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ABSTRACT
Data accuracy is a central dimension of data quality, especiallywhen

dealing with Knowledge Graphs (KGs). Auditing the accuracy of

KGs is essential to make informed decisions in entity-oriented ser-

vices or applications. However, manually evaluating the accuracy of

large-scale KGs is prohibitively expensive, and research is focused

on developing efficient sampling techniques for estimating KG ac-

curacy. This work addresses the limitations of current KG accuracy

estimation methods, which rely on the Wald method to build confi-

dence intervals, addressing reliability issues such as zero-width and

overshooting intervals. Our solution, rooted in the Wilson method

and tailored for complex sampling designs, overcomes these limita-

tions and ensures applicability across various evaluation scenarios.

We show that the presented methods increase the reliability of

accuracy estimates by up to two times when compared to the state-

of-the-art while preserving or enhancing efficiency. Additionally,

this consistency holds regardless of the KG size or topology.
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1 INTRODUCTION
In recent years, there has been a notable upsurge in the develop-

ment of extensive Knowledge Graphs (KGs) encompassing millions

of relational facts, primarily represented as triples in the form of

subject-predicate-object (𝑠, 𝑝, 𝑜) relationships. Prominent examples

of such KGs are Wikidata [37], DBpedia [2], YAGO [16], NELL [27],

and DisGeNET [33]. However, current processes for constructing

KGs are not flawless, resulting in a high degree of sparsity within

the graph and the incorporation of numerous inaccuracies and

wrong facts [10, 31]. As a result, evaluating the KG accuracy holds

pivotal importance, as it serves multiple essential purposes, such

as triggering the refinement of the construction process, gaining

insights into the quality of the data, and providing valuable infor-

mation for downstream applications.

KG accuracy evaluation has broad implications for databases [18,

19, 28], but also for search, recommender, and question answering

systems [34, 35]. As also highlighted by industrial applications like
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Saga [19], the information in the KG needs to be correct to ensure

an engaging user experience for entity-oriented services – making

the on-demand evaluation of the KG accuracy a critical feature for

any knowledge platform.

Evaluating KG accuracy requires annotating facts with correct-

ness labels. However, obtaining high-quality labels to perform KG

evaluation is costly, involving manual annotation by experts or

crowdsourcing workers [13, 30]. Besides, annotating every fact in

a large-scale KG is infeasible [32]. Recently, some studies have con-

sidered these challenges [13, 30, 32], framing the evaluation of KG

accuracy as a constrained minimization problem [13, 32]. To tackle

it, they employ iterative procedures that encompass sampling strate-

gies to facilitate efficient data collection, estimators for ascertaining

accuracy, and Confidence Intervals (CIs) to evaluate the robustness

of these estimations. These procedures rely on the Wald method for

constructing CIs [5], a widely recognized and used technique based

on normal approximation [4]. However, the assessment of KG accu-

racy requires the estimation of binomial proportions, which denotes

the ratio between the number of correct facts (successes) and the

total number of facts. In this context, Wald intervals are limited

by zero-width and overshooting intervals, affecting the reliability

of the estimations [38] (see Figure 2). These issues are particularly

pronounced when the proportion approaches the boundaries [4],

that is, values close to zero or one, which are fairly common in

real-world scenarios [10, 31].

Thus, when designing approaches for KG evaluation, we need

efficient methods that ensure low annotation costs while providing

reliable CIs that account for the binomial properties of KG accuracy.

In this regard, our contributions are as follows. First, we high-
light the problems of current state-of-the-art solutions for KG ac-

curacy estimation based on the Wald interval by validating its

limitations on real-life and synthetic KGs.

Secondly, we introduce and evaluate a family of binomial CIs

that overcome Wald limitations, providing reliable CIs for KG accu-

racy estimation. We conduct theoretical and empirical comparisons

between CIs, identifying the Wilson interval [42] as the method

providing the best trade-off between efficiency and reliability.

Building on this result, we provide solutions to adjust Wilson

and the other binomial intervals to complex but widely used sam-

pling designs, such as clustering and stratification. Experiments on

various KGs with different accuracy and topology underscore the

importance of these adjustments to avoid incurring unstable CIs.

To further validate the robustness of the solutions based on

Wilson intervals, we compare them to the state-of-the-art solu-

tions by Gao et al. [13], which adopt Two-stage Weighted Cluster

Sampling (TWCS) alongside Wald intervals. The results show that

Wilson is up to two times more reliable when Wald falls short and

more efficient when both intervals are reliable, confirming that

Wilson should be used instead of Wald for KG accuracy evaluation.
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Finally, to assess the scalability of the proposed solutions, we

experiment on a synthetic KG comprising more than 100 million

triples. The findings indicate that performance is independent of

KG size and topology, maintaining high reliability at low costs.

Outline. Section 2 introduces the problem and evaluation frame-

work. Section 3 outlines state-of-the-art sampling designs and esti-

mators. Section 4 outlines Wald, the binomial intervals, and the the-

oretical advantages of Wilson. Section 5 shows how to adjust these

intervals to complex sampling designs. Sections 6 and 7 present

experimental setup and results. Section 8 reviews related work.

Section 9 concludes the paper.

2 PROBLEM AND FRAMEWORK
In this section, we first present the essential background and the

required notation. Then, we introduce the problem and its formula-

tion. Finally, we outline the evaluation framework.

2.1 Preliminaries
A KG is a directed, edge-labeled multi-graph [3], usually defined

as 𝐺 = (𝑉 , 𝑅, 𝜂), where 𝑉 = {𝐸 ∪ 𝐴 ∪ 𝐵} is the set of nodes in 𝐺 ,

where 𝐸 are entities, 𝐴 attributes, and 𝐵 blank nodes; 𝑅 is the set of

relationships between nodes in𝐺 ; and 𝜂 : 𝑅 → (𝐸∪𝐵) × (𝐸∪𝐴∪𝐵)
is a function assigning an ordered pair of nodes to each relationship.

The 𝜂 function produces the ternary relation 𝑇 of 𝐺 [3]. This work

considers ground RDF graphs (i.e., without blank nodes), hence

𝜂 : 𝑅 → 𝐸 × (𝐸 ∪ 𝐴). Thus, the ternary relation 𝑇 is the set of

(𝑠, 𝑝, 𝑜) triples such that 𝑠 ∈ 𝐸, 𝑝 ∈ 𝑅, and 𝑜 ∈ 𝐸 ∪𝐴, where𝑀 = |𝑇 |
is its size. Triples whose object is an entity are called triples with

entity property, whereas those with attribute objects are known

as triples with data property. A triple is also a fact; the two terms

are used interchangeably. This work considers triples as first-class

citizens next to nodes and relationships. Therefore, we define a KG

as𝐺 = (𝑉 , 𝑅,𝑇 , 𝜂), and an entity cluster𝐺 [𝑒] = {(𝑠, 𝑝, 𝑜) ∈ 𝑇 | 𝑠 = 𝑒}
as a set of triples in 𝑇 ∈ 𝐺 sharing the same subject 𝑒 ∈ 𝑉 .

2.2 Problem Formulation
Let us denote the correctness of a triple 𝑡 ∈ 𝑇 by an indicator

function 1𝑇 (𝑡) → {0, 1}, where 1 indicates correctness and 0 in-

correctness. Then, the KG accuracy can be defined as the mean

accuracy of its triples:

𝜇 (𝐺 ) =
∑︁

𝑡 ∈𝑇 1𝑇 (𝑡 )
𝑀

(1)

where the value of 1𝑇 (𝑡) is computed by manual annotation. Note

that we consider correctness a binary problem as in triple valida-

tion [11], given that an atomic fact is either correct or incorrect.

Given that manually evaluating every triple of a large-scale KG to

assess its accuracy is infeasible, the common practice is to estimate

𝜇 (𝐺) with an estimator �̂� calculated over a relatively small sample

drawn according to a sampling strategyS designed to select𝑇S ⊂ 𝑇
triples to annotate. The result is a sample 𝐺S = (𝑉S, 𝑅S,𝑇S, 𝜂),
where 𝑉𝑆 ⊂ 𝑉 and 𝑅𝑆 ⊂ 𝑅. To evaluate the accuracy of 𝐺 , the

estimator �̂� must be unbiased; that is, 𝐸 [�̂�] = 𝜇 (𝐺). Moreover, �̂� is

a point estimator; hence, a 1 − 𝛼 CI at a given significance level 𝛼

has to be provided to quantify the uncertainties in the sampling

procedure. The larger the size of the sample 𝐺S , the smaller the

width of the CI, until obtaining a CI of zero width when the sample

Figure 1: Efficient KG Accuracy Evaluation Framework.

𝐺S is equivalent to 𝐺 itself. A relevant measure associated with

CIs is the Margin of Error (MoE), which is the half-width of a CI.

Now, let𝐺S = S(𝐺) be a sample drawn using a sampling design

S, and �̂� be an estimator of 𝜇 (𝐺) based on 𝐺S . Let cost(𝐺S) be a
function denoting the cost of manually evaluating the correctness

of the elements in 𝐺S . Following Gao et al. [13], we can define KG

accuracy evaluation as a constrained minimization problem.

