
ArcheType: A Novel Framework for Open-Source
Column Type Annotation using Large Language Models

Benjamin Feuer

New York University

bf996@nyu.edu

Yurong Liu

New York University

yurong.liu@nyu.edu

Chinmay Hegde

New York University

chinmay.h@nyu.edu

Juliana Freire

New York University

juliana.freire@nyu.edu

ABSTRACT
Existing deep-learning approaches to semantic column type anno-

tation (CTA) have important shortcomings: they rely on semantic

types which are fixed at training time; require a large number of

training samples per type; incur high run-time inference costs; and

their performance can degrade when evaluated on novel datasets,

even when types remain constant. Large language models have ex-

hibited strong zero-shot classification performance on a wide range

of tasks and in this paperwe explore their use for CTA.We introduce

ArcheType, a simple, practical method for context sampling, prompt

serialization, model querying, and label remapping, which enables

large language models to solve CTA problems in a fully zero-shot

manner. We ablate each component of our method separately, and

establish that improvements to context sampling and label remap-

ping provide the most consistent gains. ArcheType establishes a

new state-of-the-art performance on zero-shot CTA benchmarks

(including three new domain-specific benchmarks which we re-

lease along with this paper), and when used in conjunction with

classical CTA techniques, it outperforms a SOTA DoDuo model on

the fine-tuned SOTAB benchmark.

PVLDB Reference Format:
Benjamin Feuer, Yurong Liu, Chinmay Hegde, and Juliana Freire.

ArcheType: A Novel Framework for Open-Source

Column Type Annotation using Large Language Models. PVLDB, 17(9):

2279 - 2292, 2024.

doi:10.14778/3665844.3665857

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at

https://github.com/penfever/ArcheType.

1 INTRODUCTION
The goal of semantic column type annotation (CTA) is to asso-

ciate each column of a relational table with one among several

pre-defined semantic types that go beyond atomic types such as

string, integer, or Boolean. CTA is a useful computational primitive

in numerous settings, including data cleaning, where detection,

correction, and transformation are performed using rules based on

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 17, No. 9 ISSN 2150-8097.

doi:10.14778/3665844.3665857

data types [24, 40], and schema matching for data discovery, where

the semantic type can be used to constrain the search for matching

attributes [22, 26]. Beyond being useful from a computational stand-

point, efficient methods for CTA can also enable democratization

of access to large, well-curated datasets by reducing labeling costs.

Learning-Based CTA. Recent approaches to CTA have increas-

ingly been based on learning-based techniques. Deep learning

approaches rely on the availability of large training corpora of

columns annotated with their semantic types to train a deep neu-

ral network from scratch that can perform CTA on new, unseen

columns of relational tables [21, 53]. Fine-tuned models, on the

other hand, rely on pre-trained transformer-based language models

(LMs) such as BERT [51] and fine-tune them for the specific task

of CTA [10, 45]. Learning-based approaches have been shown to

be effective for identifying generic types for which there exists

sufficient training data. However, these approaches exhibit impor-

tant limitations. First and foremost, their performance degrades

substantially when evaluated against test datasets that have been

acquired from different sources even when their column types match
closely. This problem is sometimes called distribution shift [38]. An
important desideratum of deep learning models is that they exhibit

predictable model behavior under natural distribution shifts, i.e.,

when evaluation data which differs from the data on which a model

was trained due to natural factors. However, recent works show that

the vast majority of standard deep models for image classification

perform significantly worse under natural shifts [18, 29, 41].

We posit that the same phenomenon occurs in closed-set deep

learning models for CTA. Suppose we fix a given column type

location and that our pre-training distribution is sourced from

NYC Open Data [32]. Then we might see entries like Broadway,
SoHo, Jamaica, which are locations in New York City. But if we

use this model to perform CTA on a dataset from the Brazilian

Dados Abertos [16], it is unlikely to assign the location label to
Corcovado and Lapa, which are locations in Rio de Janeiro. As

a simple empirical validation of this problem, we compared the

performance of the fine-tuned DoDuo CTA model [45], on the

Schema.Org Table Annotation Benchmark (SOTAB) [28]. We use

the DoDuo variant pretrained on the similar VizNet dataset [19],

reusing CTA labels from that benchmark wherever possible. We

find that performance declines over 60% (from 84.8% to 23.8%).

Even if existing models did not struggle under shift, their utility

is still constrained by the fact that label sets have to be specified
at training time. However, real-world data is vast, and pre-trained

2279

https://doi.org/10.14778/3665844.3665857
https://github.com/penfever/ArcheType
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3665844.3665857
https://www.acm.org/publications/policies/artifact-review-and-badging-current

Prompt SerializationContext Sampling Model Querying Label Remapping

Column

Alaska

Colorado

Kentucky

Arizona

Nevada

New Jersey

Task: Classify
the column given to
you into only one
of these types:
<CLASSNAMES>. Input
column: <CONTEXT>.
Type: "

<CONTEXT>

'Newspaper or
Publication’,

'Numeric
Identifier’,

'Town’, 'State’,
'Headline’,

'Author Byline',
'Article'

State Names
Alaska

Colorado

Kentucky

Arkansas

<CLASSNAMES>

StateState

State

<ORIGINAL ANSWER>

<ORIGINAL ANSWER>

<GROUND TRUTH> <REMAPPED ANSWER>

Figure 1: ArcheType: a four-stage method for column type annotation. (1) In the Context Sampling stage, an algorithm selects a few
representative samples from a column. (2) In the Prompt Serialization stage, the context and instruction string are serialized in a model-specific,
token-efficient manner. (3) The prompt is input to a LLM in the Model Querying stage. (4) If the output of the LLM is not one of the allowable
categories, the Label Remapping stage assigns the model output to a class.

type labels rarely map cleanly to categories of interest in newly-

encountered datasets; in many scenarios datasets do not have a

schema which fit neatly into these pre-trained types.

Consider the NYC Open Data repository [32] which contains

thousands of datasets published by NYC agencies and includes

NYC-specific semantic types such as public schools, agencies, parks,

and boroughs. As point of reference regarding the specificity of

this collection, Ota et al. [34] computed the overlap between the

contents of datasets in NYC Open Data and word vectors trained

with GloVe (which usesWikipedia as a source) and found that GloVe

covers only 8% of the terms in the collection. We note that existing

ontologies and taxonomies such as DBpedia [2] define generic types

that encompass the NYC-specific types, gor example, a high school

can be classified as EducationalInstitution. However, this type
includes many institution types that are not public schools, such

as colleges, medical centers and libraries. If we use this semantic

type to find tables to augment information about NYC high schools,

many irrelevant tables would be retrieved.

Further, training a model to recognize new types is both time-
consuming and costly as it requires the acquisition of labeled data

and the training of new deep models. This can severely limit the ap-

plicability of learning-based approaches [10, 21, 45] to long-tail and

rare types, which can negatively affect downstream applications.

Moreover, the volume of training data required by modern CTA
models is substantial. For example, Sherlock [21] was trained on

over 675,000 columns retrieved from the VizNet corpus to recognize

78 semantic types from DBpedia [2]. Over 397,000 tables were used

for training versions of the current state-of-the-art DoDuo [45].

This imposes high data cleaning and labeling costs which can be

oppressive, particularly for infrequent classes.

Using LLMs for CTA. As a silver lining, the recent dramatic ad-

vances in generative large language models (LLMs) open the op-

portunity to address these challenges and create robust models for

a broad set of semantic types without requiring large volumes of

labeled data. LLMs are trained over a very large and diverse corpus

and they are thus able to accumulate knowledge that covers a plethora
of semantic types. Furthermore, these modes have the capability to

perform in-context learning, where the label set can be specified

as user-defined context during inference time, making it possible

to perform open-set classification even for rare types. For example,

when presented with the text Stuyvesant, GPT-3.5-Turbo learns
in-context that it is being asked to perform classification and asserts

it is a High School in New York City. This capability enables

zero-shot CTA as well as the generation of labels that can be used

to fine-tune models for domain-specific types. LLMs have also been

shown to perform much better than other learning-based models

under distribution shift [39], opening the possibility for the creation

of robust CTA models.

Our contributions. In this paper, we take several steps towards

establishing the effectiveness and limitations of LLMs for CTA. We

discuss the challenges involved in using LLMs for CTA and system-

atically delineate the different components required to performCTA

using LLMs: sampling the data context, prompt serialization, model

querying, and label remapping (illustrated in Fig. 1). We propose

novel methods for these components and assess their effectiveness.

We also explore the impact of these components on two different

modes of operation: (a) using existing LLMs for zero-shot CTA and

(b) fine-tuning LLMs for CTA based on a training set of labeled

column types. For both modes of operation, we report a series of

results for open-source LLMs. As a basis of comparison we also study

and report the performance of a closed-source LLM (the GPT fam-

ily). However, we emphasize open-source LLMs in our work, since

closed-source models are not transparent: since we do not know

how they were constructed, it may be difficult to understand their

behavior; and since closed-source LLMs are constantly updated,

reported results cannot be reproduced [7].

We perform a detailed evaluation of our approach against state-

of-the-art learning-based CTA systems [10, 21, 45] as well as a new

zero-shot approach [25]. We use established benchmarks [6, 11, 19]

and the SOTAB benchmark, which was designed for comparing the

2280

performance of annotation systems on CTA tasks [28]. However,

we observe that these benchmarks are primarily composed of well-

known semantic types drawn from widely-used ontologies and

taxonomies. To explore the breadth of LLM subject knowledge as

well as how LLM-based CTA performs for a wide range of types

(including rare, domain-specific types with novel characteristics),

we also introduce three new benchmark datasets for CTA, described

in Sec. 4.

Our main contributions can be summarized as follows:

(1) We introduce ArcheType, an open-source CTA framework

centered around large language models, which leverages their

strengths, adapts to their limitations, and is compatible with

both open-source and closed-source LLMs.

(2) We enumerate four essential components for any LLM-based

CTA (LLM-CTA) approach: sampling, serialization, querying,

and label remapping. We propose new approaches for context

sampling and label remapping, and demonstrate their impor-

tance to the overall accuracy of LLM-CTA (Sec. 3).

(3) We introduce three new zero-shot CTA benchmarks that cover

a range of domain-specific schemas and attribute types (Sec. 4).

