × 108 edges, it runs approximately 3 hours to meet the

10
−6

accuracy requirement.

In this paper, we consider the problem of approximating the

single-source BHPP query computation on weighted undirected

bipartite graphs
1
. We propose a novel algorithm called BIRD, which

breaks the
˜︁O(𝑚) barrier to achieve a superior time complexity

bound in
˜︁O(𝑛) for deriving an approximation of single-source BHPP

query within constant relative error and constant failure probability.

Note that 𝑛,𝑚 denote the number of nodes, and edges respectively

and
˜︁O is a variant of the Big-Oh notation which ignores the poly-

logarithmic factors. Compared with the state-of-the-art (SOTA)

method ABHPP which uses 3 hours to finish computation over the

Orkut dataset, our BIRD algorithm finishes in merely 7 minutes. We

summarize our contributions in the following:

• Theoretical Improvements. Through meticulous theoretical

analysis, our proposed algorithm BIRD significantly improves

query time complexity over the state-of-the-art BHPP algo-

rithms. Under a typical relative error setting, BIRD breaks the˜︁O(𝑚) complexity barrier of the existing algorithms and achieves

a lower
˜︁O(𝑛) complexity for estimating the single-source BHPP

query on weighted, undirected bipartite graphs.

• Innovative Algorithmic Design: Our BIRD algorithm success-

fully combines a carefully designed weight-dependent proba-

bility mass propagation technique with a novel iterative reuse

strategy for these propagation results, to achieve the upmost

computation efficiency while securing the theoretically provable

result quality.

• Empirical Validation: We implement BIRD over eight real-

world datasets. The empirical results indicate that our algorithm

achieves orders of magnitude speed-up over all baselines on

massive bipartite graphs, i.e. up to 50× acceleration on the large-

scale dataset Orkut with roughly 3 × 108 edges.

2 PRELIMINARIES
2.1 Notations
We mostly follow the notations in [18, 20, 64]. Consider a bipartite

graph 𝐺 = (𝑈 ∪ 𝑉 , 𝐸), where nodes consist of two disjoint node

sets 𝑈 = {𝑢1, 𝑢2, · · · , 𝑢𝑛𝑢 } and 𝑉 = {𝑣1, 𝑣2, · · · , 𝑣𝑛𝑣
} with number

𝑛𝑢 and 𝑛𝑣 respectively. Each edge 𝑒 = (𝑢, 𝑣,𝑤 (𝑢, 𝑣)) ∈ 𝐸 represents

an undirected connection between the node 𝑢 ∈ 𝑈 and 𝑣 ∈ 𝑉 with

positive weight 𝑤 (𝑢, 𝑣). 𝑁𝑢 denotes the connected neighbors of

node 𝑢 and 𝑑𝑢 = |𝑁𝑢 | denotes node 𝑢’s degree. 𝑁 (2)𝑢 represents

node 𝑢’s 2-hop neighbors. 𝑚 equals the number of edges. 𝑤𝑢 is

defined as the sum of weights in edges incident to node 𝑢:

𝑤𝑢 =
∑︁

𝑣∈𝑁𝑢
𝑤 (𝑢, 𝑣) . (1)

1
Following conventional settings in previous works [18–20, 64].

We use U ∈ R𝑛𝑢×𝑛𝑣
and V ∈ R𝑛𝑣×𝑛𝑢

to represent the forward and

backward transition matrices. For each node 𝑢 ∈ 𝑈 and 𝑣 ∈ 𝑉 :
U(𝑢, 𝑣) = 𝑤 (𝑢,𝑣)

𝑤𝑢
, and V(𝑣,𝑢) = 𝑤 (𝑣,𝑢)

𝑤𝑣
. (2)

The hidden transition matrix [18] for node set U is defined as

P = U · V ∈ R𝑛𝑢×𝑛𝑢 , where each (𝑢𝑖 , 𝑢 𝑗) entry is calculated upon:

P(𝑢𝑖 ,𝑢 𝑗) =
∑︁

𝑣∈𝑁𝑢𝑖 ∩𝑁𝑢𝑗
U(𝑢𝑖 , 𝑣) · V(𝑣,𝑢 𝑗) . (3)

Note that the number of non-zero entries of P can be up to O(𝑛2𝑢),
which is prohibitive for computing over large-scale graphs.

2.2 Hidden Personalized PageRank
In contrast to the classic Personalized PageRanks which is defined

on general graphs, Hidden Personalized PageRank (HPP) [18, 20] is a
measure for bipartite graphs. Consider a bipartite graph𝐺 and two

nodes 𝑢,𝑢𝑖 ∈ 𝑈 , the Hidden Personalized PageRank (HPP) 𝝅 (𝑢,𝑢𝑖)
of node 𝑢𝑖 to 𝑢 is defined as the probability that an 𝛼-decay random

walk starts from node𝑢 stops at node𝑢𝑖 . Given the decay probability

𝛼 < 1, at each step, such a random walk initializing from 𝑢 either

terminates at current node, i.e. 𝑢 𝑗 , with 𝛼 probability, or steps to its

any neighbor𝑢𝑘 ∈ 𝑁𝑢 𝑗
based on the transition probability P(𝑢 𝑗 , 𝑢𝑘).

The HPP value 𝝅 (𝑢,𝑢𝑖) can be calculated from [12] as:

𝝅 (𝑢,𝑢𝑖) =
∑︁∞

ℓ=0 𝛼 · (1 − 𝛼)ℓ · Pℓ (𝑢,𝑢𝑖) . (4)

ℓ-hop HPP. With an integer ℓ ≥ 0, the ℓ-hop HPP 𝝅 (ℓ) (𝑢,𝑢𝑖)
corresponds to the probability that an 𝛼-decay random walk started

from 𝑢 terminates at node 𝑢𝑖 using exactly ℓ steps:

𝝅 (ℓ) (𝑢,𝑢𝑖) = 𝛼 (1 − 𝛼)ℓ · Pℓ (𝑢,𝑢𝑖) . (5)

holds for each integer ℓ ≥ 1 and each node𝑢 ∈ 𝑈 . Combinedwith

Equation (4), we can easily derive that 𝝅 (𝑢,𝑢𝑖) =
∑︁∞
ℓ=0 𝝅

(ℓ) (𝑢,𝑢𝑖) .

2.3 Problem Definition
To remedy the bias of HPP, Yang [64] models the similarity be-

tween nodes𝑢 and𝑢𝑖 by Bidirectional Hidden Personalized PageRank
(BHPP), defined as:

B𝒖 (𝑢𝑖) = 𝝅 (𝑢,𝑢𝑖) + 𝝅 (𝑢𝑖 ,𝑢), (6)

where the measurement considers a symmetrical relation between

node 𝑢 and 𝑢𝑖 . In this paper, we focus on designing efficient approx-

imation solutions for single-source BHPP queries, defined as:

(𝑐, 𝑝 𝑓)-approximation of single-source BHPP query. Given a

bipartite graph𝐺 = (𝑈 ∪𝑉 , 𝐸), a relative error 𝑐 , and a source node
𝑢 ∈ 𝑈 , a (𝑐, 𝑝 𝑓)-approximation of BHPP returns estimated BHPP

value
ˆ︁B𝒖 (𝑢𝑖) for each node ∀𝑢𝑖 ∈ 𝑈 , such that for any B𝒖 (𝑢𝑖) ≥ 𝛿 ,

|B𝒖 (𝑢𝑖) − ˆ︁B𝒖 (𝑢𝑖) | ≤ 𝑐 · B𝒖 (𝑢𝑖) (7)

holds with probability at least 1 − 𝑝 𝑓 .
We denote the single-source Forward HPP (FHPP) vector and

Reverse HPP (RHPP) vector as {𝝅 (𝑢,𝑢𝑖) |𝑢𝑖 ∈ 𝑈 } and {𝝅 (𝑢𝑖 , 𝑢) |𝑢𝑖 ∈
𝑈 } respectively given the source node 𝑢 in following discussions.

3 EXISTING TECHNIQUES
In this section, we first analyze representative techniques tailored to

single-direction HPP computation. Then, we explain the trade-offs

of sota approximation algorithm ABHPP in answering the single-

source BHPP query. Table 1 shows the time complexity comparison.

2256

Table 1: Complexity comparison from baselines to our BIRDmethod answering the single-source BHPP query on the undirected
bipartite graph with constant relative error and failure probability. 𝛿 decides the BHPP target scope (i.e., larger than 𝛿) and the
typical setting determines 𝛿 = 1/𝑛, where 𝑛 denotes the number of target nodes (𝑛𝑢 or 𝑛𝑣), following settings in [40, 43, 58, 59].

Methods

Time Complexity On Reverse, Forward and Bidirectional HPP Improvements Over Baselines

Full-Scope Typical Full-Scope Typical

Reverse Forward Bidirectional Bidirectional Bidirectional Bidirectional

MCSP [9, 21] ˜︁O(𝑚
𝛿
) ˜︁O(1

𝛿
) ˜︁O(𝑚

𝛿
+ 1

𝛿
) ˜︁O(𝑛𝑚 +𝑛) ˜︁O(max{ 1

𝛿
, 𝑛 ·𝑚
𝑛𝑢+𝑛𝑣 })

˜︁O(𝑚)
BPI [49] ˜︁O(𝑚) ˜︁O(𝑚) ˜︁O(𝑚) ˜︁O(𝑚) ˜︁O(max{1, 𝑛 ·𝛿 ·𝑚

𝑛𝑢+𝑛𝑣 })
˜︁O(𝑚/𝑛)

PISP [9, 49] ˜︁O(𝑚
𝛿
) ˜︁O(𝑚) ˜︁O(𝑚

𝛿
+𝑚) ˜︁O(𝑛𝑚 +𝑚) ˜︁O(max{ 1

𝛿
, 𝑛 ·𝑚
𝑛𝑢+𝑛𝑣 })

˜︁O(𝑚)
ABHPP [64] ˜︁O(𝑚) ˜︁O(𝑚) ˜︁O(𝑚) ˜︁O(𝑚) ˜︁O(max{1, 𝑛 ·𝛿 ·𝑚

𝑛𝑢+𝑛𝑣 })
˜︁O(𝑚/𝑛)

BIRD (ours) ˜︁O(𝑚𝑖𝑛{ 𝑛𝑢+𝑛𝑣
𝑛 ·𝛿 ,𝑚}) ˜︁O(𝑛) — —

3.1 Classical Methods
The Monte-Carlo Approach. The FHPP vector 𝝅 (𝑢,𝑢𝑖), from
source node 𝑢 to any node 𝑢𝑖 ∈ 𝑈 , equals the probability that an

𝛼-decay random walk started from node 𝑢 terminates at node 𝑢𝑖 .

Thus, the Monte-Carlo (MC) approach [21] simulates 𝑛𝑟 number

of random walks from node 𝑢, and then returns the fraction of

walks ending at 𝑢𝑖 as the estimator. According to [21], it requires

𝑛𝑟 = O
(︂
2(1+𝑐/3) ·ln(1/𝑝𝑓)

𝑐2 ·𝛿

)︂
to derive a (𝑐, 𝑝 𝑓)-approximation of FHPP.

As such, MC is bounded by O(𝑛𝑟 /𝛼) = ˜︁O(1
𝛿
). While, as shown in

[40, 59], MC is inefficient due to large amount of random walks.

The PowerIteration Method. The PowerIteration (PI) method

[49] is an iterative method that approximates the FHPP vector

𝝅 (𝑢, ·) = {𝝅 (𝑢,𝑢𝑖) |𝑢𝑖 ∈ 𝑈 } with the following linear formula:

[𝝅 (𝑢, ·) − 𝛼 · eu] /(1 − 𝛼) = 𝝅 (𝑢, ·) · P = (𝝅 (𝑢, ·) · U) · V, (8)

where the one-hot vector 𝒆𝒖 ∈ R1×𝑛𝑢
only has value 1 at the 𝑢-th

position and 0 otherwise. According to [25], PI realizes 𝜖 absolute

error bound for each 𝝅 (𝑢,𝑢𝑖) after 𝐿 = log 1

1−𝛼
1

𝜖 iterations While

during each iteration, it requires two matrix-vector multiplications

which cost at least O(𝑚) time. Therefore, it requires in total O(𝑚 ·
log

1

𝜖) cost, which is rather ineffective on massive bipartite graphs.

The Select Push. The SelectPush (SP) method [9] approximates

the RHPP query. Generally it performs as a deterministic version of

MC in a reverse manner which recursively pushes non-zero residues
along edges through a graph traversal of G starting from node 𝑢,

where the residues can be considered as the portion of random

walks that are still alive. Specifically, Algorithm 1 first initializes

the residue vector 𝒓𝒖 (·) ∈ R |𝑈∪𝑉 | that equals to eu as well as a

reserve vector {𝝅 (𝑢,𝑢𝑖) = 0|𝑢𝑖 ∈ 𝑈 } for estimating RHPP. Next,

it iteratively pushes the residues of selected nodes, obeying the

𝜖 , to their neighbors. During each iteration, for any node 𝑢𝑖 ∈ 𝑈
with large residue, its neighbor 𝑣 𝑗 ∈ 𝑁𝑢𝑖 will receive a residue

increment of amount (1 − 𝛼) ·𝑤 (𝑣,𝑢) · 𝒓𝒖 (𝑢𝑖)/𝑤𝑣 and the reserve

vector raises its estimation by 𝛼 · 𝒓𝒖 (𝑢𝑖). After all neighbors are
processed, the residue 𝒓𝒖 (𝑢𝑖) dismisses. Subsequently, all non-zero

Algorithm 1: SP
Input: Bipartite graph𝐺 , Target node 𝑢, Error tolerance 𝜖 and

Decay factor 𝛼 .

Output: {𝝅 (𝑢𝑖 ,𝑢) | 𝑢𝑖 ∈ 𝑈 }, 𝑟 (·) .
1 𝝅 (𝑢𝑖 ,𝑢) ← 0 ∀𝑢𝑖 ∈ 𝑈 ;

2 𝑟 (𝑢) ← 1; 𝑟 (𝑥) ← 0 ∀𝑥 ∈ 𝑈 ∪𝑉 and 𝑥 ≠ 𝑢;

3 // SelectPush

4 while ∃𝑢𝑖 ∈ 𝑈 𝑠.𝑡 .𝑟 (𝑢𝑖) > 𝜖 do
5 for 𝑢𝑖 ∈ 𝑈 𝑠.𝑡 . 𝑟 (𝑢𝑖) > 𝜖 do
6 for 𝑣 ∈ 𝑁𝑢𝑖 do
7 𝑟 (𝑣) ← 𝑟 (𝑣) + (1 − 𝛼) · 𝑤 (𝑣,𝑢)

𝑤𝑣
· 𝑟 (𝑢𝑖) ;

8 𝝅 (𝑢𝑖 ,𝑢) ← 𝝅 (𝑢𝑖 ,𝑢) + 𝛼 · 𝑟 (𝑢𝑖) ;
9 𝑟 (𝑢𝑖) ← 0;

10 for 𝑣 ∈ 𝑉𝑠.𝑡 . 𝑟 (𝑣) > 0 do
11 for 𝑢 𝑗 ∈ 𝑁𝑣 do
12 𝑟 (𝑢 𝑗) ← 𝑟 (𝑢 𝑗) +

𝑤 (𝑢 𝑗 ,𝑣)
𝑤𝑢𝑗

· 𝑟 (𝑣) ;

13 𝑟 (𝑣) ← 0;

14 return {𝝅 (𝑢𝑖 ,𝑢) | 𝑢𝑖 ∈ 𝑈 };

residues of nodes in 𝑉 will be pushed back to 𝑈 losslessly. The

iteration terminates until all residues in 𝑈 are less than 𝜖 . SP can
approximate RHPP query in O(𝑚𝜖) time, which grows linearly to

graph edges, hindering it from running efficiently on large graphs.