Problem Formulation. Given a KG 𝐺 and an upper bound 𝜀 for

the MoE of a 1 − 𝛼 CI:

minimize

S
𝐸 [cost(S (𝐺 ) ]

subject to 𝐸 [ �̂� ] = 𝜇 (𝐺 ),MoE(�̂�, 𝛼 ) ≤ 𝜀

To be optimized, the problem requires a sampling strategyS that

minimizes the cost associated with manually evaluating elements in

the sample. At the same time, the problem imposes a constraint on

the MoE, which must be kept below an upper bound 𝜀. The problem

remains unsolved until the CI is sufficiently short. Hence, the CI

is crucial in optimizing the problem, working in tandem with the

sampling strategy. CIs with faster convergence enable the problem

to be satisfied with smaller samples, thereby reducing the number

of required annotations. However, it is crucial for CIs also to be

reliable, ensuring they encompass the true KG accuracy 1−𝛼 times,

or approximately so [1]. This entails a trade-off between desired

efficiency and required reliability in CI selection.

Despite its significance, the impact of CIs has been overlooked

in prior research, which predominantly focused on choosing an

optimal sampling strategy [13, 32]. This research addresses this

crucial gap.

2.3 Evaluation Framework
The minimization problem is optimized via an evaluation frame-

work that works as an iterative procedure, whose four phases are

depicted in Figure 1.

In 1 , a small batch of samples is collected from the KG under

a given sampling strategy S. The sampling strategy should be

chosen to minimize the cost function, which is the optimization

objective (see Section 3). In 2 , (manual) annotations are acquired

for the new samples and stored together with previous ones. In

3 , given the accumulated annotations and the sampling design,

an estimator computes an unbiased estimate �̂� of the KG accuracy.

The estimate is then used to build the corresponding 1 − 𝛼 CI,

providing fast convergence and high reliability (see Section 4). In

4 , a quality control stage monitors if the generated CI satisfies the

given upper bound, meaning if MoE(�̂�, 𝛼) ≤ 𝜀. If the criterion is met,

the process is halted, and the accuracy estimate and corresponding

CI are reported. Otherwise, the process loops back to 1 .

This framework samples and estimates iteratively and stops as

soon as the CI satisfies the specified threshold 𝜀. This way, the
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Table 1: Notation.

𝑁 Number of entities in𝐺

𝑀𝑖 Size of the 𝑖th entity cluster

𝑀 =
∑︁𝑁

𝑖=1
𝑀𝑖 Total number of triples in𝐺

𝑛 Number of entity clusters in the sample

𝑚 Number of triples drawn in each cluster

𝜏𝑖 Number of correct triples in the 𝑖th cluster

𝜇𝑖 = 𝜏𝑖/𝑀𝑖 Accuracy of the 𝑖th cluster

approach prevents oversampling and unnecessary manual annota-

tions, providing accurate estimations while minimizing costs.

3 SAMPLING DESIGN: STATE OF THE ART
The strategies that have been proposed to perform efficient KG

accuracy evaluation [13, 32] adopt established sampling techniques

and estimators [7]. We present them along with their unbiased

estimators. Table 1 reports frequently used notation.

3.1 Simple Random Sampling
Simple Random Sampling (SRS) draws a sample of 𝑛𝑇 triples from

𝐺 without replacement. If the KG is large, then the probability of

choosing one triple twice is low, and we can use sampling with

replacement instead [5]. Under SRS, the unbiased estimator of 𝜇 (𝐺)
is the sample proportion

�̂�𝑠 =
1

𝑛𝑇

𝑛𝑇∑︂
𝑖=1

1𝑇 (𝑡𝑖 ) (2)

and the corresponding estimation variance is 𝑉 (�̂�𝑠 ) =
�̂�𝑠 (1−�̂�𝑠 )

𝑛𝑇
.

3.2 Cluster Sampling
Cluster sampling offers an efficient alternative for data sampling

when dealing with large KGs [13, 32]. We first introduce Weighted

Cluster Sampling (WCS) and then present TWCS and its estimator.

WCS draws 𝑛 entity clusters with probabilities 𝜋𝑖 proportional

to their sizes. Denoting the cardinality of the 𝑖th cluster as 𝑀𝑖 =

|𝐺 [𝑒𝑖 ] |, the cluster probability can be written as 𝜋𝑖 = 𝑀𝑖/𝑀 . WCS

is a single-stage sampling design, meaning all triples in the sampled

clusters are manually evaluated. When clusters are large, as in most

KGs, the cost of WCS may be prohibitive.

To overcome this limitation, TWCS can be used. TWCS consists

of two stages: (1) sample entity clusters with WCS; (2) from each

𝑖th sampled cluster, sample min{𝑀𝑖 ,𝑚} triples with SRS without

replacement. By denoting the (estimated) mean accuracy of the

sampled triples in the 𝑖th cluster as �̂�𝑖 , the unbiased estimator of

𝜇 (𝐺) under TWCS is

�̂�𝑤,𝑚 =
1

𝑛

𝑛∑︂
𝑖=1

�̂�𝑖 (3)

with estimation variance 𝑉 (�̂�𝑤,𝑚) = 1

𝑛 (𝑛−1)
∑︁𝑛
𝑖=1
(�̂�𝑖 − �̂�𝑤,𝑚)2.

3.3 Stratified Sampling
Stratified Sampling (SS) stratifies entity clusters into 𝑄 non over-

lapping strata [5, 7]. For SS, clusters need to be sampled from each

stratum. This leaves us with the problem of deciding how to allocate

samples. To this end, we adopt proportional allocation [7], which

requires the sample size in each stratum to be proportional to the

number of sampling units in that stratum. Therefore, relying on

stratification, a Stratified TWCS (STWCS) design can be adopted

where, in each stratum 𝑞, TWCS is applied with second stage size

𝑚 to obtain an unbiased estimator �̂�𝑞,𝑤,𝑚 .

Let 𝐸𝑞 be the set of 𝑁𝑞 entities in the stratum 𝑞, C𝑞 = {𝐺 [𝑒] | 𝑒 ∈
𝐸𝑞} the 𝑞𝑡ℎ stratum cluster family, and𝐶𝑞 =

∑︁𝑁𝑞

𝑖=1
𝑀𝑖 its cardinality.

Then, denoting𝑊𝑞 = 𝐶𝑞/𝑀 as the weight of the 𝑞𝑡ℎ stratum, the

unbiased estimator of 𝜇 (𝐺) under STWCS is

�̂�𝑠𝑠 =

𝑄∑︂
𝑞=1

𝑊𝑞 · �̂�𝑞,𝑤,𝑚 (4)

with estimation variance 𝑉 (�̂�𝑠𝑠 ) =
∑︁𝑄

𝑞=1
𝑊 2

𝑞𝑉 (�̂�𝑞,𝑤,𝑚).

4 INTERVAL ESTIMATION
To quantify the uncertainties in the sampling procedure, we need

to estimate the CI on the considered sample. A CI tells us that at

a given level of certainty 1 − 𝛼 , if the underlying model is correct,

the true value in the population will likely be in the identified

range. The larger the CI, the more uncertain the observation. No

unique solution exists to compute CIs for a given estimator. How-

ever, recalling that KG accuracy can be defined as the proportion

of correct triples (𝜏) over the total number of triples (𝑀) in the KG,

binomial CIs can be considered [4]. Several methods exist to con-

struct binomial CIs [29, 36]. Nevertheless, the state-of-the-art KG

accuracy estimation methods [13, 32] all adopt the standard normal

approximation interval, also known as the Wald interval [5].

We first highlight the limitations of the Wald method for the

task of efficient KG accuracy evaluation. Then, we present a family

of binomial methods that overcome Wald limitations, providing

reliable CIs for KG accuracy estimation. Themethods are theWilson

interval [42], its continuity-corrected version [29], and the Agresti-

Coull interval [1]. Finally, we conduct a theoretical comparison

between the CIs, which we use to identify the method providing the

best trade-off between efficiency and reliability – namely, Wilson.

4.1 The Wald Interval
The Wald interval relies on normal approximation and is obtained

by inverting the acceptance region of theWald large-sample normal

test [5]: |︁|︁|︁|︁|︁ �̂� − 𝜇√︁
𝑉 (�̂� )

|︁|︁|︁|︁|︁ ≤ 𝑧𝛼/2 (5)

where 𝜇 and �̂� represent the true and estimated KG accuracies,

𝑉 (�̂�) the estimation variance, and 𝑧𝛼/2 the critical value of the

standard normal distribution for a given significance level𝛼 . Normal

approximation requires that the point estimator �̂� takes the form

of the mean of 𝑛S independent and identically distributed (i.i.d.)

random variables with expectation equal to 𝜇. If the sample size 𝑛S
is sufficiently large,

1
then, by the Central Limit Theorem (CLT) [5],

the 1 − 𝛼 CI of 𝜇 can be constructed as

�̂� ± 𝑧𝛼/2
√︁
𝑉 (�̂� ) (6)

The larger the sample size, the more continuous the approximation,

and the more confident we can be in �̂�, so the CI shrinks as 𝑛S

1
The rule of thumb is 𝑛S ≥ 30 [17].
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Figure 2: Limitations of the Wald intervals: zero-width interval
(circle) and overshooting (dashed line). CIs for the three users in
Example 1, computed with 95% (i.e., 𝛼 = 0.05) Wald intervals on a KG
with (true) accuracy 𝜇 = 0.9.

increases. However, although the Wald interval is appealing due to

its simplicity, it is fundamentally flawed [4, 38].