(4) Through a detailed experimental evaluation (Sec. 5), we show

that ArcheType achieves strong fine-tuned performance and

state-of-the-art zero-shot performance on a large and diverse

suite of benchmarks, while requiring far less tabular data for

both training and inference than existing methods (Sec. 5.2).

2 BACKGROUND: FOUNDATION MODELS
The term foundation model applies to large machine learning

models that are pre-trained on vast amounts of raw data to capture

a wide range of knowledge, and then fine-tuned on more specific

tasks or datasets [3]. In the case of large language models (LLMs),

the pre-training objective is autoregressive; the model is tasked

with predicting the next word in a sequence based on the context

provided by the preceding words. The scale of LLMs results in new

emergent capabilities, and their effectiveness across a multitude of

tasks incentivizes the use of foundation models as a starting point

(or replacement) for fine-tuning task-specific models. However, this

last step must be done with care since the defects of the foundation

model are inherited by all the adapted models downstream [3].

2.1 LLMs and Tabular Data
The development of LLMs has largely been driven in the context

of NLP tasks as question-answering, logical inference, and word

disambiguation. Recent efforts based on instruction-following, such

as [35] and [8], have demonstrated that fine-tuning foundational

LLMs on a carefully curated corpus of prompt-response pairs is an

effective strategy for more generic classification tasks. However,

these approaches focus on natural language datasets that have small

label sets, clean labels, and balanced classes.

There have been only a handful of attempts to apply LLMs to

tasks that are germane to tabular data. Recently, Hegselmann et al.

[17] proposed a LLM-based framework for few-shot classification

of tabular data and experimented with different strategies to design

the prompt. They showed that their approach can outperform state-

of-the-art (SOTA) neural models both in the zero- and few-shot

settings. Narayan et al. [31] outline a vision for leveraging LLMs

for data management tasks and show that LLMs using few-shot

Table 1: Cost of CTA benchmarking with GPT. Approximate cost
to perform CTA over the 15,040 column test set of the SOTAB dataset
varying the table serializationMethod (column for column-at-once or
table for table-at-once); the number of context samples #Smp. drawn
per column; the percentage % k of serialized prompts whose tokenized
length is estimated to exceed a context window of size k.

Method # Smp. % >1k % >4k % >16k App. USD Cost

column 3 01.0% 00.1% 00.0% $7.85

column 10 06.5% 00.3% 00.0% $12.54

column 20 13.0% 01.3% 00.1% $19.97

column 100 93.0% 15.1.% 01.0% $90.38

column 1000 100.0% 100.0% 56.5% $1,072.06

table 10 89.8% 58.8% 25.8% $763.28

and zero-shot approaches can achieve SOTA performance for entity

matching, data imputation, and error detection.

2.2 LLMs for Zero-Shot CTA
As discussed in Sec. 1, LLMs present new opportunities to derive

robust models for CTA that can handle a broad set of classes at a

much lower cost than existing learning-based methods. Two recent

approaches have been proposed that leverage OpenAI’s GPT for

zero-shot and few-shot CTA [25, 27]. These methods do not re-

quire model training, and apply open-vocabulary labels either from

parametric memory [25], or from options provided at test time [27].

The promise of such a direction is clear, but existing implementa-

tions have important limitations. Both [25, 27], which are to the best

of our knowledge the only existing works on zero-shot CTA, rely

on closed-source models (see discussion below). They also require

access to the entire table at test time to achieve their best perfor-

mance, which in practice can be expensive for private models. Tab. 1

demonstrates that the cost to evaluate the SOTAB test set (assuming

sampling with replacement) scales poorly for table-at-once meth-

ods, and over 25% of the prompts exceed the maximum possible

context window. The cost is also high for column-at-once meth-

ods when a large sample is used. Since these methods are highly

sensitive to sample size, it is important to devise strategies that

are sample-efficient. However, only simple random sampling and

first-k-rows sampling methods have been explored for LLM-based

CTA. Note that while these methods are costly on closed-source

models, they can be impractical on open-source models, owing to

their limited context windows.

A distinct line of inquiry studied by Tu et al. [50] treats CTA as

one example of a family of matching tasks in data integration, and

is able to perform zero-shot binary matching on CTA instances.

2.3 Open vs. Closed-Source LLMs
We consider a model open-source if, and only if, sufficient specifics

of model design have been published to reproduce the architecture,

checkpoints with pre-trained weights have been released and the

contents of the pre-training corpus are available for inspection. The

advantages of utilizing open-sourcemodels are explainability, repro-

ducibility, and reduced cost, while the drawbacks are performance

and limited context length.

Explainability. The architectures of most closed-source models are

not known to the public; nor is it known how much prompt engi-

neering and behind-the-scenes modification of the model output is

being conducted. The specifics of the data on which these models

2281

are trained is also unknown. These facts make it difficult to provide

rigorous explanations for the behavior of closed-source models.

Reproducibility. As noted recently, results from closed-source mod-

els are non-reproducible, non-deterministic, and cannot be ablated

with respect to the model architecture or dataset, all of which makes

them unreliable for reproducible research [37, 42].

Cost.As closed-source models charge by the token, the cost incurred

by any solution which relies on them can be considerable. Open-

source models, by contrast, require computational resources to host

and expertise to maintain.

Performance. As of this writing, the best open-source models un-

derperform the best closed-source models across a wide range of

benchmarks [4]. The causes of this performance gap are not fully

understood, as large language models tend to exhibit unpredictable

phase transitions as a function of scale. These transitions can lead

to sudden leaps in performance on standard benchmarks [36].

Context length. The open-source large language models in common

use at the time of this paper have context windows ranging from

512 to 2048 tokens [8, 48] (typically between 375 and 1500 words,

if the string is English). If the string is in a different language or

is largely numeric, however, the tokenization process tends to be

approximately 2-4x times less efficient, since standard tokenization

schemes employed by such models tend to handle unicode ineffi-

ciently [44]. Both phenomena are common in real-world tabular

data. Closed-source models are less constrained (GPT-3.5 allows

over 16,000 tokens at the time of this writing).

3 ARCHETYPE: METHODS AND SYSTEM
Formal Model of LLM-CTA. Consider a table 𝑇 with 𝑡 columns

and 𝑟 rows.We denote each column𝐶 ∈ 𝑇 as a function which maps

row indices to strings; i.e., for 0 <= 𝑖 < 𝑡 , we have 𝐶𝑖 : N → Σ∗,
where 𝑖 is the column index. Here, Σ∗ is the set of all possible strings,
Σ𝐶𝑖

is the set of all strings found in column 𝐶𝑖 , Σ𝐶𝑖
⊂ Σ∗ ∀𝑖 , with

any individual string 𝜎 ∈ Σ𝐶𝑖
. We make no further assumptions;

𝐶𝑖 may include a column name, and 𝑇 may contain an additional

metadata field. However, neither of these properties is required to

exist, and so we do not include them in our analysis. Many of our

methods rely on a sample of unique values sampled from the column,

𝑈𝑖 := unique(|Σ𝐶𝑖
|). We explore two LLM-based approaches for

CTA: fine tuned and zero shot.

Definition 3.1 (Fine-tuned LLM-CTA). Let 𝐿 ⊆ Σ∗ denote a label
set; these are our column types to be annotated. Standard CTA

assumes a fixed cardinality for this label set, indexed by a variable

we call 𝑗 .1 Given the above definitions, we define fine-tuned single-

label 𝐶𝑇𝐴 ⊂ 𝑇 × 𝐿 as a relation between tables and labels:

∀𝐶, ∃𝑙 𝑗 | (𝐶𝑖 , 𝑙 𝑗) ∈ 𝐶𝑇𝐴 (1)

We seek a generative method 𝑀 : Σ∗ → Σ∗ that comes closest to

satisfying the following properties:

𝑀 (𝜎, 𝐿) ∈ 𝐿,∀𝐶 ∈ 𝑇,𝑀 (𝜎, 𝐿) ∈ 𝐶𝑇𝐴 (2)

i.e., the model requires a single string as input and generates a label

in 𝐿 that correctly represents the type of 𝐶 .

1
In existing benchmarks, 𝑗 can be anywhere from 10 to 300 [27]

Definition 3.2 (Zero-shot LLM-CTA). The definition of zero-shot

LLM-CTA is identical to that of fine-tuned, except that: in a zero-

shot setting, the number of rows 𝑟 is presumed to be small enough

to preclude the possibility of fine-tuning a model; 𝐿 is chosen at

test-time; and it is possible to define multiple values of 𝐿 for one 𝑇 .

3.1 Elements of LLM-CTA Methods
We observe that any LLM-CTA method must provide solutions

to four problems: context sampling, prompt serialization, model

querying, and label remapping. Individually, each is necessary for

LLM-CTA; collectively, they are sufficient. By considering and ab-

lating approaches to each of these problems separately, we designed

ArcheType, a LLM-CTA framework which generalizes to a wide

range of architectures, including popular open-source models. Fig. 1

provides an overview of ArcheType and in the remainder of this

section, we describe its components in detail.

Context Sampling. As of this writing, all SOTA large language

models (LLMs) are transformer-based [51]. By design, transformers

have a hard scaling limit over which their dense attention can be

applied, sometimes called a context window,𝑊 . Given a context 𝐶

and a set of labels 𝐿, if |𝐶 | + |𝐿 | >𝑊 , a representative sample must

be selected. From a practical standpoint, the context window sizes

of contemporary LLMs are small enough that this event takes place

quite frequently, e.g., [25] and [27] use simple random sampling and

first-k-rows sampling, respectively. We introduce a new sampling

method in Sec. 3.2 and provide ablation studies in Sec. 5.4.1.

Prompt Serialization. SOTA LLMs require prompts, or priors,

to complete. Prompt serialization (or prompt engineering) is the

process of transforming raw context into a prompt. Of the four

components we consider here, this one has received the most atten-

tion in the existing literature; the methods introduced by [25, 27]

are largely focused on improvements to prompt serialization. In

Sec. 5.4.2, we ablate prompt serialization, independent of other

components, and conclude prompt engineering should be treated

as a hyperparameter rather than as a methodological contribution

– we describe this approach in Sec. 3.3. When considering a range

of model architectures, we find that any reasonable serialization

method is about as likely to produce a good result as any other.