3.2 Sequential Select Push
The Sequential Select Push (SSP) method [64] overcomes the effi-

ciency issues of SP. To explain, consider a node 𝑣 ∈ 𝑉 connecting to

1000 neighbors𝑢1−𝑢1000 in𝑈 . According to lines 4-12 in Algorithm

1, node 𝑣 first (i) receives residues from the selected neighbors, and

then (ii) conducts 1000 edge-push operations (we refer to edge-push
operation as a push computation alongside an edge and push opera-
tion as the total push computation on a selected node.) to 𝑢1 −𝑢1000
along each edge. After some iterations, only a few neighbors of 𝑣

would be selected as residues of the majority are (slightly) less than

2257

𝜖 . As such to further deplete a certain amount of node 𝑣 ’s residue,

SP requires numerous iterations and each will involve at least 1000

edge-push operations. To alleviate this, SSP uses a cost recorder 𝑛𝑝
to track the number of edge-push operations. It performs SP first
when 𝑛𝑝 is small. Upon 𝑛𝑝 exceeding a predefined threshold, SSP
will instantly switch to the sequential push, i.e. push each node in𝑈

with non-zero residues, which is shown to be efficient to aggregate

residues from node 𝑣 ’s neighbors in one batch before pushing back.

Thus, SSP removes the linear dependency on 𝜖 in SP and runs in

O(𝑚 · log(1
𝜖
)) = ˜︁O(𝑚) time.

3.3 Baselines Answering BHPP Queries
Classical methods can be combined directly to answer the (𝑐, 𝑝 𝑓)-
approximation of the single-source BHPP query.

PISP. A straight way to answer a (𝑐, 𝑝 𝑓)-approximation BHPP

query is by summing up the results of a (𝑐/2, 𝑝 𝑓)-approximation

FHPP query and a (𝑐/2, 𝑝 𝑓)-approximation RHPP query for each

node. This motivates us to combine PI and SP, dubbed as PISP. To
satisfy the approximation requirement of the query, PI needs to

conduct O
(︂
log 1

1−𝛼
(1
𝜖
)
)︂
= O

(︂
log 1

1−𝛼
(2

𝑐 ·𝛿)
)︂
iterations and the error

threshold of SP needs to be set as 𝜖 = 𝑐 ·𝛿
2
. This results in a total

time complexity of O
(︂
𝑚 · log 1

1−𝛼
(2

𝑐 ·𝛿) +𝑚 ·
2

𝑐 ·𝛿

)︂
= ˜︁O(𝑚

𝛿
+𝑚) .

MCSP. Similarly, we can answer the (𝑐/2, 𝑝 𝑓)-approximation FHPP

query by simulating 𝑛𝑟 = O
(︂
8(1+𝑐/6) ·𝑙𝑛 (1/𝑝𝑓)

𝑐2 ·𝛿

)︂
random walks and

calculate the (𝑐/2, 𝑝 𝑓)-approximation RHPP query results by SP

with 𝜖 = 𝑐 ·𝛿
2
, which derives a total time cost in

˜︁O(𝑚
𝛿
+ 1

𝛿
) .

BPI. Different from PISP and MCSP which answer the BHPP query

separately, we propose Bidirectional PowerIteration (BPI) method

to re-use the (𝑐, 𝑝 𝑓)-approximation FHPP query of PI to compute

the BHPP results. Specifically, the HPP value exhibits an underlying

reversibility property that for any node-pair (𝑢,𝑢𝑖) ∈ 𝑈 ×𝑈 [64],

it holds 𝑤𝑢 · 𝝅 (𝑢,𝑢𝑖) = 𝑤𝑢𝑖 · 𝝅 (𝑢𝑖 , 𝑢). As such, each RHPP value

𝝅 (𝑢𝑖 , 𝑢) on source node 𝑢 for node 𝑢𝑖 ∈ 𝑈 can be calculated as

𝝅 (𝑢𝑖 , 𝑢) = 𝑤𝑢/𝑤𝑢𝑖 · 𝝅 (𝑢,𝑢𝑖). Thus, the error is amplified by at

most 𝑛𝑎 =𝑚𝑖𝑛𝑢𝑖 ∈𝑈𝑤𝑢/𝑤𝑢𝑖 times. By adjusting the error threshold

to 𝜖 = 𝑐 · 𝛿/𝑛𝑎 in answering the FHPP query, BPI can answer

single-source BHPP query in O
(︂
𝑚 · log 1

1−𝛼
(𝑛𝑎/𝑐 · 𝛿)

)︂
= ˜︁O(𝑚) time.

ABHPP [64]. Combining SSP and PI, the ABHPP method can answer

the single-source BHPP query in
˜︁O(𝑚) time. It utilizes SSP to

compute the RHPP vector and then calculates the FHPP vector

by re-using the former to reduce the iteration number in PI. In
specific, ABHPP has one parameter 𝜖 and returns BHPP vector with

at most 𝜖 additive error. By setting 𝜖 = 𝑐 · 𝛿 , it answers the (𝑐, 𝑝 𝑓)-
approximation single-source BHPP query in O(𝑚 · log 1

𝑐 ·𝛿) = ˜︁O(𝑚) .
4 THE BIRD ALGORITHM
In this section, we propose Bidirectional Discrete Push (BIRD), an
efficient approximation algorithm for single-source BHPP query.

4.1 High-level Ideas
As discussed in Sec 3.2, the ABHPP algorithm spiritually strives to

make every push operation "effective" according to the residue of

the selected node. This is realized by combining the selective and

Figure 1: Efficiency bad cases in ABHPPmethod. Tiny residue
increments transferred to node 𝑣2 need to be transferred back
to every neighbor of 𝑣2, resulting in unnecessary overheads.

sequential push strategies, where the former selects nodes in 𝑈

with large residues to distribute non-trivial probability mass, and

the latter tends to aggregate as much residues as possible to nodes

in 𝑉 by sequentially pushing nodes in 𝑈 with non-zero residues.

However, such a push strategy overlooks an important problem

that may still largely impact the efficiency: does the neighbors receive
meaningful residue increments in each push operation?

Recall that in Algorithm 1 (line 6), when pushing a node 𝑢 ∈ 𝑈 ,

each neighbor 𝑣 ∈ 𝑁𝑢 will receive an increment of (1 − 𝛼) · 𝑤 (𝑣,𝑢)
𝑤𝑣

·
𝑟 (𝑢) . We observe that such increments can be potentially redundant

as demonstrated in Figure 1. When the edge proportion
𝑤 (𝑣,𝑢)
𝑤𝑣

is

small in the select push or the residue value 𝑟 (𝑢) is tiny in the

sequential strategy, the total probability increment transported to 𝑣

becomes trivial, i.e. contributing negligible difference to the overall

quality but still occupies push computation cost. On the contrary,

our BIRD method ensures that the push operation is "effective" ac-

cording to the increment of neighbors that each push will transport

a significant amount of residues. Specifically, we propose a novel

strategy called push discretization unit, tailored to weighted graphs,

by either adding the increment until reaching a predefined error

threshold, i.e. 𝜃 , or ignoring it without performing a edge-push op-

eration. In this way, each edge-push operation will at least transport

𝜃 probability mass, making the overall push process more effective.

Moreover, the extra error brought by ignoring pushes over small

increments will be bounded based on our algorithm design.

Besides, the ABHPP algorithm along with several classical meth-

ods answers the BHPP query in a separate manner, which first

answers the RHPP query and then conducts power iterations to

compute FHPP results, lacking an efficient optimization of reusing

the shared intermediate results to reduce superfluous computation

costs. We alleviate this problem by first deriving a concept called

truncated BHPP, which is built upon the summation of each ℓ-hop

BHPP value. Then in each iteration, we calculate the ℓ-hop FHPP

value by fully reusing the estimation of the ℓ-hop RHPP vector

with carefully analyzed query quality guarantee. Such bidirectional

design further allows us to effectively reuse the intermediate esti-

mations in each iteration to reduce the computation redundancy.

Putting the above ideas together, our BIRD algorithms obtain a

superior theoretical time complexity of
˜︁O(𝑛) in the typical setting,

and achieve orders of magnitude speed-up upon evaluation on real-

world datasets compared with the state-of-the-art approaches. In

following content, for ease of discussions, we will introduce the

details of BIRD with 𝛿 = 1

𝑛𝑢
by default unless otherwise specified.

We will relax this assumption in section 5.4 for smaller 𝛿 .

2258

4.2 Truncated BHPP
In this section, we derive the concept of Truncated BHPP, which
performs an essential role in designing our algorithm. Note that

for any node pair (𝑢,𝑢𝑖) ∈ 𝑈 2
, the HPP value 𝝅 (𝑢,𝑢𝑖) can be

decomposed into the summation of its ℓ-hop units:

𝝅 (𝑢,𝑢𝑖) =
∑︁∞

ℓ=0 𝝅
(ℓ) (𝑢,𝑢𝑖), (9)

where 𝝅 (ℓ) (𝑢,𝑢𝑖) is the probability that an 𝛼-decay random walk

starts from 𝑢 terminates at 𝑢𝑖 using exactly ℓ steps. For different ℓ ,

such events are mutually exclusive, and thus we can compute the

original HPP value as above. We then define the ℓ-hop BHPP of node

pair (𝑢,𝑢𝑖) as B (ℓ)
𝒖 (𝑢𝑖) = 𝝅 (ℓ) (𝑢,𝑢𝑖) +𝝅 (ℓ) (𝑢𝑖 , 𝑢). Accordingly, we

can define the BHPP query based on a summation format that

B𝒖 (𝑢𝑖) =
∑︁∞

ℓ=0 B
(ℓ)
𝒖 (𝑢𝑖) =

∑︁∞
ℓ=0

[︁
𝝅 (ℓ) (𝑢,𝑢𝑖) + 𝝅 (ℓ) (𝑢𝑖 ,𝑢)

]︁
. (10)

Given a node pair (𝑢,𝑢𝑖) in an undirected bipartite graph 𝐺 , a

restart probability 𝛼 , and a constant relative error 𝑐 , we derive the

concept Truncated BHPP corresponding to B𝒖 (𝑢𝑖) that
B𝒖 (𝑢𝑖) =

∑︁𝐿
ℓ=0 B

(ℓ)
𝒖 (𝑢𝑖), (11)

where 𝐿 = log
1−𝛼

𝑐
4𝑛𝑢

= O(log𝑛𝑢) = ˜︁O(1). Next, we present

Lemma 1 to show that deriving a (𝑐, 𝑝 𝑓)-approximation of the

single-source BHPP vector B𝒖 (·) can be achieved by deriving a

(𝑐/2, 𝑝 𝑓)-approximation of the truncated BHPP vector B𝒖 (·).

Lemma 1. Given source node 𝑢 in the graph𝐺, ˆ︁B(𝑢, ·) is a (𝑐, 𝑝 𝑓)-
approximation of node 𝑢’s single-source BHPP vector B𝒖 (·) if

| ˆ︁B𝒖 (𝑢𝑖) − B𝒖 (𝑢𝑖) | ≤
𝑐

2

· B𝒖 (𝑢𝑖)

holds with at least 1−𝑝 𝑓 probability for ∀𝑢𝑖 ∈ 𝑈 𝑠.𝑡 . B𝒖 (𝑢𝑖) > 1

2𝑛𝑢
.

Proof. According to Equation (10),

B𝒖 (𝑢𝑖) = B𝒖 (𝑢𝑖) +
∑︁∞

ℓ=𝐿+1
[︁
𝝅 (ℓ) (𝑢,𝑢𝑖) + 𝝅 (ℓ) (𝑢𝑖 ,𝑢)

]︁
= B𝒖 (𝑢𝑖) +

∑︁∞
ℓ=𝐿+1 𝛼 (1 − 𝛼)ℓ ·

[︁
Pℓ (𝑢𝑖 ,𝑢 𝑗) + Pℓ (𝑢 𝑗 ,𝑢𝑖)

]︁
≤ B𝒖 (𝑢𝑖) + 2 ·

∑︁∞
ℓ=𝐿+1 𝛼 (1 − 𝛼)ℓ = B𝒖 (𝑢𝑖) + 2(1 − 𝛼)𝐿 .

We conclude 0 ≤ B𝒖 (𝑢𝑖) − B𝒖 (𝑢𝑖) ≤ 𝑐
2𝑛𝑢

holds. Consequently,

|B𝒖 (𝑢𝑖) − ˆ︁B𝒖 (𝑢𝑖) | ≤ |B𝒖 (𝑢𝑖) − B𝒖 (𝑢𝑖) | + |B𝒖 (𝑢𝑖) − ˆ︁B𝒖 (𝑢𝑖) |

≤ 𝑐

2𝑛𝑢
+ 𝑐

2

· B𝒖 (𝑢𝑖) ≤
𝑐

2𝑛𝑢
+ 𝑐

2

· B𝒖 (𝑢𝑖) ≤ 𝑐B𝒖 (𝑢𝑖)

holds for any ∀B𝒖 (𝑢𝑖) ≥ 1

𝑛𝑢
, which completes the proof. □

4.3 Push Discretization Unit
In previous sections, we have shown some intuitions on the im-

portance of each push operation in transporting sufficient amount

of residue. Here, we present the novel technique named Push Dis-
cretization Unit (PDU) to achieve our goal. In baseline methods,

when conducting edge-push operations on a selected node 𝑢𝑖 , each

neighbor 𝑣 𝑗 ∈ 𝑁𝑢𝑖 will be transferred a residue increment 𝑋 (𝑢𝑖 , 𝑣 𝑗)
alongside the edge (𝑢𝑖 , 𝑣 𝑗) proportional to 𝑤 (𝑣 𝑗 , 𝑢𝑖) · 𝑟𝑢 (𝑢𝑖)/𝑤𝑣

(lines 4-8 in Algorithm 1). This sort of deterministic push undi-

minishedly requires O(𝑑 (𝑢𝑖)) computation cost for each selected

node, regardless of the transported increment 𝑋 (𝑢𝑖 , 𝑣 𝑗)’s magni-

tude. Even when𝑋 (𝑢𝑖 , 𝑣 𝑗) is small enough that the probability mass

contributed by transferring to 𝑣 𝑗 is negligible, 𝑣 𝑗 is still pushed

Algorithm 2: PDU
Input: Residue vector 𝒓 (·) , Reserve vector 𝝅 (·) , Candidate node 𝑐 ,

Error parameter 𝜃 and Decay factor 𝛼 .

