
Secure and Verifiable Data Collaboration with Low-Cost
Zero-Knowledge Proofs

Yizheng Zhu

National University of Singapore

zhuyizheng@gmail.com

Yuncheng Wu
†∗

Renmin University of China

wuyuncheng@ruc.edu.cn

Zhaojing Luo
†

Beijing Institute of Technology

zjluo@bit.edu.cn

Beng Chin Ooi

National University of Singapore

ooibc@comp.nus.edu.sg

Xiaokui Xiao

National University of Singapore

xkxiao@nus.edu.sg

ABSTRACT
Federated Learning (FL) emerges as a viable solution to facilitate

data collaboration, enabling multiple clients to collaboratively train

a machine learning (ML) model under the supervision of a central

server while ensuring the confidentiality of their raw data. How-

ever, existing studies have unveiled two main risks: (i) the potential

for the server to infer sensitive information from the client’s up-

loaded updates (i.e., model gradients), compromising client input

privacy, and (ii) the risk of malicious clients uploading malformed

updates to poison the FL model, compromising input integrity. Re-

cent works utilize secure aggregation with zero-knowledge proofs

(ZKP) to guarantee input privacy and integrity in FL. Nevertheless,

they suffer from extremely low efficiency and, thus, are impractical

for real deployment. In this paper, we propose a novel and highly

efficient approach RiseFL for secure and verifiable data collabora-

tion, ensuring input privacy and integrity simultaneously. Firstly,

we devise a probabilistic integrity check method that transforms

strict checks into a hypothesis test problem, offering great optimiza-

tion opportunities. Secondly, we introduce a hybrid commitment

scheme to satisfy Byzantine robustness with improved performance.

Thirdly, we present an optimized ZKP generation and verification

technique that significantly reduces the ZKP cost based on proba-

bilistic integrity checks. Furthermore, we theoretically prove the

security guarantee of RiseFL and provide a cost analysis compared

to state-of-the-art baselines. Extensive experiments on synthetic

and real-world datasets suggest that our approach is effective and

highly efficient in both client computation and communication. For

instance, RiseFL is up to 28x, 53x, and 164x faster than baselines

ACORN, RoFL, and EIFFeL for the client computation.

PVLDB Reference Format:
Yizheng Zhu, Yuncheng Wu, Zhaojing Luo, Beng Chin Ooi, Xiaokui Xiao.

Secure and Verifiable Data Collaboration with Low-Cost Zero-Knowledge

Proofs. PVLDB, 17(9): 2321 - 2334, 2024.

doi:10.14778/3665844.3665860

†This work was done when the authors were at National University of Singapore.

∗
Yuncheng Wu is the corresponding author.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 17, No. 9 ISSN 2150-8097.

doi:10.14778/3665844.3665860

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/nusdbsystem/risefl.

1 INTRODUCTION
Organizations and companies are progressively embracing digitiza-
tion and digitalization as pathways to transformation, targeting en-
hancements in profitability, efficiency, or sustainability. Data plays a
crucial role in such transformations. For example, financial analysts
may use users’ historical data to adjudicate on credit card applica-
tions, and clinicians may use patients’ electronic health records for
disease diagnosis. While many organizations may lack expansive
or pertinent datasets, there is a growing inclination towards data
collaboration [5, 64, 68] for analytics purposes. Nevertheless, the
ascent of rigorous data protection legislation, such as GDPR [1],
deters direct raw data exchange. For example, in a healthcare data
collaboration scenario shown in Figure 1, three hospitals aim to
share their respective organ image databases to build a more ac-
curate diagnosis machine learning (ML) model [40, 47]. However,
due to the highly sensitive nature of patients’ data, directly sharing
those organ images among hospitals is not permissible.

 In this landscape, federated learning [4, 19, 21–23, 35, 38, 39, 43,
63, 67, 73, 80] emerges as a viable solution to facilitate data collabora-
tion. It enables multiple data owners (i.e., clients) to collaboratively
train an ML model without necessitating the direct sharing of raw
data, thereby complying with data protection acts. Typically, there
is a centralized server that coordinates the FL training process. Take
Figure 1 as an example. The hospitals train an FL model under the
coordination of a healthcare center (i.e., server). The healthcare
center first initializes the model parameter and broadcasts it to all
the hospitals. Subsequently, in each iteration, each hospital com-

putes a local update, i.e., model gradients, on its own patients’ data
and uploads it to the healthcare center. The healthcare center then
aggregates all hospitals’ updates to generate a global update and
sends it back to the hospitals for iterative training [43]. Finally, the
hospitals obtain a federated model trained on the three hospitals’
organ images. After that, doctors in each hospital can use it to assist
in diagnosing new patients.
 Despite the fact that FL could facilitate data collaboration among

multiple clients, two main risks remain. The first is the client’s
input privacy. Even without disclosing the client’s raw data to
the server, recent studies [44, 46] have shown that the server can
recover the client’s sensitive data through the uploaded update
with a high probability. The second is the client’s input integrity.

2321

https://doi.org/10.14778/3665844.3665860
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3665844.3665860
https://github.com/nusdbsystem/risefl
https://www.acm.org/publications/policies/artifact-review-and-badging-current

Healthcare Center (Server)

Doctor Patient

New Patient’s Data

Diagnosis Report

Hospital A

Hospital B

Hospital C

Local Model A

Local Model B

Local Model C

Aggregation

Federated Model

Figure 1: An example for healthcare data collaboration.

In FL, there may exist a set of malicious clients that aim to poison

the collaboratively trained model via Byzantine attacks, such as

imposing backdoors so that themodel is susceptible to specific input

data [3, 71], contaminating the training process with malformed

updates to degrade model accuracy [9, 24, 30], and so on.

A number of solutions [7, 15, 32, 42, 48, 74, 78, 79, 81] have

been proposed to protect input privacy and ensure input integrity

in FL. On the one hand, instead of uploading the plaintext local

updates to the server, the clients can utilize secure aggregation tech-

niques [7, 12, 32], such as secret sharing [33, 57] and homomorphic

encryption [18, 25], to mask or encrypt the local updates so that the

server can aggregate the clients’ updates correctly without know-

ing each update. In this way, the client’s input privacy is preserved.

However, these solutions do not ensure input integrity because it

is difficult to distinguish malicious encrypted updates from benign

ones. On the other hand, [15, 42, 48, 74, 78, 79] present various

Byzantine-robust aggregation algorithms, allowing the server to

identify malformed updates and eliminate them from being aggre-

gated into the global update. Nevertheless, these algorithms require

the clients to send plaintext updates to the server for integrity

verification, compromising the client’s input privacy.

In order to ensure input integrity while satisfying input privacy,

[6, 41, 55] use secure aggregation to protect each client’s update

and allow the server to check the encrypted update’s integrity

using zero-knowledge proof (ZKP) [36] protocols. The general idea

is to let each client compute a commitment of its local update

and generate a proof that the update satisfies a publicly-known

predicate, for example, the 𝐿2-norm is within a specific range [59];

then, the server can verify the correctness of the proofs based on

the commitments and securely aggregate the valid updates without

the need of knowing the plaintext values. Unfortunately, these

solutions suffer from extremely low efficiency in proof generation

and verification, making them impractical for real deployments. For

example, under the experiment settings in Section 6.2, EIFFeL [55]

takes 161 seconds to generate and verify proofs on 10K model

parameters, compared to 7.6 seconds for client local training.

To introduce a practical FL system that ensures both input pri-

vacy and input integrity, we propose a secure and verifiable feder-

ated learning approach, called RiseFL, with high efficiency. RiseFL

has been included in our federated learning system Falcon
1
so

1

https://www.comp.nus.edu.sg/~dbsystem/fintech-Falcon/

as to enhance the trustworthiness of the clients’ model updates

while preserving their privacy [68]. In this paper, we focus on the

𝐿2-norm integrity check, i.e., the 𝐿2-norm of a client’s local up-

date is less than a threshold, which is widely adopted in existing

works [16, 41, 55, 61]. Our key observation of the low-efficiency

in [6, 41, 55] is that their proof generation and verification costs

for each client are linearly dependent on the number of parameters

𝑑 in the FL model. Therefore, we aim to reduce the proof cost to

render system scalability and practicality for handling large FLmod-

els. To this end, we propose a novel approach with the following

three key features. First, we propose a probabilistic 𝐿2-norm check

method that transforms the strict 𝐿2-norm check into a Chi-square

hypothesis test. The rationale is to sample a set of public vectors

and let each client prove that the summation of the inner products

between its update and the public vectors is bounded, instead of

directly checking the 𝐿2-norm of the update. This transformation

facilitates the development of optimization techniques to reduce the

complexity. Second, we devise a hybrid commitment scheme based

on Pedersen commitment [50] and verifiable Shamir secret sharing

commitment [20, 57], tailored for the probabilistic check method.

It not only ensures Byzantine robustness but also achieves notable

performance improvement on the client computation. Third, we

design an optimized ZKP generation and verification technique by

merging the common group exponentiations across the clients for

the probabilistic check method, significantly reducing the crypto-

graphic operation cost of proof generation and verification from

𝑂𝑑 to𝑂𝑑⇑ log𝑑. Although we consider the 𝐿2-norm check, our

approach can be easily extended to various Byzantine-robust in-

tegrity checks [15, 60, 78] based on different 𝐿2-norm variants, such

as cosine similarity [3, 15], sphere defense [60], and Zeno++ [72].

In summary, we make the following contributions.

● We propose a novel and highly efficient solution RiseFL for

FL-based data collaboration, which simultaneously ensures

each client’s input privacy and input integrity.

● We introduce a probabilistic 𝐿2-norm integrity check method

coupled with two novel techniques for commitment gener-

ation and ZKP generation/verification, which significantly

reduces the overall cost for the check.

● We provide a formal security analysis of RiseFL and theoret-

ically compare its computational and communication costs

with three state-of-the-art solutions.

● We implement RiseFL and evaluate its performance with a set

of micro-benchmark experiments as well as FL tasks on three

real-world datasets. The results demonstrate that RiseFL is

effective in detecting various attacks and is up to 28x, 53x and

164x faster than ACORN [6], RoFL [41] and EIFFeL [55] for

the client computation, respectively.

