
Rashnu: Data-Dependent Order-Fairness
Heena Nagda

University of Pennsylvania

hnagda@seas.upenn.edu

Shubhendra Pal Singhal

Georgia Institute of Technology

ssinghal74@gatech.edu

Mohammad Javad Amiri

Stony Brook University

amiri@cs.stonybrook.edu

Boon Thau Loo

University of Pennsylvania

boonloo@seas.upenn.edu

ABSTRACT
Distributed data management systems use state Machine Replica-

tion (SMR) to provide fault tolerance. The SMR algorithm enables

Byzantine Fault-Tolerant (BFT) protocols to guarantee safety and

liveness despite the malicious failure of nodes. However, SMR does

not prevent the adversarial manipulation of the order of transac-

tions, where the order assigned by a malicious leader differs from

the order in that transactions are received from clients. While order-
fairness has been recently studied in a few protocols, such protocols

rely on synchronized clocks, suffer from liveness issues, or incur

significant performance overhead. This paper presents Rashnu, a
high-performance fair ordering protocol. Rashnu is motivated by

the fact that fair ordering among two transactions is needed only

when both transactions access a shared resource. Based on this

observation, we define the notion of data-dependent order fairness
where replicas capture only the order of data-dependent transac-

tions and the leader uses these orders to propose a dependency

graph that represents fair ordering among transactions. Replicas

then execute transactions using the dependency graph, resulting

in the parallel execution of independent transactions. We imple-

mented a prototype of Rashnu where our experimental evaluation

reveals the low overhead of providing order-fairness in Rashnu.

PVLDB Reference Format:
Heena Nagda, Shubhendra Pal Singhal, Mohammad Javad Amiri, and Boon

Thau Loo. Rashnu: Data-Dependent Order-Fairness. PVLDB, 17(9): 2335 -

2348, 2024.

doi:10.14778/3665844.3665861

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at

https://github.com/HeenaNagda/Order-Fairness.

1 INTRODUCTION
Distributed systems rely on consensus protocols to provide robust-

ness and high availability [7, 9, 12, 19, 24, 34, 53]. Consensus pro-

tocols use the State Machine Replication (SMR) algorithm [45, 57]

to ensure that all honest replicas execute transactions in the same

order (safety), and all correct transactions are eventually executed

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 17, No. 9 ISSN 2150-8097.

doi:10.14778/3665844.3665861

(liveness). Existing consensus protocols typically include a desig-

nated leader replica that receives transactions from clients, assigns

an order (e.g., a sequence number) to each transaction, which rep-

resents the position of the transaction in the final log, and initiates

agreement on the order of transaction among all replicas. A mali-

cious leader, however, can control transactions’ inclusion and final

ordering without violating safety or liveness. Most existing BFT

protocols do not prevent such an adversarial order manipulation.

Adversarial manipulation of transactions order is studied in the

decentralized finance (DeFi) domain [8, 22, 27, 33, 40, 56, 63] where

transaction proposers make profit by including, excluding, or re-

ordering transactions within blocks, known as maximal extractable

value (MEV) [22]. Consider an exchange transaction to buy a par-

ticular asset. A malicious proposer can perform a front-running

sandwich attack by placing the buy transaction between two buy

and sell transactions (initiated by the malicious proposer) to ma-

nipulate asset prices. The proposer buys assets for a lower price

to let the victim buy at a higher value and then sells them again,

typically at a higher price afterwards. Adversarial manipulation of

transactions in Ethereum resulted in extracting more than $686M in

revenue from unsophisticated users ($1.38B across all EVM powered

networks) [17]. Other than profitability, the order of transactions

might affect their validity typically when multiple transactions

access limited assets, e.g., a ticket booking scenario where the num-

ber of available tickets is limited, and through order manipulation,

tickets are purchased by users who are not supposed to get one.

Different techniques, such as censorship resistance, random

leader election, and threshold encryption, have been proposed

to prevent transaction ordering manipulation. Censorship resist-

ance [52] only ensures that correct transactions are eventually

ordered, i.e., not censored. However, reordering transactions, e.g.,

sandwich attacks, is still possible. Similarly, reputation-based sys-

tems [5, 21, 42, 47] only detect unfair censorship. The random

leader (committee) election or, in general, participation equity, on

the other hand, provides opportunities for every replica to pro-

pose and commit its transactions, e.g., by becoming the proposer

[2, 5, 23, 31, 35, 39, 47, 50, 55, 58, 60]. However, a malicious pro-

poser can still order transactions unfairly in its turn. Finally, using

threshold encryption [5, 13, 52, 59], transactions are encrypted, and

their content is revealed once their order is fixed. This technique

suffers from (1) metadata leakage and (2) collusion attacks between

clients and the leader, where the leader becomes aware of a client

transaction before ordering it and manipulates its order [37, 38, 43].

Recently, the notion of order-fairness is presented to address the

manipulation of transaction ordering [14, 37, 38, 43, 44, 62]. Intuit-

ively, order-fairness ensures that if a sufficiently large number of

2335

https://doi.org/10.14778/3665844.3665861
https://github.com/HeenaNagda/Order-Fairness
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3665844.3665861
https://www.acm.org/publications/policies/artifact-review-and-badging-current

replicas (known as𝛾-fraction) receive a transaction 𝑡 before another

transaction 𝑡 ′, then 𝑡 must be ordered before 𝑡 ′ [38]. To support

order-fairness, clients broadcast their transactions to all replicas.

In each round, every replica locally orders received transactions

according to their received times and sends its ordering to the des-

ignated leader of that particular round. The leader then constructs

a fair-ordered proposal from the received orderings and initiates

consensus on the transaction block.

Existing fair ordering protocols, e.g., Wendy [43, 44], Pompe [62],

Aequitas [38], Themis [37] and Quick-order-fairness [14], how-

ever, suffer from serious limitations. First, both Wendy [43, 44] and

Pompe [62] rely on synchronized clocks between replicas, making

these protocols impractical in asynchronous networks. Pompe [62]

also determines fair order using the median of timestamps assigned

by replicas. The median value, however, can be easily manipulated

by faulty replicas. Similarly, in Wendy, if honest nodes’ local clocks

are far apart, no fairness guarantees can be provided [37]. Second,

Aequitas [38], and Quick-order-fairness [14] only guarantee weak

liveness and transactions might need to wait an arbitrarily long

time before getting committed [37]. Finally, while Themis [37],

which bootstraps from HotStuff [61], does not assume synchron-

ized clocks, it suffers from significant performance overhead.

The poor performance of order-fairness protocols is mainly

caused by the time required to generate a fair order among all
transactions. In an asynchronous network, different replicas might

receive transactions in different orders, and transactions might be

arbitrarily delayed. Byzantine replicas might also send maliciously

manipulated local ordering to the leader. Moreover, collecting the

local ordering of different replicas might lead to cycles in the fi-

nal order even when all replicas are honest. Therefore, it becomes

time-consuming for the leader to check the order of each pair of

transactions in every local ordering and achieve a fair order.

Fair transaction ordering is essential when transactions access a

shared resource and manipulating the order gives an unfair advant-

age to some transactions. However, the execution order of transac-

tions with no dependency does not impact the execution results.

This is crucial, especially due to the low workload contention level

in many practical applications. Based on this observation, a key

insight for our work is that a practical notion of order-fairness can

limit the fair ordering only to transactions with some dependencies.

In this paper, we focus on data dependencies among transac-

tions and present the notion of data-dependent order-fairness to
ensure that if most replicas receive data-dependent transactions in

a particular order, the order is preserved in execution.

Using the notion of data-dependent order-fairness, we present a

high-performance fair ordering protocol, Rashnu1. In Rashnu, each

replica, instead of creating a list of received transactions, captures

data dependencies between transactions (according to their received

order) in the form of a directed acyclic graph (DAG). Upon finishing

a round (specified by a threshold, e.g., time window, number of

transactions, or both), the replica sends the graph to the leader.

The leader then collects the local ordering of different replicas and

proposes a global dependency graph representing the fair order of

received transactions by initiating consensus on its proposed block.

1
Rashnu is the Avestan language name of the Zoroastrian deity of justice.

Considering data dependencies while making the fair ordering

of transactions more efficient, brings its own challenges. First, the

leader needs to figure out all data dependencies between transac-

tions in all local dependency graphs to extract a fair order. This is

challenging because replicas might receive transactions in differ-

ent orders or even receive different sets of transactions due to the

asynchronous nature of the network. As a result, the global view

of transactions might be different from the local view of each rep-

lica, e.g., while two transactions are independent (no path between

them) in the dependency graph of the first replica, there is a path

between them in the dependency graph of second replica caused by

a third transaction not received by the first replica. Second, replicas

need to capture dependencies across different transaction blocks

to be able to execute transactions more efficiently. This is because

while the execution of some transactions of a block is delayed by

some missing transactions, data-independent transactions of the

consequent blocks can be executed immediately.

By proposing data-dependent order-fairness, Rashnu, on the one

hand, reduces the leader latency by capturing the order of only data-

dependent transactions and, on the other hand, enables replicas

to execute data-independent transactions in parallel. Moreover,

Rashnu can capture any type of ordering constraint, other than data-

dependency, required by applications, e.g., resource constraints.

Rashnu supports such ordering constraints by enforcing them on

the construction of the dependency graph.

Since the fair ordering of transactions is separated from the

consensus protocol, Rashnu can bootstrap from any leader-based

consensus protocol. To be able to compare with existing order-

fairness protocols, e.g., Themis [37], we implemented Rashnu on

HotStuff [61] (used by Themis) as the underlying BFT protocol.

Note that Rashnu is mainly proposed for permissioned untrust-

worthy environments. However, its underlying techniques can be

applied to permissionless blockchain environments as well. In par-

ticular, fair ordering techniques can be simply integrated with

committee-based permissionless blockchains where a subset of

nodes order transactions (through sharding, e.g., Elastico [48] or by

separating leader election blocks from transaction ordering blocks

[41] where a BFT protocol is used among a subset of miners).

Overall, this paper makes three main contributions.

• Data-dependent order-fairness notion is defined as provid-

ing fair ordering only among data-dependent transactions.

• We design Rashnu, a high-performance fair-ordering pro-

tocol that decouples ordering from consensus and leverages

graph-based techniques to achieve order-fairness among

data-dependent transactions.

• We implement a prototype of Rashnu. Our evaluation res-

ults demonstrate the low overhead of Rashnu in provid-

ing order-fairness. Leveraging parallel execution, Rashnu

shows even higher throughput compared to its underlying

protocol, HotStuff, in compute-intensive workloads.

2 BACKGROUND
A Byzantine fault-tolerant (BFT) protocol runs on a network con-

sisting of a set of replicas that may behave arbitrarily, potentially

maliciously. BFT protocols use the State Machine Replication (SMR)

algorithm [45, 57] to ensure that honest replicas execute requests

2336

Figure 1: A Condorcet cycle

in the same order despite the concurrent failure of 𝑓 Byzantine

replicas. SMR BFT protocols need to provide safety and liveness.

A recent line of work, e.g., Wendy [43, 44], Aequitas [38], Pompe

[62], Themis [37] and Quick order-fairness [14], have proposed to

add order-fairness as the third property that SMRBFT protocols need

to guarantee. Order-fairness aims to ensure that the transactions

are committed in the same order as they arrived at the network.

Order-fairness is parameterized by an order-fairness parameter 𝛾

representing the fraction of replicas that receive transactions in a

particular order. Wendy [43, 44] and Pompe [62] require replicas

to access synchronized local clocks. Pompe further determines the

fair order by relying on timestamps assigned by replicas, which

can be manipulated by malicious replicas. As a result, we mainly

focus on Aequitas [38], Themis [37] and Quick order-fairness [14],

which do not consider synchrony assumptions, making them more

suitable for asynchronous networks (note that Quick order-fairness

[14] provides liveness only when all nodes are honest [37]).