Model Querying. Model selection and querying is another impor-

tant element of LLM-CTA. The method must correctly submit a

query to some large language model(s) chosen in advance, and it

must retrieve and process the response. This query may be pro-

cessed on a local machine or via an API. This, too, has not been

ablated in prior work. While future work may attempt to train a

generative large language model from scratch specifically for this

task, [25, 27] use GPT, and only GPT. As part of our study, we

present ablations on architectures across a range of open-source

models as well as GPT (Sec. 5.4.3) and find that no model dominates.

Label Remapping. All LLMs sometimes produce responses which

do not match with any of the labels provided in the prompt, i.e.,

𝜎𝐿 ∉ 𝐿. Label remapping is a form of error correction which remaps

an unbounded LLM output space to a limited set of labels. Kayali

et al. [25] use an embedding-based method called anchoring to

remap labels, whereas Korini and Bizer [27] use a dictionary lookup.

As the latter approach is not compatible with zero-shot LLM-CTA,

we ablate only the former approach, along with two other baselines,

2282

and develop CONTAINS+RESAMPLE (Sec. 3.5), an algorithm which

outperforms the baselines across model architectures. We ablate

our choice of remapping method in Sec. 5.4.4.

3.2 Context Sampling
CTA approaches using deep learning face severe data requirement

challenges in settings that require (very) large tables and open label

sets. To address these challenges, we introduce a new approach

which we call context sampling and outline in Algo. 1. Given the

unique values of a target column 𝑈𝑖 and a target sample size 𝜙 , we

seek to construct the representative sample 𝑆 that best summarizes

the column. While it is possible in LLM-CTA to have 𝜙 vary by

column, in this paper we consider the setting where 𝜙 is fixed in

advance and consistent across all columns.

In the simplest case, we have |𝑈𝑖 | ≥ 𝜙 , and 𝑆 is drawn without

replacement from a distribution whose construction is described

below. If |𝑈𝑖 | < 𝜙 , then 𝑆 is drawn with replacement instead.

In the fine-tuned setting, we find it is beneficial to add features

to the context window, affecting both sampling and serialization.

The features we utilize are described later in this section, and are

sampled as described in Algo. 1. The context sample is then serial-

ized and embedded into a prompt which is passed to the LLM, the

format of which follows from recent works such as [30] and [8].

Context Sampling in ArcheType. The probability distribution

over𝑈𝑖 from which we sample is weighted according to an impor-

tance function 𝑓 . The probability of selecting an element 𝜎 from𝑈𝑖

under 𝑃𝑈𝑖
is given by:

𝑃 (𝜎) = 𝑓 (𝜎)∑︁
𝑗∈𝑈𝑖

𝑓 (𝜎 𝑗)
.

We utilize two importance functions in ArcheType. For the Ameri-

can Stories (amstr) benchmark described in Sec. 4, we find that an

importance function which prioritizes unique samples that include

any target class name is most effective; 𝑓 (𝜎) = 1 if, for any 𝑙 𝑗 ∈ 𝐿,
𝑙 𝑗 ⊂ 𝜎 , else 𝑓 (𝜎) = 0.1. Note that this function does not require the

ground truth label of any particular sample, only the entire label

set, which is a required input for CTA.

For all other benchmarks, the importance function 𝑓 is string

length – our experiments showed that long strings lead to better

results. One possible reason is that longer strings are more likely to

contain useful information than shorter ones. While an extensive

ablation of the choice of importance function is beyond the scope

of this paper, we note that ArcheType users (subject matter experts)

can define importance functions suitable for their applications.

There are challenges in the implementation of context sampling,

including low variance (degenerate) data 𝑈𝑖 ≪ 𝑜 (1) and high vari-
ance data 𝑈𝑖 ≫ 𝜙 . Each of these situations merits discussion.

High variance. In this case, helpful context may be lost in a limited

sample. This phenomenon may explain why increasing the size of

the context sample tends to improve model performance. However,

the improvements are slight, suggesting an exponential scaling of

data demands.

Low variance. CTA can easily become unsolvable for low-variance
or, in the extreme case, degenerate columns. Consider a column 𝐶𝑑
such that

∀𝑘 ∈ 𝑈𝑖 , Σ𝑈𝑖𝑘
= “0”

Algorithm 1 Context sampling. Given a table 𝑇 , a valid proba-
bility function 𝑃 , and optional additional features, produce a context
sample 𝑆 of the appropriate size. If |𝑈𝑖 | → ∞, methods like [15] can
be used to derive a finite-size𝑈𝑖 .

1: procedure Context-sample(𝑇, 𝑖, 𝑆, 𝜙, 𝑃, 𝑆𝑆,𝑇𝑁, 𝐸) ⊲

𝑇 : A table, 𝑖 , a target column index, 𝑆 , a context sample to be

returned, 𝜙 : A hyperparameter (number of samples), 𝑃 : a valid

probability function, 𝑆𝑆 : summary statistics, 𝑇𝑁 : table name,

𝑂𝐶: other columns, 𝐸: extended context flag

2: 𝑈𝑖 ← UNIQUE(𝑇𝑖), 𝑆 ← ∅
3: if E then 𝑆 ← SS(𝑇𝑖) + TN(𝑇)
4: while |𝑆 | ≤ 𝜙 do
5: 𝑆 ← 𝑆 + 𝜎 ∼ 𝑃𝑈𝑖

⊲ Drawn without replacement

6: if (|𝑆 | < 𝜙) ∧ 𝐸 then
7: for 𝑗 ∈ 𝑇, 𝑗 ≠ 𝑖 do
8: 𝑆 ← 𝑆 +𝑇𝑗 [0]
9: if |𝑆 | ≥ 𝜙 then BREAK

10: else
11: while |𝑆 | ≤ 𝜙 do
12: 𝑆 ← 𝑆 + 𝜎 ∼ 𝑃𝑈𝑖

⊲ Drawn with replacement

13: return 𝑆

and a label set L = number, integer, quantity. There exists no
unique 𝜎𝐿𝑗

such that 𝐶𝑇𝐴(𝐶𝑑 , 𝐿𝑗) = 𝜎𝐿𝑗
.

In some cases, we find that incorporating additional metadata

(such as the filename of the table) can help with the classification

task, but in other cases, we found that it simply biases the LLM to

parrot back portions of the input string.

Feature Selection. In context sampling, feature selection refers

to what aspects of the original data we choose to include in the

context. In all of our experiments, our first feature is the context

sample itself (CS). We also experiment with including the file name
(FN) of the table, used by [10], summary statistics (SS), used by [21],

and samples from other columns (OC), used by [45].

Summary statistics (SS). SS feature selection proceeds as follows:

• We select statistics which support fast, accurate sketching.

• We select measures of center and spread which can provide

additional information about missing column values.

The list of summary statistics included in our fine-tuned models

was: standard deviation, average, mode, median, max, min. When

the summary statistic is a floating-point value, we round it to two

decimal places. When it is an integer, we exclude the decimal place.

When all sampled values are numeric, the statistics are computed

with respect to the individual column values. When any sampled

value is non-numeric, the statistics are computed with respect to

column value lengths.
We postulate that these statistics are useful because they help

the model disambiguate between numeric column samples by pre-

serving information about overall trends in the column. However,

we focused on simple-to-calculate statistics and did not extensively

ablate our choices; in future work we plan to explore this aspect.

Other columns. First, we take as many unique samples as are avail-

able from the target column. Then, we fill the remaining context

length with an equal number of samples from each other column.

2283

INSTRUCTION: Select the category which best matches

the input.

INPUT: ’TABLE NAME: diaridegirona’, SAMPLES: Partit:

Armenia - Liechtenstein, Partit: Israel - Austria,

Partit: Shakhtar Donetsk - Atalanta ’std: 4.76’,’mean:

27.52’, ’mode: 25’,’median: 25.0’

CATEGORY: "sporting event" Fine tuned

INSTRUCTION: Select the option which best describes

the input.

INPUT: 550mm, 608mm, 600mm, 520mm, 595mm OPTIONS:

text, date, age, telephone, jobposting, currency,

event, product, streetaddress, category, number, time,

zipcode, person, url, gender, country, email, price,

creativework, weight, language, boolean, company,

organization, sportsteam, coordinates

ANSWER: number Zero shot

Figure 2: Examples of ArcheType fine-tuned (top) and zero-shot
(bottom) prompting.

We label samples from other columns with an index number in

order to identify from which column they originated. Performing

this improves fine-tuned performance, but has a negative effect on

zero-shot performance; see Fig. 6. This is likely because the LLM

cannot distinguish inter-column from intra-column values without

the presence of learned special characters as provided in [10, 45].

3.3 Prompt Serialization
The prompt serialization stage transforms the context sample 𝑆

into a prompt format suitable for querying an LLM; this includes

modification of prompts that exceed the maximum allowable length

of the context window and how to reformat the table.

Fig. 2 shows examples of prompts for both fine-tuned and zero-

shot regimes of ArcheType. We style our fine-tuned prompt after

the instruction-following method described in [46]. We treat the se-

mantics of the INSTRUCTION field as a hyperparameter, and fix it at

training time. The extended context includes the samples, the table

name, and computed summary statistics including standard devia-

tion, median and mode. In zero-shot, we again treat INSTRUCTION
as a hyperparameter, sweeping over a space of possible semantic

structures. INPUT is handled identically to fine-tuned. In zero-shot,

the prompt also includes OPTIONS, or allowable column names,

from which the model is expected to choose. The suffix ANSWER:
cues the LLM to supply the label (in this case,“number”).

The heuristic optimization of this process is sometimes referred

to as prompt engineering, and is treated as an important contribu-

tion by existing zero-shot CTA methods [25, 27]. However, recent

phenomenological studies of foundation models have raised signif-

icant doubts as to the near-term stability and long-term viability of

prompt engineering as a method [43]. In fine-tuned ArcheType, we

fix a single prompt serialization strategy, as the prompt is learned

during the fine-tuning process and has little impact on the model

output, as long as it is consistent. In zero-shot ArcheType, unlike

C: "For the following table column, select a schema.org

type annotation from <CLASSNAMES>. Input column:

<CONTEXT>. Output: "

K: "Answer the question based on the task below. If

the question cannot be answered using the information

provided, answer with "I don’t know". Task: Classify

the column given to you into only one of these types:

<CLASSNAMES>. Input column: <CONTEXT>. Type: "

I: "Here is a column from a table: <CONTEXT>. Please

select the class from that best describes the column,

from the following options. Options: <CLASSNAMES>

Response: "

S: "Pick the column’s class. Column: <CONTEXT>. Classes:

<CLASSNAMES>. Output: "

N: "Pick the column’s class. I mean if you want to.