The rest of the paper is organized as follows. Section 2 introduces

preliminaries, and Section 3 presents an overview of our approach.

We detail the system design in Section 4 and analyze the security

and cost in Section 5. The evaluation is given in Section 6.We review

related works in Section 7 and conclude the paper in Section 8.

2 PRELIMINARIES
We first introduce the notations used in this paper. Let G denote

a cyclic group with prime order 𝑝 , where the discrete logarithm

2322

https://www.comp.nus.edu.sg/~dbsystem/fintech-Falcon/

problem [52] is hard. Let Z𝑝 denote the set of integers modulo the

prime 𝑝 . We use 𝑥 , x, andX to denote a scalar, a vector, and a matrix,

respectively. We use EncK𝑥 to denote an encrypted value of 𝑥

under an encryption key K, and DecK𝑦 to denote a decrypted

value of𝑦 under the same key K. Since the data used in ML are often

floating-point values, we use fixed-point integer representation to

encode floating-point values. In the following, we introduce the

cryptographic building blocks used in this paper.

PedersenCommitment.A commitment scheme is a cryptographic

primitive that allows one to commit a chosen value without re-

vealing the value to others while still allowing the ability to dis-

close it later [28]. Commitment schemes are widely used in various

zero-knowledge proofs. In this paper, we adopt Pedersen commit-

ment [50] for a party to commit its secret value 𝑥 ∈ Z𝑝 . Given
independent group elements 𝑔,ℎ, the party generates a random

number 𝑟 ∈ Z𝑝 and uses Pedersen commitment to encrypt the

secret value 𝑥 by a commitment algorithm 𝐶𝑥, 𝑟 = 𝑔𝑥ℎ𝑟 . Later,
the party can reveal its 𝑥 and 𝑟 such that a verifier can compute

𝐶
′𝑥, 𝑟 = 𝑔𝑥ℎ𝑟 and check if𝐶′𝑥, 𝑟 = 𝐶𝑥, 𝑟. If matched, the veri-

fier has proven that the party’s committed value in𝐶𝑥, 𝑟 is indeed
𝑥 . Notice that if provided the commitment 𝐶𝑥, 𝑟 and the random

number 𝑟 , the value of 𝑥 can be computed based on𝑔
𝑥 = 𝐶𝑥, 𝑟⋅ℎ−𝑟 .

Another property of Pedersen commitment is that it is additively ho-

momorphic. Given two values 𝑥1, 𝑥2 and two random numbers 𝑟1, 𝑟2,

the commitment follows 𝐶𝑥1, 𝑟1 ⋅𝐶𝑥2, 𝑟2 = 𝐶𝑥1 + 𝑥2, 𝑟1 + 𝑟2.
These properties enable us to design a novel scheme built on Ped-

ersen commitment, which securely aggregates the parties’ secret

values without revealing them.

Verifiable Shamir’s Secret Sharing Scheme. Shamir’s 𝑡-out-of-

𝑛 secret sharing (SSS) scheme [57] allows a party to distribute a

secret among a group of 𝑛 parties via shares so that the secret

can be reconstructed given any 𝑡 shares but cannot be revealed

given less than 𝑡 shares. The SSS scheme is verifiable (aka. VSSS) if

auxiliary information is provided to verify the validity of the secret

shares. We use the VSSS scheme [20, 57] to share a number 𝑟 ∈ Z𝑝 .
Specifically, the VSSS scheme consists of three algorithms, namely,

SS.Share, SS.Verify, and SS.Recover.

● 1, 𝑟1, . . . , 𝑛, 𝑟𝑛,Ψ ← SS.Share𝑟, 𝑛, 𝑡,𝑔. Given a se-

cret 𝑟 ∈ Z𝑝 , 𝑔 ∈ G, and 0 < 𝑡 ≤ 𝑛, this algorithm outputs a

set of 𝑛 shares 𝑖, 𝑟𝑖 for 𝑖 ∈ (︀𝑛⌋︀ and a check string Ψ as the

auxiliary information to verify the shares.

● 𝑟 ← SS.Recover𝑖, 𝑟𝑖 ∶ 𝑖 ∈ 𝐴. For any subset 𝐴 ⊂ (︀𝑛⌋︀
with size at least 𝑡 , this algorithm recovers the secret 𝑟 .

● True⇑False← SS.VerifyΨ, 𝑖, 𝑟𝑖 , 𝑛, 𝑡,𝑔. Given a share 𝑖, 𝑟𝑖
and the check string Ψ, it verifies the validity of this share

so that it outputs True if 𝑖, 𝑟𝑖 was indeed generated by

SS.Share𝑟, 𝑛, 𝑡,𝑔 and False otherwise.

This scheme is additively homomorphic in both the shares and the

check string. If 1, 𝑟1, . . . , 𝑛, 𝑟𝑛,Ψ𝑟  ← SS.Share𝑟, 𝑛, 𝑡,𝑔 and
1, 𝑠1, . . . , 𝑛, 𝑠𝑛,Ψ𝑠← SS.Share𝑠, 𝑛, 𝑡,𝑔, then:

● 𝑟 + 𝑠 ← SS.Recover𝑖, 𝑟𝑖 + 𝑠𝑖 ∶ 𝑖 ∈ 𝐴 for any subset

𝐴 ⊂ (︀𝑛⌋︀ with size at least 𝑡 ,

● True← SS.VerifyΨ𝑟 ⋅ Ψ𝑠 , 𝑖, 𝑟𝑖 + 𝑠𝑖 , 𝑛, 𝑡,𝑔.

Zero-Knowledge Proofs. A zero-knowledge proof (ZKP) allows a

prover to prove to a verifier that a given statement is true, such as a

value is within a range, without disclosing any additional informa-

tion to the verifier [11].We utilize two additively homomorphic ZKP

protocols based on the Pedersen commitment as building blocks.

Note that the zkSNARK protocols [8, 26, 49] are not additively

homomorphic, thus they cannot support the secure aggregation

required in federated learning.

The first is the Σ-protocol [14] for proof of square and proof

of relation. For proof of square 𝑥, 𝑟1, 𝑟2, 𝑦1,𝑦2, denote 𝑔,ℎ
as the independent group elements, and let 𝑦1 = 𝐶𝑥, 𝑟1 and
𝑦2 = 𝐶𝑥2, 𝑟2 be the Pedersen commitments, where 𝑥, 𝑟1, 𝑟2 ∈ Z𝑝
are the secrets. The function GenPrfSq𝑥, 𝑟1, 𝑟2, 𝑦1,𝑦2 gen-
erates a proof 𝜋 that the secret value in 𝑦2 is the square of the

secret value in 𝑦1. Accordingly, the function VerPrfSq𝜋,𝑦1,𝑦2
verifies the correctness of this proof. Similarly, for proof of a rela-

tion 𝑟, 𝑣, 𝑠, 𝑧, 𝑒, 𝑜, denote 𝑔,𝑞,ℎ as the independent group
elements, and let 𝑧 = 𝑔

𝑟
, 𝑒 = 𝑔

𝑣
ℎ
𝑟
, 𝑜 = 𝑔

𝑣
𝑞
𝑠
be the Pedersen

commitments, where 𝑟, 𝑣, 𝑠 ∈ Z𝑝 are the secrets. The function

GenPrfWf𝑟, 𝑣, 𝑠, 𝑧, 𝑒, 𝑜 generates a proof 𝜋 that the secrets in

𝑒 and 𝑜 are equal, and the secret in 𝑧 is equal to the blind in 𝑒 . The

function VerPrfWf𝜋, 𝑧, 𝑒, 𝑜 verifies the proof. The second ZKP

protocol used is the Bulletproofs protocol [13] for checking the

bound of a value 𝑥 with its Pedersen commitment 𝑦 = 𝐶𝑥, 𝑟. We

denote GenPrfBd𝑥,𝑦, 𝑟,𝑏 as the function that generates a proof

𝜋 that 𝑥 ∈ (︀0, 2𝑏, where 2𝑏 is the bound to be ensured. The cor-

responding function VerPrfBd𝜋,𝑦,𝑏 verifies the proof. We refer

the interested readers to [13] for more details.

3 SYSTEM OVERVIEW
3.1 System Model
There are 𝑛 clients 𝒞1,⋯, 𝒞𝑛 and a centralized server in the sys-

tem. Each client 𝒞𝑖𝑖 ∈ (︀𝑛⌋︀ holds a private dataset𝒟𝑖 to participate

in data collaboration for training a federated learning (FL) model

ℳ. Let 𝑑 be the number of parameters inℳ. In each iteration,

the FL training process consists of three phases. Firstly, the server

broadcasts the current model parameters to all the clients. Secondly,

each client 𝒞𝑖 computes a local update u𝑖 (i.e., model gradients)

given the model parameters and its dataset 𝒟𝑖 , and submits u𝑖 to
the server. Thirdly, the server aggregates the clients’ gradients to a

global update 𝒰 = ∑𝑖∈(︀𝑛⌋︀ u𝑖 and updates the model parameters of

ℳ for the next round of training until convergence.

3.2 Threat Model
We consider a malicious threat model in two aspects. First, regard-

ing input privacy, we consider a malicious server (i.e., the adversary)

that can deviate arbitrarily from the specified protocol to infer each

client’s uploaded model update. Also, the server may collude with

some of the malicious clients to compromise the honest clients’

privacy. Similar to [55], we do not consider the scenario that the

server is malicious against the input integrity because its primary

goal is to ensure the well-formedness of each client’s uploaded

update. Second, regarding input integrity, we assume that there

are at most𝑚 malicious clients in the system, where𝑚 < 𝑛⇑2. The
malicious clients can also deviate from the specified protocol arbi-

trarily, such as sending malformed updates to the server to poison

the aggregation of the global update, or intentionally marking an

2323

Server

Client 1 Client 2 Client 3

Bulletin

public key

sync hyper-parameters

(a) System initialization

Server

𝒓𝟐𝟏 𝒓𝟐𝟑

𝒓𝟐𝟐

commitment

VSSS shares

Client 1 Client 2 Client 3

(b) Commitment generation

Server

Client 1 Client 2 Client 3

ZK proofs
client flag list

(c) Proof generation and verification

Server

Client 1 Client 2 Client 3

𝑟 𝑟
share addition
𝒓 = 𝒓𝟏 + 𝒓𝟐

𝒓

updates aggregation

(d) Secure aggregation

Figure 2: An overview of the proposed RiseFL system.

honest client as malicious to interfere with the server’s decision on

the list of malicious clients.