Let us consider the case where 𝑛S is small or �̂� is close to zero

or one. In this context, two issues arise. First, when �̂� tends to zero

or one, the estimation variance𝑉 (�̂�) tends to zero, and the interval
narrows to zero width. A zero-width interval implies certainty,

leading to underestimating the error. Second, for �̂� < 𝑧𝛼/2
√︁
𝑉 (�̂�) or

�̂� > 1 − 𝑧𝛼/2
√︁
𝑉 (�̂�), the interval overshoots the [0, 1] boundaries.

However, unlike the normal distribution – which is unconstrained

– �̂� cannot exceed the range [0, 1], and thus the approximation fails.

Example 1. Let us assume that three independent users 𝑢1, 𝑢2, 𝑢3

want to estimate the accuracy of a KGwith (unknown) 𝜇 = 0.9. Each

one employs the evaluation framework described in Section 2.3,

adopting SRS as a sampling strategy, with a significance level 𝛼 =

0.05, and requiring a MoE below 𝜀 = 0.05. Let us also assume that

the evaluation procedure halted – i.e., MoE ≤ 𝜀 – with the following

sample sizes and corresponding estimated accuracies:
2

𝑢1: 𝑛1 = 30, �̂�
1
= 1.0000

𝑢2: 𝑛2 = 55, �̂�
2
= 0.9636

𝑢3: 𝑛3 = 140, �̂�
3
= 0.9000

Based on these values, we can compute the estimation variances:

𝑉 (�̂�
1
) = 0.0000, 𝑉 (�̂�

2
) = 0.0006, and 𝑉 (�̂�

3
) = 0.0006. Then,

by using Equation (6), we obtain the corresponding CIs: CI1 =

[1.0000, 1.0000], CI2 = [0.9156, 1.0116], and CI3 = [0.8520, 0.9480].
Figure 2 depicts the computed CIs. We can see that the evaluation

procedure generated a zero-width interval for the user 𝑢1. In other

words, the procedure is certain that the estimated value �̂�
1
is correct,

but we see that it leads to a 10% deviation from the true value 𝜇. As

for the interval generated for user 𝑢2, in addition to not containing

the true value 𝜇, it also overshoots the upper limit – failing to ap-

proximate the underlying binomial distribution. The only user for

whom the procedure works correctly is 𝑢3, who obtains a reliable

estimate of the true value accompanied by a proper interval. Hence,

out of three situations, only one gets a reliable estimate, while the

other two lead to misleading and erratic estimations.

2
The values reported were cherry-picked for the example from real evaluations on a

KG with 𝜇 = 0.9. Therefore, they represent realistic situations.

Zero-width intervals further aggravate a well-known problem

of the Wald interval: the erratic behavior of the coverage prob-
ability [4]. The coverage probability represents the probability

that a CI contains the parameter of interest (𝜇, in our case). For a

given significance level 𝛼 , CIs are expected to have nominal cover-

age probability 1 − 𝛼 . On the other hand, following a frequentist

approach, the empirical coverage probability is defined as the pro-

portion of trials where the CI surrounds the parameter. Ideally, we

would like the empirical coverage to be the same as the nominal

coverage. Yet, due to the discreteness and skewness of the underly-

ing binomial distribution, the Wald interval often reaches empirical

coverage far lower than nominal coverage [4]. This weakens the

statistical guarantees, limiting the reliability of the KG accuracy

evaluation procedure. We need better methods for building CIs,

capable of handling small samples and skewed observations while

reaching coverage probabilities consistently closer to the nominal

value 1 − 𝛼 .

4.2 The Wilson Interval
An alternative to the Wald interval is the Wilson interval [42], a

binomial CI based on inverting the test in Equation (5) that uses

the null standard error instead of the estimated standard error. The

Wilson interval assumes the sample was obtained via SRS [42].

Based on this assumption, the test can thus be rewritten as:|︁|︁|︁|︁√︃ 𝑛S
𝜇 (1 − 𝜇 ) · (�̂� − 𝜇 )

|︁|︁|︁|︁ ≤ 𝑧𝛼/2 (7)

Then, by solving the algebraic inequality in 𝜇, we obtain

�̂� +
𝑧2

𝛼/2
2𝑛S

1 +
𝑧2

𝛼/2
𝑛S

±
𝑧𝛼/2

1 +
𝑧2

𝛼/2
𝑛S

·

⌜⃓⎷
�̂� (1 − �̂� )

𝑛S
+
𝑧2

𝛼/2

4𝑛2

S
(8)

which can be broken down into two parts: a relocated center esti-

mate (left of the ± sign) and a corrected standard deviation (right

of the ± sign). The Wilson interval has theoretical appeal, as it is

the inversion of the CLT approximation to the family of equal tail

tests of 𝐻0 : 𝜇 = 𝜇0 [42]. Hence, the null hypothesis is accepted

based on the CLT approximation if and only if 𝜇0 is in this interval.

Reconsidering Example 1, we can use the data from 𝑢1, 𝑢2, and

𝑢3 procedures to compute the Wilson interval. By applying Equa-

tion (8), we obtain CI1 = [1.0000, 0.8865], CI2 = [0.9900, 0.8767],
CI3 = [0.9395, 0.8391].3 As we can see, the zero-width interval (CI1)
now has a proper width, and the overshooting interval (CI2) now

falls within the [0, 1] range. Also note that the Wilson deviation

never reaches zero for values of �̂� close to zero or one, as opposed

to the Wald deviation that always converges to zero at boundaries,

thus leading to zero-width intervals. Finally, compared to the Wald

interval, the Wilson interval is asymmetric, as the center estimate

is pushed towards the center of the (accuracy) range.

Although the Wilson interval improves over the Wald interval in

several respects, its coverage probability still has some downward

spikes when the accuracy is near the boundaries [4]. These spikes

occur for all sample sizes 𝑛S and significance levels 𝛼 , but can be

removed by using a one-sided Poisson approximation for 𝜏S close

to 0 or𝑛S [4]. That is, we can replace the lower bound of theWilson

3
Note that by using the Wilson interval none of the three users would obtain a MoE

≤ 𝜀 with that data and the iterative procedure would therefore have to continue.
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interval with 𝜆𝜏S /𝑛S , for 𝜏S close to 0, and the upper bound with

1 − 𝜆𝜏S /𝑛S , for 𝜏S close to 𝑛S . Using the relationship between the

Poisson and 𝜒2
distributions, the 𝜆𝜏S can be formally expressed in

terms of the 𝜒2
quantiles [4]:

𝜆𝜏S =

{︄
1

2
𝜒2

2𝜏S ,𝛼
for 𝜏S close to 0,

1

2
𝜒2

2(𝑛S−𝜏S ),𝛼
for 𝜏S close to 𝑛S .

(9)

where 𝜒2

2𝜏S ,𝛼
and 𝜒2

2(𝑛S−𝜏S ),𝛼
denote the 100𝛼𝑡ℎ percentiles of the

𝜒2
distribution with 2𝜏S and 2(𝑛S − 𝜏S) degrees of freedom, re-

spectively. Note that there is no strict rule for how close 𝜏S should

be to 0 or 𝑛S to apply the correction; the choice is left to the user.

4.3 The Continuity-Corrected Wilson Interval
To further boost the coverage probability of the Wilson interval, a

continuity correction mechanism can be applied [29]. The mech-

anism expands the interval by adding an extra 1/2𝑛S on either

side of the center estimate. This correction term is sufficient to

better adjust the boundaries of the interval to reflect the discrete

nature of the underlying binomial distribution. Specifically, the

continuity-corrected Wilson interval consists of all 𝜇 such that

|�̂� − 𝜇 | − 1/2𝑛S ≤ 𝑧𝛼/2
√︁
𝜇 (1 − 𝜇)/𝑛S , leading to the following

closed form expressions for the lower (𝐿) and upper (𝑈 ) bounds:

𝐿 =
�̂� +

𝑧2

𝛼/2
2𝑛S

1 +
𝑧2

𝛼/2
𝑛S

−
1

2𝑛S
+

𝑧2

𝛼/2
𝑛S

√︃
𝑧2

𝛼/2
4
− 1

2
− 1

4𝑛S
+ �̂�{𝑛S (1 − �̂� ) + 1}

1 +
𝑧2

𝛼/2
𝑛S

𝑈 =
�̂� +

𝑧2

𝛼/2
2𝑛S

1 +
𝑧2

𝛼/2
𝑛S

+
1

2𝑛S
+

𝑧2

𝛼/2
𝑛S

√︃
𝑧2

𝛼/2
4
+ 1

2
− 1

4𝑛S
+ �̂�{𝑛S (1 − �̂� ) − 1}

1 +
𝑧2

𝛼/2
𝑛S

(10)

However, the continuity correction reintroduces overshooting as �̂�

approaches 0 or 1. To prevent this, it is necessary to employ min

and max constraints to ensure that 𝐿 ∈ [0, �̂�] and𝑈 ∈ [�̂�, 1].