Receive-Order-fairness. In a fair-ordering protocol, each replica

needs to individually order transactions locally and send its local or-

der to the leader. Each replica can order transactions based on (1) the

timestamp assigned by clients, (2) the propagation time (that can be

estimated by measuring network latency), or (3) the received time.

Since clients might maliciously assign timestamps to their transac-

tions, replicas cannot rely on the assigned timestamps (unless each

client is equipped with trusted hardware). The propagation time

also cannot be captured precisely as the network is asynchronous

and transactions might be arbitrarily delayed. As a result, Rashnu,

similar to existing protocols [14, 37, 38], relies on the transactions

receive time.

Condorcet cycles. The notion of (strong) receive-order-fairness
specifies that if 𝛾 fraction of replicas receive a transaction 𝑡 before

another transaction 𝑡 ′, then all honest replicas must order 𝑡 (strictly)

before 𝑡 ′. In an asynchronous network, replicas might receive trans-

actions in different orders. Hence, defining a fair order among all

transactions becomes impossible, even if all replicas are honest, as

demonstrated by the Condorcet paradox. Condorcet paradox states
that even if the local order of each individual replica is transitive,

there might be situations that lead to non-transitive collective vot-

ing preferences. Figure 1 demonstrates the Condorcet paradox with

four transactions between four replicas. As can be seen, a majority

(3 out of 4) of replicas received 𝑡1 before 𝑡2 (replicas 𝑟1, 𝑟3 and 𝑟4).

Similarly 𝑡2 is received before 𝑡3 by a majority of replicas (𝑟1, 𝑟2 and

𝑟4) and 𝑡3 is received before 𝑡4 by replicas 𝑟1, 𝑟2 and 𝑟3. However, 𝑡4
is also received by replicas 𝑟2, 𝑟3 and 𝑟4 before 𝑡1. The collection of

these orders results in a cyclic global ordering as generated by the

leader (the leader is one of the replicas).

To address this challenge, transactions involved in a Condorcet

cycle can be sent to replicas concurrently within the same batch

[38]. Specifically, given transactions 𝑡 and 𝑡 ′ where 𝑡 is received
by sufficiently many replicas before 𝑡 ′; while strong order-fairness

requires the leader to send 𝑡 before 𝑡 ′, batch-order-fairness relaxes
this requirement by saying 𝑡 should be delivered no later than

(before or at the same time as) 𝑡 ′. Batch-order-fairness does not
specify the order of transactions within a batch and respects a fair

order up to this limit. Hence, if a total order among all transactions

is required, a deterministic total ordering for transactions in the

same cycle, e.g., alphabetical, needs to be specified.

Weak liveness. Batch order-fairness circumvents the Condorcet

impossibility results. However, Condorcet cycles can chain together

and extend arbitrarily. In this case, using batch order-fairness, the

leader waits for a chain to be completed before sending any trans-

action of the batch to replicas. Hence, liveness might be violated as

transactions wait for a long time. To address the weak liveness issue

of batch order-fairness, transactions within the same cycle can be

delivered contiguously in a set of successive blocks (instead of a

single block) where a part of the current cycle can be output later

without violating order-fairness as long as no transaction from a

later cycle comes before it [37]. Using the deferred ordering tech-
nique, the leader proposes a partial (incomplete) ordering for some

transactions within the block and defers their total ordering to the

next consecutive blocks. The total ordering for deferred transac-

tions does not depend on the chaining of Condorcet cycles. As a

result, (standard) liveness can be achieved.

3 RASHNU MODEL
Rashnu deploys on a set of 𝑛 known nodes (replicas) where at most

𝑓 of them are Byzantine (malicious) at each time. In the Byzantine

failure model, faulty replicas may exhibit arbitrary, potentially ma-

licious, behavior. In an asynchronous system, where replicas can

fail, no consensus solutions guarantee both safety and liveness (FLP

result) [29]. As a result, Rashnu assumes the partially synchronous

communication model to circumvent the FLP impossibility. In a

partial synchrony model, an unknown global stabilization time

(GST) exists, after which messages between honest replicas are

received within some known bound Δ. A strong adversary can co-

ordinate malicious replicas and delay communication. However, the

adversary is computationally bounded and cannot subvert standard

cryptographic assumptions. Replicas are connected with point-to-

point bi-directional communication channels, and each client can

communicate with any replica. Network links are pairwise authen-

ticated, which guarantees that a malicious replica cannot forge a

message from an honest replica. For communication between rep-

licas, we assume the presence of digital signatures and public-key

infrastructure (PKI). A collision-resistant hash function 𝐷 (.) is also
used to map a message𝑚 to a constant-sized digest 𝐷 (𝑚).

BFT protocols require the number of replicas 𝑛 > 3𝑓 to guar-

antee safety with at most 𝑓 malicious replicas [10, 11, 20, 26, 46].

However, fair ordering of transactions requires larger 𝑛. The order-

fairness is further parameterized by an order-fairness parameter 𝛾

representing the fraction of replicas that receive transactions in a

particular order. In Rashnu, 𝑛 needs to be larger than
4𝑓

2𝛾−1 .

Lemma 3.1. Given a network consisting of 𝑛 replicas from which

at most 𝑓 are malicious. The fair ordering of transactions is possible

only when 𝑛 >
4𝑓

2𝛾−1 where 𝛾 is the fraction of replicas (majority

or more) that receive transactions in a particular order.

2337

Proof. (Using quorum size) With 𝑛 replicas, since 𝑓 replicas

might be faulty, the protocol can rely on a quorum of 𝑛−𝑓 replicas

to generate the final order. Among these 𝑛−𝑓 replicas, 𝑓 might be

malicious, i.e., 𝑓 replicas not participating in the quorum are honest

slow replicas. As a result, out of the quorum of 𝑛 − 𝑓 replicas, only

𝑛−2𝑓 replicas are guaranteed to be honest. To realize order-fairness
if 𝛾𝑛 replicas receive transactions in a particular order, the final

orderingmust reflect that order. Since only𝑛−2𝑓 replicas within the
quorum are guaranteed to be honest, the output of order-fairness

must be the same as 𝛾𝑛 even with 𝛾𝑛 − 2𝑓 replicas broadcasting

a particular order. On the other hand, a majority of replicas must

agree with the order. Otherwise, we could end up with conflicting

fair orders suggested by different sets of 𝛾𝑛 replicas. More precisely,

to ensure that only one of the two different orders 𝑡 ≺ 𝑡 ′ or 𝑡 ′ ≺ 𝑡

is captured between two transactions 𝑡 and 𝑡 ′, 𝛾𝑛 − 2𝑓 > 𝑛
2
. As a

result 𝑛 >
4𝑓

2𝛾−1 . □

Proof. (Using 𝛿-differential validity) The 𝛿-differential valid-
ity [30] can also be used to prove the number of required replicas

in a fair ordering protocol. Let 𝑐 (𝑣) denote the number of honest

replicas that propose value 𝑣 . 𝛿-differential validity states that if

an honest replica decides 𝑣 , then every other value 𝑣 ′ proposed
by another honest replica satisfies 𝑐 (𝑣 ′) ≤ 𝑐 (𝑣) − 𝛿 . Based on this

definition, a BFT protocol satisfies 𝛿-differential validity if and only

if it never decides a value 𝑣 ′ with 𝑐 (𝑣 ′) < 𝑐 (𝑣) − 𝛿 where 𝑣 is the

value proposed most often by honest replicas.

In an asynchronous network, 𝛿-differential consensus is achiev-

able only if 𝛿 ≥ 2𝑓 (i.e., 𝑐 (𝑣 ′) < 𝑐 (𝑣) − 2𝑓) [30]. In our con-

text, the value 𝑣 is interpreted as the order of two transactions

𝑡 and 𝑡 ′. As stated before, the output of fair ordering must be

the same even if 𝛾𝑛 − 2𝑓 replicas broadcast the order. As a result,

(1 −𝛾)𝑛 < (𝛾𝑛 − 2𝑓) − 2𝑓 where (1 −𝛾)𝑛 is the maximum number

of replicas that might propose another order. Hence, 𝑛 >
4𝑓

2𝛾−1 . □

The order-fairness parameter𝛾 represents the fraction of replicas

that receive transactions in a particular order. The range of possible

values for the order-fairness parameter 𝛾 can be calculated based

on the total number of replicas 𝑛.

Lemma 3.2. Order-fairness parameter 𝛾 is in (1
2
+ 2𝑓𝑛 , 1].

Proof. Intuitively, 𝛾 should be larger than
1

2
to prevent multiple

conflicting fair orders. In Rashnu, Since𝑛 >
4𝑓

2𝛾−1 ,𝛾 > 1

2
+ 2𝑓𝑛 . On the

other hand, 𝛾 = 1 is the case where all replicas receive transactions

in the same order. As a result,
1

2
+ 2𝑓

𝑛 < 𝛾 ≤ 1. □

In an asynchronous network, replicas might receive transactions

in different orders. Even if all replicas are honest, defining a fair

order among all transactions is impossible, as demonstrated by

the Condorcet paradox. Condorcet paradox states that even if the

local order of all individual replicas is transitive, there might be

situations that lead to non-transitive collective voting preferences.

Moreover, batching transactions might lead to weak liveness issues

when Condorcet cycles are chained together. In Rashnu, inspired

by the order deferring technique [37], transactions of the same

cycle are proposed contiguously in successive blocks. However,

since Rashnu considers dependency only among data-dependent

transactions, cycles are less likely to happen compared to existing

fair ordering protocols.

The order of executing transactions matters when transactions

compete with each other on the same resources and manipulating

the order gives an unfair advantage to some transactions. As a

result, our notion of order-fairness limits the fair ordering to data-

dependent transactions. Each transaction performs a sequence of

reads and writes, each accessing a single record. Rashnu assumes a

priori knowledge of transactions’ read- and write-set, where the

read-set and write-set of transactions are pre-declared or can be

obtained from the transactions via static analysis, e.g., all records

involved in a transaction, are accessed by their primary keys. Even

if that assumption does not hold, the system can employ speculative

execution techniques [28] to obtain the read-set and write-set of

each transaction. Note that a conservative estimation of read-set

and write-set, used by different techniques, while slightly decrease

the performance, does not hurt the correctness of Rashnu. Given

a transaction 𝑡 , we use 𝑅(𝑡) and𝑊 (𝑡) to denote the read-set and

write-set of transaction 𝑡 respectively. Intuitively, two transactions

𝑡 and 𝑡 ′ are data-dependent if they access the same data object and

one performs a write operation on the data object.

Definition: (Data-dependent transactions). two transactions

𝑡 and 𝑡 ′ are data-dependent if (𝑅(𝑡) ∩𝑊 (𝑡 ′)) ∪ (𝑊 (𝑡) ∩ 𝑅(𝑡 ′)) ∪
(𝑊 (𝑡) ∩𝑊 (𝑡 ′)) ≠ ∅.

Definition: (Data-dependent order-fairness). Given two data-

dependent transactions 𝑡 and 𝑡 ′. If 𝛾-fraction of replicas receive 𝑡

before 𝑡 ′, no honest replica outputs 𝑡 ′ before 𝑡 .

Rashnu processes transactions in rounds where each replica

collects transactions received from clients and sends a block of

transactions to the leader at the end of each round. Note that replicas

might not receive the same set of transactions from clients in each

round due to network asynchrony.

4 FAIR TRANSACTION ORDERING
In Rashnu, similar to other fair ordering protocols and even some

BFT protocols (e.g., HotStuff [61] and Prime [4]), clients broadcast

their transactions to all replicas. Each replica collects a batch of

transactions, constructs a local dependency graph for transactions

based on the received order, and sends the graph to the leader. The

leader then collects all local dependency graphs and generates a

global dependency graph that captures fair order among transac-

tions. If the order of two data-dependent transactions can not be

determined by the leader, e.g., they are received by an insufficient

number of replicas, the leader defers the order to the next blocks.