Output: Updated reserve vector 𝝅 (·) .
1 𝑋 (𝑐, ·) ← { 𝑤 (𝑐𝑖 ,𝑐) · (1−𝛼) ·𝑟 (𝑐)

𝑤𝑐𝑖
|𝑐𝑖 ∈ 𝑁𝑐 } // Reverse

2 or { 𝑤 (𝑐𝑖 ,𝑐) · (1−𝛼) ·𝑟 (𝑐)
𝑤𝑐

|𝑐𝑖 ∈ 𝑁𝑐 }; // Forward

3 for each 𝑐𝑖 ∈ 𝑁𝑐 𝑠.𝑡 . 𝑋 (𝑐, 𝑐𝑖) ≥ 𝜃 do
4 𝝅 (𝑐𝑖) ← 𝝅 (𝑐𝑖) +𝑋 (𝑐, 𝑐𝑖) ;
5 𝑝 ← 𝑟𝑎𝑛𝑑 (0, 1) ;
6 for each 𝑐𝑖 ∈ 𝑁𝑐 𝑠.𝑡 . 1 >

𝑋 (𝑐,𝑐𝑖)
𝜃

≥ 𝑝 do
7 𝝅 (𝑐𝑖) ← 𝝅 (𝑐𝑖) + 𝜃 // Reverse

8 or 𝝅 (𝑐) ← 𝝅 (𝑐𝑖) + 𝜃 ; // Forward

9 return 𝝅 (·)

equally as other neighbors. Subsequently, another push operation

will happen on node 𝑣 𝑗 . Each node in 𝑉 with non-zero residue

will be selected to recycle the probability portion, which further

includes O(𝑑 (𝑣 𝑗)) computation overhead (lines 9-12). This hinders

them from breaking the the
˜︁O(𝑚) bound.

On the contrary, the PDU technique decides the edge-push op-

eration from a candidate node 𝑐 (𝑐 can be any node in node set

𝑈 or 𝑉) to its neighbors ∀𝑐𝑖 ∈ 𝑁𝑐 to happen or not based on the

magnitude of the increment to each neighbor, rather than the size

of the residue 𝑟 (𝑐) itself. Specifically in Algorithm 2, given a candi-

date node 𝑐 , the residue vector 𝑟 (·), a threshold parameter 𝜃 and

the decay factor 𝛼 , we compare the value of the increment with 𝜃 .

For example, in the reverse manner, when the increment equals

𝑤 (𝑐𝑖 , 𝑐) · (1−𝛼) ·𝑟 (𝑐)/𝑤𝑐𝑖 > 𝜃 , we consider it an effective push trans-

portation already and we add it into the reserve variable 𝝅 (𝑐𝑖) (lines
4-5), similar as that in SSP. However, if𝑤 (𝑐𝑖 , 𝑐)·(1−𝛼)·𝑟 (𝑐)/𝑤𝑐𝑖 ≤ 𝜃 ,
we no longer conduct the same deterministic strategy. Instead, we

construct a new increment variable 𝑋𝑑 (𝑐, 𝑐𝑖) obeying a scaled bino-
mial distribution based on the increment value shown below:

X(𝑐, 𝑐𝑖) =
⎧⎪⎪⎨⎪⎪⎩

𝜃 , with 𝑝 =
𝑤 (𝑐𝑖 ,𝑐) · (1−𝛼) ·𝑟 (𝑐)

𝑤𝑐𝑖 ·𝜃
;

0 , with 𝑝 = 1 − 𝑤 (𝑐𝑖 ,𝑐) · (1−𝛼) ·𝑟 (𝑐)
𝑤𝑐𝑖 ·𝜃

.
(12)

Next, we discretize the original increment into 0 (not to push) or

𝜃 (push the threshold value) according to X(𝑐, 𝑐𝑖). To achieve the
above procedure, we generate a random variable 𝒑 following the

standard uniform distribution and conduct edge-push operation

when
𝑤 (𝑐𝑖 ,𝑐) · (1−𝛼) ·𝑟 (𝑐)

𝑤𝑐𝑖
·𝜃 ≥ 𝑝 (lines 5-7). Such discretization proce-

dure will ensure that 𝑋𝑑 (𝑐, 𝑐𝑖) is a conditional unbiased estimator

of𝑋 (𝑐, 𝑐𝑖), which will assist our correctness analysis in Sec 5.1 later.

Lemma 2 formally presents the unbiaseness property below.

Lemma 2. The discrete increment 𝑋𝑑 (𝑐, 𝑐𝑖) is conditional unbiased
of 𝑋 (𝑐, 𝑐𝑖) as 𝑋 (𝑐, 𝑐𝑖) = E [𝑋𝑑 (𝑐, 𝑐𝑖) |𝑟 (·)] in Algorithm 2.

Proof. E [𝑋𝑑 (𝑐, 𝑐𝑖) |𝑟 (·)] = 𝜃 · 𝑤 (𝑐𝑖 ,𝑐) · (1−𝛼) ·𝑟 (𝑐)
𝑤𝑐𝑖 ·𝜃

= 𝑋 (𝑐, 𝑐𝑖) . □

By conducting PDU, those tiny increments
𝑤 (𝑐𝑖 ,𝑐) · (1−𝛼) ·𝑟 (𝑐)

𝑤𝑐𝑖
re-

sulting from either the small weight of the edge (𝑐𝑖 , 𝑐) or the ig-
norable residues from the candidate node 𝑐 will be either ignored

(thus reduce the push cost), or be assigned a larger value 𝜃 . In this

2259

Algorithm 3: BIRD
Input: Bipartite graph𝐺 , Source node 𝑢, Decay factor 𝛼 , Error

parameter 𝜃 , Parameter 𝛾 .

Output: { ˆ︁B𝒖 (𝑢𝑖) | 𝑢𝑖 ∈ 𝑈 }.
1 Initialize

ˆ︁B𝒖 (·) ← 2𝛼𝑒𝑢 ; 𝒓
(0)
𝒓 (·), 𝒓

(0)
𝒇
(·) ← 𝑒𝑢 ; 𝐿 ← log

1−𝛼
𝑐

4·𝑛𝑢 ;

2 𝑈𝛾 ← {𝑠 | 𝑠 ∈ 𝑈 𝑠.𝑡 .
𝑤𝑠
𝑤𝑢
≤ 𝛾 },𝑉𝐼 ←

⋃︁
𝑠∈𝑈 \𝑈𝛾

𝑁𝑠 ;

3 for ℓ = 0 to 𝐿 − 1 do
4 Initialize 𝒓 (ℓ+1)𝒓 (·) ∈ R𝑛𝑢 and 𝒓𝒗 (·) ∈ R𝑛𝑣 ← 0;

5 for each 𝑢𝑖 ∈ 𝑈 𝑠.𝑡 . 𝑟
(ℓ)
𝑟 (𝑢𝑖) > 0 do

6 𝒓𝒗 (·) ← PDU
(︂
𝒓 (ℓ)𝒓 (·), 𝒓𝒗 (·), 𝑢𝑖 , 𝜃 , 𝛼

)︂
;

7 for each 𝑣𝑗 ∈ 𝑉 𝑠.𝑡 . 𝒓𝒗 (𝑣𝑗) > 0 do
8 𝒓 (ℓ+1)𝒓 (·) ← PDU

(︂
𝒓𝒗 (·), 𝒓 (ℓ+1)𝒓 (·), 𝑣𝑗 , 𝜃 , 0

)︂
;

9 Initialize 𝒓 (ℓ+1)
𝒇

(·) ∈ R𝑛𝑢 and 𝒓𝒗 ∈ R𝑛𝑣 ← 0;

10 for each 𝑢𝑖 ∈ 𝑈𝛾 𝑠.𝑡 . 𝒓 (ℓ)
𝒇
(𝑢𝑖) > 0 do

11 𝒓 (ℓ+1)
𝒇

(𝑢𝑖) ←
𝑤𝑢𝑖
𝑤𝑢
· 𝒓 (ℓ+1)𝒓 (𝑢𝑖) ; // Re-use

12 for each 𝑣𝑗 ∈ 𝑉𝐼 do
13 𝒓𝒗 (𝑣𝑗) ← PDU

(︂
𝒓 ℓ
𝒇
(·), 𝒓𝒗 (·), 𝑣𝑗 , 𝜃 , 𝛼

)︂
;

14 for each 𝑢 𝑗 ∈ 𝑈 \𝑈𝛾 do
15 𝒓 (ℓ+1)

𝒇
(𝑢𝑖) ← PDU

(︂
𝒓𝒗 (·), 𝒓 (ℓ+1)𝒇

(·), 𝑢 𝑗 , 𝜃 , 0
)︂
;

16 ˆ︁B (𝑢, ·) ← ˆ︁B (𝑢, ·) + 𝛼 ·
[︂
𝒓 (ℓ+1)𝒓 (·) + 𝒓 (ℓ+1)

𝒇
(·)

]︂
;

17 return { ˆ︁B (𝑢,𝑢𝑖) | 𝑢𝑖 ∈ 𝑈 }

way, each edge-push operation empirically happened will distrib-

ute at least 𝜃 amount of probability mass, which overcomes the

efficiency limitations in SSP where trivial increments happen. Note

that 𝜃 ∈ (0, 1) is a tuneable threshold and the choice of 𝜃 is carefully
analyzed in Sec 5 to ensure the push quality. We then build up our

BIRD combining PDU technique and the truncated BHPP concept.

Note that the idea of incorporating randomness in each deter-

ministic push for general unweighted graphs is first introduced

in [56], i.e. RBS. Our PDU technique modifies and generalizes the

approach described in [56] by integrating both weight dependency

and pushing directions. In particular, RBS is known for approxi-

mating single-target PPR on general unweighted graphs, while our

PDU technique supports both single-source and single-target HPP

queries on weighted bipartite graphs. This adaptation better tailors

our push strategies for answering bidirectional queries specifically

in weighted scenarios. We emphasize that the addition of weight
considerations, especially when coupled with our estimator re-using
design in the main BIRD algorithm, brings in additional difficulty in

ensuring the query quality, i.e. bounding the variance of estimators.

Nonetheless, we employ carefully-designed procedures and provide

rigorous theoretical analysis following to address these challenges.

Phase-r

Phase-f

4.4 The BIRD Procedure
Given a source node 𝑢, BIRD computes a (𝑐, 𝑝 𝑓)-approximation

of B(𝑢, ·) by deriving a (𝑐/2, 𝑝 𝑓)-approximation
ˆ︁B𝒖 (·) of B𝒖 (·)

based on the following:

ˆ︁B𝒖 (·) =
∑︁𝐿

ℓ=0
ˆ︁B
(ℓ)
𝒖 (·) =

∑︁𝐿
ℓ=0

[︁ˆ︁𝝅 (ℓ) (𝑢, ·) + ˆ︁𝝅 (ℓ) (·,𝑢)]︁ , (13)

where ˆ︁B
(ℓ)
𝒖 (·) acts as an unbiased estimator of each ℓ-hop BHPP

vector and meets the requirement of (𝑐/2, 𝑝 𝑓)-approximation. Thus,

the estimator ˆ︁B𝒖 (·) follows as a (𝑐, 𝑝 𝑓)-approximation of B (𝑢, ·) .
Algorithm 3 illustrates the pseudo-code of the BIRD algorithm. In

BIRD, we maintain two variables, the reverse ℓ-hop residue 𝒓 (ℓ)𝒓 (·)
and the forward ℓ-hop residue 𝒓 (ℓ)

𝒇
(·) for each node in set𝑈 to update

our estimator. At the end of (ℓ-1)-th iteration, the on-hand residue

vectors 𝒓 (ℓ)𝒓 (·) and 𝒓 (ℓ)
𝒇
(·) will be added to our global reserve vector,

acting as a role of unbiased estimation of the ℓ-hop BHPP vector

(line 19). Later, the new residue vector 𝒓 (ℓ+1)𝒓 (·) and 𝒓 (ℓ+1)
𝒇

(·) will be

updated by conducting the bidirectional push procedures consisting

of two phases: the reverse phase phase-r and the forward phase

phase-f, respectively. By repeating the above updating steps, the

global reserve vector ˆ︁B
(ℓ)
𝒖 (·) is accumulated with each ℓ-hop BHPP

estimation until the iteration number exceeding the predefined

amount 𝐿 by truncating the BHPP vector. Initially, 𝒓 (ℓ)𝒓 (·), 𝒓 (ℓ)
𝒇
(·) are

set to 0 for ∀ℓ ∈ {1, 2, ..., 𝐿} and 𝒓 (0)𝒓 (·), 𝒓
(0)
𝒇
(·) are set to eu. Then in

each main iteration, we repeatedly conduct phase-r and phase-f
to update 𝒓 (ℓ+1)𝒓 (·), 𝒓 (ℓ+1)

𝒇
(·) based on 𝒓 (ℓ)𝒓 (·), 𝒓 (ℓ)

𝒇
(·) by enumerating ℓ .

Reverse Phase (Phase-r). The Phase-r (lines 5-9) aims at com-

puting the reverse part of ˆ︁B
(ℓ)
𝒖 (·) as ˆ︁𝝅 (ℓ) (·, 𝑢) in Equation 13. Intu-

itively, it simulates the graph traversal process in a reverse manner

first from node set𝑈 to 𝑉 and then back to𝑈 from 𝑉 . The residue

on a node can be considered as the fraction of random walks which

are still alive. Under our PDU technique, such proportion will be

transported to neighbors only when the probability mass alongside

the edge is non-trivial. On the contrary, the deterministic push

process in ABHPP ignores this factor. Specifically, phase-r performs

the following steps to achieve an unbiased estimation of the ℓ-hop

vector 𝝅 (ℓ) (·, 𝑢):

1. Initialize a residue vector 𝒓𝒗 (·) ← 0, for each node in set 𝑉 ;

2. Pick up all candidate nodes 𝑢𝑖 ∈ 𝑈 with non-zero 𝑟
(ℓ)
𝑟 (𝑢𝑖) ;

3. Update residue vector 𝒓𝒗 (·) by running PDU in reverse direction

with inputs: residue vector 𝒓 (·) = 𝒓𝒗 (·), reserve vector 𝝅 (·) =

𝒓𝒗 (·), candidate node 𝒄 = 𝑢𝑖 , error parameter 𝜽 and decay factor

𝜶 = 𝛼 denoted as PDU(𝒓 (ℓ)𝒓 (·), 𝒓𝒗 (·), 𝑢𝑖 , 𝜃 , 𝛼) .
4. Pick up all candidate nodes 𝑣 𝑗 ∈ 𝑉 with non-zero 𝒓𝒗 (𝑣 𝑗) and

update 𝒓 (ℓ+1)𝒓 (·) by running PDU(𝒓𝒗 (·), 𝒓 (ℓ+1)𝒓 (·), 𝑣𝑗 , 𝜃 , 0) .