Proposition 1. By construction, the continuity-corrected Wilson

interval always contains the (uncorrected) Wilson interval.

4.4 The Agresti-Coull Interval
The Agresti-Coull interval [1] combines theWald interval’s simplic-

ity with the Wilson interval’s reliability. Specifically, the method

adopts the familiar form presented in Equation (6), but replaces

the center estimate of the Wald interval with that of the Wilson

interval. Denoting 𝜏 = 𝜏S + 𝑧2

𝛼/2/2 and �̃� = 𝑛S + 𝑧2

𝛼/2, the Wilson

center estimate can be rewritten as �̃� = 𝜏/�̃�, leading to the interval

�̃� ± 𝑧𝛼/2

√︃
�̃� (1 − �̃� )

�̃�
(11)

Lemma 1. Agresti-Coull CIs are never shorter than Wilson CIs.

Proof. Since the intervals share the same center estimate, we

only need to prove that

𝑧𝛼/2

√︃
�̃� (1 − �̃�)

�̃�
≥

𝑧𝛼/2

1 +
𝑧2

𝛼/2
𝑛S

·

⌜⃓⎷
�̂� (1 − �̂�)

𝑛S
+
𝑧2

𝛼/2
4𝑛2

S

Recalling that �̃� = 𝜏/�̃�, where 𝜏 = 𝜏S + 𝑧2

𝛼/2/2 and �̃� = 𝑛S + 𝑧2

𝛼/2,

and after some algebraic passages, we obtain (𝑛S−2𝜏S)2 ≥ 0 which

proves the theorem. Notably, the two intervals have the same width

only when 𝜏S = 𝑛S/2; that is, when �̂� = 0.5. □

4.5 Interval Comparison
The minimization problem, outlined in Section 2.2, hinges on the

convergence of the CI width, enforced by the constraint MoE ≤ 𝜀.

As a result, to enhance the convergence rate and thus reduce the

number of annotations required to evaluate the KG accuracy, we

prefer methods that build small CIs. At the same time, we also seek

reliable intervals that consistently achieve coverage probabilities

closer to the nominal value 1−𝛼 . However, when �̂� approaches zero

or one, reliable CIs tend to be larger than unreliable ones, as shown

by the comparison between Wald and Wilson in Example 1. There-

fore, we compare the considered CIs to investigate which interval

presents the best trade-off between efficiency and reliability.

To conduct this comparison, we evaluate both the expected width

and the average expected width of the intervals. The expected width

is computed as follows:

𝐸𝑛S ,𝜇 (width(CI) ) =
𝑛S∑︂
𝜏S=0

(𝑈 (𝜏S, 𝑛S ) − 𝐿 (𝜏S, 𝑛S ) )
(︃
𝑛S
𝜏S

)︃
𝜇𝜏S (1 − 𝜇 )𝑛S−𝜏S

(12)

where 𝑈 and 𝐿 represent the upper and lower bounds of the CI,

respectively. For the calculation of the average expected width, we

integrate the expected width over the accuracy interval [0, 1], as
expressed by

∫
1

0
𝐸𝑛S ,𝜇 (width(CI))𝑑𝜇.

Figure 3 shows the expected width of the four considered CIs

for 𝑛S = 30 and 𝛼 = 0.05. Notably, the Wald interval is the shortest

when 𝜇 ≤ 0.137 or 𝜇 ≥ 0.863, whereas Wilson becomes the shortest

when 0.137 < 𝜇 < 0.863. The small-to-zero width of the Wald

interval as 𝜇 approaches zero or one underscores its unreliability

in these situations. Conversely, the method exhibits large widths

when accuracymoves towards the center of the range, making it less

efficient compared to both Wilson and Agresti-Coull. This insight

emphasizes that not only does the Wald method yield unreliable

CIs near zero or one, but it is also less efficient than Wilson and

Agresti-Coull when accuracy deviates from boundaries and normal

approximation proves more effective. As expected, the continuity-

corrected Wilson is always larger than the uncorrected Wilson,

and Agresti-Coull equals Wilson only when 𝜇 = 0.5 (cf. Lemma 1).

Hence, the Wilson method emerges as the best trade-off between

efficiency and reliability among the considered CIs.

This conclusion gains further support when we examine the

average expected width of the considered CIs, shown in Figure 4

for sample sizes ranging from 30 to 50 with 𝛼 = 0.05. The plot shows

that Wald and Wilson intervals exhibit nearly identical average

expected widths. This indicates that Wilson compensates for the

larger CIs obtainedwhen accuracy is close to zero or one by yielding

shorter intervals as accuracy moves towards the center of the range.

In contrast, both Agresti-Coull and continuity-corrected Wilson

are notably larger than Wilson.

On a side note, it is worth mentioning that as the sample size

𝑛S increases, the CIs shrink, and the average expected differences
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Figure 3: Expected width of Wald, Wilson, continuity-corrected
Wilson (CC), and Agresti-Coull CIs for nS = 30 and 𝛼 = 0.05.

Figure 4: Avg. expected width ofWald,Wilson, continuity-corrected
Wilson (CC), and Agresti-Coull CIs for nS ∈ [30, 50] and 𝛼 = 0.05.

between them diminish. Nevertheless, alongside Wald, Wilson re-

mains the most efficient among the intervals while steering away

from the latter’s limitations. In Section 7.1, we empirically validate

the above observations on real-world KGs.

The Wilson method builds tight intervals when accuracy is far

from boundaries and becomes more lenient as accuracy converges

towards zero or one, emerging as the best trade-off between

efficiency and reliability among the considered CIs.

5 DESIGN EFFECT ADJUSTMENT
Wilson and the other binomial intervals are constructed assuming

the use of SRS to obtain the sample. Therefore, they cannot manage

effects such as clustering and stratification. As a consequence, using

them on complex sampling designs like TWCS and STWCS would

violate the assumption of a SRS design, leading to unstable CIs [22]

(see Section 7.3). To adjust these intervals for cluster and stratified

sampling, the design effect should be used [21, 22].

The design effect denotes the ratio of the estimation variance

obtained via a complex design S to the estimation variance based

on a SRS sample of the same size: Deff = 𝑉 (�̂�S)/𝑉 (�̂�𝑠 ). In other

words, the design effect indicates inflation (Deff > 1) or deflation

(Deff < 1) in the variance of an estimator for a given parameter of

interest when using a complex design instead of SRS. The design

effect can be used to compute the effective sample size [21], which
is defined as 𝑛

eff
= 𝑛S/Deff . The effective sample size represents

the sample size required under a SRS design to obtain the same

CI width achieved under the complex design. Thus, the effective

sample size can be used to adjust binomial CIs to complex sampling

designs by replacing 𝑛S with 𝑛
eff

in Equations (8)-(11).

Different design effects can be obtained depending on the com-

ponents used in the sampling design. We provide the design effects

for the cluster and stratified samplings, also proposing an adaptive

strategy to compute the effective sample size for stratified sampling,

which depends on the boundary conditions.

5.1 Clustering Effect
The combination of WCS in the first stage and SRS in the sec-

ond stage makes TWCS an Equal Probability of Selection Method

(EPSEM) design. Hence, we can apply the ultimate cluster sample

approximation [20] reducing the variance of TWCS to 𝑉 (�̂�𝑤,𝑚) =
𝑉 (�̂�𝑠 ){1 + (�̄� − 1)𝜌}, where �̄� is the average second stage size

and 𝜌 the Intracluster Correlation Coefficient (ICC) [7]. The ICC

measures the degree of correlation among triples within the same

cluster. To estimate ICC from the considered sample, we adopt the

unbiased formula proposed by Fisher [12]:

𝜌 =
�̄�

�̄� − 1

·
1

(𝑛−1) ·
∑︁𝑛

𝑖=1
(�̂�𝑖 − 𝜇𝑛S )

2∑︁𝑛
𝑖=1

∑︁min{𝑀𝑖 ,𝑚}
𝑗=1

(1𝑇 (𝑡𝑖 𝑗 )−𝜇𝑛S )
2∑︁𝑛

𝑖=1
min{𝑀𝑖 ,𝑚}−1

− 1

�̄� − 1

(13)

where 𝜇𝑛S is the sample accuracy, defined as

∑︁𝑛
𝑖=1

∑︁min{𝑀𝑖 ,𝑚}
𝑗=1

1𝑇 (𝑡𝑖 𝑗 )∑︁𝑛
𝑖=1

min{𝑀𝑖 ,𝑚} .

Thus, the design effect for TWCS becomes:

Deff =
𝑉 (�̂�𝑤,𝑚 )
𝑉 (�̂�𝑠 )

=
𝑉 (�̂�𝑠 ) {1 + (�̄� − 1)𝜌 }

𝑉 (�̂�𝑠 )
= 1 + (�̄� − 1)𝜌 (14)

Note that using the unbiased formula to estimate ICC allows the

design effect to take values both greater and lower than one. In

other words, no a priori assumption is made about the efficiency of

TWCS with respect to SRS.