Figure 2 presents an overview of Rashnu in a simple example.

We use this example throughout this section. The example includes

four replicas 𝑟1 to 𝑟4 (assuming 𝑓 = 1, 𝑛 becomes 4𝑓 + 1 = 5

and there are 𝑛 − 𝑓 = 4 replicas in the quorum) where one of

them is the leader and presents two consecutive rounds of the

protocol. A set of transactions 𝑡1 to 𝑡11 are received from clients in

these two rounds where each transaction accesses a subset of data

objects A, B, and C, as shown in the figure (for simplicity, all data

accesses are assumed to bewrite). This example includes many data

dependencies among transactions to capture different corner cases.

2338

Figure 2: Local and global ordering in Rashnu

In real-world scenarios, however, a large percentage of transactions

are typically data-independent.

This section demonstrates how different replicas construct their

local ordering and how the leader orders transactions in a fair yet

efficient manner. We then discuss the execution of transactions and

the correctness of Rashnu.

4.1 Local Ordering
In the local ordering phase, each replica generates a dependency

graph for client requests that the replica has received and their

order is not determined yet. In each round 𝑖 , a replica deals with

three types of transactions.

• First, old transactions that have been received by the replica

in a round 𝑗 (𝑗 < 𝑖); however, they have not been proposed

by a leader (in any round 𝑗 to 𝑖 − 1) yet. This happens when
an insufficient number of replicas receive a transaction in

a round. Hence, the leader does not propose it until more

replicas receive it (probably, in a later round).

• Second, new transactions that are received by the replica

in the current round 𝑖; however, the leader has already pro-

posed them in an earlier round. This is because transactions

might be delayed due to network asynchrony, and a replica

receives a transaction that has already been received by

other replicas, and its order is possibly determined in an

earlier round.

• Third, new transactions that are received by the replica in

the current round 𝑖 , and have not been proposed by a leader

in any earlier round.

As shown in Algorithm 1, each replica 𝑟 initiates an empty graph

𝐺𝑟 = (𝑇𝑟 , 𝐸𝑟) at the beginning of each round 𝑖 . The replica first

adds all its old transactions (first type) to graph 𝐺𝑟 (lines 2-3). The

replica adds an edge (𝑡 ′, 𝑡) to the graph 𝐺𝑟 for each transaction 𝑡

if the replica has received 𝑡 ′ before 𝑡 (i.e., 𝑡 ′ ≺ 𝑡) and 𝑡 and 𝑡 ′ are
data-dependent (lines 4-6). Transactions 𝑡 and 𝑡 ′ might have been

received by the replica in different rounds. Note that if the underly-

ing consensus protocol relies on a stable leader, e.g., PBFT [15], the

leader can keep track of the first type of transactions. In this way,

replicas do not need to wait for the previous round leader’s proposal

before sending their local order in the current round. Upon receiv-

ing a valid signed request message𝑚 = ⟨REQUEST, 𝑡, 𝜏𝑐 , 𝑐⟩𝜎𝑐 from an

authorized client 𝑐 with timestamp 𝜏𝑐 to execute transaction 𝑡 , the

replica checks whether the transaction has already been proposed

by the leader in an earlier round (second type). Otherwise (third

type), the replica adds vertex 𝑡 and all its dependencies with existing

vertices to the graph 𝐺𝑟 (lines 9-13).

If transaction 𝑡 has already been proposed in an earlier round

(second type), its order might not have been determined. When

the leader finalizes the global order of transactions (as explained

in Section 4.2), if the number of received orders between two data-

dependent transactions 𝑡 and 𝑡 ′ is insufficient, the leader can not

determine the order and adds a pair (𝑡, 𝑡 ′) to a set of missing pairs
(undirected edges) E. This set is then used by replicas in the next

round to specify the order of missing pairs and complete the previ-

ous proposals.

When a replica receives a transaction 𝑡 that was proposed in an

earlier round, the replica checks the set of missing pairs (undirected

edges) E sent by the leader of the previous round to see if 𝑡 is part of

any missing pairs. For any pair (𝑡 ′, 𝑡) ∈ E, if the replica has already
received 𝑡 ′, the replica adds (𝑡 ′, 𝑡) to the set of updated local ordering
𝑈𝑟 to specify the order between 𝑡

′
and 𝑡 . Updated ordering includes

a set of edges between transactions of proposals received in previous

2339

Algorithm 1 Local ordering on replica 𝑟

Input: (1) a set of incoming transactions in round 𝑖 ,

(2) the set of missing pairs (i.e., undirected edges) E
1: Initiate an empty graph𝐺𝑟 = (𝑇𝑟 , 𝐸𝑟)
2: for every transaction 𝑡 that is received in an earlier round but has not been

proposed by a leader do ⊲ First type

3: Add transaction (vertex) 𝑡 to𝑇𝑟
4: for every vertex 𝑡 ′ ∈ 𝑇𝑟 do
5: if 𝑡 and 𝑡 ′ are data-dependent then
6: Add (𝑡 ′, 𝑡) to 𝐸𝑟
7: while round 𝑖 has not been finished do
8: for every incoming transaction 𝑡 received from clients do
9: if 𝑡 is not proposed in an earlier round then ⊲ Third type

10: Add a vertex 𝑡 to𝐺𝑟

11: for every vertex 𝑡 ′ ∈ 𝑇𝑟 do
12: if 𝑡 ′ and 𝑡 are data-dependent then
13: Add (𝑡 ′, 𝑡) to 𝐸𝑟
14: else if 𝑡 is a vertex in an earlier proposal then ⊲ Second type

15: for every pair (𝑡 ′, 𝑡) ∈ E do
16: if 𝑡 ′ is already received then
17: Add (𝑡 ′, 𝑡) to𝑈𝑟

18: Send ⟨⟨LOCAL-ORDER, 𝑖,𝐺𝑟 ,𝑈𝑟 ⟩𝜎𝑟 ,𝑇 ⟩ to the leader

rounds and enables the leader to finalize previous proposals by

adding the missing edges.

At the end of round 𝑖 , each replica 𝑟 sends a signed local-ordermes-

sage ⟨⟨LOCAL-ORDER, 𝑖,𝐺𝑟 ,𝑈𝑟 ⟩𝜎𝑟 ,𝑇 ⟩ including the dependency graph

𝐺𝑟 and the set of updated local ordering𝑈𝑟 to the leader. The set

of received requests 𝑇 is piggybacked to keep local-order messages

small. The local-ordermessages are then used by the leader in global

ordering to prove that this set of requests has been received.

Figure 2 presents the local ordering phase of Rashnu on different

replicas in two rounds. Data objects accessed (written) by each

transaction are shown at the bottom of the figure. For example, in

round 1, replica 𝑟2 receives transactions in this order: 𝑡6 ≺ 𝑡5 ≺
𝑡2 ≺ 𝑡3 ≺ 𝑡7 and generates local dependency graph 𝐺𝑟2 by adding

edges between data-dependent transactions, e.g., (𝑡2, 𝑡3) as both
write on data objects A and B. As shown, replicas receive different
sets of transactions in each round and deal with different cases.

For instance, replica 𝑟3 receives transaction 𝑡9 in round 1. However,

since it has not been proposed by the leader, 𝑟3 includes 𝑡9 in its

graph of round 2 as well (first type). Similarly, while replica 𝑟1
receives transaction 𝑡5 in round 2, the replica does not send 𝑡5 to

the leader because it has already been proposed by the leader of

round 1 (second type). The set of updated local ordering𝑈𝑟 is empty

in round 1 for all replicas because there is no prior proposal to be

updated in round 1. However, since the graph of round 1 includes a

missing edge (E = 𝑡5, 𝑡6)), nodes include the edge in their updated

local ordering𝑈𝑟 of round 2 if they have received both transactions.

Note that 𝑈𝑟3 = ∅ in round 2, because the node has not received

transaction 𝑡6 yet.

4.2 Global Ordering
In the global ordering phase, as demonstrated in Algorithm 2, the

leader receives the local-order messages from different replicas and

generates the final ordering of transactions. Since 𝑓 replicas might

be faulty and not send their local-order messages, the leader col-

lects a quorum of 𝑛−𝑓 local-order messages from different replicas

(including itself) to generate the global order.

We define two types of transactions: fixed and pending. Trans-
action 𝑡 is fixed if it appears in at least 𝑛 − 2𝑓 local-order messages,

Algorithm 2 Global ordering on leader replica 𝜋

Input: (1) 𝑛 − 𝑓 local-order messages received from different replicas,

(2) list of missing edges E
1: for every transaction 𝑡 in some local-order messages do
2: if 𝑡 appears in at least 𝑛 − 2𝑓 local-order messages then
3: Label 𝑡 as fixed
4: else if 𝑡 appears in at least 𝑛 (1 − 𝛾) + 𝑓 + 1 local-order messages then
5: Label 𝑡 as pending
▷ Step 1: global dependency graph generation

6: Initiate an empty graph𝐺 = (𝑉 , 𝐸)
7: Initiate updated global ordering dependency list 𝐿𝑔 = ∅
8: for every fixed or pending transaction 𝑡 do
9: add a vertex 𝑡 to𝐺

10: for each pair of vertices 𝑡 and 𝑡 ′ do
11: if 𝑤 (𝑡, 𝑡 ′) > 𝑤 (𝑡 ′, 𝑡) & 𝑤 (𝑡, 𝑡 ′) ≥ 𝑛 (1 − 𝛾) + 𝑓 + 1 then
12: Add (𝑡, 𝑡 ′) to 𝐸
13: else if 𝑤 (𝑡 ′, 𝑡)>𝑤 (𝑡, 𝑡 ′) & 𝑤 (𝑡 ′, 𝑡) ≥𝑛 (1 − 𝛾) + 𝑓 + 1 then
14: Add (𝑡 ′, 𝑡) to 𝐸
▷ Step 2: condensation graph generation

15: 𝐺𝐶 = (𝑉𝐶 , 𝐸𝐶) ←[Condensation(𝐺)

▷ Step 3: graph pruning

16: for every pending vertex 𝑢 do
17: if there is no fixed vertex 𝑣 such that (𝑢, 𝑣) ∈ 𝐸𝐶 then
18: Remove 𝑢 from𝑉𝐶

19: Remove all edges involving 𝑢 from 𝐸𝐶

20: for every pair of data-dependent transactions 𝑡 and 𝑡 ′ with no edges do
21: if 𝑡 and 𝑡 ′ are in two different vertices of𝑉𝐶 then
22: Add (𝑡, 𝑡 ′) to E
▷ Step 4: DAG transitive reduction generation

23: 𝐺𝑇 = (𝑉𝑇 , 𝐸𝑇) ←[TransitiveReduction(𝐺𝐶
)

▷ Step 5: updating previous proposals

24: for each pair of transactions 𝑡 and 𝑡 ′ in any𝑈𝑖 do
25: if 𝑤 (𝑡, 𝑡 ′) > 𝑤 (𝑡 ′, 𝑡) & 𝑤 (𝑡, 𝑡 ′) > 𝑛 (1 − 𝛾) + 𝑓 + 1 then
26: Add (𝑡, 𝑡 ′) to𝑈𝑔

27: else if 𝑤 (𝑡 ′, 𝑡)>𝑤 (𝑡, 𝑡 ′) & 𝑤 (𝑡 ′, 𝑡)>𝑛 (1 − 𝛾)+𝑓 +1 then
28: Add (𝑡 ′, 𝑡) to𝑈𝑔

▷ Step 6: global order proposal

29: Send ⟨GLOBAL-ORDER,𝐺𝑇 , E, L,𝑈𝑔, L𝑢 ⟩𝜎𝜋 to all replicas

whereas 𝑡 is pending if at least 𝑛(1−𝛾) + 𝑓 + 1 (and less than 𝑛− 2𝑓)
local-ordermessages include 𝑡 . A fixed transaction has been received

by sufficiently many replicas to be included in the final order. Spe-

cifically, since at most 𝑓 local-order messages in the quorum might

have been received from faulty replicas, the leader counts on only

𝑛 − 2𝑓 messages and if 𝑛 − 2𝑓 different replicas receive a transac-

tion, the transaction is ordered safely. On the other hand, pending
transactions are not received by enough replicas yet to finalize

an order. However, an edge from a pending to a fixed transaction

might occur. As a result, we keep such pending transactions in the

leader proposal enabling the leader to propose more transactions.