3.3 Problem Formulation
We aim to ensure both input privacy (for the clients) and input

integrity (for the server) under the threat model described in Sec-

tion 3.2. We formulate our problem as a relaxed variant of the

secure aggregation with verified inputs (SAVI) problem in [55],

namely 𝐷, 𝐹-relaxed SAVI, as defined in Definition 1. It achieves

the same level of input privacy while relaxing the input integrity

for significant efficiency improvement.

Definition 1. Given a security parameter 𝜅 , a function 𝐷 ∶ R𝑑 →
R satisfying that u is malicious if and only if 𝐷u > 1, a function
𝐹 ∶ 1,+∞ → (︀0, 1⌋︀, a set of inputs u1,⋯,u𝑛 from clients 𝒞 =
𝒞1, . . . , 𝒞𝑛 respectively, and a list of honest clients 𝒞𝐻 , a protocol
Π is a 𝐷, 𝐹-relaxed SAVI protocol for 𝒞𝐻 if:

● Input Privacy. The protocol Π realizes the ideal functionality ℱ
such that for an adversary 𝒜 that consists of the malicious server
and the malicious clients 𝒞 ∖ 𝒞𝐻 attacking the real interaction,
there exist a simulator 𝒮 attacking the ideal interaction, and

⋃︀Pr(︀RealΠ,𝒜u𝒞𝐻  = 1⌋︀ − Pr(︀Idealℱ ,𝒮𝒰𝒞𝐻  = 1⌋︀⋃︀ ≤ negl𝜅,

where 𝒰𝒞𝐻 = ∑𝒞𝑖∈𝒞𝐻 u𝑖 .
● Input Integrity. The protocol Π outputs ∑𝒞𝑖∈𝒞Valid u𝑖 with proba-

bility of at least 1 − negl𝜅, where 𝒞
Valid

is the set of clients that
pass the integrity check and 𝒞𝐻 ⊆ 𝒞Valid. For any malformed input
u𝑗 from a malicious client 𝒞𝑗 , the probability that it passes the
integrity check satisfies:

Pr(︀𝒞𝑗 ∈ 𝒞Valid⌋︀ ≤ 𝐹𝐷u𝑗.

For input privacy in Definition 1, it ensures that the server can

only learn the aggregation of honest clients’ updates. For input

integrity, Definition 1 relaxes the integrity verification by introduc-

ing a malicious pass rate function 𝐹 . 𝐹 is a function that maps the

degree of maliciousness of an input to the pass rate of the input,

and the degree of maliciousness is measured by the function 𝐷 .

For instance, with an 𝐿2-norm bound 𝐵, a natural choice of 𝐷 is

𝐷u = ⋃︀⋃︀u⋃︀⋃︀2⇑𝐵, and the pass rate of a malicious u is 𝐹𝐷u.
Intuitively, the higher the degree of maliciousness, the lower the

pass rate. So, 𝐹 is usually decreasing. Our system also satisfies

lim sup𝑥→+∞ 𝐹𝑥 ≤ negl𝜅. When 𝐹 ≡ negl𝜅, a protocol that
satisfies 𝐷, 𝐹-relaxed SAVI will also satisfy SAVI.

3.4 Solution Overview
To solve the problem in Definition 1, we propose a secure and

verifiable federated learning system RiseFL with high efficiency. It

tolerates𝑚 < 𝑛⇑2malicious clients for input integrity, which means

that the server can securely aggregate the clients’ inputs as long

as a majority of the clients are honest. Figure 2 gives an overview

of RiseFL, which is composed of a system initialization stage and

three iterative rounds: commitment generation, proof generation

and verification, and secure aggregation. In the initialization stage

(Figure 2a), all the parties agree on some hyper-parameters, such as

the number of clients 𝑛, the maximum number of malicious clients

𝑚, the security parameters, e.g., key size, and so on.

In each iteration of the FL training process, each client 𝒞𝑖𝑖 ∈ (︀𝑛⌋︀
commits its model update u𝑖 using the hybrid commitment scheme

based on Pedersen commitment and verifiable Shamir’s secret shar-

ing (VSSS) in Section 4.3, and then sends the commitment to the

server and the secret shares to the corresponding clients (see Fig-

ure 2b). In the proof generation and verification round (Figure 2c),

there are two steps. In the first step, each client verifies the au-

thenticity of other clients’ secret shares. For the secret shares that

are verified to be invalid, the client marks the respective clients

as malicious. With the marks from all clients, the server can then

identify a subset of malicious clients. In the second step, the server

uses a probabilistic integrity check method presented in Section 4.4

to check each client’s update u𝑖 . Next, the server filters out the

malicious client list 𝒞∗ and broadcasts it to all the clients. In the

secure aggregation round (Figure 2d), each client aggregates the

secret shares from clients 𝒞𝑗 𝑗 ∉ 𝒞∗ and sends the result to the

server. The server reconstructs the sum of secret shares and se-

curely aggregates the updates u𝑗 𝑗 ∉ 𝒞∗ based on the Pedersen

commitments.

4 RISEFL DESIGN
In this section, we introduce our system design. We first present

the rationale of the protocol in Section 4.1. Then, we introduce the

initialization stage in Section 4.2 and the three steps in each iteration

of the training stage in Sections 4.3-4.5, respectively. Finally, we

discuss the extension of our system in Section 4.6.

4.1 Rationale
The most relevant work to our problem is EIFFeL [55], which also

ensures input privacy and integrity in FL training. In EIFFeL, each

2324

Algorithm 1: Probabilistic 𝐿2-norm bound check

Input: u ∈ R𝑑 , 𝐵, 𝑘 , 𝜖
Output: “Pass” or “Fail”

1 Sample a1, . . . , a𝑘 ∈ R𝑑 i.i.d. from𝒩 0, I𝑑
2 Compute 𝛾𝑘,𝜖 which satisfies that Pr

𝑡∼𝜒2

𝑘
(︀𝑡 < 𝛾𝑘,𝜖 ⌋︀ = 1 − 𝜖

3 if ∑𝑘
𝑖=𝑡 ∐︀a𝑖 ,ũ︀2 ≤ 𝐵2𝛾𝑘,𝜖 then

4 return “Pass”
5 else
6 return “Fail”
7 end

client first shares every coordinate of its model update with other

clients via verifiable Shamir’s 𝑡-out-of-𝑛 secret sharing (VSSS) [57]

as commitments. Then, each client generates a secret-shared non-

interactive proof (SNIP) [16] and sends it to the other clients via

VSSS. Next, the clients, together with the server, act as the verifiers

to check the correctness of clients’ secret-shared proofs. Finally, the

server and the honest clients who pass the verification can securely

aggregate the valid model updates with VSSS. However, its effi-

ciency is low, and thus is impractical to be deployed in real-world

systems. For example, under the experiment settings in Section 6.2,

given 100 clients and 1K model parameters, EIFFeL takes around

16.2 seconds for proof generation and verification on each client.

More severely, the cost is increased to 161 seconds when the number

of model parameters 𝑑 is 10K. The underlying reason is two-fold.

First, it requires the client to generate the check strings w.r.t. 𝑑

coordinates for the commitments, which involves 𝑂𝑚𝑑 crypto-
graphic group exponentiations (g.e.) to tolerate𝑚 malicious clients.

Second, the complexity of its proof generation and verification is

almost linearly dependent on the number of coordinates 𝑑 in the

model update, making EIFFeL inefficient and less scalable.

The rationale behind our idea is to reduce the complexity of

expensive group exponentiations. To do so, we first design a prob-

abilistic 𝐿2-norm bound check method, as shown in Algorithm 1.

Instead of generating and verifying proofs for the 𝐿2-norm of an

update ⋃︀⋃︀u⋃︀⋃︀
2
, where u ∈ R𝑑 , we randomly sample 𝑘 points a1, . . . , a𝑘

from the normal distribution𝒩 0, I𝑑. Then, the random variable

1

⋃︀⋃︀u⋃︀⋃︀2
2

∑𝑘

𝑡=1∐︀a𝑡 ,ũ︀
2

, (1)

follows a Chi-square distribution 𝜒
2

𝑘 with 𝑘 degrees of freedom.

In Algorithm 1, if ⋃︀⋃︀u⋃︀⋃︀2 ≤ 𝐵, then the probability that u passes the

check is at least 1 − 𝜖 , where 𝜖 is chosen to be cryptographically

small, e.g., 2
−128

. In this way, the probability that the client fails

the check is of the same order as the probability that the client’s

encryption is broken. Figure 3 shows an example of this method.

Assume that ⋃︀⋃︀u⋃︀⋃︀2 = 1. We sample two random normal samples

a1, a2; then, the inner products ∐︀a1,ũ︀, ∐︀a2,ũ︀ are the projections
of a1, a2 onto u. Figure 3b gives the probability density function of

𝜒
2

𝑘 . With the specific bound 𝛾𝑘,𝜖 as computed in Algorithm 1, there

is an overwhelming probability such that∑𝑘
𝑡=1∐︀a𝑡 ,ũ︀2 ≤ 𝛾𝑘,𝜖 .

We note that the probabilistic check method does not directly

reduce complexity, as the ZKP proof w.r.t.∑𝑘
𝑡=1∐︀a𝑡 ,ũ︀2 is still de-

pendent on 𝑑 . Nevertheless, this method allows us to design op-

timization techniques to reduce the complexity. Specifically, we

introduce a hybrid commitment scheme, which commits u by Ped-

ersen commitment with 𝑂𝑑 g.e. and commits the random secret

used in the Pedersen commitment by VSSS with𝑂𝑚 g.e., thereby
reducing commitment generation complexity by a factor of 𝑂𝑚
compared to EIFFeL. Moreover, we propose an optimized ZKP gen-

eration and verification technique by carefully merging common

group elements across clients required for each sample vector in the

probabilistic test, achieving a cost reduction by a factor of𝑂log𝑑
compared to EIFFeL. We shall detail these techniques in the follow-

ing subsections and theoretically analyze the cost in Section 5.2.