5.2 Stratification Effect
The STWCS design combines stratification and clustering effects.

The use of proportional allocation makes STWCS an EPSEM de-

sign [7]. Therefore, we can apply the ultimate cluster sample ap-

proximation [20] and reduce the STWCS variance to

𝑉 (�̂�𝑠𝑠 ) =
𝑄∑︂
𝑞=1

𝑊 2

𝑞𝑉 (�̂�𝑞 ) {1 + (�̄�𝑞 − 1)𝜌𝑞 } (15)

where 𝑉 (�̂�𝑞) represents the estimation variance of the 𝑞𝑡ℎ stratum

under SRS, while �̄�𝑞 and 𝜌𝑞 are the corresponding average second

stage size and ICC, respectively. Based on Equation (15), the design

effect can be defined as

Deff =

∑︁𝑄

𝑞=1
𝑊 2

𝑞𝑉 (�̂�𝑞 ) {1 + (�̄�𝑞 − 1)𝜌𝑞 }
𝑉 (�̂�𝑠 )

(16)

The design effect can be further decomposed under some conditions.

Lemma 2. If the strata (estimated) variances �̂�2

𝑞 are approximately

the same, the design effect can be expressed as

Deff =

𝑄∑︂
𝑞=1

𝑊 2

𝑞

(︃
𝑛S
𝑛𝑞

)︃
Deff𝑞 (17)

Proof. Let us assume that strata variances are approximately

the same, that is, �̂�2

𝑞 ≈ �̂�2
. Under this assumption, the variance of
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STWCS in Equation (15) becomes

𝑉 (�̂�𝑠𝑠 ) = �̂�2

𝑄∑︂
𝑞=1

𝑊 2

𝑞

𝑛𝑞
{1 + (�̄�𝑞 − 1)𝜌𝑞 }

Dividing 𝑉 (�̂�𝑠𝑠 ) by 𝑉 (�̂�𝑠 ), we obtain

Deff =
�̂�2

∑︁𝑄

𝑞=1

𝑊 2

𝑞

𝑛𝑞
{1 + (�̄�𝑞 − 1)𝜌𝑞 }
�̂�2

𝑛S

=

𝑄∑︂
𝑞=1

𝑊 2

𝑞

(︃
𝑛S
𝑛𝑞

)︃
{1 + (�̄�𝑞 − 1)𝜌𝑞 } =

𝑄∑︂
𝑞=1

𝑊 2

𝑞

(︃
𝑛S
𝑛𝑞

)︃
Deff𝑞

□

Remark 1. With Deff as in Equation (17), Deff𝑞 represents the

𝑞𝑡ℎ stratum design effect from clustering effects.

Lemma 3. If the strata (estimated) ICCs 𝜌𝑞 are approximately the

same, the design effect can be expressed as

Deff = {1 + (�̄� − 1)𝜌 } Deff𝑞 (18)

Proof. Let us assume that strata ICCs are approximately the

same, that is, 𝜌𝑞 ≈ 𝜌 . Also consider that, under STWCS, �̄�𝑞 can be

safely approximated by �̄�, i.e. �̄�𝑞 ≈ �̄�. Then, the design effect in

Equation (16) becomes

Deff = {1 + (�̄� − 1)𝜌 } ·
∑︁𝑄

𝑞=1
𝑊 2

𝑞𝑉 (�̂�𝑞 )
𝑉 (�̂�𝑠 )

= {1 + (�̄� − 1)𝜌 } · Deff𝑞

□

Remark 2. With Deff as in Equation (18), Deff𝑞 represents the

𝑞𝑡ℎ stratum design effect from element stratification.

Lemma 4. If both strata (estimated) variances and ICCs are ap-

proximately the same, the design effect can be expressed as

Deff = 1 + (�̄� − 1)𝜌 (19)

Proof. Let us assume that �̂�2

𝑞 ≈ �̂�2
and 𝜌𝑞 ≈ 𝜌 . Considering

that �̄�𝑞 ≈ �̄� under STWCS, the design effect in Equation (16)

becomes

Deff = {1 + (�̄� − 1)𝜌 } ·
𝑄∑︂
𝑞=1

𝑊 2

𝑞

(︃
𝑛S
𝑛𝑞

)︃
With proportional allocation, 𝑛𝑞 =

𝑛S𝐶𝑞

𝑀
[7]. This reduces the

design effect to

Deff = {1 + (�̄� − 1)𝜌 } ·
𝑄∑︂
𝑞=1

𝑊 2

𝑞

(︃
𝑀

𝐶𝑞

)︃
= {1 + (�̄� − 1)𝜌 } ·

𝑄∑︂
𝑞=1

𝑊𝑞 = 1 + (�̄� − 1)𝜌

□

Remark 3. Under Equation (19), the design effect for STWCS takes

the same form of the (unstratified) TWCS design effect.

Once the design effect is computed via one of the Equations (16)-

(19), depending on which conditions are met, the effective sample

size can be derived and used to adjust binomial CIs. To further

counteract the undercoverage introduced by stratified clustering

Algorithm 1 Adaptive Design Effect Adjustment Procedure for Effective

Sample Size

Input:
A KG𝐺 ;

The user-required significance level 𝛼 ;

The 𝛽1 and 𝛽2 thresholds;

An STWCS sample𝐺S = {𝐺1, . . . ,𝐺𝑄 }, where𝐺𝑞 is the 𝑞th stratum

TWCS sample.

Output: The effective sample size 𝑛∗
eff

for the stratified sample𝐺S .

1: Compute strata sample variances: �̂�2

𝑞 = �̂�𝑞 (1 − �̂�𝑞 )
2: Compute strata ICCs 𝜌𝑞 using Eq(13)

3: Initialization: Δ
�̂�2 ← empty list; Δ𝜌 ← empty list

4: for 𝑖 = 1 to𝑄 − 1 do
5: for 𝑗 = 𝑖 + 1 to𝑄 do
6: Δ

�̂�2 ← diff (�̂�2

𝑖 , �̂�
2

𝑗 )
7: Δ𝜌 ← diff (𝜌𝑖 , 𝜌 𝑗 )
8: end for
9: end for
10: if all(𝛿

�̂�2<𝛽1 for𝛿�̂�2 inΔ�̂�2 ) and all(𝛿𝜌<𝛽2 for𝛿𝜌 inΔ𝜌 ) then
11: Calculate Deff using Eq(19)

12: else if all(𝛿
�̂�2<𝛽1 for𝛿�̂�2 inΔ�̂�2 ) then

13: Calculate Deff using Eq(17)

14: else if all(𝛿𝜌<𝛽2 for𝛿𝜌 inΔ𝜌 ) then
15: Calculate Deff using Eq(18)

16: else
17: Calculate Deff using Eq(16)

18: end if
19: Compute effective sample size: 𝑛

eff
= 𝑛S/Deff

20: Multiply by design factor: 𝑛∗
eff

= 𝑛
eff
·
(︂

𝑧𝛼/2
𝑡𝑛−𝑄,𝛼/2

)︂
2

21: return 𝑛∗
eff

designs, Korn and Graubard [23] suggest multypling the effective

sample size by a design factor, later refined by Dean and Pagano [9]:

𝑛∗
eff

= 𝑛
eff
·
(︃

𝑧𝛼/2
𝑡𝑛−𝑄,𝛼/2

)︃
2

(20)

where 𝑡𝑛−𝑄,𝛼/2 denotes the 100(𝛼/2)th percentile of the Student’s

𝑡-distribution with 𝑛 −𝑄 degrees of freedom. When the number of

clusters (𝑛) in the sample is relatively small, as it generally happens

in practical cases, the design factor is less than one. Consequently,

the effective sample size is reduced, resulting in wider intervals and

mitigating, to a degree, undercoverage behaviors.

Thus, to compute the effective sample size for STWCS,we present

a procedure based on adaptive design effect adjustment, reported

in Algorithm 1. Given an STWCS stratified sample, we first derive

the strata variances and ICCs (lines 1-2). Then, we compute the

pairwise differences (lines 3-9) and check whether these differences

are smaller than a given threshold 𝛽1, for variances, and 𝛽2, for

ICCs (lines 10,12,14). Depending on which conditions are met, we

apply one of the Equations (16)-(19) to obtain the design effect (lines

11,13,15,17). From this, we derive the effective sample size, which

is finally corrected by the design factor (lines 19-20).

The proposed design effect adjustments enable binomial CIs –

originally designed under the assumption of SRS – to account

for clustering and stratification effects. The adaptive strategy

proposed for stratification facilitates a smoother derivation of the

design effect based on the boundary conditions.

2398



Table 2: Data statistics for YAGO, NELL, DisGeNET, and SYN 100M.

YAGO NELL DisGeNET SYN 100M

Number of facts 1,386 1,860 2,999,087 101,415,011

Number of clusters 822 817 21,243 5,000,000

Average cluster size 1.69 2.28 141.18 20.28

Accuracy (𝜇) 0.99 0.91 n/a n/a

6 EXPERIMENTAL SETUP
This section comprises five parts: (i) data presentation and selection

rationale; (ii) synthetic label generation for the DisGeNET and

SYN 100M datasets; (iii) annotation cost function for manual fact

evaluation; (iv) implementation, parameter tuning, and computing

resources; and, (v) evaluation procedure and selected metrics.