We show that this does not violate the order-fairness (Definition 3).

In Figure 2, since 𝛾 = 1, 𝑓 = 1 (and 𝑛 = 5), a transaction 𝑡 is fixed
if it appears in 3 or 4 local orderings, e.g., transactions 𝑡2, 𝑡3, 𝑡4,

𝑡5 and 𝑡6 in round 1, while transaction 𝑡 is pending if only 2 local

orderings include 𝑡 , e.g., transactions 𝑡1 and 𝑡7 in round 1.

We also define a weight function𝑤 : 𝐸 ↦→ [0, 𝑛− 𝑓] to denote the
number of local dependency graphs with a particular edge. Given

a set L of 𝑛 − 𝑓 local dependency graphs and two transactions

(vertices) 𝑡 and 𝑡 ′ in round 𝑖 , 𝑤 (𝑡, 𝑡 ′) represents the number of

graphs that include an edge from 𝑡 to 𝑡 ′. Note that for any pair of

data-independent transactions 𝑡 and 𝑡 ′,𝑤 (𝑡, 𝑡 ′) = 0. In Figure 2 and

in round 1,𝑤 (𝑡3, 𝑡4) = 3 while𝑤 (𝑡3, 𝑡9) = 1.

Step 1: global dependency graph generation. Upon receiving

a quorum of 𝑛 − 𝑓 local-order messages from different replicas in

round 𝑖 , the leader initiates an empty graph 𝐺 = (𝑉 , 𝐸) and adds

2340

all fixed and pending transactions to its vertex set (lines 6-9 of

Algorithm 2). For each pair of data-dependent transactions 𝑡 and 𝑡 ′

in𝑉 , the leader calculates both𝑤 (𝑡, 𝑡 ′) and𝑤 (𝑡 ′, 𝑡). If the maximum

of𝑤 (𝑡, 𝑡 ′) and𝑤 (𝑡 ′, 𝑡) is equal or greater than 𝑛(1−𝛾) + 𝑓 + 1, then
the corresponding edge will be added to 𝐺 (lines 10-14).

The goal of this step is to include asmany transactions as possible

while making sure that the exclusion of any transaction from the

proposal does not violate fairness (Definition 3). In particular, the

order-fairness definition states that if 𝛾 fraction of replicas receives

transaction 𝑡 before transaction 𝑡 ′, then 𝑡 ′ is not ordered before 𝑡 .

When at least 𝑛(1 − 𝛾) + 𝑓 + 1 replicas propose a particular order
𝑡 ≺ 𝑡 ′ for two transactions 𝑡 and 𝑡 ′, at most, 𝑛𝛾 − 2𝑓 − 1 replicas
(from the set of 𝑛 − 𝑓 replicas) can propose the reverse order 𝑡 ′ ≺ 𝑡 ,

i.e., (𝑛 − 𝑓) − (𝑛(1 − 𝛾) + 𝑓 + 1) = 𝑛𝛾 − 2𝑓 − 1. This number of

replicas is, nevertheless, still lower than the 𝛾 fraction of (honest)

replicas (as discussed in lemma 3.1, only 𝑛 − 2𝑓 replicas within the

quorum of 𝑛 − 𝑓 replicas are guaranteed to be honest). As a result,

if 𝑛(1−𝛾) + 𝑓 + 1 replicas propose an order 𝑡 ≺ 𝑡 ′, the order can be

safely chosen and the order-fairness will not be violated even if all

remaining replicas propose the reverse order 𝑡 ′ ≺ 𝑡 .

Specifically, when 𝛾 = 1, based on the order-fairness definition,

if all honest replicas (i.e., at least 𝑛 − 2𝑓 within a quorum of 𝑛 − 𝑓)

receive transaction 𝑡 before 𝑡 ′, then 𝑡 ′ should not be ordered before
𝑡 . As a result, if the protocol observes that 𝑓 + 1 replicas have

received 𝑡 before 𝑡 ′, it can safely order 𝑡 before 𝑡 ′. This is because
it becomes impossible for 𝑛 − 2𝑓 honest replicas within a quorum

of 𝑛 − 𝑓 to receive 𝑡 and 𝑡 ′ in the reverse order (i.e., 𝑡 ′ ≺ 𝑡), hence,

order-fairness can not be violated. Moreover, if neither of the two

possible orders satisfies order-fairness, i.e., some (> 𝑓) received

𝑡 ≺ 𝑡 ′ while others (> 𝑓) received 𝑡 ′ ≺ 𝑡 , the protocol is free to

choose one of the orders. As a result, deciding based on 𝑓 + 1 local
ordering does not violate order-fairness. In this case, the protocol

chooses the order with the higher weight.

In round 1 of Figure 2, the leader adds fixed transactions 𝑡2, 𝑡3,

𝑡4, 𝑡5, 𝑡6 and pending transactions 𝑡1 and 𝑡7 to the graph while

transaction 𝑡9 is not added as it is received by only one replica. The

leader adds an edge between two transactions if the edge appears

in at least 𝑛(1 − 𝛾) + 𝑓 + 1 = 2 local graphs, e.g., edge (𝑡2, 𝑡4) is not
added because it appears only in 𝐺𝑟1 .

Note thatmalicious replicasmight add invalid edges, e.g., between

independent transactions, to their graph. However, the leader can

detect such edges. Even if the leader does not validate edges, since

at most 𝑓 replicas are Byzantine, no invalid edges will be added

to the final graph. Similarly, if the leader is malicious and adds

incorrect edges, its malicious behavior can be easily detected by

replicas, as the leader must send the 𝑛 − 𝑓 local ordering to replicas

(as a proof).

Step 2: condensation graph generation. The graph generated

by the leader might contain cycles (due to the Condorcet paradox).

Rashnu batches transactions involved in a cycle and delivers them

to replicas simultaneously. To determine the order of transactions,

the final graph must be acyclic. To generate an acyclic graph from

a cyclic graph, Rashnu uses the graph condensation technique.

Given a graph 𝐺 , to generate the condensation graph 𝐺𝐶
of 𝐺 ,

Rashnu first identifies the strongly connected components of 𝐺 .

Each strongly connected component intuitively represents either a

single vertex (transaction) or a cycle in graph 𝐺 . More formally, a

strongly connected component 𝐶 is a maximal subset of vertices

such that any two vertices of this subset are reachable from each

other. The condensation of graph𝐺 is graph𝐺𝐶 = (𝑉𝐶 , 𝐸𝐶) where
each vertex𝐶 ∈ 𝑉𝐶

corresponds to a strongly connected component

of graph 𝐺 , and (𝐶𝑖 ,𝐶 𝑗) ∈ 𝐸𝐶 if and only if there are two vertices

𝑢 ∈ 𝐶𝑖 and 𝑣 ∈ 𝐶 𝑗 such that (𝑢, 𝑣) ∈ 𝐸. Vertex 𝐶 in 𝐺𝐶
is fixed if it

includes at least one fixed transaction. Otherwise, 𝐶 is pending.
As shown in Figure 2, transactions 𝑡2, 𝑡3 and 𝑡4 construct a cycle

in graph 𝐺 of round 1. As a result, the condensation graph 𝐺𝐶

consists of 4 vertices (strongly connected components): single-

transaction vertices 𝑡1, 𝑡5, 𝑡6, and 𝑡7 and vertex 𝐶1 consisting of

𝑡2, 𝑡3 and 𝑡4. The resulting graph 𝐺
𝐶
is acyclic.

Step 3: graph pruning. Once the condensation graph is generated,

the next step is to remove pending transactions with no outgoing

path to a fixed transaction. These transactions are removed because

they have not been received by a sufficient number of replicas

and they do not incorporate in determining the order of a fixed
transaction, i.e., we initially add them to the graph because there

might be a path from a pending to a fixed transaction, helping in

determining the order. Given two data-dependent transactions 𝑡

and 𝑡 ′ where 𝑡 is fixed, 𝑡 ′ is pending, and (𝑡, 𝑡 ′) ∈ 𝐸𝐶 . Since at least
𝑛(1 − 𝛾) + 1 honest replicas have received 𝑡 before 𝑡 ′, removing

pending transaction 𝑡 ′ does not violate fairness.
In Figure 2, transactions 𝑡1 and 𝑡7 are pending in round 1. How-

ever, since 𝑡1 has outgoing paths to fixed vertex 𝐶1, we keep it in

the graph; while 𝑡7 is removed from the graph. Removing 𝑡7 enables

the next proposer to propose the order of 𝑡7 freely if 𝑡7 appears in

a sufficient number of local graphs.

Finally, for every pair of data-dependent transactions 𝑡 and 𝑡 ′

with no edges in between, if 𝑡 and 𝑡 ′ are not in the same vertex of

𝐺𝐶
(i.e., they are not part of the same cycle), the leader adds a pair

(𝑡, 𝑡 ′) to E. Maintaining the set of missing edges E is necessary

because determining the order of a missing edge might result in a

new or extended cycle. Hence, a transaction should not be executed

until the order of all its predecessor transactions in the graph is

determined. We do not maintain missing edges between transac-

tions of the same cycle because such edges do not contribute to

transaction ordering (i.e., the transactions already constructed a

cycle). In Figure 2, the edge between 𝑡5 and 𝑡6 in round 1 and the

edge between 𝑡8 and 𝑡10 in round 2 are missing.

Step 4: DAG transitive reduction generation. As an optimiza-

tion, the generated graph can be simplified by removing the trans-

itive edges. The transitive reduction of a directed graph is another

directed graph that has the same reachability relation with the same

vertices and as few edges as possible. A transitive reduction of a

graph 𝐺𝐶 = (𝑉𝐶 , 𝐸𝐶) is graph 𝐺𝑇 = (𝑉𝑇 , 𝐸𝑇) where (1) 𝑉𝐶 = 𝑉𝑇

(vertices are the same) and (2) for each pair of vertices 𝑣 and 𝑢 in

𝐺𝑇
, there is a path from 𝑢 to 𝑣 in 𝐺𝑇

if and only if there is a path

from 𝑢 to 𝑣 in 𝐺𝐶
[3]. Since 𝐺𝐶

is finite and acyclic, its transitive

reduction𝐺𝑇
is unique and is a sub-graph of𝐺𝐶

(i.e., the minimum

equivalent graph). In Figure 2 and in round 2, graph𝐺𝑇
has 2 fewer

edges compared to 𝐺𝐶
. For instance, (𝑡7, 𝑡10) is removed as 𝑡10 is

reachable from 𝑡7 through 𝑡9.