It would be cool, I think. Anyway, give it a try, I

guess? Here’s the column itself! <CONTEXT>. And, um,

here are some column names you could pick from ...

<CLASSNAMES>. Ok, go ahead! "

B: "INSTRUCTION: Select the option | category which

best describes | matches the input. INPUT: <CONTEXT>

OPTION: <CLASSNAMES> ANSWER:"

Figure 3: Six prompt variations. In zero-shot ArcheType, we treat
prompting as a hyperparameter, and sweep over six distinct prompts,
each chosen according to a conceptual serialization strategy. <CLASS-
NAMES> stands in for the label set, <CONTEXT> for the output of the
context sampling step. We use two variants of the "B" prompt, with
semantic differences denoted by "|".

previous methods, we treat the choice of prompt as a hyperparam-

eter. We provide experimental support for this idea in Sec. 5.4.2.

Serialization strategies.Weexplore six distinct serialization strate-

gies, illustrated in Fig. 3. The strategies labeled "C" and "K" were

proposed in [25] and [27], respectively. The remaining serializa-

tion strategies are designed to test the effect of varying prompt

length, position, and tone; "N" adopts a casual, conversational tone

and uses simple language, "I" inverts the position of prompt and

context, compared to the other strategies, and "S" is designed to

be as short as possible while remaining clear. Our "B" prompt is

written in a technical and formal tone, similar to prompt "S", but

more verbose. We use a minor variant of our "B" prompt in our

fine-tuned experiments; the semantic differences are shown in [12].

Prompt Serialization in ArcheType Zero Shot (ZS).We have

evaluated ArcheType ZS using all six prompts in [12]; we report

performance on the best-performing configuration. Note that we

2284

Algorithm 2 Fine-tuned ArcheType. Fine-tuning procedure for
ArcheType-LLAMA; the serialized prompts generated by ArcheType
are tokenized and passed to the model in batches. The autoregressive
objective during training is for the model to generate the appropriate
class token, given the prompt.

1: procedure FineTuneLM(M,D,H)⊲M, an LLM, D, a fine-tuning

dataset, H, hyperparameters

2: Tokenizer← LoadTokenizer() ⊲ tokenizer for the LM

3: D← Tokenizer.Tokenize(D) ⊲ Token. the fine-tuning data
4: for epoch = 1,Hyperparameters.Epochs do
5: for each 𝐵 ∈ 𝐷 do
6: loss← M.Forward(B) ⊲ Compute the forward pass

7: loss.backward() ⊲ Backpropagate the loss

8: 𝑀 ← optimizer.step(𝑀) ⊲ Update parameters

9: return Fine-tuned Model

include the label set 𝐿 in the prompt. In order to simplify the label

space further for open-source models, we attempt to detect using

simple type testing whether all elements of the context are numeric;

if so, we limit 𝐿 to labels which are numeric (selecting which labels

are exclusively numeric is a one-time optimization per dataset – on

SOTAB-27, it required about five minutes).

Prompt Serialization in ArcheType Fine Tuned (FT).We follow

the Alpaca instruction format described in [46] and omit the label

set 𝐿 to make more efficient use of the context window.

Column-at-once Serialization. Both [27] and [25] use table-at-
once serialization; the entire table is presented to the LLM at in-

ference time, and all columns in that table are classified together.

ArcheType uses column-at-once serialization; only a single column

to be classified is passed to the LLM. [27] provides ablation studies

indicating that table-at-once outperforms column-at-once on their

test set, a very small subset of SOTAB.

Table-at-once serialization, however, is impractical to implement

on open-source models with small context windows, and inefficient

in that it requires classification of all columns, whether or not the
classes for all columns are required.

Handling Overflow. Using the length of each prompt, we pro-

duce a conservative estimate of whether the tokenized prompt

might overflow the context window. If so, we tokenize the prompt,

truncate it, add the classnames and response cue to the end of the

prompt, and pass it through. Examples of serialized prompts can

be found in Fig. 2.

3.4 Model Querying
The third stage of ArcheType involves passing the serialized prompt

as input to the LLM, a process which we refer to as model querying.
The key variable here is, naturally, the choice of model and, in the

case of fine-tuned CTA, the approach to training said model.

Fine-Tuned Models. In the fine-tuning regime, our model is a

LLAMA-7B, the smallest in a batch of LLMs from [48]. All models

in the LLAMA family were pre-trained on the standard unsuper-

vised language modeling task of next-token prediction, but had

no instruction tuning as part of pre-training. In order to improve

performance on instruction-following tasks, we apply the Alpaca

method of [46] prior to applying ArcheType. See Algo. 2 for an

overview of the fine-tuning procedure utilized to train our model.

Fig. 2 contains an example of a single data point in the training set.

Our results for fine-tuning are reported using a fine-tuned LLAMA-

7B trained on the SOTAB-full training dataset, using our context

sampling and label remapping algorithms. Following [46], we fine-

tune LLAMA-7B for 3 epochs, with a learning rate of 2e-5. Fine

tuning took 8-12 hours on 4x A100-80GB GPUs.

Zero-Shot Models. In the zero-shot regime, we consider the recent

open-source OPT-IML and LLAMA-2 models from [23, 49] as well

as FLAN models introduced in [8, 47]. We also present results on

the closed-source, private GPT family of models from OpenAI [35].

As zero-shot ArcheType is model-agnostic, we report results from

the three best-performing architectures in our experiments (Tab. 4).

3.5 Label Remapping
The fourth stage of ArcheType is label remapping; mapping the

generative output of the LLM to the space of allowed labels. A key

drawback of using standard LLMs for classification tasks (based on

instruction tuning alone) is that their outputs are not guaranteed to

only belong to the provided label set. In our experiments, we found

small decoder-only LLMs, such as LLAMA-7B, were particularly

susceptible to this behavior.

Previous works such as [8] have proposed simply discarding

all answers which are not an exact match for a label in the set,

and measuring performance with respect to exact matches only.

Another naïve solution is to simply map all non-matching answers

to a default null class.
However, we find that such approaches tend to underrate what

the model actually provides, particularly in the CTA context. Often,

the LLM’s ‘best guess’ can be reasonably remapped to an answer

in the provided label set. Formally, we frame label remapping as

a function 𝑅𝐸𝑀𝐴𝑃 (𝜎𝐿) : Σ∗ → 𝐿. In other words, the REMAP

function is responsible for mapping arbitrary output strings (that

are outputs of the LLM) to some specific label in the label set 𝜎𝐿 ∈ 𝐿.
We explore multiple approaches, described below, and find that the

optimal approach varies depending on the LLM and whether we

are in a fine-tuned or zero-shot domain.

Remap-contains employs the simplest strategy of checking for

intersections: ∀𝐿𝑗 ∈ 𝐿, (𝜎 ⊆ 𝐿𝑗 ∨𝐿𝑗 ⊆ 𝜎) → (𝜎𝐿 := 𝐿𝑗). In the case

of multiple matches, we accept the longest match. This is computa-

tionally efficient but has a high rate of failure; it can therefore be

used in conjunction with other label remapping strategies.

Remap-resample (Algo. 3) utilizes the probabilistic nature of LLM
outputs. We fix a hyperparameter 𝑘 setting both how many times

we attempt the problem and how we adjust the hyperparameters

on each subsequent call. The parameter 𝑘 can be utilized as either

an additive or a multiplicative factor; we find that additive 𝑘 is

suitable for adjusting top_p and repetition_penalty, while a mul-

tiplicative factor works well for temperature. For more details on

these hyperparameters, please refer to [52].

Remap-similarity (Algo. 4) employs a similarity-search strategy.

Using an encoder-only transformer model, the input 𝜎 is converted

to a vector embedding 𝑣𝜎 , as are all the strings in 𝐿. ∀𝑗 ∈ 𝐿, we then
compute the vector cosine similarity COSSIM(𝑣𝜎 , 𝑣𝐿𝑗

). The ARGMAX
result becomes the model’s predicted class. For our experiments, we

used the S3Bert model introduced in [33]. This method has the ad-

vantage of always returning a solution. However, this solution may

2285

Algorithm 3 Remap-resample. Remap-resample calls the LLM
up to 𝑘 times with permuted hyperparameters in order to generate
increasingly diverse responses.

1: procedure Remap(𝜎, 𝜎𝐿, 𝐿, 𝑘) ⊲ 𝜎 : A text string, 𝜎𝐿 , the label

assigned to 𝜎 , 𝐿: A label set, 𝑘 : A hyperparameter (number of

retries)

2: if 𝜎𝐿 ∈ 𝐿 then
3: return 𝜎𝐿

4: for 𝑖 ← 1 to 𝑘 do 𝜎𝐿 ← LLM(prompt, 𝑘) ⊲ We call the

LLM with k-permuted hyperparameters

5: if 𝜎𝐿 ∈ 𝐿 then ⊲ Here, we can also call CONTAINS

6: return 𝜎𝐿

Algorithm 4 Remap-similarity. Remap-similarity maps the em-
bedded LLM response which is not in 𝐿 to the embedded response in 𝐿
which maximizes embedding cosine similarity.

1: procedure Remap(𝜎, 𝜎𝐿, 𝐿) ⊲ 𝜎 : A text string, 𝜎𝐿 , the label

assigned to 𝜎 , 𝐿: A label set,𝑀 , a sentence embedding model

2: if 𝜎𝐿 ∈ 𝐿 then
3: return 𝜎𝐿
4: else
5: ∀𝑗 ∈ 𝐿, 𝐸𝐿𝑗

:= 𝑀 (𝐿𝑗)

6: 𝜎𝐿∗ := ARGMAX𝑗∈𝐿 (
⟨E𝜎𝐿𝑗 ,E𝐿∗ ⟩
∥E𝜎𝐿𝑗 ∥ ∥E𝜎𝐿∗ ∥

)
7: return 𝜎𝐿

be not always the desired one; moreover, introducing an additional

model adds to overall computational complexity.