6.1 Datasets
Table 2 reports statistics for the considered KGs. YAGO and NELL

[30] are adopted because they are publicly available reference KGs

that have been used to evaluate the state-of-the-art methods for

KG accuracy estimation in the literature [13, 30, 32].
4

YAGO is a sample drawn by Ojha and Talukdar [30] from the

YAGO2 KG [16] – a large KG with general knowledge about people,

cities, countries, movies, and organizations. The sample contains

manually annotated accuracy labels for each fact. The ground-truth

accuracy of YAGO is 𝜇 = 0.99.

NELL is a sample drawn by Ojha and Talukdar [30] from the

NELL KG [27]. The sample contains sports-related facts, mostly

about athletes, coaches, teams, stadiums, etc. As with YAGO, man-

ually annotated accuracy labels are available. The ground-truth

accuracy of NELL is 𝜇 = 0.91.

Moreover, we consider data from DisGeNET [33], one of the

largest collections of facts about gene-disease associations, integrat-

ing data from expert-curated repositories, GWAS catalogs, animal

models, and scientific literature [33]. DisGeNET is a highly spe-

cialized resource containing nearly three million factual triples,

providing confidence scores for each fact. However, there are no

available human-annotated accuracy labels. Due to the high level of

expertise required to audit DisGeNET facts, manually evaluating its

accuracy is not affordable. Therefore, we generate synthetic labels

for DisGeNET to compare the different methods in-depth. To this

end, we adopt two labeling schemes, presented in Section 6.2, that

allow us to test the proposed methods under different conditions.

To test scalability, we also generate SYN 100M, a synthetic KG

with over 100 million triples. Entity clusters were generated with

a mean size of 20 and a standard deviation of 15. With SYN 100M

we test the scalability of the proposed methods. We want to verify

whether the findings obtained in YAGO, NELL, and DisGeNET KGs

also hold when the KG size scales up. Again, we use synthetic labels

to annotate the KG.

Hence, to evaluate the performance of themethods from different

angles, we resort to two real datasets with real labels, YAGO and

NELL, one real dataset with synthetic labels, DisGeNET, and one

synthetic dataset with synthetic labels, SYN 100M.

4
Gao et al. [13] evaluate also the MOVIE KG. The dataset was generated at Amazon and

is not publicly available (personal communication). Qi et al. [32] used the public OPIEC

KG [15]. However, the data subset employed and the annotations are unavailable.

6.2 Synthetic Label Generation
We consider two synthetic label generationmodels presented in [13].

Triple Error Model (TEM): the probability that a triple in the

KG is correct is governed by a fixed error rate 𝜀𝑇 ∈ [0, 1]. This leads
to a uniform distribution of correct labels across entity clusters in

the KG. For our experiments, we vary 𝜀𝑇 from 0.1 to 0.9.

Cluster Error Model (CEM): the number of correct triples in

the 𝑖𝑡ℎ entity cluster follows a binomial distribution 1𝐸 (𝐺 [𝑒]) ∼
𝐵(𝑀𝑖 , 𝑝𝑖 ), where 𝑝𝑖 is defined by a sigmoid-like function:

𝑝𝑖 =

{︄
0.5 + 𝜀N if𝑀𝑖 < 𝑘

1

1+𝑒−𝑐 (𝑀𝑖 −𝑘 )
+ 𝜀N if𝑀𝑖 ≥ 𝑘

(21)

where, 𝜀N is an error term from a normal distribution with mean 0

and standard deviation 𝜎 , while 𝑐 ≥ 0 scales the influence of cluster

size on entity accuracy. Together, 𝜀N and 𝑐 control the correlation

between 𝑀𝑖 and 𝑝𝑖 . This leads to a distribution of correct labels

across entity clusters that depends, more or less strongly, on the

size of clusters. For our experiments, we set 𝑘 = 3, 𝜎 = 0.01 (in 𝜀N ),
and 𝑐 = 0.001, obtaining a KG sensitive to cluster characteristics.

Synthetic label generation facilitates experimentation and com-

parison of various sampling and evaluation methods, allowing for

the assumption of diverse data characteristics on KGs. This en-

sures exploration of both efficiency and reliability when manual

annotations are not available – or not affordable. In this regard,

TEM and CEM can experiment under different accuracy distribu-

tions, enabling a thorough investigation into the performance of

the considered methods across a broad spectrum of scenarios.

6.3 Cost Function
To measure the cost of manually evaluating the correctness of facts

within the considered sample 𝐺S , we adopt the cost function pro-

posed in [13]. Based on the assumption that annotating a new fact

for an entity that has been already identified reduces the annotation

cost compared to assessing a new fact from unseen entities, the

function is defined as follows:

cost(𝐺S ) = |𝐸S | · 𝑐1 + |𝑇S | · 𝑐2 (22)

where 𝑐1 and 𝑐2 are the average cost (in seconds) of entity identifi-

cation and fact verification, respectively. For 𝑐1 and 𝑐2, we resort to

the values estimated in [13], that is 𝑐1 = 45 and 𝑐2 = 25 (seconds).

6.4 Implementation
Sampling Design: we consider SRS (Section 3.1), TWCS (Sec-

tion 3.2), and STWCS (Section 3.3) as sampling strategies. For TWCS

and STWCS, Gao et al. [13] suggest setting the second stage size𝑚

in the {3, 5} range. Therefore, we set𝑚 = 3 for YAGO and NELL due

to their small average cluster size. Instead, for DisGeNET and SYN,

where the average cluster size is larger, we set𝑚 = 5. For STWCS,

we stratify entity clusters by the degree centrality of the subject

entity using the Cumulative Square Root of Frequency (Cumulative√
𝐹 ) [8]. For each KG, we consider a number of strata 𝑄 = 2.

Interval Estimation: to build CIs, we consider the Wald inter-

val (Section 4.1) and compare its performance with our solution

based on the Wilson interval (Section 4.2). We also evaluate Wilson

performance against its continuity-corrected version (Section 4.3)

and the Agresti-Coull interval (Section 4.4). For the Wilson interval,
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we need to decide how close 𝜏S should be to 0 or 𝑛S to apply the

one-sided Poisson correction. Accordingly to Brown et al. [4], we

require 𝜏S ∈ {1, 2} when 𝑛S ≤ 50 and 𝜏S ∈ {1, 2, 3} when 𝑛S ≥ 51,

to correct the lower bound, while 𝜏S ∈ {𝑛S − 1, 𝑛S − 2} when
𝑛S ≤ 50 and 𝜏S ∈ {𝑛S − 1, 𝑛S − 2, 𝑛S − 3} when 𝑛S ≥ 51, to

correct the upper bound.

Design Effect Adjustment: we apply the design effect adjust-

ment to the Wilson interval when using TWCS (Section 5.1) and

STWCS (Section 5.2) schemes. For STWCS, we set the thresholds

in the adaptive design effect adjustment procedure (Algorithm 1)

to 𝛽1 = 𝛽2 = 0.01. To validate the benefits of applying design effect

adjustments to the Wilson interval, we also present solutions that

use Wilson without them. These versions are referred to as vanilla.
Methods: the configuration based on the Wald interval is the

state-of-the-art adopted by efficient KG accuracy estimation solu-

tions [13, 32]. We label these baselines as {method} (Wald). Instead,

we label the newly proposedmethods built upon theWilson interval

as {method} (Wilson).

Computational Resources: we implemented all methods in

Python3 and performed all experiments on a Linux machine with

an Intel Core i9-7980XE 2.60GHz processor and 64GB of memory.

6.5 Evaluation Procedure
We set the significance level 𝛼 = 0.05 and the upper bound for the

MoE 𝜀 = 0.05. We set the minimum number of annotated triples

to 30 and repeat the evaluation procedure 1,000 times for each

method. The performance of the various methods is compared

by the number of annotated triples, annotation cost (in hours),

and empirical coverage. Results are reported once MoE ≤ 0.05,

ensuring the performance is compared when solutions satisfy the

optimization constraint. For this reason, we do not include the

width of CIs in the results – as all solutions will have MoE ≤ 0.05.

Likewise, we avoid reporting accuracy estimates, as all methods

yield unbiased estimates with minimal difference (≤ 0.02) from

ground-truth accuracy.

7 EXPERIMENTAL RESULTS
The four goals of the evaluation are to (i) compare the efficiency

and reliability of Wald and binomial CIs; (ii) quantitatively analyze

the limitations of the Wald method in building reliable CIs; (iii) in-

vestigate the performance of the proposed suite of methods against

state-of-the-art solutions; and (iv) test their scalability.

7.1 Interval Comparison
We start by comparing the performance of Wald, Wilson, and the

other binomial CIs to investigate which interval presents the best

trade-off between efficiency and reliability. The evaluation involves

assessing annotation costs and coverage probabilities across various

KGs characterized by different levels of accuracy, sizes, and topolo-

gies. The considered KGs are YAGO (𝜇 = 0.99), NELL (𝜇 = 0.91),

DisGeNET CEM (𝜇 = 0.76), and DisGeNET TEM with 𝜀𝑇 = 0.5

(𝜇 = 0.5). In this way, we can evaluate the performance of Wald,

Wilson, and the other binomial CIs when accuracy is close to the

boundaries (YAGO and NELL) and when it approaches the center

of the range (DisGeNET CEM and TEM) – where normal approx-

imation proves more effective. As a sampling strategy, we resort

to SRS. This choice allows us to compare the capabilities of the

considered CIs in their most natural form without introducing clus-

tering and stratification effects. Such complexities can hamper the

interpretation of the results, making it challenging to determine

whether a particular outcome is attributable to the interval under

consideration or other factors. Results are shown in Figure 5(a)

for annotation costs (efficiency) and in Figure 5(b) for coverage

probabilities (reliability).