Step 5: updating previous proposals. The leader also needs to
update the previous proposals by adding the missing edges between

2341

Algorithm 3 Order finalization on replica 𝑟

Input: a global-order message received from the leader

▷ Step 1: Global order validation

1: Upon receiving ⟨GLOBAL-ORDER,𝐺𝑇 , E, L,𝑈𝑔, L𝑢 ⟩𝜎𝜋
2: Validate𝐺𝑇

, E and𝑈𝑔 using L and L𝑢
▷ Step 2: Establishing consensus

3: HotStuff(GLOBAL-ORDER)
▷ Step 3: Transaction execution

4: for every edge (𝑡1, 𝑡2) in𝑈𝑔 where 𝑡1, 𝑡2 ∈ Block 𝐵𝑖 do
5: Add (𝑡1, 𝑡2) to 𝐵𝑖 .𝐺

𝑇

6: for every vertex 𝑣 in 𝐵𝑖 .𝐺
𝑇 do

7: if 𝐵𝑖−1 is marked as completed, all predecessors of 𝑣 in 𝐵𝑖 .𝐺
𝑇
are executed

and there is no missing edge in E involving 𝑣 then
8: if 𝑣 is a single transaction then
9: Execute transaction 𝑣

10: else ⊲ 𝑣 contains a Condorcet cycle

11: Let be 𝑣1, 𝑣2, ...𝑣𝑛 be a Hamiltonian cycle of 𝑣

12: Execute transactions in the specified order

13: if All transactions of Block 𝐵𝑖 .𝐺
𝑇
are executed then

14: Mark block 𝐵𝑖 as completed

data-dependent transactions. As explained earlier, each replica 𝑟

sends a set of updated local ordering dependencies𝑈𝑟 to the leader

in its local-ordermessage. When the current leader receives an order-

ing dependency, i.e., an edge, between two data-dependent transac-

tions 𝑡 and 𝑡 ′ by at least 𝑛(1 − 𝛾) + 𝑓 + 1 replicas on some previous

proposal, the leader adds an edge to its updated global ordering

dependencies list 𝑈𝑔 . If the leader receives both (𝑡, 𝑡 ′) and (𝑡 ′, 𝑡),
each from at least 𝑛(1−𝛾) + 𝑓 +1 replicas, the edge with the highest

weight will be added to the list 𝑈𝑔 . The leader also removes the

edge from the list of missing edges E. In Figure 2 and in round 2,

since replica 𝑟1 and 𝑟2 (𝑓 + 1 replicas) send (𝑡6, 𝑡5) in their𝑈𝑟 sets,

the leader adds (𝑡6, 𝑡5) to the list𝑈𝑔 .

Step 6: global order proposal. Once the graph is generated, the

leader 𝜋 multicasts a ⟨GLOBAL-ORDER,𝐺𝑇 , E,L,𝑈𝑔,L𝑢⟩𝜎𝜋 message to

all replicas. The global-ordermessage includes the dependency graph

𝐺𝑇
, the set of missing edges E, the set L of 𝑛 − 𝑓 local dependency

graphs received from different replicas, the updated global ordering

dependencies list𝑈𝑔 , and the set L𝑢 of 𝑛− 𝑓 updated local ordering

dependencies received from different replicas. The set L and L𝑢
are included to enable replicas to verify the dependency graph and

the lists constructed by the leader.

4.3 Order Finalization
The order finalization is performed by all replicas to finalize the

order proposed by the leader and execute transactions. As shown

in Algorithm 3, order finalization consists of three main steps. First,

replicas validate the proposed order. Second, all replicas establish

agreement on the proposed order using a BFT protocol, and finally,

replicas execute transactions following the proposed order.

Step 1: global order validation. Upon receiving a global-order
message from the leader, each replica validates graph 𝐺𝑇

, list of

missing edges E and list of updated global ordering dependencies

𝑈𝑔 (Algorithm 3, lines 1-2). To validate𝐺𝑇
, the replica ensures that

fixed and pending transactions are labeled correctly, and edges are

added only if the order is proposed by a sufficient number of replicas.

Similarly, the replicas validate both E and𝑈𝑔 lists by checking the

missing edges of the current and previous proposals. If the global

order is invalid, (honest) replicas do not participate in the consensus

protocol; hence, the leader will be eventually replaced and the new

leader collects all local orders and generates the global order.

Step 2: establishing agreement. Once the global-order message

is validated, replicas establish agreement on the proposed order

using the utilized consensus protocol. The current deployment of

Rashnu uses HotStuff [61] as the underlying BFT protocol, enabling

us to compare Rashnu with existing order-fairness protocols, e.g.,

Themis [37].

Step 3: transaction execution. Once consensus is achieved, each
replica updates the previous proposals by adding edges from 𝑈𝑔 .

Replicas start executing transactions of a block once all predecessor

blocks are executed, i.e., marked as completed. A block 𝐵𝑖 is marked

as completed if its dependency graph 𝐵𝑖 .𝐺
𝑇
has no missing edges,

and all its transactions are executed. In Rashnu, replicas follow the

edges in the final dependency graph in executing transactions and

can execute data-independent transactions of a block in parallel.

Each vertex of a block is a strongly connected component consisting

of either a single transaction or a set of transactions that construct

a cycle. For each vertex that is a cycle, first, a Hamiltonian cycle

is identified. A Hamiltonian cycle is a cycle that visits each vertex

exactly once. If the graph includes more than one Hamiltonian cycle,

all replicas deterministically use one, e.g., based on transaction ids,

and execute transactions of the cycle in that order (lines 6-12).

Note that while Rashnu executes data-independent transactions

within a block in parallel, replicas still execute transactions block

by block. Specifically, each replica waits for block 𝐵𝑖 to be marked

as completed before executing any transactions of 𝐵𝑖+1. This tech-
nique, while simplifying the execution process, could result in un-

necessary latency for two main reasons. First, data-independent

transactions can be executed in parallel. Hence, when transactions

of a current block are being executed, there is no need for data-

independent transactions of a successor block to wait. Second, when

some edges are missing, no transactions from any successor blocks

can be executed, even if the transaction order of a successor block

does not depend on the missing edges. To address this issue, Rashnu

can capture data dependencies across blocks. While the overhead

of capturing data dependencies across blocks might be high in con-

tentious workloads, it results in a significant performance gain in

workloads with low to moderate contention.

4.4 Correctness Argument
This section briefly discusses the order-fairness, safety, and live-

ness of Rashnu. Some arguments are inspired by the correctness

arguments of Themis [37].

Lemma 4.1. If transaction 𝑡 appears in 𝑛−2𝑓 local-ordermessages

(i.e., fixed transaction), 𝑡 is proposed by an honest leader.

Proof. The leader includes all fixed and pending transactions
in its graph 𝐺 and only the graph pruning step removes pending
vertices (with no outgoing path to a fixed vertex) from the condens-

ation graph. Since a vertex in the condensation graph is pending if

it does not contain any fixed transactions, fixed transactions will

always be proposed by the leader. The leader needs to send all local

orderings to replicas (as proof of construction of 𝐺). Hence, if it

maliciously excludes a fixed transaction, replicas detect that and

do not accept the proposal resulting in replacing the leader. □

2342

Lemma 4.2. Given two data-dependent transactions 𝑡 and 𝑡 ′ in a

valid leader proposal. The proposal includes either (𝑡, 𝑡 ′) or (𝑡 ′, 𝑡).

Proof. Rashnu assumes a partial synchrony model where at

least 𝑛 − 2𝑓 replicas in the quorum (eventually) have sent both

transactions to the leader. Since 𝑛 − 2𝑓 > 2(𝑛(1 − 𝛾) + 𝑓), at least
𝑤 (𝑡, 𝑡 ′) or𝑤 (𝑡 ′, 𝑡) is equal or greater than 𝑛(1−𝛾) + 𝑓 +1. Since the
leader adds only one edge (the edge with higher weight) even when

both𝑤 (𝑡, 𝑡 ′) are𝑤 (𝑡 ′, 𝑡) are equal or greater than 𝑛(1 − 𝛾) + 𝑓 + 1,
the final graph includes either (𝑡, 𝑡 ′) or (𝑡 ′, 𝑡) but not both. □

Lemma 4.3. Graph 𝐺𝑇
proposed by an honest leader is acyclic.

Proof. While graph𝐺 might contain (Condorcet) cycles, each

cycle is part of a vertex (i.e., strongly connected component) in

the condensation graph 𝐺𝐶
. Since graph pruning and transitive

reduction generation steps do not introduce any new edges, the

final graph is still acyclic. □

Lemma 4.4. Given two order-dependent transactions 𝑡 and 𝑡 ′

received in round 𝑖 where 𝑡 is fixed. If a valid leader proposal

includes only 𝑡 then there are at least 𝑛(1 − 𝛾) + 1 honest replicas
that have received 𝑡 before 𝑡 ′.

Proof. If transaction 𝑡 ′ was a fixed transaction, the leader pro-

posal must include it. Hence, 𝑡 ′ is not fixed. If 𝑡 ′ is not a pending
transaction, it has been received by at most 𝑛(1 − 𝛾) + 𝑓 replicas.

Since 𝑡 is fixed, it appears in 𝑛 − 2𝑓 local-ordermessages. As a result,

𝑝 = (𝑛 − 2𝑓) − (𝑛(1−𝛾) + 𝑓) = 𝛾𝑛 − 3𝑓 replicas ordered 𝑡 before 𝑡 ′.

𝑛 >
4𝑓

2𝛾−1 , hence, 𝑝 > 𝑛(1 − 𝛾) + 𝑓 , from which at most 𝑓 replicas

might be faulty. Hence, at least𝑛(1−𝛾)+1 honest replicas received 𝑡
before 𝑡 ′. If 𝑡 ′ is a pending transaction, since it is not included in the
leader proposal, there is no path from 𝑡 ′ to any fixed transactions

that includes 𝑡 . As a result, either (1)𝑤 (𝑡 ′, 𝑡) ≤ 𝑛(1 − 𝛾) + 𝑓 or (2)

𝑛(1 − 𝛾) + 𝑓 + 1 ≤ 𝑤 (𝑡 ′, 𝑡) ≤ 𝑤 (𝑡, 𝑡 ′). The second case implies that

at least 𝑛(1 − 𝛾) + 1 honest replicas received 𝑡 before 𝑡 ′. In the first

case, since 𝑡 is fixed,𝑤 (𝑡, 𝑡 ′) ≥ (𝑛−2𝑓) − (𝑛(1−𝛾) + 𝑓) = 𝛾𝑛−3𝑓 >

𝑛(1 − 𝛾) + 𝑓 since 𝑛 >
4𝑓

2𝛾−1 . □

Lemma 4.5. Given two order-dependent transactions 𝑡 and 𝑡 ′, if
a valid leader proposal includes only 𝑡 (and 𝑡 ′ was not in an earlier

proposal) and 𝑡 ′ is received before 𝑡 by 𝛾𝑛 replicas, 𝑡 and 𝑡 ′ are in
the same Condorcet cycle.

Proof. Since 𝑡 is in the proposal, it is either fixed or pending.
If 𝑡 is a fixed transaction, there are at least 𝑛(1 − 𝛾) + 1 honest

replicas that have received 𝑡 before 𝑡 ′ (lemma 4.4); which contradict

the condition (i.e., 𝑡 ′ is received before 𝑡 by 𝛾𝑛 replicas). Hence,

𝑡 is pending. Since 𝑡 is pending there is a path 𝑡, 𝑡1, 𝑡2, ..., 𝑡𝑘 from

𝑡 to some fixed transaction 𝑡𝑘 in the proposal. Since 𝑡𝑘 is a fixed
transaction, based on lemma 4.4, there are at least 𝑛(1−𝛾)+1 honest
replicas that have received 𝑡𝑘 before 𝑡 ′. Since 𝑡 ′ is received before 𝑡

by 𝛾𝑛 replicas, 𝑡, 𝑡1, 𝑡2, ..., 𝑡𝑘 , 𝑡
′
construct a Condorcet cycle. □

Theorem 4.6. Rashnu guarantees data-dependent order-fairness.

Proof. Given two data-dependent transactions 𝑡 and 𝑡 ′ where
𝛾𝑛 replicas receive 𝑡 before 𝑡 ′. Four cases can happen in the final

ordering. First, 𝑡 and 𝑡 ′ are proposed in the same valid block and in

different vertices of the graph 𝐺𝑇
(then, following Algorithm 2, 𝑡 ′

is not ordered before 𝑡 since 𝛾𝑛 replicas receive 𝑡 before 𝑡 ′). Second,
𝑡 and 𝑡 ′ are proposed in the same valid block and in the same vertex

of the graph 𝐺𝑇
(then, 𝑡 ′ is not ordered before 𝑡 – both are part of

the same cycle). Third, 𝑡 ′ is proposed in a later valid block than 𝑡

(then, 𝑡 ′ is obviously not ordered before 𝑡), and fourth, 𝑡 is proposed
in a later valid block than 𝑡 ′ (then, based on lemma 4.5, 𝑡 and 𝑡 ′ are
in the same Condorcet cycle and 𝑡 ′ is not ordered before 𝑡). Hence,

Rashnu guarantees data-dependent order-fairness. □

Theorem 4.7. Rashnu guarantees safety.