Note that the traversal direction differs in phase-r and phase-f in
Algorithm 2, adapting to their own unique recursive property. In

the reverse phase, the increment 𝑋 (𝑐, 𝑐𝑖) = 𝑤 (𝑐𝑖 ,𝑐) · (1−𝛼) ·𝑟 (𝑐)
𝑤𝑐𝑖

can

be considered as 𝑟 (𝑐) proportion of 𝛼-decay random walks travels

from 𝑐𝑖 to 𝑐 (line 1) and vice versa for the forward phase (line 2).

Running Example 1. A phase-r running example is displayed

in Figure 2. Assume at the beginning of the ℓ-th iteration, we have

the reverse residue vector 𝒓 (ℓ)𝒓 (·) with non-zero values on node set

{𝑢}. Then we first conduct PDU on node 𝑢 in the reverse direction

and increments are only effective towards neighbor 𝑣1, where in-

crements of 𝑣2, 𝑣3 are discretized into 0 (no push happens). Thus,

one edge-push computation is empirically happened and only node

𝑣1 has non-zero residue in for vector 𝑟𝑣 (·) updated in 𝑉 . In turn,

another PDU runs on node 𝑣1 and updates 𝒓 (ℓ+1)𝒓 (·), generating non-

zero values on nodes {𝑢,𝑢2, 𝑢5}. The whole procedure only takes

2260

Figure 2: A running example of our BIRD Algorithm at the ℓ-th iteration.

O(1) + O(3) = O(4) computations, compared to the SSP which

reaches every neighbor, taking O(3) + O(6 + 2 + 3) = O(14) steps.

Forward Phase (Phase-f). Upon termination of phase-r, we
have accomplished the computation of 𝒓 (ℓ)𝒓 (·), 𝒓 (ℓ)

𝒇
(·) and 𝒓 (ℓ+1)𝒓 (·)

residue vectors in the ℓ-th iteration. Our next goal is to estimate

the forward part of ˆ︁B
(ℓ)
𝒖 (·) as ˆ︁𝝅 (ℓ) (·,𝑢) by updating the 𝒓 (ℓ+1)

𝒇
(·).

Note that the PDU technique allows us to conduct either forward or

reverse push directions, thus a straightforward way is to perform

the same procedure as that in Phase-f but change the push direction
of PDU to forward to compute it independently. However, this naive

solution unavoidably, though provides a workout, at least doubles

the overhead by adding a scale-similar computation overhead in

phase-f. To further optimizing the redundancy issue, we propose

to re-use the computation results on hand, i.e. the reverse BHPP

vector, for estimating ˆ︁𝝅 (ℓ) (·, 𝑢). We then propose the reversibility
property of the ℓ-hop BHPP vector in following Lemma 3, which

motivates us to design an efficient re-using procedure. The detail is

presented as follow:

Lemma 3. (Proof in Sec 9) Given an undirected bipartite graph 𝐺 ,
for any two nodes 𝑢𝑖 , 𝑢 𝑗 in𝑈 and ℓ ≥ 1, the ℓ-hop HPP satisfies

𝝅 (ℓ) (𝑢𝑖 , 𝑢 𝑗) ·𝑤𝑢𝑖 = 𝝅 (ℓ) (𝑢 𝑗 , 𝑢𝑖) ·𝑤𝑢 𝑗
.

Lemma 3 hints that we may reuse the residue vector 𝒓 (ℓ+1)𝒓 (·)
obtained in phase-r to estimate 𝒓 (ℓ+1)

𝒇
(𝑢𝑖) by setting 𝒓 (ℓ+1)

𝒇
(𝑢𝑖) =

𝑤𝑢𝑖
𝑤𝑢
· 𝒓 (ℓ+1)𝒓 (𝑢𝑖) for each 𝑢𝑖 ∈ 𝑈 . Then, the forward residue vector

will consequently be an unbiased estimation that

E
[︂
𝒓 (ℓ+1)
𝒇

(𝑢𝑖)
]︂
= E

[︃
𝑤𝑢𝑖

𝑤𝑢
· 𝒓 (ℓ+1)𝒓 (𝑢𝑖)

]︃
=

𝑤𝑢𝑖

𝑤𝑢
·𝝅 (ℓ) (𝑢𝑖 ,𝑢) = 𝝅 (ℓ) (𝑢,𝑢𝑖),

if the reverse vector possess the unbiased property (proved latter

in Sec 5.1). However, although the direct re-using of the reverse

vector for all nodes in 𝑈 is convenient, it may result in inaccurate

query results. Recall that we have evolved randomness in the PDU

technique, thus the residue vector 𝒓 (ℓ+1)𝒓 (·) computed is a random

variable. When using samples of random variables for estimations,

we also expect its variance to be small or at least controllable. Based

on the previous re-using setting, for ∀𝑢𝑖 ∈ 𝑈 , we have

Var
[︂
𝒓 (ℓ+1)
𝒇

(𝑢𝑖)
]︂
= Var

[︃
𝑤𝑢𝑖

𝑤𝑢
· 𝒓 (ℓ+1)𝒓 (𝑢𝑖)

]︃
= (

𝑤𝑢𝑖

𝑤𝑢
)2 ·Var

[︂
𝒓 (ℓ+1)𝒓 (𝑢𝑖)

]︂
.

This scale of variance depends on two factors: the weight of the re-

using node 𝑢𝑖 and the variance of the estimator 𝒓 (ℓ+1)𝒓 (𝑢𝑖). Luckily,
we can ensure the quality of 𝒓 (ℓ+1)𝒓 (𝑢𝑖) by bounding its variance

as Var
[︂
𝒓 (ℓ+1)𝒓 (𝑢𝑖)

]︂
≤ O(𝜃), which is formally analyzed in Sec 5.2

later. However, it’s unrealistic to assume an universal distribution

for node weights. Even if we can guarantee the variance of each

𝒓 (ℓ+1)𝒓 (𝑢𝑖), the variance of the most risky node, i.e. the node with

the largest weight, can reach

(︂
max𝑢𝑖 (

𝑤𝑢𝑖

𝑤𝑢
)2 · 𝜃

)︂
. Lacking any prior

knowledge of 𝐺 ’s weights, such estimation is inapplicable since

the maximum weight can be extremely large and the source node

weight can be small, leading to unstable results.

To entirely guarantee the quality in re-using the estimator, we

derive a new node set 𝑈𝛾 ⊆ 𝑈 called the safe set, by introducing

another parameter 𝛾 to bound the variance of re-using and play an

overall efficiency-quality trade-off. Specifically, given the parameter

𝛾 > 0, we first construct the node set𝑈𝛾 ← {𝑠 | 𝑠 ∈ 𝑈 𝑠.𝑡 .
𝑤𝑠

𝑤𝑢
≤ 𝛾}

(line 3). The set𝑈𝛾 contains safe nodes in𝑈 where we can directly

re-use the reverse residue for updating the forward residue vector

(lines 11-12). For such safe nodes, their re-used estimators’ variance

can be bounded by𝛾2 ·𝜃 , providing an intermediary to guarantee the

final estimation quality. For example, setting 𝛾 = 1 ensures the vari-

ance quality of reusing is no larger than the on-hand calculations.

The choose of 𝛾 is analyzed later in Sec 5.3.

For the remaining nodes in 𝑈 \𝑈𝛾 , we incrementally conduct

DPUs to simulate a forward graph traversal step. We construct node

set 𝑉𝐼 ←
⋃︁

𝑠∈𝑈 \𝑈𝛾
𝑁𝑠 , which delimits the scope of nodes in 𝑉

that are possible to participate in the computation process when

utilizing 𝒓 (ℓ)
𝒇
(·) for the results of all the unsafe nodes in 𝑈 \ 𝑈𝛾 .

Note that the variance of unsafe nodes will exceed 𝛾2 · 𝜃 by a direct

reuse, so that we conduct extra computation steps to eliminate the

issues. Next, by only evolving the nodes which are related to the

unsafe nodes, we manipulate the phase-f by gathering residues for
nodes in 𝑉𝐼 (lines 13-14) and then fetching those residues towards

unsafe nodes to update the corresponding residue (lines 15-16). In

this way, we can finish the computation 𝒓 (ℓ+1)
𝒇

(·) in a safe yet non-
wasteful way. It is worth mentioning that phase-f requires much

less computation overhead than phase-r by only updating a subset
of 𝑈 in the residue vector and re-using the reverse estimations to

fulfill the others. Finally at the end of each iteration, we accumulate

the 𝛼 proportion of 𝒓 (ℓ+1)𝒓 (·) and 𝒓 (ℓ+1)
𝒇

(·) to the our target estimator

ˆ︁B𝒖 (·) . After iterating all ℓ ≤ 𝐿, we return ˆ︁B𝒖 (·) as estimator to

the (𝑐/2, 𝑝 𝑓)-approximation of B𝒖 (·) .
Running Example 2. We display a toy running example in Figure

2 of our BIRD algorithmwith one iteration. After the phase-r of the
ℓ-th iteration, we already have on-hand ℓ + 1 residue vector 𝒓 (ℓ+1)𝒓 (·)
with non-zero values on node set {𝑢,𝑢2, 𝑢5}. Assume 𝒓 (ℓ)

𝒇
(·) has non-

zero values on node set {𝑢,𝑢6} and the 𝒓 (ℓ+1)
𝒇

(·) vector are all zeros.

Then in phase-f, we build up the safe set 𝑈𝛾 = {𝑢,𝑢1 −𝑢4, 𝑢6} and
re-use the non-zero forward residue vector 𝒓 (ℓ+1)𝒓 (·) on {𝑢,𝑢2} ⊆ 𝑈𝛾

2261

to directly compute 𝒓 (ℓ+1)
𝒇

(𝑢) and 𝒓 (ℓ+1)
𝒇

(𝑢2). For the unsafe node𝑢5, we
fetch for the possible nodes in𝑈 which need to conduct incremental

push computations. As such, node 𝑢 with non-zero residue 𝒓 (ℓ)
𝒇
(𝑢)

is selected to conduct the similar PDU process as in the phase-r.
Note that node 𝑢6, which is supposed to be pushed also with non-

zero residue, is excluded since for now it does not evolve in the

computation paths for updating 𝑢5’s residue.

5 THEORETICAL ANALYSIS
In this section, we present theoretical properties of the BIRD, re-
garding correctness in Sec 5.1, result accuracy in Sec 5.2, efficiency

in Sec 5.3, and discussing parameter 𝛿 in Sec 5.4.

5.1 Correctness
Lemma 2 ensures that the expectation of each discretized increment

E [𝑋𝑑 (𝑐, 𝑐𝑖)] equals to the original increment 𝑋 (𝑐, 𝑐𝑖). This hints
that our final estimator based on them is unbiased as well.

Theorem 1. The estimator ˆ︁B𝒖 (·) returned by Algorithm 3 is
unbiased that E [ˆ︁B (𝑢, ·)] = B𝒖 (·) .

Proof. We break down the overall prove of Theorem 1 by de-

riving several following technical lemmas:

Lemma 4. Given source node 𝑢 and for each ℓ ≥ 0, the temporary
residue 𝒓𝒗 (·) in Alg. 3 phase-r on node set𝑉 holds that for ∀𝑣 𝑗 ∈ 𝑉 ,

E
[︂
𝒓𝒗 (𝑣𝑗) |𝒓 (ℓ)𝒓 (·)

]︂
=
∑︁
𝑢𝑖 ∈𝑁𝑣𝑗

(1 − 𝛼) · 𝑤 (𝑣𝑗 ,𝑢𝑖)
𝑤𝑣𝑗

· 𝑟 (ℓ)𝑟 (𝑢𝑖) .

Lemma 4 is directly implied when combining Lemma 2 with the

linearity of expectation based on 𝒓𝒗 (𝑣 𝑗) =
∑︁
(𝑢𝑖 ,𝑣𝑗) ∈𝐸 𝑋𝑑 (𝑢𝑖 , 𝑣 𝑗).

This benefits from our unbiased design in DPU that when conducting
pushing from set 𝑈 to 𝑉 , the temporary residue vector on set 𝑉

remains unbiased on expectation. With similar property on pushing

back from 𝑉 to 𝑈 , we further derive Lemma 5 to show that our

estimators calculated each iteration in Algorithm 3 are unbiased.

Lemma 5. (Proof in Sec 9) Given source node 𝑢 and ∀ℓ ≥ 0, the
reverse and forward ℓ-hop residues 𝒓 (ℓ)𝒓 (·), 𝒓

(ℓ)
𝒇
(·) are unbiased esti-

mators of 𝝅 (ℓ) (𝑢, ·)/𝛼, 𝝅 (ℓ) (·, 𝑢)/𝛼 respectively such that ∀𝑢𝑖 ∈ 𝑈 ,

E
[︂
𝒓 (ℓ)𝒓 (𝑢𝑖)

]︂
=

𝝅 (ℓ) (𝑢𝑖 ,𝑢)
𝛼

, E
[︂
𝒓 (ℓ)
𝒇
(𝑢𝑖)

]︂
=

𝝅 (ℓ) (𝑢,𝑢𝑖)
𝛼

.

Equipped with Lemma 5 and the definition of B𝒖 (·), we can

prove that
ˆ︁B𝒖 (·) returned by Algorithm 3 is an unbiased estimator

of the truncated Bidirectional HPP B𝒖 (·) of node 𝑢. □

Now, we have ensured the correctness of Algorithm 3 on expec-

tation. To further guarantee the estimation quality, we shall bound

the variance of ˆ︁B
(ℓ)
𝒖 (·) for each ℓ ≥ 0, which will assist in assuring

the failure probability for the final approximation. We utilize the

following Chebyshev Inequality to bound the failure probability.

Fact 1 (The Chebyshev’s Ineqality [45]). Denote𝑋 a random
variable. For any real number 𝜖 > 0, P [|𝑋 − E [𝑋] | ≥ 𝜖] ≤ Var [𝑋]

𝜖2
.

5.2 Approximation Quality Guarantee
We first showcase our main theorem as follows in this section.

Theorem 2. Given source node 𝑢, we claim that the estimator
ˆ︁B𝒖 (·) returned by Algorithm 3 is a (𝑐, 𝑝 𝑓)-approximation of the
single-source BHPP vector B𝒖 (·), such that for each B𝒖 (𝑢𝑖) ≥ 1

𝑛𝑢
,

P
[︂
| ˆ︁B𝒖 (𝑢𝑖) − B𝒖 (𝑢𝑖) | ≥ 𝑐 · B𝒖 (𝑢𝑖)

]︂
≤ 𝑝𝑓 .