4.2 System Initialization
In this stage, all parties (the server and the clients) are given the

system parameters, including the number of clients 𝑛, the max-

imum number of malicious clients 𝑚, the bound on the number

of bits 𝑏
ip

of each inner product, the maximum number of bits

𝑏max > 𝑏ip of the sum of squares of inner product, the bound of

the sum of inner products 𝐵0 < 2
𝑏max

, the number of samples 𝑘

for the probabilistic check, a set of independent group elements

𝑔,𝑞 ∈ G,w = 𝑤1,⋯,𝑤𝑑 ∈ G𝑑 , the factor𝑀 > 0 used in discretizing
the normal distribution samples, and a cryptographic hash func-

tion 𝐻⋅. Note that 𝑏
ip
and 𝑏max sets the bounds of ∐︀a𝑖 ,ũ︀ and

∑𝑘
𝑖=1∐︀a𝑖 ,ũ︀2 in Eqn 1, respectively.

Since there is no direct channel between any two clients in the

FL setting considered in this paper, we let the server forward some

of the messages. To prevent the server from accessing the secret

information, each client 𝒞𝑖𝑖 ∈ (︀𝑛⌋︀ generates a public/private key
pair 𝑝𝑘𝑖 , 𝑠𝑘𝑖 and sends the public key 𝑝𝑘𝑖 to a public bulletin.

Subsequently, each client fetches the other clients’ public keys such

that each pair of clients can establish a secure channel via the

Diffie-Hellman protocol [45] for exchanging messages securely.

4.3 Commitment Generation
Recall that in each iteration of the FL training process, each client

𝒞𝑖𝑖 ∈ (︀𝑛⌋︀ obtains a model update u𝑖 via local training on its

dataset 𝒟𝑖 . In order to prove to the server that the 𝐿2-norm of u𝑖 is
within a bound 𝐵0, the client 𝒞𝑖 needs to commit its update u𝑖 before
generating the proofs. In RiseFL, the server is expected to not only

identify malicious clients, but also aggregate well-formed model

updates so that the training process is not affected by malicious

clients. Therefore, we propose a novel hybrid commitment scheme
based on Pedersen commitment and VSSS, where VSSS is used to

protect the random secret in the Pedersen commitment.

Hybrid commitment scheme. Note that the clients and server

agree on independent group elements 𝑔,𝑤1, . . . ,𝑤𝑑 ∈ G, where
𝑤 𝑗 𝑗 ∈ (︀𝑑⌋︀ is used for committing the 𝑗-th coordinate in u𝑖 . Then,
𝒞𝑖 generates a random secret 𝑟𝑖 ∈ Z𝑝 and encrypts u𝑖 with Pedersen
commitment as follows:

y𝑖 = 𝐶u𝑖 , 𝑟𝑖 = 𝐶𝑢𝑖1, 𝑟𝑖, . . . ,𝐶𝑢𝑖𝑑 , 𝑟𝑖
= 𝑔𝑢𝑖1𝑤𝑟𝑖

1
, . . . , 𝑔

𝑢𝑖𝑑𝑤
𝑟𝑖
𝑑
, (2)

where 𝑢𝑖 𝑗 is the 𝑗-th coordinate in u𝑖 . Each client 𝒞𝑖 sends y𝑖 =
𝐶u𝑖 , 𝑟𝑖 and 𝑧𝑖 = 𝑔𝑟𝑖 to the server as commitments. As 𝑟𝑖 is held by

each client 𝒞𝑖 , the server knows nothing regarding each update u𝑖 .

2325

2326

Algorithm 2: VerCrtw,h,A
Input: w = 𝑤1, . . . , 𝑤𝑑 ∈ G𝑑 , h = ℎ0, . . . , ℎ𝑘 ∈ Z𝑘+1𝑝 ,

A ∈M
𝑘+1×𝑑Z𝑝.

1 Randomly Sample b = 𝑏0, . . . , 𝑏𝑘 ∈ Z𝑘+1𝑝 .

2 Compute c = 𝑐1, . . . , 𝑐𝑑 = b ⋅A ∈ Z𝑑𝑝 .
3 return ℎ

𝑏
0

0
. . . ℎ

𝑏𝑘
𝑘
== 𝑤𝑐

1

1
. . . 𝑤

𝑐𝑑
𝑑

.

cannot blindly compute the value in Eqn 3 by 𝑒𝑡 = 𝑔∐︀a𝑡 ,u𝑖̃︀ℎ𝑟𝑖𝑡 as ℎ𝑡

is received from the server, which could be malicious. Therefore, we

let the client use batch verification
2
to check whether the merged

elements ℎ𝑡 for 𝑡 ∈ (︀𝑘⌋︀ are computed correctly. The cost of batch

verification is 𝑂𝑑⇑ log𝑑 group exponentiations and 𝑂𝑘𝑑 finite
field operations. Note that the group exponentiations are the major

cost as they are much more complex than finite field operations.

The reduction of the number of group exponentiations from 𝑂𝑑
to𝑂𝑑⇑ log𝑑 significantly reduces client cost, while the additional
cost of 𝑂𝑘𝑑 finite field operations is not large.

To make sure that 𝑒𝑡 is indeed the commitment of the inner

product of a𝑡 and the secret in y𝑖 , the server uses batch verifica-

tion to check that the values 𝑒𝑡 , 𝑡 ∈ (︀𝑘⌋︀, submitted by client 𝒞𝑖
satisfy Eqn 3: 𝑒𝑡

?= 𝑦𝑎𝑡1𝑖1 . . . 𝑦
𝑎𝑡𝑑
𝑖𝑑

. The only issue at this step is that

even if all of the equations 𝑒𝑡 = 𝑦𝑎𝑡1𝑖1 . . . 𝑦
𝑎𝑡𝑑
𝑖𝑑

are satisfied, the server

is still not sure that client 𝒞𝑖 possesses a value u𝑖 that is used to

produce y𝑖 . To address this issue, the server additionally samples

a0 ∈ Z𝑑𝑝 from the uniform distribution on Z𝑝 with cryptographi-

cally secure pseudo-random number generator (PRNG), computes

the corresponding ℎ0 = ∏𝑙 𝑤
𝑎𝑖𝑙
𝑙

and broadcasts it together with

ℎ1, . . . , ℎ𝑘 . The client needs to additionally verify the correctness of

ℎ0 together with ℎ1, . . . , ℎ𝑘 by batch verification. The server then

uses batch verification in Algorithm 2 to check the correctness of

𝑒𝑡
?= 𝑦𝑎𝑡1𝑖1 . . . 𝑦

𝑎𝑡𝑑
𝑖𝑑

for 𝑡 ∈ 0,⋯, 𝑘. With the additional commitment

𝑒0, the server can acquire an additional Σ-protocol proof that client
𝒞𝑖 possesses a value 𝛾 that satisfies 𝑒0 = 𝑔𝛾ℎ𝑟𝑖

0
. Once this additional

proof is satisfied, the server is sure that client 𝒞𝑖 possesses u𝑖 that
satisfies 𝑦𝑖𝑙 = 𝑔𝑢𝑖𝑙𝑤𝑟𝑖

𝑙
, and that 𝛾 = ∐︀a0,u𝑖̃︀. Therefore, the secrets

in 𝑒𝑡 are indeed the inner product between a𝑡 and u𝑖 , 𝑡 ∈ 0,⋯, 𝑘.
Finally, the commitment 𝑒𝑡 uses group element ℎ𝑡 , which is

different for different 𝑡 . In order to verify the bound of the sum

of the squares of the secrets in 𝑒𝑡 , we need to fix another inde-

pendent group element 𝑞 and convert 𝑒𝑡 to another commitment

𝑜𝑡 = 𝑔∐︀a𝑡 ,u𝑖̃︀𝑞𝑠𝑡 , where 𝑠𝑡 is another blind chosen by client 𝒞𝑖 . 𝑜𝑡 ,
𝑡 ∈ (︀𝑘⌋︀ are all based on 𝑞. We then proceed to check the bound of

the squares of the secrets in 𝑜𝑡 .

Probabilistic input integrity verification. Now we detail the

probabilistic input integrity verification in Algorithm 1. Assume the

server and clients generate𝑘+1 random samplesA = a0, a1,⋯, a𝑘 ∈
Z𝑑𝑝 using the aforementioned techniques. After that, the server

computes ℎ𝑡 = ∏𝑙 𝑤
𝑎𝑡𝑙
𝑙

for 𝑡 ∈ 0,⋯, 𝑘. Let h = ℎ0, ℎ1,⋯, ℎ𝑘.
The server sends h to the client. Upon receiving the information,

the client first verifies the correctness of h using VerCrtw,h,A
in Algorithm 2. If it is correct, the client computes the following

items for generating the proof that Eqn 1 is less than the bound 𝐵0.

2

To check whether 𝑥1 = ⋅ ⋅ ⋅ = 𝑥𝑛 = 1, it is sufficient to randomly sample 𝛼1, . . . , 𝛼𝑛

from the uniform distribution on Z𝑝 and check whether 𝑥
𝛼
1

1
. . . 𝑥

𝛼𝑛
𝑛 = 1.

● The client computes the inner products between u𝑖 and each

row of A, obtaining v∗ = 𝑣0, 𝑣1,⋯, 𝑣𝑘, where 𝑣𝑡 = ∐︀a𝑡 ,u𝑖̃︀ for
𝑡 ∈ 0,⋯, 𝑘. The client commits 𝑒𝑡 = 𝑔𝑣𝑡ℎ𝑟𝑖𝑡 using its secret 𝑟𝑖 for

𝑡 ∈ 0,⋯, 𝑘. Let e∗ = 𝑒0, 𝑒1,⋯, 𝑒𝑘 and e = 𝑒1,⋯, 𝑒𝑘. The com-

mitment 𝑒0 is used for integrity check of y𝑖 . The commitments e
are used for bound check of v = 𝑣1,⋯, 𝑣𝑘.

● The client commits 𝑣𝑡 using 𝑜𝑡 = 𝑔𝑣𝑡𝑞𝑠𝑡 for 𝑡 ∈ (︀𝑘⌋︀, where 𝑠𝑡 is a
random number. Let o = 𝑜1,⋯, 𝑜𝑘 be the resulted commitment.