Proof. The safety of Rashnu is a direct consequence of the

safety of HotStuff [61], as Rashnu does not modify any phases of

the underlying agreement protocol. □

Theorem 4.8. Rashnu guarantees liveness.

Proof. Rashnu considers a partial synchrony model where a

correct client transaction 𝑡 will be (eventually) received by all rep-

licas. As a result, 𝑡 will appear in at least 𝑛 − 2𝑓 local-ordermessages

(either in the same round or different rounds), becomes a fixed trans-
action, and is proposed by a leader. The execution of 𝑡 only depends

on missing edges between previously proposed order-dependent

transactions and as soon as such edges are added (i.e., correspond-

ing transactions appear in 𝑛 − 2𝑓 local-order messages), 𝑡 can be

executed. However, the order of transaction 𝑡 does not depend on

any transaction that has not been proposed. Hence, in contrast to

some other fair ordering protocols like Aequitas [38], Condorcet

cycles can not be chained and violate liveness. □

5 EXPERIMENTAL EVALUATION
Our evaluation has two main goals. First, measuring the overhead

of supporting order-fairness in Rashnu compared to its (unfair)

underlying BFT protocol, HotStuff [61]. Second, Comparing the

performance of Rashnu and the state-of-the-art order-fairness pro-

tocol; Themis [37] (the only existing order-fairness protocol that

provides the same guarantees as Rashnu without requiring clock

synchronization or any optimistic assumption on the honesty of

nodes). To this end, we analyze the impact of the following para-

meters on the performance of HotStuff, Rashnu, and Themis:

(1) transaction batch size (Section 5.1),

(2) degrees of contention (Section 5.2),

(3) network size (Section 5.3),

(4) order-fairness parameter (Section 5.4),

(5) compute-intensity of workloads (Section 5.5),

(6) geo-distribution of replicas (Section 5.6), and

(7) workload (Section 5.7).

Varying these parameters enables us to simulate many real BFT

application workloads [32]. Our Rashnu implementation is boot-

strapped from the HotStuff protocol [61]. We use the author’s open-

source libhotstuff codebase [1] and implemented Rashnu on top

of that. We mainly change the HotStuff codebase by enabling the

leader to generate a fair order and the replicas to send their local

order to the leader and validate the proposed order. Other phases

of the HotStuff protocol remain untouched. We have also imple-

mented Themis on top of HotStuff in the same way as Rashnu to

enable a fair comparison. We perform most experimental evalu-

ations under the SmallBank benchmark. We initially populate the

2343

25 50 100 200 400

4

8

12

16

Batch size

T
h
r
o
u
g
h
p
u
t
[
k
t
r
a
n
s
/
s
e
c
]

HotStuff-R HotStuff-W Themis-R Themis-W Rashnu-R Rashnu-W

25 50 100 200 400

300

600

900

1,200

1,500

Batch size

L
a
t
e
n
c
y
[
m
s
]

Figure 3: Impact of batch size

system with 10000 records and run each protocol under read-heavy

(𝑃𝑤 = 0.05) and write-heavy (𝑃𝑤 = 0.95) workloads, e.g., Rashnu-R

is Rashnu under the read-heavy, and Rashnu-W is Rashnu under

the write-heavy workload. To determine the accounts accessed

by each transaction, a Zipfian distribution is followed, which can

be configured in terms of skewness, e.g., 𝑠 = 0 corresponds to a

uniform distribution. We further evaluate Rashnu under different

YCSB workloads, as demonstrated in Section 5.7.

We run our experiments on a set of c6220 bare-metal machines

on CloudLab [25], each with two Xeon E5-2650v2 processors (8

cores each, 2.6Ghz), 64GB RAM and two 1TB SATA 3.5” 7.2K rpm

hard drives. These machines are connected by two networks, each

with one interface: (1) a 1 Gbps Ethernet control network; (2) a 10

Gbps Ethernet commodity fabric.We report latency and throughput.

The results reflect end-to-end measurements from the clients.

5.1 Performance with Different Batch Sizes
In the first set of experiments, we measure the impact of transaction

batch size on the performance of different protocols. In this set of

experiments, the number of replicas is assumed to be 5 (4𝑓 + 1
where 𝑓 = 1), the order-fairness parameter 𝛾 = 1, and the account

selection follows a uniform distribution. Figure 3 depicts the res-

ults for all three protocols. The solid and dashed lines are used

for read-heavy and write-heavy workloads, respectively. When

blocks are small (block size = 25), Rashnu provides fairness with

zero overhead, i.e., Rashnu processes 9675 tps while HotStuff pro-

cesses 9700 tps, both with 10 ms latency. This is because the cost

of generating small dependency graphs is insignificant compared

to running consensus among replicas. Increasing the block size,

however, results in a gap between HotStuff and Rashnu due to the

overhead of fair transaction ordering; generating local dependency

graphs, constructing the global dependency graph, and validating

the final order. Nevertheless, with block size = 50, Rashnu incurs

only 15% throughput overhead; while with the same setting, Themis

suffers from 45% throughput overhead. Further increasing the block

size makes the gap between HotStuff and Rashnu larger. This is

expected because Rashnu must construct larger local and global

graphs, requiring checking more and more dependencies. However,

compared to Themis, Rashnu shows 233% higher throughput and

74% lower latency with block size 400. This is because, with a lar-

ger block size, generating the global order becomes more costly in

Themis compared to Rashnu, as Rashnu considers ordering only

among data-dependent transactions. The type of workload has a

negligible impact on the performance of HotStuff and Themis, as

expected. The performance of Rashnu, however, is reduced by 7%

0.01 0.5 0.99

0

2

4

6

8

10

12

Zipfian skewness

T
h
r
o
u
g
h
p
u
t
[
k
t
r
a
n
s
/
s
e
c
]

HotStuff-R HotStuff-W Themis-R Themis-W Rashnu-R Rashnu-W

0.01 0.5 0.99

0

10

20

30

Zipfian skewness

L
a
t
e
n
c
y
[
m
s
]

Figure 4: Impact of workload contention

to 10% in write-heavy workloads with different block sizes, com-

pared to read-heavy ones, as Rashnu needs to capture more data

dependencies between transactions.

The best batch size could be affected by parameters such as the

network size, the geo-distribution, and even the computation power

of nodes. Moreover, the choice might differ over time due to the

dynamic nature of distributed systems, even for the same protocol

and environment. To have a fair comparison, for the remaining set

of experiments, we set the batch size to 100 (a number where all

protocols demonstrate fairly good performance.

5.2 Varying the Degree of Contention
In the next set of experiments, we study the impact of the workload

contention by changing the Zipfian skewness of the smallbank
benchmark from 𝑠 = 0.01 (uniform distribution) to 𝑠 = 0.5 and

𝑠 = 0.99 (contentious workload). In this set of experiments, the

batch size is 100, 𝑛 = 5, and 𝛾 = 1.

As shown in Figure 4, the performance of HotStuff and Themis

is not affected by increasing the workload skewness since they do

not construct dependency graphs. Rashnu, however, shows ∼ 10%

higher latency (in both read-heavy and write-heavy workloads) and

2% and 10% throughput reduction in read-heavy and write-heavy

workloads when we increase the Zipfian skewness from 𝑠 = 0.01 to

𝑠 = 0.99. Overall, Rashnu incurs 22% throughput reduction and 27%

higher latency by going from a uniform read-heavy workload to a

skewed write-heavy workload. This is the overhead of constructing

local and global dependency graphs by replicas and the leader. Note

that, even with 𝑠=0.99 and 𝑃𝑤=0.95, Rashnu demonstrates 34%

higher throughput and 31% lower latency compared to Themis.

5.3 Performance with Different Network Size
In the third set of experiments, we measure the performance of

Rashnu in networks with different sizes, i.e., 5, 21, 41, 61, 81, and 101.

We consider request batches of size 100, 𝛾 = 1, and uniform account

selection. Since the type of workloads (i.e., read-heavy and write-

heavy), does not have a significant impact on the performance

of HotStuff and Themis, we only report the results of the read-

heavy workload (𝑃𝑤 = 0.05) for those two protocols. As depicted

in Figure 5, increasing the number of replicas significantly reduces

the performance of all three protocols. This is expected because

establishing consensus among a large set of replicas is expensive

due to the high communication cost.

Interestingly, with more than 20 replicas, Rashnu demonstrates

almost the same performance as HotStuff; providing order-fairness

2344

20 40 60 80 100

3

6

9

12

Number of replicas

T
h
r
o
u
g
h
p
u
t
[
k
t
r
a
n
s
/
s
e
c
]

HotStuff Themis Rashnu-R Rashnu-W

20 40 60 80 100

100

200

300

400

Number of replicas

L
a
t
e
n
c
y
[
m
s
]

Figure 5: Impact of the network size

1 0.9 0.75 0.6 0.55

0

2

4

6

8

10

12

order-fairness parameter

T
h
r
o
u
g
h
p
u
t
[
k
t
r
a
n
s
/
s
e
c
]

Themis Rashnu-R Rashnu-W

1 0.9 0.75 0.6 0.55

0

50

100

150

order-fairness parameter

L
a
t
e
n
c
y
[
m
s
]

Figure 6: Impact of the order-fairness parameter

for free (the same happens for Themis with 𝑛 > 55). This is because

the cost of consensus in HotStuff becomes much higher than the

overhead of fair ordering by Rashnu and Themis in a large network.

This also shows that the low performance of Rashnu and even

Themis in large networks is caused by the HotStuff consensus

routine and if Rashnu is bootstrapped from a high-performance

protocol, it produces better results.

5.4 Varying the Order-fairness Parameter
We next run Themis and Rashnu under different values of the order-

fairness parameter 𝛾 . Since the network size is a function of the

order-fairness parameter (i.e., 𝑛 =
4𝑓

2𝛾−1 + 1), reducing 𝛾 requires a

larger 𝑛. Specifically, with 𝑓 = 1, we evaluate protocols with 𝛾 = 1

(𝑛 = 5), 𝛾 = 0.9 (𝑛 = 6), 𝛾 = 0.75 (𝑛 = 9), 𝛾 = 0.6 (𝑛 = 21), and

𝛾 = 0.55 (𝑛 = 41). In all experiments, the batch size is 100, and the

account selection is uniform. The results for Rashnu-R, Rashnu-W,

and Themis are shown in Figure 6.

Similar to Figure 5, increasing the number of replicas (resulting

from reducing 𝛾) decreases the overall performance. Since the cost

of communication dominates the fair ordering overhead, the gap

between Rashnu and Themis becomes smaller by increasing𝛾 ; while

Rashnu-R demonstrates 75% higher throughput than Themis with

𝛾 = 1 (𝑛 = 5), it shows only 19% higher throughput with 𝛾 = 0.55

(𝑛 = 41).