Proof. Theorem 2 provides us evidence that our BIRD Algo-

rithm will return quality guaranteed estimations. Note that the

estimation is conducted iteration by iteration, we consider the fol-

lowing lemma to first bound the variance of each ℓ-hop BHPP

estimator ˆ︁B
(ℓ)
𝒖 (·) .

Lemma 6. (Proof in Sec 9) Given source node 𝑢, for each ∀𝑢𝑖 ∈ 𝑈
and ℓ ≥ 0, the variance of ˆ︁B

(ℓ)
𝒖 (𝑢𝑖) can be bounded as

Var
[︂
ˆ︁B
(ℓ)
𝒖 (·)

]︂
≤ max((1 + 𝛾)2, 2) · 2𝜃 · B (ℓ)𝒖 (𝑢𝑖) .

Based on the variance bound and the Chebyshev’s Ineqality, we

are then able to bound the failure probability of
ˆ︁B
(ℓ)
𝒖 (·) that

P

[︃
| ˆ︁B (ℓ) (𝑢,𝑢𝑖) − B

(ℓ)
𝒖 (𝑢𝑖) | ≥

√︂
6𝜃 · 𝛾𝑚 · B (ℓ)𝒖 (𝑢𝑖)

]︃
≤ 1

3

, (14)

where 𝛾𝑚 = max((1 + 𝛾)2, 2). The above inequality implies a 𝑐/2-
relative error for all B

(ℓ)
𝒖 (𝑢𝑖) ≥

24·𝛾𝑚 ·𝜃
𝑐2

. Since 𝜃 ≤ 𝑐2B
(ℓ)
𝒖 (𝑢𝑖)

24·𝛾𝑚 and

consequently 24 ·𝛾𝑚 ·𝜃 ·B (ℓ)𝒖 (𝑢𝑖) ≤ (𝑐/2 ·B
(ℓ)
𝒖 (𝑢𝑖))2. It then follows

P
[︂
| ˆ︁B (ℓ) (𝑢,𝑢𝑖) − B

(ℓ)
𝒖 (𝑢𝑖) | ≥ 𝑐/2 · B (ℓ)𝒖 (𝑢𝑖)

]︂
≤ 1

3

for all B
(ℓ)
𝒖 (·) ≥

24·𝛾𝑚 ·𝜃
𝑐2

with constant probability. By setting

𝜃 = 𝑐2

48·𝐿·𝛾𝑚 ·𝑛𝑢 , we can obtain a (𝑐/2, 1/3)-approximation for all

B
(ℓ)
𝒖 (𝑢𝑖) ≥ 1

2𝐿𝑛𝑢
. According to Equation (11), we can therefore de-

rive a 𝑐/2 relative error guarantee for our estimator ˆ︁B𝒖 (𝑢𝑖) for all
B𝒖 (𝑢𝑖) ≥ 1

2𝑛𝑢
. Note that we can apply the Median-of-Mean trick

[14] to reduce the failure probability to arbitrarily small by only

adding a log factor to the running time. For example, by taking the

median of log𝑛 independent copies of ˆ︁B𝒖 (𝑢𝑖) as the final estima-

tor, the failure probability is brought from 1/3 to 1/𝑛2. By further

applying the union bound to 𝑛 source nodes 𝑢 ∈ 𝑈 , and each ℓ ≥ 0,

the failure probability will become 1/𝑛. Therefore, we can conclude

that ˆ︁B (𝑢, ·) is a (𝑐/2, 𝑝 𝑓)-approximation of B (𝑢, ·) .

Supposition 1. Given source node 𝑢 and for ∀𝑢𝑖 ∈ 𝑈 , ˆ︁B𝒖 (𝑢𝑖) is
a (𝑐/2, 𝑝 𝑓)-approximation for all B𝒖 (𝑢𝑖) ≥ 1

2𝑛𝑢
satisfying

P
[︂
| ˆ︁B𝒖 (𝑢𝑖) − B𝒖 (𝑢𝑖) | ≥ 𝑐/2 · B𝒖 (𝑢𝑖)

]︂
≤ 𝑝𝑓 .

With Supposition 1 and Lemma 1, we conquer Theorem 2. □

By guaranteeing the quality of approximations, we obtain the

value of our error parameter 𝜃 = 𝑐2

48·𝐿 ·𝛾𝑚 ·𝑛𝑢 . Intuitively, larger 𝜃
incorporates more PDUs, and thus less push operations by discredit-

ing increments, leading to faster computations. Next, we show that

the exact time cost can be bounded as the reciprocal of 𝜃 .

5.3 Efficiency Analysis
Now we present the expected time cost of our BIRD algorithm.

Theorem 3. The expected time cost of Algorithm 3 can be com-
puted as (𝑛𝑢+𝑛𝑣

𝛼𝑛𝑢
) · 1

𝜃
. By setting 𝜃 = 𝑐2

48·𝐿 ·𝛾𝑚 ·𝑛𝑢 and choosing 𝛾𝑚 = 2,

the expected time cost of Algorithm 3 is bounded by ˜︁O(𝑛𝑢 + 𝑛𝑣).

2262

Proof. Here we denoteC
(ℓ)
𝑟 (𝑢𝑖 , 𝑣 𝑗) and C

(ℓ)
𝑟 (𝑣𝑖 , 𝑢 𝑗) the cost for

edge-push operation from 𝑈 to 𝑉 and 𝑉 to 𝑈 respectively in the

phase-r on the ℓ-th iteration in Algorithm 3. We first derive the

following two inequalities (Proof in Sec 9):

𝐿−1∑︂
ℓ=0

∑︂
(𝑢,𝑣) ∈𝐸

E
[︂
C
(ℓ)
𝑟 (𝑣,𝑢)

]︂
≤ 1

𝛼𝜃
·
∑︂

𝑢 𝑗 ∈𝑈
𝝅 (𝑢 𝑗 ,𝑢) ;

𝐿−1∑︂
ℓ=0

∑︂
(𝑢,𝑣) ∈𝐸

E
[︂
C
(ℓ)
𝑟 (𝑢, 𝑣)

]︂
≤ (1 − 𝛼)

𝛼𝜃
·
∑︂
𝑣𝑗 ∈𝑉

P
[︁
𝑣𝑗 → 𝑢

]︁
.

(15)

Next, by choosing node 𝑢 ∈ 𝑈 uniformly, the total expected time

cost in phase-r for source node 𝑢 can be bounded as

E [C𝑟 (𝑢)] ≤
𝐿−1∑︂
ℓ=0

∑︂
(𝑢,𝑣) ∈𝐸

E
[︂
C
(ℓ)
𝑟 (𝑣,𝑢)

]︂
+ E

[︂
C
(ℓ)
𝑟 (𝑢, 𝑣)

]︂
≤ 1

(𝛼𝜃) · 𝑛𝑢
·
∑︂
𝑢∈𝑈

⎡⎢⎢⎢⎢⎣
∑︂
𝑣𝑗 ∈𝑉

P[𝑣𝑗 → 𝑢] +
∑︂

𝑢 𝑗 ∈𝑈
𝝅 (𝑢 𝑗 ,𝑢)

⎤⎥⎥⎥⎥⎦ .
≤ 1

(𝛼𝜃) · 𝑛𝑢
·
⎡⎢⎢⎢⎢⎣
∑︂
𝑣𝑗 ∈𝑉

∑︂
𝑢∈𝑈

𝑃 (𝑣𝑗 → 𝑢) +
∑︂

𝑢 𝑗 ∈𝑈

∑︂
𝑢∈𝑈

𝝅 (𝑢 𝑗 ,𝑢)
⎤⎥⎥⎥⎥⎦ .

≤ 1

(𝛼𝜃) · 𝑛𝑢
· [𝑛𝑣 + 𝑛𝑢] = (

𝑛𝑢 + 𝑛𝑣

𝛼𝑛𝑢
) · 1

𝜃
.

For phase-f, the bound is the same and we omit the details. Note

that phase-f re-uses the results in phase-r, more efficient than

computing another PDU from scratch. Thus, Theorem 3 holds. □

5.4 Discussion on Settings of 𝛿
In Theorem 3, BIRD achieves time complexity in

˜︁O(𝑛𝑢 + 𝑛𝑣) =˜︁O(𝑛𝑢+𝑛𝑣
𝑛𝑢

· 1
𝛿
) . This is achieved by setting 𝜃 = 𝑐2 ·𝛿

48·𝐿 ·𝛾𝑚 and following

typical setting 𝛿 = 1

𝑛𝑢
in [40, 43, 58, 59]. When considering a full

scope range that choosing 𝛿 <<
1

𝑛𝑢
, the previous bound is not ap-

plicable. Meanwhile, we secure that our BIRD algorithm finishes in

at most ˜︁𝑂 (𝑚) time when 𝛿 <<
1

𝑛𝑢
, by setting 𝜃 = 0. In this way, PDU

conducts no push discretization steps and BIRD degenerates into a

bidirectional variant of SSP, which adopts a deterministic sequential

push strategy. This can be verified that in each iteration, the total

residue will be reduced by 𝛼 proportion as all non-zero residues

will be pushed. With at most log
1−𝛼 (𝑐 · 𝛿) iterations, the (𝑐, 𝑝 𝑓)

approximation achieves in O(log
1−𝛼 (𝑐 · 𝛿)) ·𝑚 = ˜︁O(𝑚) time. For

∀𝛿 ≥ 0 as a full scope, BIRD achieves an overall
˜︁O(min{ 𝑛𝑢+𝑛𝑣

𝑛 ·𝛿 ,𝑚})
time complexity, no worse than ABHPP.

6 EXTRA RELATEDWORK AND DISCUSSION
PPR computation is relevant to our work as BHPP can be defined

in view of PPR on graph ˆ︁𝐺 by materializing P = U · V. On decades,

PPR has been studied widely in recent studies and the majority

focus on speeding and scaling up the single-source [12, 21, 34,

35, 39, 44, 59, 63, 66], single-target [41, 42, 55, 56, 58] and top-𝑘

[22, 41, 43, 59, 62] PPR queries on general graphs. Among them,

[12, 21, 22, 39] utilize a large number of random walks to estimate

PPR and [10, 42] use deterministic graph traversal to compute

exact PPR vectors. Subsequent works [41, 44, 58, 58, 59, 62, 63]

tend to improve the scalability and efficiency in PPR computations

by combining the deterministic graph traversal with Monte-Carlo

in separate phases and several recent studies [23, 55, 56] explore

Table 2: Comparison from PDU to other sota PPRs.

Technique Single-Source Single-Target Space Time

RBS [56] × ✓ ˜︁O(𝑛2𝑢) ˜︁O(𝑛)
FORA [59] ✓ × ˜︁O(𝑛2𝑢) ˜︁O(√𝑚 · 𝑛)
SpeedPPR [63] ✓ × ˜︁O(𝑛2𝑢) ˜︁O(𝑚)
PDU (ours) ✓ ✓ ˜︁O(𝑚) ˜︁O(𝑛)
Table 3: Statistics of eight real-world bipartite graphs.

Dataset 𝒏𝒖 𝒏𝒗 𝒎 𝒎/𝒏 Type

Avito [7] 27,736 16,589 67,028 2.4 weighted

MovieLens [2] 6,040 3,706 1,000,209 165.6 weighted

Amazon-Games [6] 826,767 50,210 1,324,753 1.6 weighted

KDDCup [5] 255,170 1,848,114 2,766,393 10.8 weighted

Last.fm [4] 359,349 160,168 17,559,530 48.9 weighted

AOL [3] 4,811,647 1,632,788 10,741,953 2.2 weighted

Netflix [47] 480,189 17,770 100,480,507 209.2 unweighted

Orkut [52] 2,783,196 8,730,857 327,037,487 117.5 weighted

to perform the deterministic graph traversal and the randomized

Monte-Carlo method in an atomic step. As the single-source BHPP

query on 𝐺 can be approximated by answering both the single-

source and single-target PPR on ˆ︁𝐺 , we summarize the theoretical

results in Table 2 for a comparison of SOTA PPR techniques (RBS

[56], FORA [59] and SpeedPPR [63]). In a word, PDU achieves the

best time and space complexity on approximating both the single-

source and single-target HPP. Inspired by RBS, PDU technique also

incorporates randomness in each deterministic push simultaneously.

The difference is, our whole BIRD algorithm focuses on weighted

bipartite graph scenarios which requires a weight-dependent push

strategy for answering BHPP queries. This adaptation brings in

additional analytical difficulties especially when combined with

estimator reusing techniques, requiring adapted proofs based on

that in RBS. Other recent works focus on PPR computation with

dynamic graphs [27, 33, 46, 48, 67] and its potential applications in

graph neural network [36, 37].

7 EXPERIMENTS
This section experimentally evaluates BIRD algorithm against state-

of-the-art methods. We utilize original code of ABHPP for fair com-

parisons. All methods run on a single CPU core and are imple-

mented in C++ and compiled by g++ 9.4.0 with -O3 optimization,

and all experiments are conducted on a Linux machine with an

Intel(R) Xeon(R) Gold 6326 CPU @ 2.90GHz CPU and 256GB RAM.

Datasets. We include eight real-world bipartite graphs commonly

used in previous studies [15, 38, 57, 60, 65]. Table 3 summarizes

the statistic of each dataset. In specific, Avito, KDDCup, and AOL
are three click graphs that contain a set of queries in 𝑈 and a set

of URLs in 𝑉 . MovieLens, Last.fm, and Amazon-Games are three

user-item graphs that contain a set of users in 𝑈 and a set of items

in 𝑉 . Netflix is a user-movie rating bipartite-graph and Orkut is
a user-to-group affiliation bipartite network. Note that due to the

space limits, part of the experimental results on graph MovieLens

2263

Figure 3: Query time varying relative error 𝑐.

Figure 4: Query top-𝐾 precision varying 𝐾 .

Figure 5: Empirical relative error distributions of BIRD.

and Amazon-Games are omitted on the main content without loss

of generality, Interested readers can view such results in [1].

Baselines and settings. We compare our BIRD method to the

three most competitive methods: BPI [49], PISP [9] and ABHPP [64].
To achieve a (𝑐, 𝑝 𝑓)-approximation of the BHPP query, we set the

parameters in strict accordance with the theoretical analysis in Sec

3.3. Specifically, the BPI method has one parameter 𝜖 , the ℓ1 error

threshold. We set 𝜖 = min𝑢𝑖 ∈𝑈
𝑤𝑢

𝑤𝑢𝑖
· 𝑐𝑛𝑢 given the query node 𝑢 and

graph based on the analysis. PISP method is a combination of the

PI and SP, we equally set 𝜖𝑓 = 𝜖𝑟 = 𝑐
2𝑛𝑢

for both threshold. The

ABHPP method has one overall error parameter 𝜖 and it self-decides

the forward and reverse error. Besides, we set 𝜖 = 𝑐
𝑛𝑢

accordingly.