Efficiency. In Figure 5(a), we observe that the annotation costs

increase for all solutions as we move towards KGs with accuracy

deviating further from boundaries, reaching the highest costs when

𝜇 = 0.5 (DisGeNET TEM). On the one hand, the Wald method

obtains the lowest costs when accuracy is near the boundaries

(i.e., YAGO and NELL), yielding performance gains up to 23%, 54%,

and 66% compared to Wilson, its continuity-corrected version, and

Agresti-Coull, respectively. Among the binomial intervals, Wilson

emerges as the most efficient, having the smallest gap compared

to Wald on YAGO (23% drop) and NELL (9% drop). On the other

hand, top performance is obtained by Wilson and Agresti-Coull

intervals as accuracy deviates from one (i.e., DisGeNET CEM and

TEM). This corroborates the findings of the theoretical comparison

in Section 4.5, where we demonstrated that Wilson is the most

efficient among the considered binomial intervals while deviating

from the unreliable widths obtained by the Wald method when

accuracy approaches zero or one.

Reliability. In Figure 5(b), we see that the Wald low annotation

costs on YAGO and NELL come at the expense of reliability. The

method achieves empirical coverages of 0.20 on YAGO and 0.82

on NELL. In both cases, the empirical coverages are far from the

nominal coverage of 0.95 (see the dashed red line). Conversely, all

binomial CIs exhibit coverage probabilities larger than nominal,
5

making the entire evaluation procedure up to four times more re-

liable. On DisGeNET CEM and TEM, instead, all methods achieve

empirical coverage equal to or greater than nominal. This happens

because the further we deviate from boundaries, the more the accu-

racy distribution resembles a normal distribution, thereby making

the Wald method – based on normal approximation – more reliable.

When accuracy approaches zero or one, Wilson emerges as the

most efficient solution among the reliable ones. When accuracy

deviates from boundaries, all solutions are reliable and Wilson

is the most efficient overall. Hence, Wilson represents the best

trade-off between efficiency and reliability.

7.2 Wald Limitations
We proceed by examining the limitations of the Wald interval, eval-

uating the extent to which overshooting and zero-width intervals

affect KGs of different sizes, topologies, and levels of accuracy. To

do so, we consider the same KGs as in Section 7.1 but also adopt

TWCS and STWCS as sampling strategies. Results are shown in

Figure 6. The number of iterations (over 1,000) affected by over-

shooting is in blue, whereas zero-width intervals are in red. We

highlight the following observations.

As expected, the number of iterations where overshooting or

zero-width intervals occur peaks when 𝜇 is near the boundaries

5
When this happens, the obtained CIs are referred to as conservative intervals.
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Figure 5: Comparison of efficiency (a) and reliability (b) across Wald, Wilson, its continuity-corrected version, and the Agresti-Coull intervals
under SRS on YAGO, NELL, DisGeNET (CEM), and DisGeNET (TEM) KGs. For efficiency (a), we also report the performance drop/gain (in %)
obtained by binomial intervals compared to the Wald interval (baseline).

Figure 6: Number of iterations (over 1,000) where the Wald interval
overshoots or gets to zero-width for YAGO, NELL, DisGeNET CEM,
and DisGeNET TEM KGs. We do not report numbers for the Wilson
method as it does not produce overshooting or zero-width intervals.

(i.e., YAGO and NELL). In YAGO, the number of iterations where

the Wald method builds overshooting or zero-width intervals is

close to – or even equals, in the case of SRS – the total number

of 1,000 iterations. This leads to imprecise estimates, which affect

the reliability of the considered estimators and make the efficiency

aspect of the evaluation procedure a negligible feature.

On the other hand, the more the KG accuracy deviates from

boundaries, the more the number of iterations affected by these

problems decreases, reaching no more than nine iterations for Dis-

GeNET CEM and four for DisGeNET TEM (𝜀𝑇 = 0.5). However,

even in these cases, the deviation from the true value can be signifi-

cant, reaching up to 24% for DisGeNET CEM and 10% for DisGeNET

TEM when zero-width intervals occur. As a result, users can incur

estimations deemed error-free by the estimator but which are, in

reality, far from the true accuracy of the KG.

None of the above limitations affect the Wilson interval.

The Wilson method overcomes the limitations of Wald, prevent-

ing both overshooting and zero-width intervals, regardless of the

considered sampling design and underlying KG.

7.3 Method Comparison
We continue with an in-depth comparison between proposed meth-

ods (Wilson) and baselines (Wald), focusing on state-of-the-art

sampling strategies – namely, TWCS and STWCS. Additionally, to

Table 3: Performance on DisGeNET TEM with 𝜀T ∈ {0.1, 0.5, 0.9}.

DisGeNET TEM

𝜇 = 0.9 (𝜀𝑇 = 0.1) 𝜇 = 0.5 (𝜀𝑇 = 0.5) 𝜇 = 0.1 (𝜀𝑇 = 0.9)

Method Triples Coverage Triples Coverage Triples Coverage

TWCS (Wald) 118±50 0.82±0.02 379±67 0.94±0.02 119±48 0.83±0.02
TWCS (Vanilla) 134±36 0.93±0.01 382±2 0.95±0.01 136±35 0.93±0.01
TWCS (Wilson) 120±46 0.92±0.02 371±62 0.95±0.01 121±44 0.92±0.02

STWCS (Wald) 120±54 0.78±0.03 380±72 0.93±0.01 117±55 0.78±0.03
STWCS (Vanilla) 135±34 0.93±0.01 382±3 0.95±0.01 134±36 0.93±0.01
STWCS (Wilson) 125±51 0.91±0.02 376±74 0.93±0.02 125±50 0.92±0.02

validate the benefits of applying the design effect to Wilson CIs

under TWCS and STWCS, we also compare the proposed methods

against versions that use Wilson without adjustments (Vanilla).

The evaluation considers YAGO, NELL, DisGeNET CEM, and Dis-

GeNET TEM (𝜀𝑇 = 0.5) KGs. This evaluation explains how methods

compare across various KGs, exhibiting different accuracy levels,

sizes, and topologies. Results are depicted in Figure 7(a) for annota-

tion costs and in Figure 7(b) for coverage probabilities. Moreover,

we compare methods on DisGeNET TEM with 𝜀 ∈ {0.1, 0.5, 0.9}
to examine further the influence of the KG accuracy level on the

performance of the different methods. Although synthetic, this

experiment allows us to isolate the role of accuracy by fixing the

underlying KG and only varying its accuracy distribution. Table 3

presents the results of this analysis, reporting the number of anno-

tated triples and empirical coverage.

Wilson vs. Wald. Upon examining Figure 7, we observe a pat-

tern akin to that seen under SRS (cf. Figure 5). Notably, on YAGO

and NELL, Wilson solutions exhibit lower efficiency but higher reli-

ability than Wald counterparts – making the evaluation procedure

on YAGO up to two times more reliable. Besides, compared to the

SRS scenario, the increase in annotation costs of proposed methods

(Wilson) concerning baselines (Wald) is less pronounced. On NELL,

STWCS (Wilson) even reduces annotation costs by 5% compared to

STWCS (Wald) while attaining empirical coverage close to the nom-

inal value (0.95), thereby increasing reliability by 26%. Conversely,

on DisGeNET CEM and TEM (𝜀𝑇 = 0.5), the performance of Wald
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Figure 7: Comparison of efficiency (a) and reliability (b) across Wald, Wilson, and its vanilla version under TWCS and STWCS on YAGO, NELL,
DisGeNET (CEM), and DisGeNET (TEM) KGs. For efficiency (a), we also report the performance drop/gain (in %) obtained by adjusted and
vanilla Wilson intervals compared to the Wald interval (baseline).

and Wilson solutions becomes comparable, but Wilson solutions

show higher efficiency.

The results presented in Table 3 provide additional evidence to

support the above observations and confirm that the KG accuracy

level significantly influences the method’s performance. Indeed, the

methods achieve the lowest annotation costs when KG accuracy

is near the boundaries – whether they are zero (𝜀𝑇 = 0.9) or one

(𝜀𝑇 = 0.1) – and incur the highest costs when KG accuracy is 0.5

(𝜀𝑇 = 0.5), which is the accuracy level where the variance among

triples’ correctness (1 or 0) reaches its maximum.

Overall, the cost required to perform the evaluation procedure

is notably lower with TWCS and STWCS compared to SRS (cf.

Figure 5(a)), albeit at the expense of a reduction in coverage. This

decrease can be attributed to the higher complexity of TWCS and

STWCS, which, unlike SRS, involve clustering and stratification.