Note that 𝑒𝑡 and 𝑜𝑡 commit to the same secret 𝑣𝑡 using different

group elements ℎ𝑡 and 𝑞.

● The client generates a proof 𝜌 to prove that 𝑧, e∗,o is well-
formed, which means that the secret in 𝑧 is used as the blind

in 𝑒𝑡 , 𝑡 ∈ 0,⋯, 𝑘, and that the secrets in 𝑒𝑡 and 𝑜𝑡 are equal,

𝑡 ∈ (︀𝑘⌋︀. Note that 𝑧 = 𝑔𝑟𝑖 = Ψ𝑟𝑖 0 is the 0-th coordinate of the

check string of Shamir’s share of 𝑟𝑖 .

● The client generates a proof 𝜎 that the secret in 𝑜𝑡 is in the

interval (︀−2𝑏ip , 2𝑏ip for 𝑡 ∈ (︀𝑘⌋︀. This ensures the inner product
of a𝑡 and u𝑖 does not cause overflow when squared.

● The client commits 𝑜
′
𝑡 = 𝑔𝑣

2

𝑡 𝑞
𝑠
′

𝑡 for 𝑡 ∈ (︀𝑘⌋︀, where 𝑠′𝑡 is a random
number. Let o′ = 𝑜′

1
,⋯, 𝑜′𝑘 be the resulted commitment. This

commitment will be used in the proof generation and verification

for proof of square.

● The client generates a proof 𝜏 to prove that the secret in 𝑜
′
𝑡 is

the square of the secret in 𝑜𝑡 for 𝑡 ∈ (︀𝑘⌋︀, using the building block
described in Section 2.

● The client generates a proof 𝜇 that 𝐵0 −∑𝑡 𝑣
2

𝑡 is in the interval

(︀0, 2𝑏max. This proof is to guarantee that Eqn 1 is less than the

bound of the probabilistic check.

Finally, the client sends the proof 𝜋 = e∗,o,o′, 𝜌, 𝜏, 𝜎, 𝜇 to the

server for verification.

After receiving the proof, the server verifies it accordingly, in-

cluding checking the correctness of e∗ using Algorithm 2, checking

the well-formedness proof 𝜌 , checking the square proofs of o′,o,
and checking the two bound proofs. If all the checks are passed, the

server guarantees that the client’s update passes the probabilistic

check in Algorithm 1. Consequently, the server can verify the proof

of each client 𝒞𝑖 and put it to the malicious client list 𝒞∗ if the

verification fails. The list 𝒞∗ is broadcast to all the clients.

4.5 Secure Aggregation
Let 𝒞𝐻 = 𝒞∖𝒞∗ be the set of honest clients. In this round, each client
𝒞𝑖 ∈ 𝒞𝐻 selects the corresponding secret shares from the honest

clients 𝒞𝑗 ∈ 𝒞𝐻 , aggregates the shares 𝑟 ′𝑖 = ∑𝒞𝑗 ∈𝒞𝐻 𝑟 𝑗𝑖 , and sends

𝑟
′
𝑖 to the server. The server uses SS.Verify∏𝑗∈𝒞𝐻 Ψ𝑟 𝑗 , 𝑖, 𝑟

′
𝑖 , 𝑛,𝑚 +

1, 𝑔 to verify the integrity of each 𝑟
′
𝑖 , obtains the list of clients

𝒞
Valid

⊇ 𝒞𝐻 that pass the integrity check, and computes 𝑟
′ ←

SS.Recover𝑖, 𝑟 ′𝑖  ∶ 𝑖 ∈ 𝒞Valid. According to the homomorphic

property of VSSS, 𝑟
′ = 𝑟 = ∑𝒞𝑖∈𝒞𝐻 𝑟𝑖 is the summation of the

honest clients’ secrets. The summation will be used for calculating

the aggregation of honest clients’ model updates 𝒰 = ∑𝒞𝑖∈𝒞𝐻 u𝑖 .
Specifically, the server can multiply the commitments from hon-

est clients 𝒞𝑗 ∈ 𝒞𝐻 and obtain:

𝐶𝒰 , 𝑟 = ∏𝒞𝑖∈𝒞𝐻 𝐶𝑢𝑖1, 𝑟𝑖, . . . ,∏𝒞𝑖∈𝒞𝐻 𝐶𝑢𝑖𝑑 , 𝑟𝑖. (5)

2327

Table 1: Cost comparison (g.e. = group exponentiation, f.a. = field arithmetic, 𝑏 = bit length)

EIFFeL

RoFL ACORN

RiseFL

g.e. f.a. g.e. f.a.

Client

Comp.

commit. 𝑂𝑚𝑑 𝑂𝑛𝑚𝑑 𝑂𝑑 𝑂𝑑 𝑂𝑑 small

proof gen. 0 𝑂𝑏𝑛𝑚𝑑 𝑂𝑑𝑏 𝑂𝑑 𝑂𝑑⇑ log𝑑 𝑂𝑘𝑑
proof ver. 𝑂𝑛𝑚𝑑⇑ log𝑚𝑑 𝑂𝑏𝑛𝑚𝑑 0 0 0 0

total 𝑂𝑛𝑚𝑑⇑ log𝑚𝑑 𝑂𝑏𝑛𝑚𝑑 𝑂𝑑𝑏 𝑂𝑑 𝑂𝑑 𝑂𝑘𝑑

Server

Comp.

prep. 0 0 0 0 𝑂𝑘𝑑 log𝑀⇑ log𝑑 log𝑝 small

proof ver. 0 small 𝑂𝑛𝑑𝑏⇑ log𝑑𝑏 𝑂𝑛𝑑⇑ log𝑑 𝑂𝑛𝑑⇑ log𝑑 small

agg. 0 𝑂𝑛𝑚𝑑 𝑂𝑛𝑑⇑ log𝑝 𝑂𝑛𝑑⇑ log𝑝 𝑂𝑛𝑑⇑ log𝑝 small

total 0 𝑂𝑛𝑚𝑑 𝑂𝑛𝑑𝑏⇑ log𝑑𝑏 𝑂𝑛𝑑⇑ log𝑑 𝑂𝑑𝑛 + 𝑘 log𝑀⇑ log𝑝⇑ log𝑑 small

Comm. Per Client ≈ 2𝑑𝑛𝑏 ≈ 12𝑑 ≈ 𝑏 + log𝑛⇑ log𝑝 ≈ 𝑑

Without loss of generality, we consider the 𝑙-th (𝑙 ∈ (︀𝑑⌋︀) dimension

and derive the calculation as follows.

∏𝒞𝑖∈𝒞𝐻 𝐶𝑢𝑖𝑙 , 𝑟𝑖 = 𝑔∑𝒞𝑖 ∈𝒞𝐻
𝑢𝑖𝑙𝑤

∑𝒞𝑖 ∈𝒞𝐻 𝑟𝑖

𝑙
(6)

= 𝑔𝑢𝑙𝑤𝑟
𝑙 , (7)

where 𝑢𝑙 is the aggregation of the 𝑙-th elements in honest clients’

updates,𝑤𝑙 is the common group element used for the commitment

in Eqn 2, and 𝑟 is the summation of honest clients’ secrets. Note

that the derivation of Eqn 6 is due to clients using the same group

elements 𝑔 and𝑤𝑙 . Since the server has already calculated 𝑟 = 𝑟 ′, it
can thus compute 𝑔

𝑢𝑙
for 𝑙 ∈ (︀𝑑⌋︀ and solve 𝑢𝑙 according to Eqn 7.

4.6 Extensions and Discussions
Although we focus on the 𝐿2-norm bound check in this paper,

our approach can be extended to support a wide range of de-

fense methods. For instance, it can support sphere defense [60],

cosine similarity defense [3, 15], and Zeno++ defense [72], which

are designed based on variants of 𝐿2-norm bound check. More-

over, it can be extended to 𝐿∞-norm bound check, i.e., ⋃︀⋃︀u⋃︀⋃︀∞ =
max ⋃︀𝑢1⋃︀, ⋃︀𝑢2⋃︀,⋯, ⋃︀𝑢𝑑 ⋃︀, which is to ensure that the maximum abso-

lute value of the vector’s coordinate is less than a threshold. We

shall discuss the extensions as follows.

For sphere defense, the server broadcasts a public vector v and

a bound 𝐵, and then checks whether the model update u satisfies

⋃︀⋃︀u − v⋃︀⋃︀2 ≤ 𝐵. We can change our protocol in which the 𝑖-th client

commits tou𝑖−v instead ofu𝑖 . The server then recovers∑𝑖∈𝒞𝐻 u𝑖−
v and computes ∑𝑖∈𝒞𝐻 u𝑖 = ∑𝑖∈𝒞𝐻 u𝑖 − v + v ⋅ ⋃︀𝒞𝐻 ⋃︀, where 𝒞𝐻
is the set of honest clients. For cosine similarity defense, the server

broadcasts v, 𝐵 and a public hyperparameter 𝛼 , and then checks if

the model update u satisfies both ⋃︀⋃︀u⋃︀⋃︀2 ≤ 𝐵 and ∐︀u, ṽ︀ ≥ 𝛼 ⋃︀⋃︀u⋃︀⋃︀2⋃︀⋃︀v⋃︀⋃︀2.
We can add a predicate to the protocol that checks ⋃︀⋃︀u⋃︀⋃︀2 ≤ ∐︀u,ṽ︀𝛼 ⋃︀⋃︀v⋃︀⋃︀2
based on Algorithm 1. For the Zeno++ defense 𝛾∐︀v,ũ︀−𝜌 ⋃︀⋃︀u⋃︀⋃︀2

2
≥ 𝛾𝜖 ,

where 𝜌,𝛾, 𝜖 are public hyperparameters, it can be converted into

sphere defense by ⋃︀⋃︀u − 𝛾
2𝜌

v⋃︀⋃︀2 ≤
{︂

𝛾
𝜌
𝜖 + 𝛾2

4𝜌2
⋃︀⋃︀v⋃︀⋃︀2

2
for the check.