We set the damping factor 𝛼 = 0.15, the failure probability 𝑝 𝑓 = 0.1

and the relative error parameter 𝑐 = 0.1 by default if not specified.

Empirical Query Time. We evaluate the average execution time

for each method using a query set namely 𝑄 containing randomly

100 selected source nodes. We vary the relative error parameter 𝑐 ,

taking values from the {0.1, 0.2, 0.3, 0.4, 0.5}. The results are pre-
sented in Figure 3. Based on the results, our BIRD method consis-

tently delivers exceptional efficiency, outpacing all other methods

across eight diverse datasets and various relative error settings.

Specifically, the speed-up is often by an order of magnitude over

the SOTA method ABHPP and reaches approximately 100× com-

pared to BPI and PISP. Notably, when 𝑐 = 0.5, BIRD achieves an

acceleration around 50× compared against ABHPP on dataset Netflix.
This underscores the robustness and superior capabilities of BIRD.

Empirical Precision and Relative Error. We verify the result

quality by the top-𝐾 Precision and relative error distribution of

BHPP queries following previous work on evaluating empirical

relative errors [56, 59]. Specifically, given the ground truth node

set𝑈𝑘 and approximate one ˆ︁𝑈𝑘 , the Precision equals |𝑈𝑘 ∩ ˆ︁𝑈𝑘 |/|𝑈𝑘 |
as the proportion of nodes in ˆ︁𝑈𝑘 which coincides in the ground

truth results𝑈𝑘 . For obtaining the actual results, we run BPI for 100
iterations on each query and vary the number of top-𝐾 in Figure

4. Generally, BIRD, ABHPP and BPI achieve high quality results on

all graphs with various 𝐾 settings consistently while PISP show

slightly diminished accuracy on datasets Avito and KDDCup with

large𝐾 settings. This indicates that it may need tighter error thresh-

old to achieve more accurate query results, resulting in more time

costs. Besides, we compute the empirical relative errors for each

query source node 𝑢 as 𝑐𝑐𝑚𝑝 ∈ { [ˆ︁B𝒖 (𝑢𝑖) − B𝒖 (𝑢𝑖)]/B𝒖 (𝑢𝑖) |∀𝑢𝑖 ∈
𝑈 }. Then, we report the distribution of the values 𝑐𝑐𝑚𝑝/𝑐 across all
nodes in Figure 5. Note that all 𝑐𝑐𝑚𝑝/𝑐 < 1 indicates the empiri-

cal error of the BIRD meets the (𝑐, 𝑝 𝑓) approximation requirement.

Upon observation, we claim that the empirical values 𝑐𝑐𝑚𝑝/𝑐 are
consistently smaller than 1 across all datasets. Particularly, on graph

Last.fm, Netflix and Orkut, the empirical relative errors are smaller

than 𝑐 by up to two order of magnitude. This demonstrates the

correctness and query efficacy of our BIRD.

Varying Failure Probability 𝑝 𝑓 . With a default failure probability

of 𝑝 𝑓 = 0.1, our BIRD algorithm demonstrates high performance.

Though reducing 𝑝 𝑓 to a vanishingly small value, i.e., O(1
𝑛2
), intro-

duces an 𝑂 (log𝑛) computational overhead, as detailed in Section

5.2. To evaluate the algorithm’s robustness, we tested a range of

failure probabilities 𝑝 𝑓 ∈ {0.1, 0.01, 0.001, 1𝑒−4, 1𝑒−5, 1𝑒−6}, with re-
sults shown in Figure 7 for the Netflix and Orkut datasets. While the

running times for algorithms ABHPP, BPI, and PISP remain stable,

BIRD shows a slight decrease in efficiency as the failure probability

𝑝 𝑓 approaches zero. Nonetheless, BIRD consistently outperforms

ABHPP by an order of magnitude, demonstrating its robustness.

Evaluation on Reuse Strategy . Recall that in BIRD, we intro-

duced the reuse strategy to expedite the computation process in

the forward-phase by utilizing the intermediate results from the

Reverse-phase. To demonstrate its effectiveness, we conducted

an experiment by removing the reuse component and analyzing

2264

Figure 6: Query rewriting performance comparison.

Figure 7: Query time varying failure probability 𝑝 𝑓 .

the time cost breakdown, as shown in Table 4, for our four primary

datasets: Last.fm, AOL, Netflix, and Orkut. The results indicate that
BIRD with the reuse strategy significantly reduces the computa-

tion overhead in the forward-phase, saving approximately 70%

of the push operations across all datasets. This results in an aver-

age speed-up of about 3.5× for the forward-phase cost, leading to

an overall computation acceleration of approximately 1.6×. These
findings highlight the efficacy of our reuse strategy in leveraging

intermediate results to significantly accelerate the computation.

Real-World Applications. To thoroughly assess BHPP’s perfor-

mance, we further conduct experiments in the domains of query

rewriting and item recommendation, employing metrics as Nor-

malized Discounted Cumulative Gain (NDCG) [29] and F1-score,

respectively, following the settings in [11, 13, 64]. We compare

BHPP against seven other competitive similarity measures, catego-

rized as follows: (1) Simple methods, including Pearson’s correlation

coefficient [53] and Jaccard’s coefficient [28]; (2) General similarity

measurements, such as naive Personalized PageRank (PPR) [24],

SimRank [30], and CoSimRank [61]; and (3) Bipartite similarity

measurements, including HPP [18] and P-SimRank [19]. The per-

formance comparison results are presented in Figure 6 for query

rewriting and in Table 5 for item recommendation. From Figure

6, it is evident that BHPP consistently outperforms all other sim-

ilarity measures on the two click graphs. Notably, BHPP shows

a significant improvement of 3.0% over the second-best method,

Co-SimRank, on the Avito dataset. Similarly, in the item recommen-

dation task, as shown in Table 5, BHPP consistently achieves the

highest F1-score across four user-item bipartite graphs. Its perfor-

mance is particularly dominant on the MovieLens dataset, where
it achieves a remarkable improvement of approximately 5.2% over

the naive PPR. These results imply that BHPP, as a rising bipartite

variant of naive PPR, is more adept at capturing the properties

of bipartite graphs and demonstrates superior effectiveness as a

similarity measurement specialized for the bipartite domain. Conse-

quently, we posit that BHPP represents a significant enhancement

to the entire family of PPR-related algorithms, and our scalability

improvement is also valuable for applications on massive graphs.

Limitation. Though BIRD scales up well on massive graphs, we

also notice that its acceleration on the small scale graph Avito is

Table 4: Evaluation on the reuse strategy. We separately show
break down of Forward-phase (Fwd.) and Overall (All.).

Dataset Last.fm AOL Netflix Orkut
Fwd. All. Fwd. All. Fwd. All. Fwd. All.

w reuse 5.4 20.3 8.5 44.8 17.6 58.5 195.3 755

w/o reuse 16.6 31.5 38.6 74.9 45.1 86.0 587.3 1147

Speed up 3.1× 1.6× 4.6× 1.7× 2.6× 1.5× 3.0× 1.53×

Table 5: Item recommendation performance. The best score
is marked in bold and the runner-up one is underlined.

Similarity
Measurement

F1-Score@k

DBLP MovieLens Last.fm Amazon-Games

BHPP (by BIRD) 0.165 0.337 0.266 0.213

HPP [18] 0.139 0.187 0.258 0.169

PPR [24] 0.147 0.285 0.237 0.162

SimRank [30] 0.15 0.206 0.198 0.101

P-SimRank [19] 0.127 0.188 0.187 0.108

CoSimRank [61] 0.114 0.158 0.253 0.136

Pearson [53] 0.037 0.087 0.108 0.049

Jaccard [28] 0.157 0.226 0.245 0.07

only 2 ∼ 3 times, not as sophisticated as that on large datasets.

Meanwhile, its top-𝐾 precision is slightly falling behind the optimal

interval, compared to the perfect performance achieved by BPI. This
may remind users that when the graph scale is small with tolerable

query time, i.e. within a second, a preferable alternative is to choose

the classical method with impeccable precision.

8 CONCLUSION
In this paper, we introduce BIRD to address the problem of ap-

proximating single-source BHPP queries on weighted undirected

bipartite graphs. Our method achieves the superior time complexity

in
˜︁O(𝑛) with typical settings. BIRD incorporates a novel technique

called PDU to fit with the bidirectional reusing based procedure

to optimize the computational efficiency. Empirical evaluations

demonstrate that BIRD achieves orders of magnitude speed-up.

9 PROOFS
Lemma 3. Recall that 𝝅 (ℓ) (𝑢𝑖 , 𝑢 𝑗) = 𝛼 (1 − 𝛼)ℓ · Pℓ (𝑢𝑖 , 𝑢 𝑗), which
suggests that the lemma can be proved by deriving for ∀ℓ ≥ 1,

Equation Pℓ (𝑢𝑖 , 𝑢 𝑗)/𝑤𝑢 𝑗
= Pℓ (𝑢 𝑗 , 𝑢𝑖)/𝑤𝑢𝑖 . By induction for ℓ = 1,

P(𝑢𝑖 ,𝑢 𝑗)
𝑤𝑢𝑗

=
1

𝑤𝑢𝑗

∑︁
𝑣∈𝑁𝑢𝑖 ∩𝑁𝑢𝑗

𝑤 (𝑢𝑖 ,𝑣)
𝑤𝑢𝑖

· 𝑤 (𝑣,𝑢 𝑗)
𝑤𝑣

=
1

𝑤𝑢𝑖

∑︁
𝑣∈𝑁𝑢𝑖 ∩𝑁𝑢𝑗

𝑤 (𝑢 𝑗 ,𝑣)
𝑤𝑢𝑗

· 𝑤 (𝑣,𝑢𝑖)
𝑤𝑣

=
P(𝑢 𝑗 ,𝑢𝑖)

𝑤𝑢𝑖

is valid. Assume that above Equation holds for ℓ , then in ℓ + 1,
Pℓ+1 (𝑢𝑖 ,𝑢 𝑗)

𝑤𝑢𝑗
=
∑︁
𝑢∈𝑁 (2)𝑢𝑗

Pℓ (𝑢𝑖 ,𝑢) ·Pℓ (𝑢,𝑢 𝑗)
𝑤𝑢𝑗

=
∑︁
𝑢∈𝑁 (2)𝑢𝑗

Pℓ (𝑢𝑖 ,𝑢) ·P(𝑢 𝑗 ,𝑢)
𝑤𝑢

=
∑︁
𝑢∈𝑁 (2)𝑢𝑗

Pℓ (𝑢,𝑢𝑖) ·P(𝑢 𝑗 ,𝑢)
𝑤𝑢𝑖

=
Pℓ+1 (𝑢 𝑗 ,𝑢𝑖)

𝑤𝑢𝑖
.

Therefore, the lemma holds by completing the math induction.

Fact 2 (Law of Total Variance [16]). Given two random vari-
ables 𝑋 and 𝑌 , Var [𝑋] = E [Var [𝑋 | 𝑌]] + Var [E [𝑋 | 𝑌]] holds.

2265

Lemma 5. Recall in the ℓ-th iteration, the reverse residue vector

𝒓 (ℓ+1)𝒓 (·) in phase-r receives discretized increments from𝑛𝑣 , which

in turn come from the ℓ-th vector 𝒓 (ℓ)𝒓 (·). For ∀𝑢 𝑗 ∈ 𝑈 ,

E
[︂
𝒓 (ℓ+1)𝒓 (𝑢 𝑗)

]︂
= E

[︂
E
[︂
𝒓 (ℓ+1)𝒓 (𝑢𝑖) |𝒓𝒗 (·)

]︂]︂
=

∑︂
(𝑣𝑖 ,𝑢 𝑗) ∈𝐸

E
[︁
𝑋𝑑 (𝑣𝑖 ,𝑢 𝑗) |𝒓𝒗 (·)

]︁
=

∑︂
𝑣𝑖 ∈𝑁𝑢𝑗

𝑤 (𝑢 𝑗 ,𝑣𝑖)
𝑤𝑣𝑖

· E [𝒓𝒗 (𝑣𝑖)]

=
∑︂

𝑣𝑖 ∈𝑁𝑢𝑗

𝑤 (𝑢 𝑗 ,𝑣𝑖)
𝑤𝑣𝑖

· E
[︂
E
[︂
𝒓𝒗 (𝑣𝑖) |𝒓 (ℓ)𝒓 (·)

]︂]︂
(By Lemma 4)

=
∑︂

𝑣𝑖 ∈𝑁𝑢𝑗

𝑤 (𝑢 𝑗 ,𝑣𝑖)
𝑤𝑣𝑖

∑︂
𝑢𝑖 ∈𝑁𝑣𝑗

(1 − 𝛼) · 𝑤 (𝑣𝑗 ,𝑢𝑖)𝑤𝑣𝑗
· E

[︂
𝑟
(ℓ)
𝑟 (𝑢𝑖)

]︂
=

∑︂
𝑢𝑖 ∈𝑁

(2)
𝑢𝑗

(1 − 𝛼) · P(𝑢𝑖 ,𝑢 𝑗) · E
[︂
𝒓 (ℓ)
𝒇
(𝑢𝑖)

]︂
.

When ℓ = 0,E [𝑟 (ℓ)𝑢 (𝑥)] = 0 for all ∀𝑥 ≠ 𝑢 and 𝐸 [𝒓 (ℓ)𝒓 (𝑢)] = 1. Thus,

E
[︂
𝒓 (0)𝒓 (·)

]︂
= 𝝅 (0) (𝑢, ·)/𝛼 holds. By mathematical induction, we

assume it still holds at level ℓ . Based on recursive property that

𝝅 (ℓ+1) (𝑢,𝑢𝑖) =
∑︁
𝑢 𝑗 ∈𝑁 (2) (𝑢𝑖) (1 − 𝛼) · P(𝑢 𝑗 ,𝑢𝑖) · 𝝅 (ℓ) (𝑢,𝑢 𝑗),

we then conclude that E
[︂
𝒓 (ℓ+1)𝒓 (𝑢𝑖)

]︂
= 𝝅 (ℓ+1) (𝑢,𝑢𝑖)/𝛼 . Next for

phase-f, each safe node ∀𝑢𝑖 ∈ 𝑈𝛾 directly shares the conclusion as

E
[︂
𝒓 (ℓ)
𝒇
(𝑢𝑖)

]︂
= E

[︂
𝑤𝑢𝑖
𝑤𝑢
· 𝒓 (ℓ)𝒓 (𝑢𝑖)

]︂
=

𝑤𝑢𝑖
𝑤𝑢
· 𝝅 (ℓ) (𝑢𝑖 ,𝑢)/𝛼 =

𝝅 (ℓ) (𝑢,𝑢𝑖)
𝛼

.

For each unsafe node ∀𝑢 𝑗 ∈ 𝑈 \𝑈𝛾 , it analogously holds the same

prove process because it conducts the same PDU process while just

changing its direction. Thus, E
[︂
𝒓 (ℓ)
𝒇
(𝑢 𝑗)

]︂
= 𝝅 (ℓ) (𝑢,𝑢 𝑗)/𝛼 also holds.