Rule-Based Label Remapping.Wefind that inmanyCTAdatasets,

certain types are straightforward to detect or correct using simple

algorithmic approaches. Therefore, in order to provide a more re-

alistic picture of how our method would perform in a real-world

setting, we supplement both our baselines and ArcheType with

rule-based label remapping functions, applied both prior to and af-

ter model querying. These rules do not always lead to performance

improvements, but they can save considerable time and some space

in the context window; therefore, we predict they will be a valu-

able component of deployed CTA systems, and devote some time

to studying their effects. To conserve the zero-shot nature of the

problem, we limited ourselves to two hours per dataset for devising

these functions. As this is a one-time cost per label set, we consider

this a reasonable time budget.

In Tab. 2, we list the number of labels for which rules led to per-

formance improvements, and the average amount of the improve-

ment across all models and methods. The rules lead to a moderate

improvement for the different benchmarks.

ArcheType+. To separate the effects of rule-based remapping from

other elements of the ArcheType method, we report F1 scores with

and without rule-based remapping in Tab. 3 and Tab. 4. In both

tables, results with rules applied are denoted with a "+" symbol.

4 NEW ZERO-SHOT BENCHMARKS
Existing CTA benchmarks [5, 10, 20, 28] are useful sources of real-

world tabular data, but they were designed to evaluate methods

Table 2:Manual label remapping complements LLM-CTA. Cer-
tain labels are faster and more reliable to solve using traditional
methods, rather than LLMs. We document the gains from manual
label remapping on our zero-shot benchmarks.

Dataset Num labels Avg. Pct. Gain

SOTAB 5 1.3%

D4 9 7.2%

Amstr 2 3.2%

Pubchem 5 9.9%

that perform CTA on a fixed set of labels that belong classes in well-

known ontologies and taxonomies. In order to probe the breadth of

LLM subject knowledge and assess the effectiveness of LLM-CTA

methods over rare classes with different characteristics, we create

three new zero-shot column type annotation benchmarks: D4Tables
(D4-20), derived from the D4 dataset [34] and [32], AmstrTables

(Amstr-56), derived from the American Stories dataset [9], and Pub-

chemTables (Pubchem-20), derived from the Pubchem dataset [14].

Each of our benchmarks is constructed using the same general

approach: we reprocess the dataset so that classes of data can be

interpreted as columns, fix a random seed, and sample from the

data pool to produce synthetic columns of a wide range of lengths,

treating all columns as independent. This approach to CTA bench-

marking stands in contrast with existing benchmarks and methods,

which leverage relationships at the level of a table. However, the def-

inition of CTA does not guarantee the existence of such informative

metadata. Furthermore, in some real-world settings, such informa-

tion is not available. We therefore regard these new benchmarks as

a distinct, but valuable, way to measure progress in CTA.

We follow the approach used in [28] and attempt to replicate, as

closely as possible, the distributions encountered in real-world data.
This results in some column types that are extremely low-variance

(such as ethnicity in D4Tables, with only 5 unique values). In

other types, the set of potential unique entries in one type is en-

tirely subsumed by another type, e.g., us-state, other-states
in D4-Tables. Others can be addressed model free with regex pat-

tern matching (such as Journal ISSN in Pubchem). As noted in

Sec. 3.5, when such solutions are possible, we utilize them in both

our baseline approaches and the ArcheType method itself.

D4, Amstr and Pubchem are generated from existing data distri-

butions – it is therefore possible to produce an arbitrary number

of tables using them. Balancing time constraints with the desire to

test a significant sample size, we heuristically select a sample size

of 2000 columns, and apply this consistently to each benchmark.

The complete class names for each dataset can be found in [12].

D4Tables. Ota et al. [34] clustered data from NYC Open Data in an

unsupervised manner, and the most coherent clusters (representing

semantic types) were assigned labels; in total, 20 clusters were

labeled. For more information on the clustering method and the

complete label list, please refer to our repository. For our paper, we

convert the clusters to columns and sample accordingly.

The classes in D4 are representative of open and public data

sources, including 2 classes which correspond to city agencies, 4

classes which relate to public schools, and 5 classes which corre-

spond to neighborhoods, streets or regions located in specific New

2286

York City Boroughs. This dataset aims to assess the model’s under-

standing of regional information and fine-grained semantic types

relevant to governments and NGOs.

AmstrTables. The American Stories dataset consists of 20 million

OCR scans from the Library of Congress’s public domain Chron-

icling America collection. Each scan contains an article written

between 1774 and 1963. We adapt this dataset for CTA by: divid-

ing the articles in the dataset according to the state in which they

were originally published; and creating additional column types for

author bylines, newspaper names, and subheadings. Because this

dataset was published in 2023, it is unlikely that any of the models

evaluated in this study have trained on this data before, reducing

concerns of potential data contamination [9]. Another advantage

is that for the majority of column types, individual row entries

are quite long, corresponding to entire newspaper articles. This

phenomenon is commonplace in real-world data, but rare among

academic CTA benchmarks. The classes in AmstrTables mostly

pertain to journalism and history.

PubchemTables. Pubchem is the world’s largest collection of

freely accessible chemical information. Chemicals are identified

according to their name, molecular formula, structure, biological

activities, safety and toxicity information, and more. The database

also contains extensive information on patents related to chemistry,

such as patent abstracts and author names, as well as the names of

scientific journals. We convert the RDF triple format provided by

Pubchem to a columnar format suitable for CTA, and sample from

the resulting distributions to produce our target columns. Correct

classification requires specialist domain knowledge of chemistry.

SOTAB-27. The original SOTAB (SOTAB-91) is an unbalanced,

91-class classification problem where the task is to match each

unlabeled column name with its ground-truth label. We created a

zero-shot, simplified 27-class version of the benchmark (SOTAB-27)

to reduce the semantic overlap among SOTAB labels. The tables

in this dataset are identical to the original SOTAB benchmark;

however, we remap the 91 labels in the full SOTAB benchmark to

a smaller set of 27 labels. The exact details of the class remapping

can be found in our github repository [12].

5 EXPERIMENTS
5.1 Experimental Setup
Fine-tuned Baselines. For our fine-tuned experiments, we com-

pare our ArcheType LLAMA-7B (Sec. 3.4) to DoDuo [45], the state-

of-the-art model for column type annotation, as well as TURL [10].

We report DoDuo and TURL results following the approach

described in [28], which passes the entire table to the model at

inference time; we limit our own method to 15 samples per table.

Zero-shot Baselines. To the best of our knowledge, there exist no

open-source CTA models that can operate in a zero-shot manner;

therefore, we design strong baselines derived from zero-shot CTA

methods which have been introduced specifically for use with GPT:

C-Baseline, based on the method in [25], utilizes similarity label

remapping and simple random sampling, and our C-prompt.

K-Baseline, derived from [27], utilizes our K-prompt, no-op label

remapping and first-k-columns sampling. We omit the method

described in [27], which requires a custom hash table for each

problem, as this invalidates the zero-shot nature of the problem we

consider here.

For all methods, we fix 5 samples per column and provide model

inputs a column-at-once manner. The prompt includes class names.

To evaluate the robustness of the methods to variations in archi-

tecture, we evaluate eachmethod using three different architectures:

the closed-source GPT-3.5-Turbo model from OpenAI (October

2023 version) denoted GPT and GPT-4.0-Turbo model (gpt-4-turbo-

preview, February 2024) denoted GPT4, and the open-source T5

and UL2 encoder/decoder LLMs from Google [47].

Benchmarks. A variety of realistic and challenging CTA bench-

marks have been developed in the last few years. Prominent among

these are GitTables from [20], WikiTables as modified in [10], and

WebTables from [5]. However, these are usually pre-processed in

an ad-hoc fashion and compared against some, but not all existing

methods, making it difficult to truly measure progress in the field.

For this reason, we use the recent SOTAB benchmark [28]. SOTAB

was independently tested on both state-of-the-art CTA approaches,

TURL and DoDuo, making it an ideal testing ground for new CTA

methods. Furthermore, it is, to the best of our knowledge, the most

challenging CTA benchmark in the literature; the strongest method

to date, DoDuo, achieves a Micro-F1 score of 84.8 on SOTAB-91,

while for WikiTables and VizNet it attains Micro-F1 scores between

91.47 and 96.4 [45].

For the zero-shot regime, we also use the benchmarks introduced

in Sec. 4 as well as established benchmarks: T2D [6], Efthymiou [11],

and VizNet [25].

5.2 ArcheType Effectiveness
Following [45], we report performance using the weighted micro-F1

score–the weighted average of F1 scores based on the sample size of

each class. We provide 95% confidence intervals for all results using

the normal approximation interval method. Boldface in tables

indicates the best-performing method(s) within the error bounds.

Tab. 3 summarizes our key results in fine-tuned CTA and Tab. 4

shows our zero-shot findings using SOTAB and the zero-shot bench-

marks (Sec. 4). We observe that: 1) in the fine-tuned regime, our

ArcheType-LLAMAmodel is competitive with DoDuo, despite train-

ing on less than 1% data; and 2) in the zero-shot regime, ArcheType

outperforms or matches baselines on all dataset/architecture pair-

ings we evaluate. These results underscore the effectiveness of

ArcheType and serve as evidence that, LLMs can enable CTA meth-

ods that are not just robust to distribution shift, but that handle

open-label sets defined at inference time, including rare types.

We also compare our zero-shot ArcheType to prior CTA ap-

proaches on established benchmarks, specifically: TURL, fine-tuned

on the T2D [6] and Efthymiou [11] benchmarks; CHORUS [25], zero-

shot on T2D and a stratified sample of the VizNet dataset (VizNet-

CHORUS); DoDuo, fine-tuned on VizNet (VN) andWikiTables (WT)

and evaluated on VizNet-CHORUS; and Sherlock, fine-tuned on

VizNet and evaluated on VizNet-CHORUS. In all cases, we follow as

closely as possible the methodology of the aforementioned authors,

adopting their metrics.

As Tab. 5 shows, ArcheType’s performance is comparable to that

of the other systems (both fine-tuned and zero-shot) even when

using the smallest (T5) backbone.