5.5 Performance with compute intensive
workloads

One main advantage of Rashnu is its ability to execute transactions

in parallel (following the dependency graph generated in the or-

dering phase). To demonstrate this benefit, we consider a compute-

intensive (busy-wait) workload where executing each transaction

0.01 0.5 0.99

0

2,000

4,000

6,000

8,000

Zipfian skewness

T
h
r
o
u
g
h
p
u
t
[
k
t
r
a
n
s
/
s
e
c
]

HotStuff-R HotStuff-W Themis-R Themis-W Rashnu-R Rashnu-W

0.01 0.5 0.99

0

10

20

30

40

Zipfian skewness

L
a
t
e
n
c
y
[
m
s
]

Figure 7: Performance with compute-intensive workloads

50100 200 400 800

1,000

2,000

3,000

Batch size

T
h
r
o
u
g
h
p
u
t
[
t
r
a
n
s
/
s
e
c
]

HotStuff-R HotStuff-W Themis-R Themis-W Rashnu-R Rashnu-W

50100 200 400 800

2,000

4,000

6,000

Batch size

L
a
t
e
n
c
y
[
m
s
]

Figure 8: Impact of batch size in a distributed setting

takes around 10𝜇𝑠 . We repeat experiments of Section 5.2 and change

the Zipfian skewness from 0.01 to 0.5 and 0.99. As shown in Figure 7,

Rashnu, by executing data-independent transactions in parallel

(with eight threads), demonstrates better performance compared to

even HotStuff, providing order-fairness for free, i.e., with 𝑠 = 0.01,

Rashnu shows 3% higher throughput compared to HotStuff. This

demonstrates that the throughput gain of parallel execution out-

numbers the overhead caused by dependency graph generation.

5.6 Performance in a Geo-distributed Setting
In this set of experiments, we measure the performance of protocols

in an emulated geo-distributed setup. We repeat the first set of

experiments (Section 5.1) with an extra 50 ms latency (injected by

Linux netem) for sending messages between any pair of replicas.

The results are shown in Figure 8.

As expected, the throughput of all three protocols decreases

once network latency is added. Interestingly, Rashnu and Themis

reach their peak performance on larger block sizes, compared to

the local setting (Figure 3). Specifically, while Rashnu demonstrated

its best throughput with block size 50 in the local setting, it shows

its highest throughput with a block size of 400 in the distributed

setting. Similarly, Themis shows its best throughput on the block

size of 200.

This demonstrates a trade-off between communication latency

and fair ordering. With large latency, the cost of communication be-

comes higher than the overhead of fair ordering, hence, large block

sizes are beneficial. While with low communication latency, the

overhead of fair ordering is much higher, thus smaller blocks give

better performance. While with a block size of 400, Rashnu incurs

45% throughput reduction compared to HotStuff, its throughput

is still 2.5 times the throughput of Themis. In this setting, Rashnu

processes transactions with 61% lower latency, compared to Themis.

2345

A1 A2 B C F

0

2

4

6

8

10

YCSB Workloads

T
h
r
o
u
g
h
p
u
t
[
k
t
r
a
n
s
/
s
e
c
]

HotStuff Themis Rashnu

A1 A2 B C F

0

10

20

30

40

YCSB Workloads

L
a
t
e
n
c
y
[
m
s
]

Figure 9: Performance under YCSB workload

5.7 Performance with YCSB Workloads
In the last set of experiments, we study the performance of different

protocols under YCSB workloads. We have chosen 5 different (most

relevant) workloads from the YCSB benchmark: A: update heavy

workload (A1: R/W = 5/95 and A2: R/W = 50/50), B: read-mostly

workload (R/W = 95/5), C: read-only workload (R/W = 100/0), and F:

read-modify-write workload. In this set of experiments, the batch

size is 100, 𝑛 = 5, 𝛾 = 1, and Zipfian skewness is 𝑠 = 0.01 (uniform

distribution).

As shown in Figure 9, Rashnu shows between 14% to 26% lower

throughput compared to Hotstuff, while its throughput is still 46%

to 61% higher than Themis under different workloads. As expected,

Rashnu demonstrates its best performance under the read-only

workload (C). Overall, the results are consistent with the results of

the SmallBank benchmark.

6 RELATEDWORK
Order-fairness has been recently studied by a few protocols, e.g.,

Wendy [43, 44], Pompe [62], Aequitas [38], Themis [37] and Quick

order fairness [14]. Both Wendy and Pompe rely on synchron-

ized clocks between replicas, making these protocols impractical

in asynchronous networks. In Wendy, all replicas have access to

synchronized local clocks and if all honest replicas receive transac-

tion 𝑡 before 𝑡 ′, then 𝑡 is delivered before 𝑡 ′. Pompe, on the other

hand, uses a pre-ordering phase and determines the fair order using

timestamps assigned by replicas in the pre-ordering phase. Spe-

cifically, Pompe orders transaction using their median timestamp.

The median timestamp, however, can easily be manipulated by a

malicious node that assigns a big timestamp. Moreover, Pompe is

vulnerable to censorship [37]. Furthermore, both notions of timed

order fairness, used in Wendy, and ordering linearizability, used in

Pompe, are strictly weaker than order-fairness studied in Aequitas

[38] and Themis [37], as stated in [36]. Aequitas [38] presents the

notion of batch-order fairness where all transactions involved in a

cycle are delivered to replicas in the same batch. While Aequitas

circumvents the Condorcet paradox, it suffers from a liveness issue

when Condorcet cycles chain together and extend for an arbitrarily

long time. A subsequent study extends the Aequitas approach to

permissionless settings [36]. Quick-order-fairness [14] leverages

batch-order fairness and also introduces the notion of differential

order fairness, inspired by the differential validity notion of con-

sensus. Differential order fairness states that when the number of

honest replicas that send transaction 𝑡 before transaction 𝑡 ′ is at
least 2𝑓 + 𝑘 more than the number of replicas that send 𝑡 ′ before 𝑡

for some order-fairness parameter 𝑘 ≥ 0, the protocol must not de-

liver 𝑡 ′ before 𝑡 . However, similar to Aequitas, Quick-order-fairness

suffers from liveness issues. Moreover, Aequitas and Quick-order-

fairness have not been validated by any system implementation.

Themis [37], extends Aequitas by addressing its weak liveness issue.

Themis introduces the notion of deferred ordering where the actual

order of transactions might be deferred to a later proposal, enabling

the leader to propose a block without waiting. However, Themis

suffers from significant performance overhead, as shown in Sec-

tion 5, resulting from its complex fair ordering routine. Compared

to these protocols, Rashnu addressed both Condorcet cycles and

weak liveness and demonstrates high performance.

The fair ordering of transactions has been partially addressed

in a few BFT protocols. In Aardvark [18], the leader is monitored

to ensure that it does not initiate two new requests from the same

client before initiating an old request of another client. Similarly,

in PBFT [16], replicas keep the requests in a FIFO queue and only

stop the view-change timer when the first request in their queue is

executed. Prime [4] introduces a pre-ordering phase where replicas

order the received requests locally and share their ordering with

each other. In Hashgraph [6], all replicas construct a hashgraph to

capture all send and receive events. These protocols, however, do

not address challenges like Condorcet cycles.

Fairness has also been used in the domain of consensus with

different definition. In permissionless blockchains, e.g., Proof-of-

Work, fairness is used to ensure that the mining rewards obtained

by different miners are proportional to their relative computational

power [2, 47, 49, 51, 54]. Similarly, fairness has been defined as

providing opportunities for every replica to propose and commit

its requests using fair leader election or fair committee election

[2, 5, 31, 39, 47, 55, 60]. However, a malicious leader can still order

transactions unfairly in its turn.

7 CONCLUSION
This paper defines the notion of data-dependent order-fairness. We

presented a high-performance fair-ordering protocol, Rashnu, that

leverages graph-based techniques to achieve order-fairness among

data-dependent transactions. Rashnu further utilizes batch ordering

and deferred ordering techniques to deal with Condorcet cycles and

liveness issues. We implemented a prototype of Rashnu on top of

HotStuff and open-sourced its code. Our evaluation demonstrates

the efficiency of Rashnu in different scenarios. First, with small

batch sizes or in large networks, the overhead of order-fairness in

Rashnu is negligible, i.e., Rashnu performs similarly to its under-

lying consensus protocol HotStuff. Second, Rashnu shows signi-

ficant performance improvement compared to Themis in different

settings, especially in small networks, 27% to 233% throughput im-

provement on 5 replicas and with varying batch sizes. Finally, in

compute-intensive workloads, Rashnu even outperforms HotStuff

(by executing transactions in parallel).

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their insightful feedback

and suggestions. This work is funded by NSF grants CNS-2104882

and CNS-2107147.

2346

REFERENCES
[1] 2018. libhotstuff: A general-purpose BFT state machine replication library with

modularity and simplicity. https://github.com/hot-stuff/libhotstuff.

[2] Ittai Abraham, Dahlia Malkhi, Kartik Nayak, Ling Ren, and Alexander Spiegel-

man. 2017. Solida: A Blockchain Protocol Based on Reconfigurable Byzantine

Consensus. In Int. Conf. on Principles of Distributed Systems (OPODIS). Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik.

[3] Alfred V. Aho, Michael R Garey, and Jeffrey D. Ullman. 1972. The transitive

reduction of a directed graph. SIAM J. Comput. 1, 2 (1972), 131–137.
[4] Yair Amir, Brian Coan, Jonathan Kirsch, and John Lane. 2011. Prime: Byzantine

replication under attack. Transactions on Dependable and Secure Computing 8, 4

(2011), 564–577.

[5] Avi Asayag, Gad Cohen, Ido Grayevsky, Maya Leshkowitz, Ori Rottenstreich,

Ronen Tamari, and David Yakira. 2018. A fair consensus protocol for transaction

ordering. In Int. Conf. on Network Protocols (ICNP). IEEE, 55–65.
[6] Leemon Baird. 2016. The swirlds hashgraph consensus algorithm: Fair, fast,

byzantine fault tolerance. Swirlds Tech Reports SWIRLDS-TR-2016-01, Tech. Rep
(2016).

[7] Jason Baker, Chris Bond, James C Corbett, JJ Furman, Andrey Khorlin, James

Larson, Jean-Michel Leon, Yawei Li, Alexander Lloyd, and Vadim Yushprakh.

2011. Megastore: Providing scalable, highly available storage for interactive

services. In Conf. on Innovative Data Systems Research (CIDR).
[8] Carsten Baum, James Hsin-yu Chiang, Bernardo David, Tore Kasper Frederiksen,

and Lorenzo Gentile. 2021. Sok: Mitigation of front-running in decentralized

finance. Cryptology ePrint Archive (2021).
[9] Kenneth P Birman, Thomas A Joseph, Thomas Raeuchle, and Amr El Abbadi. 1985.

Implementing fault-tolerant distributed objects. Trans. on Software Engineering
6 (1985), 502–508.

[10] Gabriel Bracha. 1984. An asynchronous [(n-1)/3]-resilient consensus protocol.

In Symposium on Principles of Distributed Computing (PODC). ACM, 154–162.

[11] Gabriel Bracha and Sam Toueg. 1985. Asynchronous consensus and broadcast

protocols. Journal of the ACM (JACM) 32, 4 (1985), 824–840.
[12] Nathan Bronson, Zach Amsden, George Cabrera, Prasad Chakka, Peter Dimov,

Hui Ding, Jack Ferris, Anthony Giardullo, Sachin Kulkarni, and Harry Li. 2013.

TAO: Facebook’s Distributed Data Store for the Social Graph. In Annual Technical
Conf. (ATC). USENIX Association, 49–60.

[13] Christian Cachin, Klaus Kursawe, Frank Petzold, and Victor Shoup. 2001. Secure

and efficient asynchronous broadcast protocols. In Annual Int. Cryptology Conf.
Springer, 524–541.

[14] Christian Cachin, Jovana Mićić, and Nathalie Steinhauer. 2022. Quick Order

Fairness. In Int. Conf. on Financial Cryptography and Data Security (FC). Springer,
1–18.

[15] Miguel Castro and Barbara Liskov. 1999. Practical Byzantine fault tolerance. In

Symposium on Operating Systems Design and Implementation (OSDI). USENIX
Association, 173–186.

[16] Miguel Castro and Barbara Liskov. 2002. Practical Byzantine fault tolerance

and proactive recovery. Transactions on Computer Systems (TOCS) 20, 4 (2002),
398–461.