Fact 3 (The Jensen’s Ineqality [50].). For convex function 𝜑 :

(𝑎, 𝑏) → R, inequality𝜑 (𝜆1𝑥1+· · ·+𝜆𝑛𝑥𝑛) ≤ 𝜆1𝜑 (𝑥1)+· · ·+𝜆𝑛𝜑 (𝑥𝑛)
holds for any 𝜆1, . . . , 𝜆𝑛 satisfying 𝜆1+, · · · + 𝜆𝑛 = 1.

Lemma 6. We first bound the variance of each discrete increment

Var
[︁
𝑋𝑑 (𝑣𝑖 ,𝑢 𝑗) |𝒓𝒗 (·)

]︁
≤ E

[︁
𝑋 2

𝑑
(𝑢𝑖 , 𝑣𝑗) |𝒓𝒗 (·)

]︁
= 𝜃 2 · 𝑤 (𝑢 𝑗 ,𝑣𝑖) ·𝒓𝒗 (·)

𝑤𝑢𝑗 ·𝜃
.

Based on Fact 2, the variance for ∀𝑢 𝑗 ∈ 𝑈 , Var
[︂
𝒓 (ℓ+1)𝒓 (𝑢 𝑗)

]︂
equals

E
[︂
Var

[︂
𝒓 (ℓ+1)𝒓 (𝑢 𝑗) |𝒓𝒗 (·)

]︂]︂
⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞

denoted as EV

+Var
[︂
E
[︂
𝒓 (ℓ+1)𝒓 (𝑢 𝑗) |𝒓𝒗 (·)

]︂]︂
⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞

denoted as VE

.

EV = 𝜃 ·
∑︂
𝑣𝑖 ∈𝑢 𝑗

𝑤 (𝑢 𝑗 ,𝑣𝑖)
𝑤𝑢𝑗

· E [𝒓𝒗 (𝑣𝑖)]

= 𝜃 ·
∑︂
𝑣𝑖 ∈𝑢 𝑗

𝑤 (𝑢 𝑗 ,𝑣𝑖)
𝑤𝑢𝑗

·
∑︂

𝑢𝑖 ∈𝑁𝑣𝑖

(1 − 𝛼) · 𝑤 (𝑣𝑖 ,𝑢𝑖)𝑤𝑣𝑖
· E [𝒓 (ℓ)

𝒇
(𝑢𝑖)]

= 𝜃 ·
∑︂
𝑣𝑖 ∈𝑢 𝑗

𝑤 (𝑢 𝑗 ,𝑣𝑖)
𝑤𝑢𝑗

·
∑︂

𝑢𝑖 ∈𝑁𝑣𝑖

(1 − 𝛼) · 𝑤 (𝑣𝑖 ,𝑢𝑖)𝑤𝑣𝑖
· 𝝅 (ℓ) (𝑢𝑖 , 𝑢)

= 𝜃 · 𝝅 (ℓ+1) (𝑢 𝑗 , 𝑢);

VE = Var

⎡⎢⎢⎢⎢⎣
∑︂

𝑣𝑖 ∈𝑁𝑢𝑗

𝑤 (𝑢𝑗 ,𝑣𝑖) ·𝒓𝒗 (𝑣𝑖)
𝑤𝑢𝑗

⎤⎥⎥⎥⎥⎦ ≤
∑︂

𝑣𝑖 ∈𝑁𝑢𝑗

𝑤 (𝑢𝑗 ,𝑣𝑖)
𝑤𝑢𝑗

· Var [𝒓𝒗 (𝑣𝑖)]

holds based on the convex property of the variance function in Fact

3. Next, we aim to bound the variance of residue 𝒓𝒗 (𝑣𝑖). By applying

the total variance law again and repeat similar prove process above,

we can further derive that Var [𝒓𝒗 (𝑣𝑖)] is at most∑︂
𝑢𝑖 ∈𝑁𝑣𝑖

(1 − 𝛼) · 𝑤 (𝑣𝑖 ,𝑢𝑖)𝑤𝑣𝑖
·
[︂
𝜃 · 𝝅 (ℓ) (𝑢𝑖 ,𝑢) + (1 − 𝛼) · Var [𝑟 (ℓ)𝑢 (𝑢𝑖)]

]︂
.

Combining with EV andVE , we have Var
[︂
𝒓 (ℓ+1)𝒓 (𝑢 𝑗)

]︂
≤

2𝜃 · 𝝅 (ℓ+1) (𝑢 𝑗 ,𝑢) +
∑︁
𝑢𝑖 ∈𝑁

(2)
𝑢𝑗

(1 − 𝛼)2 · P(𝑢𝑖 ,𝑢 𝑗) · Var [𝒓 (ℓ)𝒓 (𝑢𝑖)] .

Based on this inequality, we have Var
[︂
𝒓 (ℓ)𝒓 (𝑢 𝑗)

]︂
≤ 2𝜃 · 𝝅 (ℓ) (𝑢 𝑗 ,𝑢) .

We next consider the variance of ˆ︁B
(ℓ) (𝑢,𝑢 𝑗) = 𝒓 (ℓ)𝒓 (𝑢 𝑗) + 𝒓 (ℓ)𝒇

(𝑢 𝑗) .
Note that in phase-f, we re-use the estimation of the reverse

residue for each safe node ∀𝑢 𝑗 ∈ 𝑈𝛾 . It then follows that

Var
[︂
ˆ︁B
(ℓ) (𝑢,𝑢 𝑗)

]︂
= Var

[︃
(1 +

𝑤𝑢 𝑗

𝑤𝑢
) · 𝒓 (ℓ)𝒓 (𝑢 𝑗)

]︃
= (1 +

𝑤𝑢 𝑗

𝑤𝑢
)2 · Var[︂

𝒓 (ℓ)𝒓 (𝑢 𝑗)
]︂
≤ (1 + 𝛾)2 · 2𝜃 · 𝝅 (ℓ) (𝑢 𝑗 ,𝑢) ≤ 2𝜃 · (1 + 𝛾)2 · B (ℓ) (𝑢,𝑢 𝑗) .

Besides, for each node 𝑢 𝑗 ∈ 𝑈 \ 𝑈𝛾 , since these nodes share no

computation in the reverse residue, we thus need to bound the

variance of 𝒓 (ℓ)
𝒇

from scratch. By performing similar proof steps in

reverse residue, we have Var
[︂
𝒓 (ℓ)
𝒇
(𝑢 𝑗)

]︂
≤ 2𝜃 · 𝝅 (ℓ) (𝑢,𝑢 𝑗) so that

Var
[︂
ˆ︁B
(ℓ) (𝑢,𝑢 𝑗)

]︂
≤ 2 ·

(︂
Var

[︂
𝒓 (ℓ)
𝒇
(𝑢 𝑗)

]︂
+ Var

[︂
𝒓 (ℓ)𝒓 (𝑢 𝑗)

]︂)︂
≤ 4𝜃 · B (ℓ) (𝑢,𝑢 𝑗) .

We then finish proof for all safe and unsafe nodes in𝑈 .

Equation (15). In phase-r, when conducting PDU from node 𝑢𝑖 to

𝑣 𝑗 , C
(ℓ)
𝑟 (𝑢𝑖 , 𝑣𝑗) equals 1 if𝑋 (𝑢𝑖 , 𝑣𝑗) = 𝑤 (𝑢𝑖 , 𝑣𝑗)/𝑤𝑣𝑗 · (1−𝛼) ·𝒓

(ℓ)
𝒓 (𝑢𝑖) ≥

𝜃 . Otherwise C
(ℓ)
𝑟 (𝑢𝑖 , 𝑣𝑗) equals 1 with probability

𝑋 (𝑢𝑖 ,𝑣𝑗)
𝜃

and 0

with 1 − 𝑋 (𝑢𝑖 ,𝑣𝑗)
𝜃

. Thus, E
[︂
C
(ℓ)
𝑟 (𝑣𝑖 ,𝑢 𝑗) |𝒓𝒗 (·)

]︂
=

𝑤 (𝑢 𝑗 ,𝑣𝑖)
𝜃 ·𝑤𝑣𝑖

· 𝒓𝒗 (𝑣𝑖) and

E
[︂
C
(ℓ)
𝑟 (𝑢𝑖 , 𝑣𝑗) |𝒓

(ℓ)
𝒓 (·)

]︂
=
(1−𝛼) ·𝑤 (𝑣𝑗 ,𝑢𝑖)

𝜃 ·𝑤𝑣𝑗
· 𝒓 (ℓ)𝒓 (𝑢𝑖) . We further have:

𝐿−1∑︂
ℓ=0

∑︂
(𝑢,𝑣) ∈𝐸

E
[︂
C
(ℓ)
𝑟 (𝑢, 𝑣)

]︂
=

𝐿−1∑︂
ℓ=0

∑︂
(𝑣𝑗 ,𝑢𝑖) ∈𝐸

E
[︂
C
(ℓ)
𝑟 (𝑢𝑖 , 𝑣𝑗)

]︂
≤ (1−𝛼)

𝛼𝜃
·
𝐿−1∑︂
ℓ=0

∑︂
(𝑣𝑗 ,𝑢𝑖) ∈𝐸

𝑤 (𝑣𝑗 ,𝑢𝑖)
𝑤𝑣𝑗

· 𝝅 (ℓ) (𝑢𝑖 ,𝑢)

≤ (1−𝛼)
𝛼𝜃

·
∑︂
𝑣𝑗 ∈𝑉

∞∑︂
ℓ=1

∑︂
𝑢𝑖 ∈𝑁𝑣𝑗

𝑤 (𝑣𝑗 ,𝑢𝑖)
𝑤𝑣𝑗

· 𝝅 (ℓ) (𝑢𝑖 ,𝑢)

≤ (1−𝛼)
𝛼𝜃

·
∑︂
𝑣𝑗 ∈𝑉

P[𝑣𝑗 → 𝑢]; And then

𝐿−1∑︂
ℓ=0

∑︂
(𝑢,𝑣) ∈𝐸

E
[︂
C
(ℓ)
𝑟 (𝑣,𝑢)

]︂
= 1

𝜃
·
𝐿−1∑︂
ℓ=0

∑︂
(𝑢 𝑗 ,𝑣𝑖) ∈𝐸

𝑤 (𝑢 𝑗 ,𝑣𝑖)
𝑤𝑣𝑖

· E [𝒓𝒗 (𝑣𝑖)] (Expectation Property)

≤ 1−𝛼
𝜃
·
𝐿−1∑︂
ℓ=0

∑︂
(𝑢 𝑗 ,𝑣𝑖) ∈𝐸

𝑤 (𝑢 𝑗 ,𝑣𝑖)
𝑤𝑣𝑖

·
∑︂

𝑢𝑖 ∈𝑁𝑣𝑖

𝑤 (𝑣𝑖 ,𝑢𝑖)
𝑤𝑣𝑖

· E [𝑟 (ℓ)𝑟 (𝑢𝑖)]

= 1

𝛼𝜃
·
𝐿−1∑︂
ℓ=0

∑︂
𝑢 𝑗 ∈𝑈

∑︂
𝑢𝑖 ∈𝑁

(2)
𝑢𝑗

(1 − 𝛼) · 𝑤 (𝑢 𝑗 ,𝑣𝑖)
𝑤𝑣𝑖

· 𝑤 (𝑣𝑖 ,𝑢𝑖)
𝑤𝑣𝑖

· 𝝅 (ℓ) (𝑢𝑖 ,𝑢)

= 1

𝛼𝜃
·
𝐿−1∑︂
ℓ=0

∑︂
𝑢 𝑗 ∈𝑈

𝝅 (ℓ+1) (𝑢 𝑗 ,𝑢) ≤ 1

𝛼𝜃
·
∑︂

𝑢 𝑗 ∈𝑈
𝝅 (𝑢 𝑗 ,𝑢) .

ACKNOWLEDGMENTS
This research is supported by Singapore MOE AcRF Tier-1 Seed

Funding (RS05/21) and Tier-2 funding (MOE-T2EP20122-0003).

2266

REFERENCES
[1] [n.d.]. https://drive.google.com/file/d/1s0D8yT9RSIKKzJynh34H9uEogUUB6_

7A/view?usp=sharing.

[2] 2003. MovieLens 1M Dataset. https://grouplens.org/datasets/movielens.

[3] 2006. AOL Query Logs. http://www.cim.mcgill.ca/~dudek/206/Logs/AOL-user-

ct-collection.

[4] 2010. Last.fm Dataset Version 1.2. http://ocelma.net/

MusicRecommendationDataset/lastfm-360K.html.

[5] 2012. KDD Cup 2012, Track 2. https://www.kaggle.com/c/kddcup2012-track2.

[6] 2014. Amazon product data. https://jmcauley.ucsd.edu/data/amazon.

[7] 2015. Avito Context Ad Clicks. https://www.kaggle.com/c/avito-context-ad-

clicks/data.

[8] Tasos Anastasakos, Dustin Hillard, Sanjay Kshetramade, and Hema Raghavan.

2009. A collaborative filtering approach to ad recommendation using the query-

ad click graph. In Proceedings of the 18th ACM conference on Information and
knowledge management. https://doi.org/10.1145/1645953.1646267

[9] Reid Andersen, Christian Borgs, Jennifer Chayes, John Hopcraft, Vahab S Mir-

rokni, and Shang-Hua Teng. 2007. Local computation of pagerank contributions.

In Algorithms and Models for the Web-Graph: 5th International Workshop, WAW
2007, San Diego, CA, USA, December 11-12, 2007. Proceedings 5. Springer, 150–165.

[10] Reid Andersen, Fan Chung, and Kevin Lang. 2006. Local graph partitioning

using pagerank vectors. In 2006 47th Annual IEEE Symposium on Foundations of
Computer Science (FOCS’06). IEEE, 475–486.

[11] Ioannis Antonellis, Hector Garcia-Molina, and Chi-Chao Chang. 2008. Simrank++

query rewriting through link analysis of the clickgraph (poster). In Proceedings
of the 17th international conference on World Wide Web. 1177–1178.

[12] Konstantin Avrachenkov, Nelly Litvak, Danil Nemirovsky, and Natalia Osipova.

2007. Monte Carlo methods in PageRank computation: When one iteration is

sufficient. SIAM J. Numer. Anal. 45, 2 (2007), 890–904.
[13] Alejandro Bellogin, Pablo Castells, and Ivan Cantador. 2011. Precision-oriented

evaluation of recommender systems: an algorithmic comparison. In Proceedings
of the fifth ACM conference on Recommender systems. 333–336.

[14] Moses Charikar, Kevin Chen, and Martin Farach-Colton. 2002. Finding frequent

items in data streams. In International Colloquium on Automata, Languages, and
Programming. Springer, 693–703.

[15] Chih-Ming Chen, Chuan-Ju Wang, Ming-Feng Tsai, and Yi-Hsuan Yang. 2019.