2287

Table 3: ArcheType achieves strong performance on the SOTAB benchmark. Without rule-based remapping, our method (ArcheType-
LLAMA) achieves performance close to the best available pre-trained model (DoDuo), while requiring far less tabular pretraining data. With
rule-based remapping (ArcheType-LLAMA+), our method improves upon it.

Model Name Dataset (Train) Dataset (Eval) Micro-F1

ArcheType-LLAMA+ LLAMA + SOTAB-91 SOTAB-91 85.97 ±0.6
DoDuo VizNet + SOTAB-91 SOTAB-91 84.82 ±0.6
ArcheType-LLAMA LLAMA + SOTAB-91 SOTAB-91 82.9 ±0.6
TURL TURL-Tables + SOTAB-91 SOTAB-91 78.96 ±0.7

Table 4: ArcheType achieves state-of-the-art performance on zero-shot CTA benchmarks. ArcheType is the among the best-performing
methods across all zero-shot CTA benchmarks and model architectures in our suite. With respect to architectures, we find that neither open-source
model dominates. Surprisingly, closed-source models do not dominate either; GPT wins two benchmarks, ties one and loses one. In order to ablate
the effect of rule-based remapping, we separately report the performance of our models on all labels (denoted +) and on labels without rules. We
also indicate the number of labels remaining in each dataset after the change. All scores are weighted Micro-F1, scale 0-100.

Method Arch. SOTAB-27+ SOTAB-27 D4-20+ D4-11 Amstr-56+ Amstr-54 Pubchem-20+ Pubchem-15

OPEN-SOURCE
ArcheType UL2 60.9 ±0.8 58.0 ±0.9 82.4 ±1.7 70.8 ±2.7 35.8 ±2.1 32.8 ±2.1 70.9 ±2.0 61.1 ±2.5
C-Baseline UL2 52.2 ±0.8 51.3 ±0.9 78.0 ±1.8 69.4 ±2.7 13.5 ±1.5 11.4 ±1.4 61.7 ±2.1 50.3 ±2.5
K-Baseline UL2 52.8 ±0.8 52.5 ±0.9 76.7 ±1.9 67.6 ±2.7 22.4 ±1.8 20.1 ±1.8 64.8 ±2.1 54.7 ±2.5
ArcheType T5 62.5 ±0.8 60.8 ±0.9 84.6 ±1.6 74.5 ±2.6 29.2 ±2.0 25.6 ±2.0 72.0 ±2.0 63.3 ±2.4
C-Baseline T5 51.0 ±0.8 50.0 ±0.9 81.2 ±1.7 75.0 ±2.6 11.4 ±1.4 08.5 ±1.3 68.3 ±2.0 59.0 ±2.5
K-Baseline T5 52.6 ±0.8 52.1 ±0.9 81.2 ±1.7 74.5 ±2.6 19.2 ±1.7 15.1 ±1.6 62.3 ±2.1 51.3 ±2.5

CLOSED-SOURCE
ArcheType GPT 66.0 ±0.8 64.3 ±0.9 87.3 ±1.5 83.0 ±2.2 27.2 ±2.0 22.5 ±1.9 65.9 ±2.1 60.2 ±2.5
C-Baseline GPT 59.3 ±0.8 58.5 ±0.9 77.7 ±1.8 70.8 ±2.7 09.0 ±1.3 04.9 ±0.9 56.0 ±2.2 43.0 ±2.5
K-Baseline GPT 59.3 ±0.8 57.2 ±0.9 81.8 ±1.7 80.9 ±2.3 10.0 ±1.3 07.9 ±1.2 65.8 ±2.1 55.8 ±2.5

Table 5: ArcheType zero-shot is competitive with state-of-the-art models on well-established CTA benchmarks. Where results were
unavailable in the literature, we write n/a.

Dataset Metric TURL-FT Archetype-ZS-T5 Archetype-ZS-GPT4

T2D Unbal. Acc. 96.2 ±3.3 90.4 ±3.4 95.8 ±3.3
Efthymiou Unbal. Acc. 74.6 ±3.8 78.5 ±3.8 95.7 ±3.3

Dataset Metric DoDuo-VN-FT DoDuo-WT-FT Sherlock-FT Chorus-ZS-GPT Archetype-ZS-T5 Archetype-ZS-GPT4

T2D Weighted F1 65.4 ±3.9 75.7 ±3.8 n/a 92.3 ±3.4 88.9 ±3.4 95.3 ±3.3
VizNet-Chorus Weighted F1 90.0 ±2.4 81.5 ±2.5 93.0 ±2.4 86.5 ±2.5 88.5 ±2.5 90.5 ±2.5

5.3 Observations
A detailed analysis of our results has both confirmed our hypotheses

regarding LLMs as well as uncovered insights into some of their

limitations. We summarize these below.

LLMs contain sufficient world knowledge to perform zero-shot CTA
on domain-specific classes. We find that LLM performance is consis-

tently strong across datasets and across benchmarks, emphasizing

the generality of LLM-CTA, compared to fine-tuned methods such

as DoDuo. In PubchemTables, we observe that models are con-

sistently able to disambiguate challenging classes such as disease,
chemical, taxonomy, patent, SMILES (simplified molecular input line
entry system), and molecular formula. On D4Tables, they are able

to disambiguate the names of NYC public schools and NYC govern-

mental agencies, as well as identify locations. With 𝜙 = 5, we find

that ArcheType-T5 and UL2 are able to correctly identify whether

the addresses are in Queens, the Bronx, Brooklyn or Manhattan

more than 50% of the time, on average. ArcheType-GPT is even

more impressive; it is able to accurately classify regions in all five

boroughs more than 87% of the time, on average. Class-specific

accuracies for our zero-shot models can be found in the extended

version [13].

Model error tends to be patterned and predictable when the prompt
space is fixed. When zero-shot CTA fails, it tends to do so in ways

that are patterned and predictable, making it easier to correct errors.

The most common failure mode is class bias in favor of certain

dataset classes over others. For any given prompt/model/dataset

triple, this results in certain columns with near-perfect accuracy

and others with near-zero accuracy, with the confusion matrix

heavily concentrated in a few classes. We provide examples of this

phenomenon in the extended version of this paper [13].

Simple factors can be used to estimate zero-shot CTA performance.
Zero-shot performance is stronger on datasets such as PubchemTa-

bles and D4Tables; we attribute this to smaller label spaces, smaller

2288

SRS FS ArcheType

40

50

60

Sampling method

M
i
c
r
o
-
F
1

ZS-T5

ZS-UL2

ZS-GPT

Figure 4: ArcheType sampling outperforms baseline methods.
The sampling method used by Zero-shot ArcheType using different
architectures (GPT, UL2, and T5) on the SOTAB-27 dataset, substan-
tially outperforms simple random sampling (SRS) and first-k-entries
sampling (FS), as used in [25, 27].

3 5 10

50

52

54

56

58

Number of samples

M
i
c
r
o
-
F
1

ArcheType-ZS-UL2-None

ArcheType-ZS-UL2-Sim

ArcheType-ZS-UL2-Cont

ArcheType-ZS-UL2-Cont+Res

Figure 5:ArcheType performance is affected by context size and
label remapping. The model benefits from increasing the context
size from 3 to 10 samples. All methods outperform a baseline no-op
method. CONTAINS+RESAMPLE performs best at every context scale.

individual sample sizes, and a high degree of intra-column similar-

ity and a low degree of inter-column similarity. Amstr, which has

more than twice as many labels as the next-largest dataset and a

high degree of inter-column similarity (because the vast majority

of the labels in the dataset correspond to newspaper articles drawn

from the same general distribution), is the most challenging dataset

in our benchmark.

ArcheType using open-source models is highly competitive with closed-
source models. ArcheType CTA works well with a range of LLMs,

small and large, open-source and closed-source, indicating that CTA

benefits from flexibility in the model querying phase. Although GPT

tends to have the strongest performance, the difference is not very

large, and on PubChem and Amstr, GPT underperforms compared

to the open-source models.

5.4 Ablation Studies
5.4.1 Ablations on Context Sampling. In Fig. 4, we ablate our choice
of strategy using the SOTAB dataset, and find that ArcheType

sampling consistently outperforms baseline methods.

C
S

C
S+
T
N

C
S+
SS

C
S+
T
N
+
SS

C
S+
T
N
+
SS
+
O
C

40

60

80

Context

M
i
c
r
o
-
F
1

ArcheType-ZS-UL2

ArcheType-ZS-GPT

ArcheType-FT-LLAMA

Figure 6: Expanding feature selection during context sampling
improves fine-tuned CTA performance, but degrades zero-shot
performance. A fine-tuned ArcheType-LLAMAmodel is able to learn
helpful associations from features such as summary statistics (SS),
table filenames (TN), and other columns (OC), but that same informa-
tion is not helpful when serialized in a zero-shot prompt, even when
the prompt is customized to explain what each feature is.

Sample size. The sample size 0 < 𝜙 ≤ 𝑐 is a hyperparameter fixed

at training time (in the case of fine-tuned) or inference time (in the

case of zero-shot). In general, we observe in Fig. 5 that larger values

of 𝜙 tend to result in better model performance, with the trade-off

of slower inference and a larger number of truncated prompts.

Feature selection. In Fig. 6, we ablate our feature selection method,

and find that ArcheType-FT benefits from each feature added, and

ArcheType-ZS exhibits the opposite trend, even when we clearly

identify the different types of incoming context:

TABLE NAME: " sourced from the
table named " + <TABLE_NAME>
OTHER COLUMNS: "For additional
context, here are some entries
from other columns in the table:
" + <OTHER_COLUMNS>

We consider the effective use of additional features an important

area for future zero-shot CTA research.