For 𝐿∞-norm bound check [41], we can adapt our approach to

using the idea of approximate proofs of 𝐿∞ bound [27]. To verify

that ⋃︀⋃︀u⋃︀⋃︀∞ ≤ 𝐵, the client first commits u with the hybrid commit-

ment scheme introduced in Section 4.3 and commits an additional

random vector z. The server then randomly samples a1, . . . , a𝑘

from the discrete distribution 𝑃−1 = 𝑃1 = 1⇑4, 𝑃0 = 1⇑2 and
broadcasts these vectors to the client. Next, the client proves to the

verifier that ⋃︀∐︀a𝑖 ,ũ︀ + 𝑧𝑖 ⋃︀ ≤ 𝐵⇑𝛾 for every 𝑖 ∈ (︀1, 𝑘⌋︀. The parameter

𝛾 can be computed from 𝑘,𝑑 and the security parameter using the

technique introduced in [27]. If passed, the verifier can guarantee

that ⋃︀⋃︀u⋃︀⋃︀∞ is bounded with overwhelming probability. Note that

we can still use the proposed technique in Section 4.4 to generate

and verify the proofs of ∐︀a𝑖 ,ũ︀ with high efficiency.

Norm-bound checks, despite their wide application in defense

mechanisms, are not a silver bullet. For example, backdoor attacks

on tail targets are still effective even with norm constraints, as

shown in [62]. Yet, they are still useful components in newer de-

fenses such as [70], which combine norm-bound checks with param-

eter smoothing to mitigate the above attack [62]. Besides, although

our approach suits various norm-bound defenses, it faces challenges

when requiring strict checks on each individual gradient due to the

difficulty of dimensionality reduction for ZKP computations.

5 ANALYSIS
5.1 Security Analysis
We present the formal security guarantee of RiseFL in Theorem 2.

Theorem 2. By choosing 𝜖 = negl𝜅 and 𝐵0 = 𝐵2𝑀2⌋︂𝛾𝑘,𝜖 +⌋︂
𝑘𝑑

2𝑀
2, for any list of honest clients 𝒞𝐻 of size at least 𝑛 −𝑚, RiseFL

satisfies 𝐷, 𝐹𝑘,𝜖,𝑑,𝑀-SAVI, where 𝐷u = ⋃︀⋃︀u⋃︀⋃︀2⇑𝐵 and

𝐹𝑘,𝜖,𝑑,𝑀𝑐 = Pr𝑥∼𝜒2

𝑘

⎨⎝⎝⎝⎝⎪
𝑥 < 1

𝑐2
⌋︂𝛾𝑘,𝜖 +

3

⌋︂
𝑘𝑑

2𝑀

2⎬⎠⎠⎠⎠⎮
+ negl𝜅. (8)

Proof. We only give a proof sketch due to the space limita-

tion. The proof consists of three parts. First, we show that the

server computes an aggregate 𝒰𝒞𝐻 = ∑𝑖∈𝒞
Valid

u𝑖 for some 𝒞
Valid

⊇
𝒞𝐻 with probability at least 1 − negl𝜅. Note that the aggrega-

tion step in Section 4.5 ensures the server computes an aggregate

𝒰𝒞𝐻 = ∑𝒞𝑖∈𝒞Valid u𝑖 for a list 𝒞Valid that is marked as honest clients.

𝒞
Valid

must contain 𝒞𝐻 because given any non-zero u, if b1, . . . ,b𝑘
are sampled i.i.d. from the normal distribution𝒩 0,𝑀 ⋅ I𝑑, then
∐︀b𝑡 ,ũ︀
⋃︀⋃︀u⋃︀⋃︀2𝑀 follows the normal distribution𝒩 0, 1 for 𝑡 ∈ (︀𝑘⌋︀ and thus

1

⋃︀⋃︀u⋃︀⋃︀2
2
𝑀2
∑𝑘
𝑡=1∐︀b𝑡 ,ũ︀2 follows the Chi-squared distribution 𝜒

2

𝑘 .

2328

Table 2: Breakdown cost comparison w.r.t. the number of model parameters 𝑑 , where 𝑘 = 1000

#Param. Approach

Client Computation (seconds) Server Computation (seconds) Comm. Cost

per Client (MB)commit. proof gen. proof ver. total prep. proof ver. agg. total

𝑑 = 1K

EIFFeL 0.865 3.63 11.7 16.2 - - 0.182 0.182 125

RoFL 0.051 4.43 - 4.5 - 91.2 0.040 91.3 0.37

ACORN 0.076 2.49 - 2.6 - 58.9 0.040 58.9 0.004
RiseFL (ours) 0.054 1.48 0.08 1.6 1.17 75.6 0.071 76.8 0.44

𝑑 = 10K

EIFFeL 8.38 36.8 115 161 - - 1.81 1.81 1250

RoFL 0.51 46.4 - 46.9 - 860 0.41 860 3.66

ACORN 0.75 24.5 - 25.3 - 522 0.41 523 0.03
RiseFL (ours) 0.49 1.8 0.08 2.3 8.61 82.5 0.71 91.8 0.71

𝑑 = 100K

EIFFeL 84.7 382 1070 1536 - - 18.8 18.8 12500

RoFL 5.1 496 - 502 - 8559 4.1 8563 36.6

ACORN 7.6 253 - 261 - 5087 4.1 5091 0.3
RiseFL (ours) 4.8 4.5 0.08 9.3 73.3 139 7.2 219 3.5

𝑑 = 1M

EIFFeL OOM OOM OOM OOM OOM OOM OOM OOM OOM

RoFL OOM OOM OOM OOM OOM OOM OOM OOM OOM

ACORN OOM OOM OOM OOM OOM OOM OOM OOM OOM

RiseFL (ours) 48.0 31.2 0.08 79.3 653 612 72.1 1338 30.9

Second, we prove the security of honest clients such that with

probability at least 1 − negl𝜅, nothing else except ∑𝒞𝑖∈𝒞𝐻 u𝑖
is known for any 𝒞𝑖 ∈ 𝒞𝐻 . Cryptographically, the values of Ψ𝑟𝑖 ,
𝐶u𝑖 , 𝑟𝑖, and 𝜋𝑖 do not reveal any information about u𝑖 or 𝑟𝑖 . VSSS
ensures that nothing is revealed from the ≤ 𝑚 shares 𝑟𝑖 𝑗𝑗∉𝒞𝐻
of the secret 𝑟𝑖 . For secure aggregation, VSSS ensures that only

∑𝒞𝑖∈𝒞𝐻 𝑟𝑖 is revealed. From ∑𝒞𝑖∈𝒞𝐻 𝑟𝑖 , the only value that can be

computed is∑𝒞𝑖∈𝒞𝐻 u𝑖 . Therefore, the claim holds.

Third, we prove that if 𝒞𝑖 is malicious with ⋃︀⋃︀u⋃︀⋃︀2⇑𝐵 = 𝑐 , the proba-
bility that 𝑖 ∈ 𝒞

Valid
is bounded by 𝐹𝑘,𝜖,𝑑,𝑀𝑐. Assume that 𝒞𝑖 is ma-

licious and𝐷u𝑖 = ⋃︀⋃︀u𝑖 ⋃︀⋃︀2⇑𝐵 = 𝑐 > 1. Since 1

⋃︀⋃︀u⋃︀⋃︀2
2
𝑀2
∑𝑘
𝑡=1∐︀b𝑡 ,ũ︀2 fol-

lows 𝜒
2

𝑘 , the probability that∑
𝑘
𝑡=1∐︀b𝑡 ,ũ︀2 ≤ 𝐵2𝑀2

𝛾𝑘,𝜖 is Pr𝑥∼𝜒2

𝑘
(︀𝑥 <

𝛾𝑘,𝜖
𝑐2
⌋︀, which can be extended to Eqn 8 after b𝑡 is discretized. □

5.2 Cost Analysis
Now we analyze the cost of RiseFL under the assumption of 𝑑 >> 𝑘 ,
as summarized in Table 1. Here we count the number of cryp-

tographic group exponentiations (g.e.) and finite field arithmetic

(f.a.) separately for EIFFeL and RiseFL. The communication cost

per client is measured in the number of group elements.

EIFFeL.The commitment includes the Shamir secret shares (𝑂𝑛𝑚𝑑
f.a.) and the check string for each coordinate (𝑂𝑚𝑑 g.e.). The veri-
fication of the check strings of one client takes amulti-exponentiation

of length 𝑚 + 1𝑑 , or 𝑂𝑚𝑑⇑ log𝑚𝑑 g.e. using a Pippenger-like

algorithm [51]. The server cost is small compared to client cost.

RoFL. The dominating cost of proof generation is a proof of bound

of each coordinate (𝑂𝑏𝑑 g.e.). The proof verification is executed

by the server, where the verification of the bound proof per client

takes 1 multi-exponentiation of length about 2𝑏𝑑 .

ACORN. The ZKP part uses a variant of Bulletproofs by Leveraging
Lagrange’s four-square theorem. Compared to RoFL, its computa-

tional cost does not depend on 𝑏. It uses PRG-SecAgg [7], whose

communication cost is only 1 + log𝑛⇑𝑏 times of plaintext.

RiseFL (Ours).On the client side, the main cost of proof generation

is to verify the correctness of h received from the server, using

VerCrt. It costs 𝑂𝑑⇑ log𝑑 g.e. and 𝑂𝑘𝑑 f.a. On the server side,

the main cost can be divided into two parts: (1) computing multi-

exponentiations h at the preparation stage (each ℎ𝑡 , 𝑡 ∈ (︀1, 𝑘⌋︀ costs
𝑂𝑑 log𝑀⇑ log𝑑 log𝑝 g.e. because discrete normal samples have

bit length 𝑂log𝑀); (2) verifying the correctness of e for each

client using VerCrt at the proof verification stage (𝑂𝑑⇑ log𝑑 g.e.).

6 EXPERIMENTS
We implement the proposed RiseFL system in C/C++. The crypto-

graphic primitives are based on libsodium [37] which implements

the Ristretto group [29] on Curve25519 that supports 126-bit secu-

rity. The implementation consists of 9K lines of code in C/C++.