Collaborative similarity embedding for recommender systems. In The World
Wide Web Conference. 2637–2643.

[16] Kai Lai Chung. 2001. A course in probability theory. Academic press.

[17] Giulio Cimini, Alessandro Carra, Luca Didomenicantonio, and Andrea Zaccaria.

2022. Meta-validation of bipartite network projections. Communications Physics
5, 1 (2022), 76.

[18] Hongbo Deng, Michael R Lyu, and Irwin King. 2009. A generalized co-hits

algorithm and its application to bipartite graphs. In Proceedings of the 15th ACM
SIGKDD international conference on Knowledge discovery and data mining. 239–
248.

[19] Prasenjit Dey, Kunal Goel, and Rahul Agrawal. 2020. P-Simrank: Extending

Simrank to Scale-free bipartite networks. In Proceedings of The Web Conference
2020. 3084–3090.

[20] Alessandro Epasto, Jon Feldman, Silvio Lattanzi, Stefano Leonardi, and Vahab

Mirrokni. 2014. Reduce and aggregate: similarity ranking in multi-categorical

bipartite graphs. In Proceedings of the 23rd international conference on World wide
web. 349–360.

[21] Dániel Fogaras, Balázs Rácz, Károly Csalogány, and Tamás Sarlós. 2005. Towards

scaling fully personalized pagerank: Algorithms, lower bounds, and experiments.

Internet Mathematics 2, 3 (2005), 333–358.
[22] Yasuhiro Fujiwara, Makoto Nakatsuji, Makoto Onizuka, andMasaru Kitsuregawa.

2012. Fast and exact top-k search for random walk with restart. arXiv preprint
arXiv:1201.6566 (2012).

[23] Qian Ge, Yu Liu, Yinghao Zhao, Yuetian Sun, Lei Zou, Yuxing Chen, and Anqun

Pan. [n.d.]. Efficient and Accurate SimRank-based Similarity Joins: Experiments,

Analysis, and Improvement. ([n. d.]).

[24] Taher H Haveliwala. 2002. Topic-sensitive pagerank. In Proceedings of the 11th
international conference on World Wide Web. 517–526.

[25] Taher H Haveliwala and Sepandar D Kamvar. 2003. The second eigenvalue of the
Google matrix. Technical Report. Citeseer.

[26] Jonathan L. Herlocker, Joseph A. Konstan, Loren G. Terveen, and John T. Riedl.

2004. Evaluating collaborative filtering recommender systems. ACM Transactions
on Information Systems (Jan 2004), 5–53. https://doi.org/10.1145/963770.963772

[27] Guanhao Hou, Qintian Guo, Fangyuan Zhang, Sibo Wang, and Zhewei Wei. 2023.

Personalized PageRank on Evolving Graphs with an Incremental Index-Update

Scheme. Proceedings of the ACM on Management of Data 1, 1 (2023), 1–26.
[28] Paul Jaccard. 1912. The distribution of the flora in the alpine zone. 1. New

phytologist 11, 2 (1912), 37–50.
[29] Kalervo Jaervelin and Jaana Kekaelaeinen. 2017. IR evaluation methods for

retrieving highly relevant documents. ACM SIGIR forum (2017).

[30] Glen Jeh and Jennifer Widom. 2002. Simrank: a measure of structural-context

similarity. In Proceedings of the eighth ACM SIGKDD international conference on
Knowledge discovery and data mining. 538–543.

[31] Yehuda Koren. 2008. Factorization meets the neighborhood. In Proceedings of
the 14th ACM SIGKDD international conference on Knowledge discovery and data
mining. https://doi.org/10.1145/1401890.1401944

[32] Lina Li, Cuiping Li, Hong Chen, and Xiaoyong Du. 2013. MapReduce-Based

SimRank Computation and Its Application in Social Recommender System. In

2013 IEEE International Congress on Big Data. https://doi.org/10.1109/bigdata.

congress.2013.26

[33] Yiming Li, Yanyan Shen, Lei Chen, and Mingxuan Yuan. 2023. Zebra: When

Temporal Graph Neural Networks Meet Temporal Personalized PageRank. Pro-
ceedings of the VLDB Endowment 16, 6 (2023), 1332–1345.

[34] Meihao Liao, Rong-Hua Li, Qiangqiang Dai, Hongyang Chen, Hongchao Qin,

and Guoren Wang. 2023. Efficient Personalized PageRank Computation: The

Power of Variance-Reduced Monte Carlo Approaches. Proceedings of the ACM
on Management of Data 1, 2 (2023), 1–26.

[35] Meihao Liao, Rong-Hua Li, Qiangqiang Dai, and Guoren Wang. 2022. Efficient

personalized PageRank computation: A spanning forests sampling based ap-

proach. In Proceedings of the 2022 International Conference on Management of
Data. 2048–2061.

[36] Ningyi Liao, Dingheng Mo, Siqiang Luo, Xiang Li, and Pengcheng Yin. 2022.

SCARA: scalable graph neural networks with feature-oriented optimization.

arXiv preprint arXiv:2207.09179 (2022).
[37] Ningyi Liao, Dingheng Mo, Siqiang Luo, Xiang Li, and Pengcheng Yin. 2024.

Scalable decoupling graph neural network with feature-oriented optimization.

The VLDB Journal 33, 3 (2024), 667–683.
[38] Boge Liu, Long Yuan, Xuemin Lin, Lu Qin, Wenjie Zhang, and Jingren Zhou.

2019. Efficient (𝛼 , 𝛽)-core computation: An index-based approach. In The World
Wide Web Conference. 1130–1141.

[39] Qin Liu, Zhenguo Li, John CS Lui, and Jiefeng Cheng. 2016. Powerwalk: Scalable

personalized pagerank via random walks with vertex-centric decomposition.

In Proceedings of the 25th ACM International on Conference on Information and
Knowledge Management. 195–204.

[40] Peter Lofgren, Siddhartha Banerjee, and Ashish Goel. 2015. Bidirectional pager-

ank estimation: From average-case to worst-case. InAlgorithms andModels for the
Web Graph: 12th International Workshop, WAW 2015, Eindhoven, The Netherlands,
December 10-11, 2015, Proceedings 12. Springer, 164–176.

[41] Peter Lofgren, Siddhartha Banerjee, and Ashish Goel. 2015. Bidirectional pager-

ank estimation: From average-case to worst-case. InAlgorithms andModels for the
Web Graph: 12th International Workshop, WAW 2015, Eindhoven, The Netherlands,
December 10-11, 2015, Proceedings 12. Springer, 164–176.

[42] Peter Lofgren and Ashish Goel. 2013. Personalized pagerank to a target node.

arXiv preprint arXiv:1304.4658 (2013).
[43] Peter A Lofgren, Siddhartha Banerjee, Ashish Goel, and Comandur Seshadhri.

2014. Fast-ppr: Scaling personalized pagerank estimation for large graphs. In

Proceedings of the 20th ACM SIGKDD international conference on Knowledge
discovery and data mining. 1436–1445.

[44] Siqiang Luo, Xiaokui Xiao, Wenqing Lin, and Ben Kao. 2019. BATON: Batch

one-hop personalized PageRanks with efficiency and accuracy. IEEE Transactions
on Knowledge and Data Engineering 32, 10 (2019), 1897–1908.

[45] Michael Mitzenmacher and Eli Upfal. 2017. Probability and computing: Random-
ization and probabilistic techniques in algorithms and data analysis. Cambridge

university press.

[46] Dingheng Mo and Siqiang Luo. 2021. Agenda: Robust personalized PageRanks

in evolving graphs. In Proceedings of the 30th ACM International Conference on
Information & Knowledge Management. 1315–1324.

[47] Netflix. 2009. Netflix Prize Data Set. (2009). http://archive.ics.uci.edu/ml/

datasets/Netflix+Prize

[48] Naoto Ohsaka, Takanori Maehara, and Ken-ichi Kawarabayashi. 2015. Efficient

pagerank tracking in evolving networks. In Proceedings of the 21th ACM SIGKDD
international conference on knowledge discovery and data mining. 875–884.

[49] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. 1998. The
pagerank citation ranking: Bring order to the web. Technical Report. Technical
report, stanford University.

[50] Endre Pap and Mirjana Štrboja. 2010. Generalization of the Jensen inequality for

pseudo-integral. Information Sciences 180, 4 (2010), 543–548.
[51] Georgios A Pavlopoulos, Panagiota I Kontou, Athanasia Pavlopoulou, Costas

Bouyioukos, Evripides Markou, and Pantelis G Bagos. 2018. Bipartite graphs in

systems biology and medicine: a survey of methods and applications. GigaScience
7, 4 (Apr 2018). https://doi.org/10.1093/gigascience/giy014

[52] Ryan A. Rossi and Nesreen K. Ahmed. 2015. The Network Data Reposi-

tory with Interactive Graph Analytics and Visualization. In AAAI. https:

//networkrepository.com

[53] Ming-Sheng Shang, Yan Fu, and Duan-Bin Chen. 2008. Personal recommendation

using weighted bipartite graph projection. In 2008 International Conference on
Apperceiving Computing and Intelligence Analysis. IEEE, 198–202.

2267

https://drive.google.com/file/d/1s0D8yT9RSIKKzJynh34H9uEogUUB6_7A/view?usp=sharing
https://drive.google.com/file/d/1s0D8yT9RSIKKzJynh34H9uEogUUB6_7A/view?usp=sharing
https://grouplens.org/ datasets/movielens
http://www.cim.mcgill.ca/ ~dudek/206/Logs/AOL-user-ct-collection
http://www.cim.mcgill.ca/ ~dudek/206/Logs/AOL-user-ct-collection
http://ocelma.net/ MusicRecommendationDataset/lastfm-360K.html
http://ocelma.net/ MusicRecommendationDataset/lastfm-360K.html
https://www.kaggle. com/c/kddcup2012-track2
https://jmcauley.ucsd. edu/data/amazon
https://www.kaggle.com/c/avito-context-ad-clicks/data
https://www.kaggle.com/c/avito-context-ad-clicks/data
https://doi.org/10.1145/1645953.1646267
https://doi.org/10.1145/963770.963772
https://doi.org/10.1145/1401890.1401944
https://doi.org/10.1109/bigdata.congress.2013.26
https://doi.org/10.1109/bigdata.congress.2013.26
http://archive.ics.uci.edu/ml/datasets/Netflix+Prize
http://archive.ics.uci.edu/ml/datasets/Netflix+Prize
https://doi.org/10.1093/gigascience/giy014
https://networkrepository.com
https://networkrepository.com

[54] Michael Stauffer, Thomas Tschachtli, Andreas Fischer, and Kaspar Riesen. 2017.

A survey on applications of bipartite graph edit distance. In Graph-Based Repre-
sentations in Pattern Recognition: 11th IAPR-TC-15 International Workshop, GbRPR
2017, Anacapri, Italy, May 16–18, 2017, Proceedings 11. Springer, 242–252.

[55] Hanzhi Wang and Zhewei Wei. 2023. Estimating Single-Node PageRank in

O˜ (𝑚𝑖𝑛{𝑑𝑡 ,
√
𝑚}) Time. Proceedings of the VLDB Endowment 16, 11 (2023),

2949–2961.

[56] Hanzhi Wang, Zhewei Wei, Junhao Gan, Sibo Wang, and Zengfeng Huang. 2020.

Personalized pagerank to a target node, revisited. In Proceedings of the 26th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.
657–667.

[57] Kai Wang, Xuemin Lin, Lu Qin, Wenjie Zhang, and Ying Zhang. 2019. Vertex

Priority Based Butterfly Counting for Large-scale Bipartite Networks. PVLDB
(2019).

[58] SiboWang, Youze Tang, Xiaokui Xiao, Yin Yang, and Zengxiang Li. 2016. Hubppr:

effective indexing for approximate personalized pagerank. Proceedings of the
VLDB Endowment 10, 3 (2016), 205–216.

[59] Sibo Wang, Renchi Yang, Xiaokui Xiao, Zhewei Wei, and Yin Yang. 2017. FORA:

simple and effective approximate single-source personalized pagerank. In Pro-
ceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discov-
ery and Data Mining. 505–514.

[60] Xiang Wang, Xiangnan He, Meng Wang, Fuli Feng, and Tat-Seng Chua. 2019.

Neural graph collaborative filtering. In Proceedings of the 42nd international ACM

SIGIR conference on Research and development in Information Retrieval. 165–174.
[61] Xiuli Wang, Zhuoming Xu, Xiutao Xia, and Chengwang Mao. 2017. Computing

user similarity by combining simrank++ and cosine similarities to improve

collaborative filtering. In 2017 14th Web Information Systems and Applications
Conference (WISA). IEEE, 205–210.

[62] Zhewei Wei, Xiaodong He, Xiaokui Xiao, Sibo Wang, Shuo Shang, and Ji-Rong

Wen. 2018. Topppr: top-k personalized pagerank queries with precision guar-

antees on large graphs. In Proceedings of the 2018 International Conference on
Management of Data. 441–456.

[63] Hao Wu, Junhao Gan, Zhewei Wei, and Rui Zhang. 2021. Unifying the global and

local approaches: an efficient power iteration with forward push. In Proceedings
of the 2021 International Conference on Management of Data. 1996–2008.

[64] Renchi Yang. 2022. Efficient and Effective Similarity Search over Bipartite Graphs.

In Proceedings of the ACM Web Conference 2022. 308–318.
[65] Renchi Yang, Jieming Shi, Keke Huang, and Xiaokui Xiao. 2022. Scalable and

Effective Bipartite Network Embedding. In Proceedings of the 2022 International
Conference on Management of Data. 1977–1991.

[66] Minji Yoon, Jinhong Jung, and U Kang. 2018. Tpa: Fast, scalable, and accurate

method for approximate randomwalk with restart on billion scale graphs. In 2018
IEEE 34th International Conference on Data Engineering (ICDE). IEEE, 1132–1143.

[67] Zulun Zhu, Sibo Wang, Siqiang Luo, Dingheng Mo, Wenqing Lin, and Chunbo Li.

2024. Personalized PageRanks over Dynamic Graphs–The Case for Optimizing

Quality of Service. In Proceedings of the 2024 IEEE 40th International Conference
on Data Engineering.

2268

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Notations
	2.2 Hidden Personalized PageRank
	2.3 Problem Definition

	3 Existing Techniques
	3.1 Classical Methods
	3.2 Sequential Select Push
	3.3 Baselines Answering BHPP Queries

	4 The BIRD Algorithm
	4.1 High-level Ideas
	4.2 Truncated BHPP
	4.3 Push Discretization Unit
	4.4 The BIRD Procedure

	5 Theoretical Analysis
	5.1 Correctness
	5.2 Approximation Quality Guarantee
	5.3 Efficiency Analysis
	5.4 Discussion on Settings of δ

	6 Extra Related Work and Discussion
	7 Experiments
	8 Conclusion
	9 Proofs
	References