5.4.2 Ablations on Prompt Serialization. We observe that improve-

ments based on prompt serialization are quite sensitive to small

changes in prompts; furthermore, the effects of these small changes

differ depending on the LLM used. We explore six different prompts,

labeled C(horus-style), K(orini-style), I(nverted), S(hort), N(oisy),

B(aseline) (Sec. 3.3). The first two prompt styles are adapted from

[25, 27], respectively. We test these prompts on SOTAB-27, holding

other factors constant, across three architectures. As Tab. 6 shows:

(1) All models are very sensitive to the choice of prompt; and (2) No

prompt is a top-two performer on all three models. This supports

our choice of using prompt serialization strategy as a hyperparam-

eter. We also experimented with changing the label associated with

a class and the position of a label in the string, and observed that

these can have unpredictable effects on performance; namely, per-

formance of relabeled class may not change, while performances

of classes with the same labels does change. See [13] for details.
Prompt serialization as a hyperparameter. Our method treats prompt

serialization and classname selection as tunable hyperparameters to
be optimized and reported alongside experimental results. With the

2289

Prompt T5 GPT UL2
C 49.4 57.6 56.4

K 54.0 53.2 53.4

I 52.1 62.5 55.2

S 53.0 64.6 54.5

N 48.6 61.4 47.2

B 47.1 63.4 52.1

Table 6: Prompt serialization has unpredictable effects across
models. A particular prompt can be engineered to perform well on a
given model and fail to reproduce on others. Results shown are zero-
shot Micro-F1 scores on the SOTAB-27 dataset. The best-performing
prompt is highlighted in green, the second-best in yellow, and the
lowest-performing in red.

27-cls 91-cls

20

40

60

Label set size

M
i
c
r
o
-
F
1

ArcheType-ZS-T5

ArcheType-ZS-UL2

ArcheType-ZS-GPT

Figure 7: Zero-shot performance degrades with large label sets.
Both open and closed-source LLMs for zero-shot CTA struggle when
the size of the label set grows large, compared to fine-tuned CTA.

understanding that any reasonable prompt is as likely to succeed as
any other [43], for eachmodel-dataset pair, we conduct a grid search

over our six prompt styles, each of which is stylistically distinct

but similar in content and meaning. All prompts follow general

best practices as described in [48], using capital letters, colons and

line breaks to delineate instructions, label sets and context, but

otherwise vary widely.

5.4.3 Ablations on Model Querying. The space of both open and

closed LLMs has exploded of late, and the performance of these

models on benchmarks can vary considerably. Rather than attempt

an exhaustive comparison which would quickly grow out-of-date,

we select strong representative models to stand for different cate-

gories of LLM which are frequently encountered in the literature.

We find that parameter count is not predictive of CTA performance,
and that encoder-decoder architectures outperform decoder-only ar-
chitectures on this task. Due to space limitations, we include further

details and experimental support in [13].

5.4.4 Ablations on Label Remapping. The choice of label remap-

ping algorithm can substantially impact model performance; how-

ever, the number of remapped labels depends considerably on the se-

lections made in the other three elements of the LLM-CTA method,

as well as the dataset itself. We found a positive correlation be-

tween the number of remapped labels and model accuracy. As

Fig. 5 shows, CONTAINS+RESAMPLE (Cont+Res) outperforms the

other remapping strategies for all sample sizes.

5.5 Limitations
Like [31] and [17], we find that there is good reason to be optimistic

about the potential for large languagemodels to dramatically impact

CTA and downstream data integration and discovery applications.

Despite their strong performance, we note some limitations.

Context window lengths. The ArcheType-LLAMA method requires

only 15 samples per column to reach parity with DoDuo, but it is

difficult to exceed 15 samples without truncating individual exam-

ples. For that same reason, it is difficult to present large numbers

of classes to zero-shot models. This limitation may be short-lived,

as context windows are already reaching 200k tokens [1].

High parameter counts. Despite generalizing very well to distri-

bution shifts, ArcheType models have very high parameter counts

when compared to previous deep learning solutions. We find that

increased parameter counts are likely necessary in order for the

model to contain sufficient world knowledge to be applicable for

CTA “in-the-wild”; however, the value added via zero-shot CTA

methods will have to be weighed against their higher latency, en-

ergy, and carbon costs when they are deployed.

Context sampling. As noted in Sec. 5.4.1, zero-shot ArcheType mod-

els struggle when new features are added during context sampling.

We consider this an important area of future work.

Numeric attributes. Although we benchmark ArcheType on all data

types, we see the system as being primarily useful for semantic

types (categorical or textual columns). Simpler approaches are likely

work just as well (or perhaps even better) for purely numeric or

alphanumeric columns.

Label set size. As Fig. 7 shows, all model architectures studied in

this paper struggle to maintain their performance as the label set

grows large, even when the context window is not exceeded. A

possible reason for this is the difficulty in disambiguating several

similar semantic concepts given only a brief label.

6 CONCLUSIONS AND FUTUREWORK
We introduce ArcheType, a novel CTA approach centered around

LLMs. We show that with effective context sampling and label

remapping, (a) LLMs can be made highly competitive with SOTA

CTA models in the fine-tuned setting, and (b) LLMs are both easier

to apply, and more accurate than existing deep models in the zero-

shot domain. Using newly curated benchmarks (Sec. 4), we show

that LLM-based CTA can generalize to considerable distribution

shifts, making them ideally suited for real-world tasks.

We anticipate that methods building upon ArcheType can be

useful in a variety of downstream dataset creation, curation, and

processing tasks. In the future, we will explore the possibility of

extending our methods to novel data tasks, such as semantic join-

ability, column property annotation, and dataset synthesis.

ACKNOWLEDGMENTS
Thisworkwas supported byNSF awards IIS-2106888, CMMI-2146306,

and CCF-2046235; the AI Research Institutes program supported

by NSF and USDA-NIFA under Award No. 2021-67021-35329; and

DARPA D3M and ASKEM programs. Opinions, findings, conclu-

sions, or recommendations expressed in this material are those of

the authors and do not reflect the views of NSF, USDA, or DARPA.

2290

https://arxiv.org/abs/2310.18208

REFERENCES
[1] Anthropic. 2024. Introducing the next generation of Claude.

[2] Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyga-

niak, and Zachary Ives. 2007. Dbpedia: A nucleus for a web of open data. In

international semantic web conference. Springer, 722–735.
[3] Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora,

Sydney von Arx, Michael S Bernstein, Jeannette Bohg, Antoine Bosselut, Emma

Brunskill, et al. 2021. On the opportunities and risks of foundation models. arXiv
preprint arXiv:2108.07258 (2021).

[4] Rishi Bommasani, Percy Liang, and Tony Lee. 2023. Holistic evaluation of

language models. Annals of the New York Academy of Sciences 1525, 1 (2023),
140–146.

[5] Michael J. Cafarella, Alon Halevy, Daisy ZheWang, EugeneWu, and Yang Zhang.

2008. WebTables: Exploring the Power of Tables on the Web. Proc. VLDB Endow.
1, 1 (aug 2008), 538–549.

[6] Jiaoyan Chen, Ernesto Jimenez-Ruiz, Ian Horrocks, and Charles Sutton. 2019.

Learning Semantic Annotations for Tabular Data. http://arxiv.org/abs/1906.

00781 arXiv:1906.00781 [cs].

[7] Lingjiao Chen, Matei Zaharia, and James Zou. 2024. How Is ChatGPT’s Be-

havior Changing Over Time? Harvard Data Science Review 6, 2 (mar 12 2024).

https://hdsr.mitpress.mit.edu/pub/y95zitmz.

[8] Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William

Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Web-

son, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha

Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Y. Zhao, Yan-

ping Huang, Andrew M. Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean,

Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei. 2022.

Scaling Instruction-Finetuned Language Models. CoRR abs/2210.11416 (2022).

arXiv:2210.11416

[9] Melissa Dell, Jacob Carlson, Tom Bryan, Emily Silcock, Abhishek Arora, Zejiang

Shen, Luca D’Amico-Wong, Quan Le, Pablo Querubin, and Leander Heldring.

2024. American stories: A large-scale structured text dataset of historical us

newspapers. Advances in Neural Information Processing Systems 36 (2024).
[10] Xiang Deng, Huan Sun, Alyssa Lees, You Wu, and Cong Yu. 2022. TURL: Table

Understanding through Representation Learning. SIGMOD Rec. Association for
Computing Machinery 51, 1 (June 2022), 33–40.

[11] Vasilis Efthymiou, Oktie Hassanzadeh, Mariano Rodriguez-Muro, and Vassilis

Christophides. 2017. Matching web tables with knowledge base entities: from

entity lookups to entity embeddings. In International Semantic Web Conference.
Springer, 260–277.

[12] Benjamin Feuer and Yurong Liu. 2023. The ArcheType System. https://github.

com/penfever/ArcheType.

[13] Benjamin Feuer, Yurong Liu, Chinmay Hegde, and Juliana Freire. 2023.

ArcheType: A Novel Framework for Open-Source Column Type Annotation

using Large Language Models. arXiv preprint arXiv:2310.18208 (2023).
[14] Gang Fu, Colin Batchelor, Michel Dumontier, Janna Hastings, Egon Willighagen,

and Evan Bolton. 2015. PubChemRDF: towards the semantic annotation of

PubChem compound and substance databases. Journal of Cheminformatics 7
(July 2015), 34.

[15] Phillip B Gibbons. 2016. Distinct-values estimation over data streams. In Data
Stream Management: Processing High-Speed Data Streams. Springer, 121–147.

[16] Governo Brasileiro. 2024. Portal Brasileiro de Dados Abertos. https://dados.gov.

br.

[17] Stefan Hegselmann, Alejandro Buendia, Hunter Lang, Monica Agrawal, Xiaoyi

Jiang, and David Sontag. 2023. TabLLM: Few-shot Classification of Tabular Data

with Large Language Models. In Proceedings of The International Conference on
Artificial Intelligence and Statistics, Vol. 206. 5549–5581.

[18] Dan Hendrycks and Thomas G. Dietterich. 2019. Benchmarking Neural Network

Robustness to Common Corruptions and Perturbations. In International Confer-
ence on Learning Representations, ICLR. OpenReview.net. https://openreview.

net/forum?id=HJz6tiCqYm

[19] Kevin Hu, Neil Gaikwad, Michiel Bakker, Madelon Hulsebos, Emanuel Zgraggen,

César Hidalgo, Tim Kraska, Guoliang Li, Arvind Satyanarayan, and Çağatay

Demiralp. 2019. VizNet: Towards a large-scale visualization learning and bench-

marking repository. In Proceedings of the Conference on Human Factors in Com-
puting Systems (CHI). ACM, 1–12.

[20] Madelon Hulsebos, Çagatay Demiralp, and Paul Groth. 2023. Gittables: A large-

scale corpus of relational tables. Proceedings of the ACM on Management of Data
1, 1 (2023), 1–17.