Nevertheless, both TWCS and STWCS, when used in tandem with

Wilson, achieve coverage probabilities close to the nominal value for

all the considered KGs, unlike Wald solutions. Thus, Wilson again

emerges as the best trade-off between efficiency and reliability.

Wilson vs. Vanilla. Comparing Wilson and its vanilla version

yields the following observations. Wilson demonstrates greater

efficiency with TWCS and STWCS strategies on YAGO and NELL

while maintaining comparable empirical coverage probabilities.

Similar findings also emerge from the analysis of DisGeNET TEM

KGs, where Wilson consistently requires fewer annotations than its

vanilla counterpart, albeit with a negligible decrease in empirical

coverage. In this regard, Agresti and Coull [1] argue that, for most

applications, shorter intervals (i.e., more efficient) with empirical

coverages lower than but close to the nominal confidence level are

preferable to wider intervals with higher coverage (i.e., more reli-

able). Thus, design-effect-adjusted Wilson represents a preferable

solution over vanilla Wilson.

A contrasting scenario emerges when examining DisGeNET

CEM. Here, vanilla Wilson yields significantly lower annotation

costs than the design-effect-adjusted Wilson for both TWCS and

STWCS strategies. However, the cost-saving behavior of vanilla

Wilson comes at the expense of notably lower empirical coverages

compared to adjusted Wilson. Specifically, vanilla Wilson returns

up to 150% more unreliable CIs for TWCS and 50%more for STWCS,

with significant deviations from the true value – reaching up to 14%

for both TWCS and STWCS. This outcome is expected given that

vanilla Wilson is derived from SRS, and its application to TWCS and

STWCS violates its underlying assumptions (see Section 5). Conse-

quently, vanilla Wilson fails to account for clustering and stratifica-

tion effects when used on DisGeNET CEM, where such effects are

prominent. This results in too narrow intervals, thereby providing

a false sense of precision. In contrast, design-effect-adjusted Wilson

effectively overcomes this limitation, restoring empirical coverages

to levels close to the nominal value.

When combined with state-of-the-art sampling strategies, Wil-

son provides the best trade-off between efficiency and reliability.

Furthermore, applying design effect adjustments proves essential

to ensure stable CIs, especially when clustering and stratification

effects are prominent.

7.4 Scalability
We investigate the scalability of the proposed methods by verifying

whether the findings obtained in the previous experiments hold true

when we consider KGs with similar accuracy levels but different

sizes and topologies. To accomplish this, we compare methods on

NELL, DisGeNET TEM (𝜀𝑇 = 0.1), and SYN 100M (𝜀𝑇 = 0.1). These

KGs have similar accuracy levels (𝜇 ≈ 0.9) but exhibit small (NELL),

medium (DisGeNET), and large (SYN 100M) sizes with different

topologies (cf. Table 2).

The experimental results are presented in Table 4, where we

report the number of annotated triples and empirical coverage.

We can highlight two key points. First, despite the increase in

size – ranging across three orders of magnitude from NELL to

DisGeNET, and two from DisGeNET to SYN 100M – the number of

annotations and the empirical coverage remain consistent for all

methods across the KGs. This indicates that while the evaluation

procedure is influenced by the accuracy level of the underlying KG

(cf. Table 3), it remains unaffected by its size or topology. This is
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Table 4: Performance on NELL (small), DisGeNET TEM (medium),
and SYN 100M TEM (large) KGs.

NELL DisGeNET TEM SYN 100M TEM

𝜇 = 0.91 𝜇 = 0.9 (𝜀𝑇 = 0.1) 𝜇 = 0.9 (𝜀𝑇 = 0.1)

Method Triples Coverage Triples Coverage Triples Coverage

SRS (Wald) 107±40 0.82±0.02 125±43 0.83±0.02 122±43 0.83±0.02
SRS (Wilson) 116±33 0.98±0.01 132±35 0.94±0.02 131±34 0.93±0.02

TWCS (Wald) 124±68 0.75±0.03 118±50 0.82±0.02 122±52 0.83±0.02
TWCS (Wilson) 128±65 0.98±0.01 120±46 0.92±0.02 123±51 0.93±0.02

STWCS (Wald) 105±59 0.73±0.03 120±54 0.78±0.03 117±60 0.77±0.02
STWCS (Wilson) 100±57 0.92±0.02 125±51 0.91±0.02 122±57 0.88±0.02

an interesting outcome, as it not only shows that the procedure is

insensitive to KG size – as also observed by Gao et al. [13] – but

also to the topological structure of the considered KG.

Secondly, we observe consistent trends between baselines (Wald)

and the proposedmethods (Wilson) across different sizes and topolo-

gies. Specifically, proposed methods significantly improve coverage

when the KG accuracy is near the boundaries while requiring a

similar number of annotations. The same observations can also be

found when comparing DisGeNET and SYN 100M across different

values of 𝜀𝑇 . However, we do not report on these comparisons due

to space reasons.

The performance of the proposed methods remains consistent

across KGs with different sizes and topologies, maintaining high

coverage probabilities at low annotation costs.

8 RELATEDWORK
Efficient KG Accuracy Evaluation. Ojha and Talukdar [30] were

the first to recognize the need to efficiently estimate the accuracy of

large-scale KGs, largely unexplored in prior work. To this end, they

introduced KGEval, an iterative algorithm that alternates between

two stages: control and inference mechanisms. Although pioneer-

ing, KGEval has two significant limitations. First, its probabilistic

inference process can lead to the propagation of erroneous beliefs

making it difficult to assess the bias introduced into the accuracy

estimation. Secondly, the inference mechanism of KGEval does not

scale to large-size KGs, as shown in [13]. For these reasons, we do

not consider it in our work.

Following [30], Gao et al. [13] advocated the need for sampling

strategies that generate representative samples of the KG. The au-

thors pointed out that SRS fails to guarantee any relationship be-

tween sampled facts, thus incurring high annotation costs. To over-

come this limitation, they resorted to cluster sampling strategies,

identifying TWCS as the most suited for the task. However, their

main focus was selecting an optimal sampling strategy to minimize

annotation costs, neglecting the impact of CIs on the problem. For

building CIs, the authors opted for the Wald method [5], known

to underperform when used on binomial proportions [4, 38]. Our

research addresses this limitation by (i) highlighting the drawbacks

of Wald intervals and (ii) introducing and comparing binomial in-

tervals. Among these, the Wilson interval [42] emerges as the best

trade-off between efficiency and reliability. Furthermore, we intro-

duce coverage probability as a metric to evaluate the reliability of

KG accuracy estimation methods.

Gao et al. [13] also addressed the problem of evaluating an evolv-

ing KG. Since the construction of CIs is independent of this aspect,

we leave the study of evolving KGs as future work.

Qi et al. [32] proposed an efficient human-machine collaborative

framework to minimize annotation costs further. Inspired by [30],

the proposed framework first creates inference graphs and then

interleaves sampling and verification over them. The main focus

of the work is on the verification aspect, which serves for the au-

tomatic inference of the veracity of additional facts. The sampling

strategies, estimators, and CIs align with those considered in [13].

Since our research revolves around these specific aspects rather

than the inference phase, we do not incorporate this method into

our experiments. Note, however, that our contributions – being or-

thogonal to what was proposed by Qi et al. [32] – can be integrated

into their approach to further boost efficiency while improving

statistical reliability.

Data Quality. Efficient KG accuracy evaluation lies under the

umbrella of data quality, as accuracy represents one of the core

data quality dimensions [40, 43]. Data quality encompasses several

activities, such as data cleaning [6, 26, 39] and knowledge verifica-

tion [24, 25], to name a few. Although related, these activities focus

on specific aspects linked to KG quality and do not directly address

efficient KG accuracy evaluation.

Approximate Query Processing. Another related line of re-

search is approximate query processing [14, 41], whose objective

is to efficiently find an approximate answer as close as possible

to the exact one. Hence, the devised sampling strategies focus on

samples suited to approximate query results but not necessarily rep-

resentative of the KG. Besides, efficient KG evaluation also involves

optimizing a constrained minimization problem, thus introducing

further constraints in both sampling strategies and estimators.

9 CONCLUSIONS
In this paper, we highlighted the problems of current state-of-the-art

solutions for KG accuracy evaluation. Relying on the Wald method

to build CIs, these approaches are hindered by zero-width and over-

shooting intervals, compromising the reliability of the estimations.

To overcome these limitations, we introduced a family of binomial

intervals, with Wilson being the most notable representative, and

we adapted them to complex sampling designs, ensuring stable CIs.

Through theoretical and empirical analyses, we identified Wilson

as the best trade-off between efficiency and reliability.

Harnessing Wilson, we proposed solutions that advance the

state-of-the-art. Extensive experiments across various real-life and

synthetic KGs, characterized by different accuracy levels, sizes, and

topologies, show that our solutions are (i) up to two times more

reliable than state-of-the-art in cases where Wald intervals prove

unreliable and (ii) more efficient when Wald intervals are reliable.

Following a thorough comparison of various state-of-the-art

sampling strategies, including clustering (TWCS) and stratification

(STWCS), we advise practitioners to adopt TWCS alongside Wilson

intervals to assess KG accuracy in an efficient and reliable manner.
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