6.1 Methodology
Experimental Setup.We conduct the micro-benchmark experi-

ments on a single server equipped with Intel(R) Core(TM) i7-8550U

CPU and 16GB of RAM. The experiments of the federated learning

tasks are simulated on a server with Intel(R) Xeon(R) W-2133 CPU,

64GB of RAM, and GeForce RTX 2080 Ti. Unless otherwise speci-

fied, we set the number of clients to 100 and the maximum number

of malicious clients to 10 in the experiments. The default security

parameter is 126 bits. We set 𝜖 = 2−128 to ensure that the level of

security of RiseFL matches the baselines. Besides, we set𝑀 = 224
to make sure that the rounding error of discrete normal samples is

small.

Datasets. We use three real-world datasets, namely, OrganAM-

NIST [75, 76], OrganSMNIST [75, 76] and Forest Cover Type [10],

to run the FL tasks and measure the classification accuracy. The Or-

ganAMNIST and OrganSMNIST datasets are medical image datasets

based on abdominal clinical computed tomography. These datasets

comprise 58850 and 25221 images of 784 numerical features (28 ×
28) in 11 classes, respectively. The Forest Cover Type dataset is a

2329

2330

2331

2332

REFERENCES
[1] 2016. Regulation (eu) 2016/679 of the european parliament and of the council of

27 april 2016 on the protection of natural persons with regard to the processing

of personal data and on the free movement of such data, and repealing directive

95/46/ec (general data protection regulation). (2016).

[2] Sercan Ö Arik and Tomas Pfister. 2021. Tabnet: Attentive interpretable tabular

learning. In AAAI, Vol. 35. 6679–6687.
[3] Eugene Bagdasaryan, Andreas Veit, Yiqing Hua, Deborah Estrin, and Vitaly

Shmatikov. 2020. How To Backdoor Federated Learning. In AISTATS. 2938–2948.
[4] Ergute Bao, Yizheng Zhu, Xiaokui Xiao, Yin Yang, Beng Chin Ooi, Benjamin

Hong Meng Tan, and Khin Mi Mi Aung. 2022. Skellam Mixture Mechanism: a

Novel Approach to Federated Learning with Differential Privacy. Proc. VLDB
Endow. 15, 11 (2022), 2348–2360.

[5] Sebastian Baunsgaard, Matthias Boehm, Ankit Chaudhary, Behrouz Derakhshan,

Stefan Geißelsöder, Philipp M. Grulich, Michael Hildebrand, Kevin Innereb-

ner, Volker Markl, Claus Neubauer, Sarah Osterburg, Olga Ovcharenko, Sergey

Redyuk, Tobias Rieger, Alireza Rezaei Mahdiraji, Sebastian Benjamin Wrede, and

Steffen Zeuch. 2021. ExDRa: Exploratory Data Science on Federated Raw Data.

In SIGMOD. ACM, 2450–2463.

[6] James Bell, Adrià Gascón, Tancrède Lepoint, Baiyu Li, Sarah Meiklejohn, Mar-

iana Raykova, and Cathie Yun. 2023. ACORN: Input Validation for Secure

Aggregation. In USENIX Security 23. 4805–4822.
[7] JamesHenry Bell, Kallista A. Bonawitz, Adrià Gascón, Tancrède Lepoint, andMar-

iana Raykova. 2020. Secure Single-Server Aggregation with (Poly)Logarithmic

Overhead. In CCS. 1253–1269.
[8] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and Madars

Virza. 2013. SNARKs for C: Verifying program executions succinctly and in zero

knowledge. In CRYPTO. Springer, 90–108.
[9] Arjun Nitin Bhagoji, Supriyo Chakraborty, Prateek Mittal, and Seraphin B. Calo.

2019. Analyzing Federated Learning through an Adversarial Lens. In ICML.
634–643.

[10] Jock Blackard. 1998. Covertype. UCI Machine Learning Repository. DOI:

https://doi.org/10.24432/C50K5N.

[11] Manuel Blum, Paul Feldman, and Silvio Micali. 1988. Non-Interactive Zero-

Knowledge and Its Applications (Extended Abstract). In STOC. 103–112.
[12] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H Bren-

dan McMahan, Sarvar Patel, Daniel Ramage, Aaron Segal, and Karn Seth. 2017.

Practical secure aggregation for privacy-preserving machine learning. In CCS.
1175–1191.

[13] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille,

and Greg Maxwell. 2018. Bulletproofs: Short proofs for confidential transactions

and more. In S&P. IEEE, 315–334.
[14] Jan Camenisch and Markus Stadler. 1997. Proof systems for general statements

about discrete logarithms. Technical Report/ETH Zurich, Department of Computer
Science 260 (1997).

[15] Xiaoyu Cao, Minghong Fang, Jia Liu, and Neil Zhenqiang Gong. 2021. FLTrust:

Byzantine-robust Federated Learning via Trust Bootstrapping. In NDSS.
[16] Henry Corrigan-Gibbs and Dan Boneh. 2017. Prio: Private, Robust, and Scalable

Computation of Aggregate Statistics.. In NSDI. 259–282.
[17] Georgios Damaskinos, Rachid Guerraoui, Rhicheek Patra, Mahsa Taziki, et al.

2018. Asynchronous Byzantine machine learning (the case of SGD). In ICML.
PMLR, 1145–1154.

[18] Ivan Damgård and Mads Jurik. 2001. A Generalisation, a Simplification and

Some Applications of Paillier’s Probabilistic Public-Key System. In Public Key
Cryptography. 119–136.

[19] Zhenan Fan, Huang Fang, Zirui Zhou, Jian Pei, Michael P. Friedlander, Changxin

Liu, and Yong Zhang. 2022. Improving Fairness for Data Valuation in Horizontal

Federated Learning. In ICDE. 2440–2453.
[20] Paul Feldman. 1987. A practical scheme for non-interactive verifiable secret

sharing. In FOCS. IEEE, 427–438.
[21] Fangcheng Fu, Yingxia Shao, Lele Yu, Jiawei Jiang, Huanran Xue, Yangyu Tao,

and Bin Cui. 2021. VF
2
Boost: Very Fast Vertical Federated Gradient Boosting for

Cross-Enterprise Learning. In SIGMOD, Guoliang Li, Zhanhuai Li, Stratos Idreos,
and Divesh Srivastava (Eds.). ACM, 563–576.

[22] Fangcheng Fu, Huanran Xue, Yong Cheng, Yangyu Tao, and Bin Cui. 2022.

BlindFL: Vertical Federated Machine Learning without Peeking into Your Data.

In SIGMOD. 1316–1330.
[23] Rui Fu, Yuncheng Wu, Quanqing Xu, and Meihui Zhang. 2023. FEAST: A

Communication-efficient Federated Feature Selection Framework for Relational

Data. Proc. ACM Manag. Data 1, 1 (2023), 107:1–107:28.
[24] Clement Fung, Chris J. M. Yoon, and Ivan Beschastnikh. 2018. Mitigating Sybils

in Federated Learning Poisoning. CoRR abs/1808.04866 (2018).

[25] Taher El Gamal. 1985. A public key cryptosystem and a signature scheme based

on discrete logarithms. IEEE Trans. Inf. Theory 31, 4 (1985), 469–472.

[26] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. 2013. Qua-

dratic span programs and succinct NIZKswithout PCPs. In EUROCRYPT. Springer,
626–645.

[27] Craig Gentry, Shai Halevi, and Vadim Lyubashevsky. 2022. Practical non-

interactive publicly verifiable secret sharing with thousands of parties. In EURO-
CRYPT. Springer, 458–487.

[28] Oded Goldreich. 2001. The Foundations of Cryptography - Volume 1: Basic Tech-
niques. Cambridge University Press.

[29] The Ristretto Group. [n.d.]. https://ristretto.group/.

[30] Jamie Hayes and Olga Ohrimenko. 2018. Contamination Attacks and Mitigation

in Multi-Party Machine Learning. In NeurIPS. 6604–6616.
[31] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual

Learning for Image Recognition. In CVPR. 770–778.
[32] Peter Kairouz, Ziyu Liu, and Thomas Steinke. 2021. The Distributed Discrete

Gaussian Mechanism for Federated Learning with Secure Aggregation. In ICML.
5201–5212.

[33] Marcel Keller. 2020. MP-SPDZ: A Versatile Framework for Multi-Party Compu-

tation. In CCS. 1575–1590.
[34] Liping Li, Wei Xu, Tianyi Chen, Georgios B Giannakis, and Qing Ling. 2019. RSA:

Byzantine-robust stochastic aggregation methods for distributed learning from

heterogeneous datasets. In AAAI, Vol. 33. 1544–1551.
[35] Qinbin Li, Yiqun Diao, Quan Chen, and Bingsheng He. 2022. Federated Learning

on Non-IID Data Silos: An Experimental Study. In ICDE. 965–978.
[36] Xiling Li, Chenkai Weng, Yongxin Xu, Xiao Wang, and Jennie Rogers. 2023.

ZKSQL: Verifiable and Efficient Query Evaluation with Zero-Knowledge Proofs.

Proc. VLDB Endow. 16, 8 (2023), 1804–1816.
[37] Libsodium. [n.d.]. https://doc.libsodium.org/.

[38] Junxu Liu, Jian Lou, Li Xiong, Jinfei Liu, and Xiaofeng Meng. 2021. Projected

Federated Averaging with Heterogeneous Differential Privacy. PVLDB 15, 4

(2021), 828–840.

[39] Yejia Liu, Weiyuan Wu, Lampros Flokas, Jiannan Wang, and Eugene Wu. 2021.

Enabling SQL-based Training Data Debugging for Federated Learning. Proc.
VLDB Endow. 15, 3 (2021), 388–400.

[40] Zhaojing Luo, Shaofeng Cai, YatongWang, and Beng Chin Ooi. 2023. Regularized

Pairwise Relationship based Analytics for Structured Data. Proc. ACM Manag.
Data 1, 1 (2023), 82:1–82:27. https://doi.org/10.1145/3588936

[41] Hidde Lycklama, Lukas Burkhalter, Alexander Viand, Nicolas Küchler, and Anwar

Hithnawi. 2023. Rofl: Robustness of secure federated learning. In S&P. IEEE,
453–476.

[42] Xu Ma, Xiaoqian Sun, Yuduo Wu, Zheli Liu, Xiaofeng Chen, and Changyu Dong.

2022. Differentially Private Byzantine-Robust Federated Learning. IEEE Trans.
Parallel Distributed Syst. 33, 12 (2022), 3690–3701.