[21] Madelon Hulsebos, Kevin Hu, Michiel Bakker, Emanuel Zgraggen, Arvind Satya-

narayan, Tim Kraska, Çagatay Demiralp, and César Hidalgo. 2019. Sherlock: A

Deep Learning Approach to Semantic Data Type Detection. In Proceedings of the
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.
ACM, 468–479.

[22] Ihab F. Ilyas and Xu Chu. 2019. Data Cleaning. ACM.

[23] Srinivasan Iyer, Xi Victoria Lin, Ramakanth Pasunuru, Todor Mihaylov, Daniel

Simig, Ping Yu, Kurt Shuster, Tianlu Wang, Qing Liu, Punit Singh Koura, Xian Li,

Brian O’Horo, Gabriel Pereyra, Jeff Wang, Christopher Dewan, Asli Celikyilmaz,

Luke Zettlemoyer, and Ves Stoyanov. 2022. OPT-IML: Scaling Language Model In-

structionMeta Learning through the Lens of Generalization. CoRR abs/2212.12017
(2022). https://doi.org/10.48550/ARXIV.2212.12017 arXiv:2212.12017

[24] Sean Kandel, Andreas Paepcke, Joseph Hellerstein, and Jeffrey Heer. 2011. Wran-

gler: Interactive visual specification of data transformation scripts. In Proceedings
of the SIGCHI conference on human factors in computing systems. ACM, 3363–

3372.

[25] Moe Kayali, Anton Lykov, Ilias Fountalis, Nikolaos Vasiloglou, Dan Olteanu, and

Dan Suciu. 2023. CHORUS: foundation models for unified data discovery and

exploration. arXiv preprint arXiv:2306.09610 (2023).
[26] Aamod Khatiwada, Grace Fan, Roee Shraga, Zixuan Chen, Wolfgang Gatter-

bauer, Renée J Miller, and Mirek Riedewald. 2023. SANTOS: Relationship-based

Semantic Table Union Search. Proceedings of the ACM on Management of Data 1,
1 (2023), 1–25.

[27] Keti Korini and Christian Bizer. 2023. Column type annotation using chatgpt.

arXiv preprint arXiv:2306.00745 (2023).
[28] Keti Korini, Ralph Peeters, and Christian Bizer. 2022. SOTAB: The WDC Schema.

org table annotation benchmark. In CEUR Workshop Proceedings, Vol. 3320.
RWTH Aachen, Sun SITE Central Europe, 14–19.

[29] John P Miller, Rohan Taori, Aditi Raghunathan, Shiori Sagawa, Pang Wei Koh,

Vaishaal Shankar, Percy Liang, Yair Carmon, and Ludwig Schmidt. 2021. Ac-

curacy on the line: on the strong correlation between out-of-distribution and

in-distribution generalization. In International Conference on Machine Learning.
PMLR, 7721–7735.

[30] Niklas Muennighoff, Thomas Wang, Lintang Sutawika, Adam Roberts, Stella

Biderman, Teven Le Scao, M Saiful Bari, Sheng Shen, Zheng Xin Yong, Hailey

Schoelkopf, Xiangru Tang, Dragomir Radev, Alham Fikri Aji, Khalid Almubarak,

Samuel Albanie, Zaid Alyafeai, Albert Webson, Edward Raff, and Colin Raffel.

2023. Crosslingual Generalization through Multitask Finetuning. In Proceedings
of the Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers). Association for Computational Linguistics, 15991–16111.

[31] Avanika Narayan, Ines Chami, Laurel J. Orr, and Christopher Ré. 2022. Can

Foundation Models Wrangle Your Data? Proc. VLDB Endow. 16 (2022), 738–746.
[32] NYC Office of Technology and Innovation (OTI). 2024. NYC Open Data.

[33] Juri Opitz and Anette Frank. 2022. SBERT studies meaning representations:

Decomposing sentence embeddings into explainable semantic features. In Pro-
ceedings of the Conference of the Asia-Pacific Chapter of the Association for Com-
putational Linguistics and the 12th International Joint Conference on Natural
Language Processing. Association for Computational Linguistics, 625–638.

[34] Masayo Ota, Heiko Müller, Juliana Freire, and Divesh Srivastava. 2020. Data-

Driven Domain Discovery for Structured Datasets. Proc. VLDB Endow. 13, 7 (mar

2020), 953–967.

[35] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela

Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schul-

man, Jacob Hilton, Fraser Kelton, Luke Miller, Maddie Simens, Amanda Askell,

Peter Welinder, Paul F Christiano, Jan Leike, and Ryan Lowe. 2022. Training

language models to follow instructions with human feedback. In Advances in
Neural Information Processing Systems, Vol. 35. 27730–27744.

[36] Alethea Power, Yuri Burda, Harri Edwards, Igor Babuschkin, and Vedant Misra.

2022. Grokking: Generalization beyond overfitting on small algorithmic datasets.

arXiv preprint arXiv:2201.02177 (2022).

[37] Ronak Pradeep, Sahel Sharifymoghaddam, and Jimmy Lin. 2023. Rankvicuna:

Zero-shot listwise document reranking with open-source large language models.

arXiv preprint arXiv:2309.15088 (2023).
[38] Joaquin Quinonero-Candela, Masashi Sugiyama, Anton Schwaighofer, and Neil D

Lawrence. 2008. Dataset shift in machine learning. Mit Press.

[39] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh,

Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark,

Gretchen Krueger, and Ilya Sutskever. 2021. Learning Transferable Visual Models

From Natural Language Supervision. In ICML. 1090–1094.
[40] Vijayshankar Raman and Joseph M Hellerstein. 2001. Potter’s wheel: An interac-

tive data cleaning system. In VLDB, Vol. 1. 381–390.
[41] Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. 2019.

Do imagenet classifiers generalize to imagenet?. In International conference on
machine learning. PMLR, ICML, 5389–5400.

[42] Anna Rogers, Niranjan Balasubramanian, Leon Derczynski, Jesse Dodge, Alexan-

der Koller, Sasha Luccioni, Maarten Sap, Roy Schwartz, Noah A Smith, and Emma

Strubell. 2023. Closed ai models make bad baselines. Hacking Semantics 3 (2023).
[43] Melanie Sclar, Yejin Choi, Yulia Tsvetkov, and Alane Suhr. 2023. Quantify-

ing Language Models’ Sensitivity to Spurious Features in Prompt Design or:

How I learned to start worrying about prompt formatting. arXiv preprint
arXiv:2310.11324 (2023).

[44] Rico Sennrich, Barry Haddow, and Alexandra Birch. 2016. Neural Machine

Translation of Rare Words with Subword Units. In Proceedings of the Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers).
Association for Computational Linguistics, 1715–1725.

2291

http://arxiv.org/abs/1906.00781
http://arxiv.org/abs/1906.00781
https://arxiv.org/abs/2210.11416
https://github.com/penfever/ArcheType
https://github.com/penfever/ArcheType
https://dados.gov.br
https://dados.gov.br
https://openreview.net/forum?id=HJz6tiCqYm
https://openreview.net/forum?id=HJz6tiCqYm
https://doi.org/10.48550/ARXIV.2212.12017

[45] Yoshihiko Suhara, Jinfeng Li, Yuliang Li, Dan Zhang, Çağatay Demiralp, Chen

Chen, and Wang-Chiew Tan. 2022. Annotating Columns with Pre-Trained

Language Models. In Proceedings of the International Conference on Management
of Data (SIGMOD). ACM, 1493–1503.

[46] Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos

Guestrin, Percy Liang, and Tatsunori B. Hashimoto. 2023. Stanford Alpaca: An

Instruction-following LLaMA model. https://github.com/tatsu-lab/stanford_

alpaca.

[47] Yi Tay, Mostafa Dehghani, Vinh Q. Tran, Xavier Garcia, Jason Wei, Xuezhi Wang,

Hyung Won Chung, Dara Bahri, Tal Schuster, Huaixiu Steven Zheng, Denny

Zhou, Neil Houlsby, and Donald Metzler. 2023. UL2: Unifying Language Learning

Paradigms. In The Eleventh International Conference on Learning Representations,
ICLR. OpenReview.net. https://openreview.net/pdf?id=6ruVLB727MC

[48] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne

Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal

Azhar, et al. 2023. Llama: Open and efficient foundation language models. arXiv
preprint arXiv:2302.13971 (2023).

[49] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yas-

mine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhos-

ale, et al. 2023. Llama 2: Open foundation and fine-tuned chat models. arXiv
preprint arXiv:2307.09288 (2023).

[50] Jianhong Tu, Ju Fan, Nan Tang, Peng Wang, Guoliang Li, Xiaoyong Du, Xiaofeng

Jia, and Song Gao. 2023. Unicorn: A Unified Multi-tasking Model for Supporting

Matching Tasks in Data Integration. Proceedings of the ACM on Management of
Data 1, 1 (2023), 1–26. https://doi.org/10.1145/3588938

[51] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N. Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is All

You Need. In Proceedings of the International Conference on Neural Information
Processing Systems (NEURIPS). 5998–6008.

[52] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement De-

langue, Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,

et al. 2019. Huggingface’s transformers: State-of-the-art natural language pro-

cessing. arXiv preprint arXiv:1910.03771 (2019).
[53] Dan Zhang, Yoshihiko Suhara, Jinfeng Li, Madelon Hulsebos, Çağatay Demiralp,

and Wang-Chiew Tan. 2020. Sato: Contextual Semantic Type Detection in Tables.

Proc. VLDB Endow. 13, 12 (2020), 1835–1848.

2292

https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://openreview.net/pdf?id=6ruVLB727MC
https://doi.org/10.1145/3588938

	Abstract
	1 Introduction
	2 Background: Foundation Models
	2.1 LLMs and Tabular Data
	2.2 LLMs for Zero-Shot CTA
	2.3 Open vs. Closed-Source LLMs

	3 ArcheType: Methods and System
	3.1 Elements of LLM-CTA Methods
	3.2 Context Sampling
	3.3 Prompt Serialization
	3.4 Model Querying
	3.5 Label Remapping

	4 New Zero-Shot Benchmarks
	5 Experiments
	5.1 Experimental Setup
	5.2 ArcheType Effectiveness
	5.3 Observations
	5.4 Ablation Studies
	5.5 Limitations

	6 Conclusions and Future Work
	Acknowledgments
	References