[17] Chainlink. 2023. What Is Maximal Extractable Value (MEV)?

https://chain.link/education-hub/maximal-extractable-value-mev.

[18] Allen Clement, Edmund L Wong, Lorenzo Alvisi, Michael Dahlin, and Mirco

Marchetti. 2009. Making Byzantine Fault Tolerant Systems Tolerate Byzantine

Faults.. In Symposium on Networked Systems Design and Implementation (NSDI),
Vol. 9. USENIX Association, 153–168.

[19] James C Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher Frost,

Jeffrey John Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser,

and Peter Hochschild. 2013. Spanner: Google’s globally distributed database.

Transactions on Computer Systems (TOCS) 31, 3 (2013), 8.
[20] Miguel Correia, Nuno Ferreira Neves, and Paulo Veríssimo. 2006. From consensus

to atomic broadcast: Time-free Byzantine-resistant protocols without signatures.

Comput. J. 49, 1 (2006), 82–96.
[21] Tyler Crain, Christopher Natoli, and Vincent Gramoli. 2021. Red Belly: a secure,

fair and scalable open blockchain. In Symposium on Security and Privacy (SP).
IEEE.

[22] Philip Daian, Steven Goldfeder, Tyler Kell, Yunqi Li, Xueyuan Zhao, Iddo Bentov,

Lorenz Breidenbach, and Ari Juels. 2020. Flash boys 2.0: Frontrunning in de-

centralized exchanges, miner extractable value, and consensus instability. In

Symposium on Security and Privacy (SP). IEEE, 910–927.
[23] George Danezis, Lefteris Kokoris-Kogias, Alberto Sonnino, and Alexander

Spiegelman. 2022. Narwhal and Tusk: a DAG-based mempool and efficient

BFT consensus. In European Conf. on Computer Systems (EuroSys). 34–50.
[24] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,

Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall,

and Werner Vogels. 2007. Dynamo: Amazon’s highly available key-value store.

Operating Systems Review (OSR) 41, 6 (2007), 205–220.
[25] Dmitry Duplyakin, Robert Ricci, Aleksander Maricq, Gary Wong, Jonathon

Duerig, Eric Eide, Leigh Stoller, Mike Hibler, David Johnson, Kirk Webb, et al.

2019. The Design and Operation of {CloudLab}. In Annual Technical Conf. (ATC).

USENIX Association, 1–14.

[26] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. 1988. Consensus in the

presence of partial synchrony. Journal of the ACM (JACM) 35, 2 (1988), 288–323.
[27] Shayan Eskandari, Seyedehmahsa Moosavi, and Jeremy Clark. 2019. Sok: Trans-

parent dishonesty: front-running attacks on blockchain. In Int. Conf. on Financial
Cryptography and Data Security (FC). Springer, 170–189.

[28] Jose M Faleiro, Daniel J Abadi, and Joseph MHellerstein. 2017. High performance

transactions via early write visibility. Proc. of the VLDB Endowment 10, 5 (2017),
613–624.

[29] Michael J Fischer, Nancy A Lynch, and Michael S Paterson. 1985. Impossibility

of distributed consensus with one faulty process. Journal of the ACM (JACM) 32,
2 (1985), 374–382.

[30] Matthias Fitzi and Juan A Garay. 2003. Efficient player-optimal protocols for

strong and differential consensus. In Symposium on Principles of Distributed
Computing (PODC). 211–220.

[31] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zel-

dovich. 2017. Algorand: Scaling byzantine agreements for cryptocurrencies. In

Symposium on Operating Systems Principles (SOSP). ACM, 51–68.

[32] Vincent Gramoli, Rachid Guerraoui, Andrei Lebedev, Chris Natoli, and Gauthier

Voron. 2023. Diablo: A Benchmark Suite for Blockchains. In European Conf. on
Computer Systems (EuroSys). ACM.

[33] Lioba Heimbach and Roger Wattenhofer. 2022. SoK: Preventing Transaction

Reordering Manipulations in Decentralized Finance. In Conf. on Advances in
Financial Technologies (AFT). ACM, 1–14.

[34] Robert Kallman, Hideaki Kimura, Jonathan Natkins, Andrew Pavlo, Alexander

Rasin, Stanley Zdonik, Evan PC Jones, Samuel Madden, Michael Stonebraker,

and Yang Zhang. 2008. H-store: a high-performance, distributed main memory

transaction processing system. Proc. of the VLDB Endowment 1, 2 (2008), 1496–
1499.

[35] Idit Keidar, Eleftherios Kokoris-Kogias, Oded Naor, and Alexander Spiegelman.

2021. All you need is dag. In Symposium on Principles of Distributed Computing
(PODC). ACM, 165–175.

[36] Mahimna Kelkar, Soubhik Deb, and Sreeram Kannan. 2022. Order-fair consensus

in the permissionless setting. In ASIA Public-Key Cryptography Workshop. ACM,

3–14.

[37] Mahimna Kelkar, Soubhik Deb, Sishan Long, Ari Juels, and Sreeram Kannan.

2023. Themis: Fast, strong order-fairness in byzantine consensus. In SIGSAC
Conf. on Computer and Communications Security (CCS). ACM, 475–489.

[38] MahimnaKelkar, Fan Zhang, StevenGoldfeder, andAri Juels. 2020. Order-fairness

for byzantine consensus. In Annual Int. Cryptology Conf. Springer, 451–480.
[39] Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov. 2017.

Ouroboros: A provably secure proof-of-stake blockchain protocol. In Annual Int.
Cryptology Conf. Springer, 357–388.

[40] Ariah Klages-Mundt and Andreea Minca. 2019. (In) stability for the blockchain:

Deleveraging spirals and stablecoin attacks. arXiv preprint arXiv:1906.02152
(2019).

[41] Eleftherios Kokoris Kogias, Philipp Jovanovic, Nicolas Gailly, Ismail Khoffi, Linus

Gasser, and Bryan Ford. 2016. Enhancing bitcoin security and performance

with strong consistency via collective signing. In Security Symposium. USENIX

Association, 279–296.

[42] Eleftherios Kokoris-Kogias, Philipp Jovanovic, Linus Gasser, Nicolas Gailly, Ewa

Syta, and Bryan Ford. 2018. Omniledger: A secure, scale-out, decentralized ledger

via sharding. In Symposium on Security and Privacy (SP). IEEE, 583–598.
[43] Klaus Kursawe. 2020. Wendy, the good little fairness widget: Achieving order

fairness for blockchains. In Conf. on Advances in Financial Technologies (AFT).
ACM, 25–36.

[44] Klaus Kursawe. 2021. Wendy Grows Up: More Order Fairness. In Int. Conf. on
Financial Cryptography and Data Security (FC). Springer, 191–196.

[45] Leslie Lamport. 1978. Time, clocks, and the ordering of events in a distributed

system. Commun. ACM 21, 7 (1978), 558–565.

[46] Leslie Lamport, Robert Shostak, andMarshall Pease. 1982. The Byzantine generals

problem. Transactions on Programming Languages and Systems (TOPLAS) 4, 3
(1982), 382–401.

[47] Kfir Lev-Ari, Alexander Spiegelman, Idit Keidar, and Dahlia Malkhi. 2019.

FairLedger: A Fair Blockchain Protocol for Financial Institutions. In Int. Conf. on
Principles of Distributed Systems (OPODIS). Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik.

[48] Loi Luu, Viswesh Narayanan, Chaodong Zheng, Kunal Baweja, Seth Gilbert,

and Prateek Saxena. 2016. A secure sharding protocol for open blockchains. In

SIGSAC Conf. on Computer and Communications Security (CCS). ACM, 17–30.

[49] Loi Luu, Yaron Velner, Jason Teutsch, and Prateek Saxena. 2017. SmartPool:

Practical Decentralized Pooled Mining. In USENIX Security Symposium. USENIX,

1409–1426.

[50] Dahlia Malkhi and Pawel Szalachowski. 2022. Maximal Extractable Value (MEV)

Protection on a DAG. arXiv preprint arXiv:2208.00940 (2022).
[51] Andrew Miller, Ahmed Kosba, Jonathan Katz, and Elaine Shi. 2015. Nonout-

sourceable scratch-off puzzles to discourage bitcoin mining coalitions. In ACM
SIGSAC Conf. on Computer and Communications Security (CCS). ACM SIGSAC,

2347

680–691.

[52] AndrewMiller, Yu Xia, Kyle Croman, Elaine Shi, and Dawn Song. 2016. The honey

badger of BFT protocols. In Conf. on Computer and Communications Security
(CCS). ACM, 31–42.

[53] Louise E Moser, Peter M Melliar-Smith, Priya Narasimhan, Lauren A Tewksbury,

and Vana Kalogeraki. 1999. The Eternal system: An architecture for enterprise

applications. In Int. Enterprise Distributed Object Computing Conf. (EDOC). IEEE,
214–222.

[54] Rafael Pass and Elaine Shi. 2017. Fruitchains: A fair blockchain. In symposium
on Principles Of Distributed Computing (PODC). ACM, 315–324.

[55] Rafael Pass and Elaine Shi. 2017. Hybrid Consensus: Efficient Consensus in the

Permissionless Model. In Int.Symposium on Distributed Computing (DISC). 6.
[56] Kaihua Qin, Liyi Zhou, and Arthur Gervais. 2022. Quantifying blockchain

extractable value: How dark is the forest?. In Symposium on Security and Privacy
(SP). IEEE, 198–214.

[57] Fred B Schneider. 1990. Implementing fault-tolerant services using the state

machine approach: A tutorial. Computing Surveys (CSUR) 22, 4 (1990), 299–319.
[58] Alexander Spiegelman, Neil Giridharan, Alberto Sonnino, and Lefteris Kokoris-

Kogias. 2022. Bullshark: Dag bft protocols made practical. In ACM SIGSAC Conf.

on Computer and Communications Security (CCS). 2705–2718.
[59] Chrysoula Stathakopoulou, Signe Rüsch, Marcus Brandenburger, and Marko

Vukolić. 2021. Adding Fairness to Order: Preventing Front-Running Attacks in

BFT Protocols using TEEs. In Int. Symp on Reliable Distributed Systems (SRDS).
IEEE, 34–45.

[60] David Yakira, Avi Asayag, Gad Cohen, Ido Grayevsky, Maya Leshkowitz, Ori

Rottenstreich, and Ronen Tamari. 2021. Helix: A Fair Blockchain Consensus

Protocol Resistant to Ordering Manipulation. IEEE Transactions on Network and
Service Management 18, 2 (2021), 1584–1597.

[61] Maofan Yin, Dahlia Malkhi, Michael K Reiter, Guy Golan Gueta, and Ittai Ab-

raham. 2019. HotStuff: BFT consensus with linearity and responsiveness. In

Symposium on Principles of Distributed Computing (PODC). ACM, 347–356.

[62] Yunhao Zhang, Srinath Setty, Qi Chen, Lidong Zhou, and Lorenzo Alvisi. 2020.

Byzantine ordered consensus without Byzantine oligarchy. In Symposium on
Operating Systems Design and Implementation (OSDI). USENIX Association, 633–

649.

[63] Liyi Zhou, Kaihua Qin, Christof Ferreira Torres, Duc V Le, and Arthur Ger-

vais. 2021. High-frequency trading on decentralized on-chain exchanges. In

Symposium on Security and Privacy (SP). IEEE, 428–445.

2348

	Abstract
	1 Introduction
	2 Background
	3 Rashnu Model
	4 Fair Transaction Ordering
	4.1 Local Ordering
	4.2 Global Ordering
	4.3 Order Finalization
	4.4 Correctness Argument

	5 Experimental Evaluation
	5.1 Performance with Different Batch Sizes
	5.2 Varying the Degree of Contention
	5.3 Performance with Different Network Size
	5.4 Varying the Order-fairness Parameter
	5.5 Performance with compute intensive workloads
	5.6 Performance in a Geo-distributed Setting
	5.7 Performance with YCSB Workloads

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