[43] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and

Blaise Aguera y Arcas. 2017. Communication-efficient learning of deep net-

works from decentralized data. In AISTATS. 1273–1282.
[44] Luca Melis, Congzheng Song, Emiliano De Cristofaro, and Vitaly Shmatikov.

2019. Exploiting Unintended Feature Leakage in Collaborative Learning. In S&P.
691–706.

[45] Ralph C. Merkle. 1978. Secure Communications Over Insecure Channels. Com-
mun. ACM 21, 4 (1978), 294–299.

[46] Milad Nasr, Reza Shokri, and Amir Houmansadr. 2019. Comprehensive Privacy

Analysis of Deep Learning: Passive and Active White-box Inference Attacks

against Centralized and Federated Learning. In S&P. 739–753.
[47] Beng Chin Ooi, Kian-Lee Tan, Sheng Wang, Wei Wang, Qingchao Cai, Gang

Chen, Jinyang Gao, Zhaojing Luo, Anthony K. H. Tung, YuanWang, Zhongle Xie,

Meihui Zhang, and Kaiping Zheng. 2015. SINGA: A Distributed Deep Learning

Platform. In ACM MM. ACM, 685–688.

[48] Xudong Pan, Mi Zhang, Duocai Wu, Qifan Xiao, Shouling Ji, and Min Yang. 2020.

Justinian’s GAAvernor: Robust Distributed Learning with Gradient Aggregation

Agent. In USENIX Security. 1641–1658.
[49] Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. 2016. Pinocchio:

Nearly practical verifiable computation. Commun. ACM 59, 2 (2016), 103–112.

[50] Torben Pryds Pedersen. 2001. Non-interactive and information-theoretic secure

verifiable secret sharing. In CRYPTO. Springer, 129–140.
[51] Nicholas Pippenger. 1980. On the evaluation of powers and monomials. SIAM J.

Comput. 9, 2 (1980), 230–250.
[52] C. Pomerance and S. Goldwasser. 1990. Cryptology and Computational Number

Theory. American Mathematical Society. https://books.google.com.sg/books?

id=yyfS7MKQhJUC

[53] Mayank Rathee, Conghao Shen, Sameer Wagh, and Raluca Ada Popa. 2023. Elsa:

Secure aggregation for federated learning with malicious actors. In S&P. IEEE,
1961–1979.

[54] Facebook Research. [n.d.]. FLSim: https://github.com/facebookresearch/FLSim.

[55] Amrita Roy Chowdhury, Chuan Guo, Somesh Jha, and Laurens van der Maaten.

2022. EIFFeL: Ensuring Integrity for Federated Learning. In CCS. 2535–2549.
[56] Claus-Peter Schnorr. 1989. Efficient Identification and Signatures for Smart Cards.

In CRYPTO, Gilles Brassard (Ed.), Vol. 435. 239–252.

[57] Adi Shamir. 1979. How to share a secret. Commun. ACM 22, 11 (1979), 612–613.

[58] Daniel Shanks. 1971. Class number, a theory of factorization, and genera. In Proc.
Symp. Math. Soc., 1971, Vol. 20. 415–440.

2333

https://ristretto.group/
https://doc.libsodium.org/
https://doi.org/10.1145/3588936
https://books.google.com.sg/books?id=yyfS7MKQhJUC
https://books.google.com.sg/books?id=yyfS7MKQhJUC
https://github.com/facebookresearch/FLSim

[59] Virat Shejwalkar, Amir Houmansadr, Peter Kairouz, and Daniel Ramage. 2022.

Back to the Drawing Board: A Critical Evaluation of Poisoning Attacks on

Production Federated Learning. In IEEE S&P. IEEE, 1354–1371.
[60] Jacob Steinhardt, Pang Wei Koh, and Percy Liang. 2017. Certified Defenses for

Data Poisoning Attacks. In NeurIPS. 3517–3529.
[61] Ziteng Sun, Peter Kairouz, Ananda Theertha Suresh, and H Brendan McMahan.

2019. Can you really backdoor federated learning? arXiv preprint arXiv:1911.07963
(2019).

[62] Hongyi Wang, Kartik Sreenivasan, Shashank Rajput, Harit Vishwakarma,

Saurabh Agarwal, Jy-yong Sohn, Kangwook Lee, and Dimitris S. Papailiopoulos.

2020. Attack of the Tails: Yes, You Really Can Backdoor Federated Learning. In

NeurIPS.
[63] Yansheng Wang, Yongxin Tong, Zimu Zhou, Ruisheng Zhang, Sinno Jialin Pan,

Lixin Fan, and Qiang Yang. 2023. Distribution-Regularized Federated Learning

on Non-IID Data. In ICDE. IEEE, 2113–2125.
[64] Yatong Wang, Yuncheng Wu, Xincheng Chen, Gang Feng, and Beng Chin Ooi.

2023. Incentive-Aware Decentralized Data Collaboration. Proc. ACM Manag.
Data 1, 2 (2023), 158:1–158:27.

[65] Chenkai Weng, Kang Yang, Jonathan Katz, and Xiao Wang. 2021. Wolverine:

fast, scalable, and communication-efficient zero-knowledge proofs for boolean

and arithmetic circuits. In S&P. IEEE, 1074–1091.
[66] Chenkai Weng, Kang Yang, Xiang Xie, Jonathan Katz, and Xiao Wang. 2021.

Mystique: Efficient conversions for Zero-Knowledge proofs with applications

to machine learning. In USENIX Security. 501–518.
[67] Yuncheng Wu, Shaofeng Cai, Xiaokui Xiao, Gang Chen, and Beng Chin Ooi.

2020. Privacy Preserving Vertical Federated Learning for Tree-based Models.

Proc. VLDB Endow. 13, 11 (2020), 2090–2103.
[68] Yuncheng Wu, Naili Xing, Gang Chen, Tien Tuan Anh Dinh, Zhaojing Luo,

Beng Chin Ooi, Xiaokui Xiao, and Meihui Zhang. 2023. Falcon: A Privacy-

Preserving and Interpretable Vertical Federated Learning System. Proc. VLDB
Endow. 16, 10 (2023), 2471–2484.

[69] Zihang Xiang, Tianhao Wang, Wanyu Lin, and Di Wang. 2023. Practical Differ-

entially Private and Byzantine-resilient Federated Learning. Proc. ACM Manag.
Data 1, 2 (2023), 119:1–119:26.

[70] Chulin Xie, Minghao Chen, Pin-Yu Chen, and Bo Li. 2021. CRFL: Certifiably

Robust Federated Learning against Backdoor Attacks. In ICML, Vol. 139. PMLR,

11372–11382.

[71] Chulin Xie, Keli Huang, Pin-Yu Chen, and Bo Li. 2020. DBA: Distributed Backdoor

Attacks against Federated Learning. In ICLR.
[72] Cong Xie, O Koyejo, and I Gupta. 2019. Zeno++: robust asynchronous SGD with

arbitrary number of Byzantine workers. arXiv preprint arXiv:1903.07020 (2019).
[73] Yuexiang Xie, Zhen Wang, Dawei Gao, Daoyuan Chen, Liuyi Yao, Weirui Kuang,

Yaliang Li, Bolin Ding, and Jingren Zhou. 2023. FederatedScope: A Flexible

Federated Learning Platform for Heterogeneity. Proc. VLDB Endow. 16, 5 (2023),
1059–1072.

[74] Chang Xu, Yu Jia, Liehuang Zhu, Chuan Zhang, Guoxie Jin, and Kashif Sharif.

2022. TDFL: Truth Discovery Based Byzantine Robust Federated Learning. IEEE
Trans. Parallel Distributed Syst. 33, 12 (2022), 4835–4848.

[75] Jiancheng Yang, Rui Shi, and Bingbing Ni. 2021. MedMNIST Classification

Decathlon: A Lightweight AutoML Benchmark for Medical Image Analysis. In

ISBI. 191–195.
[76] Jiancheng Yang, Rui Shi, Donglai Wei, Zequan Liu, Lin Zhao, Bilian Ke, Hanspeter

Pfister, and Bingbing Ni. 2023. MedMNIST v2-A large-scale lightweight bench-

mark for 2D and 3D biomedical image classification. Scientific Data 10, 1 (2023),
41.

[77] Kang Yang, Pratik Sarkar, Chenkai Weng, and Xiao Wang. 2021. Quicksilver:

Efficient and affordable zero-knowledge proofs for circuits and polynomials over

any field. In CCS. 2986–3001.
[78] Dong Yin, Yudong Chen, Kannan Ramchandran, and Peter L. Bartlett. 2018.

Byzantine-Robust Distributed Learning: Towards Optimal Statistical Rates. In

ICML. 5636–5645.
[79] Dong Yin, Yudong Chen, Kannan Ramchandran, and Peter L. Bartlett. 2019. De-

fending Against Saddle Point Attack in Byzantine-Robust Distributed Learning.

In ICML. 7074–7084.
[80] Zhihao Zeng, Yuntao Du, Ziquan Fang, Lu Chen, Shiliang Pu, Guodong Chen,

Hui Wang, and Yunjun Gao. 2023. FLBooster: A Unified and Efficient Platform

for Federated Learning Acceleration. In ICDE. IEEE, 3140–3153.
[81] Yifeng Zheng, Shangqi Lai, Yi Liu, Xingliang Yuan, Xun Yi, and Cong Wang.

2023. Aggregation Service for Federated Learning: An Efficient, Secure, and

More Resilient Realization. IEEE Trans. Dependable Secur. Comput. 20, 2 (2023),
988–1001.

2334

	Abstract
	1 Introduction
	2 Preliminaries
	3 System Overview
	3.1 System Model
	3.2 Threat Model
	3.3 Problem Formulation
	3.4 Solution Overview

	4 RiseFL Design
	4.1 Rationale
	4.2 System Initialization
	4.3 Commitment Generation
	4.4 Proof Generation and Verification
	4.5 Secure Aggregation
	4.6 Extensions and Discussions

	5 Analysis
	5.1 Security Analysis
	5.2 Cost Analysis

	6 Experiments
	6.1 Methodology
	6.2 Micro-Benchmark Efficiency Evaluation
	6.3 Robustness Evaluation

	7 Related Works
	8 Conclusions
	Acknowledgments
	References

