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ABSTRACT

Index advisors aim to improveworkload performance by judiciously

selecting an appropriate set of indexes. Various heuristic-based and

learning-based methods have been proposed. However, there lacks

a comprehensive assessment of existing index advisors, i.e., their

advantages, limitations, and application scenarios. In this work,

we conduct an in-depth study of existing index advisors in five

key aspects. First, we initiate an end-to-end analysis, i.e., a com-

pleted analysis throughout the entire workflow of index advisors.

We decompose index advisors into three essential building blocks,

establish a taxonomy to classify methods used in each block, and

analyze the strengths and weaknesses of these methods. Second,

we develop a unified open-source testbed, implementing seventeen

index advisors across eleven open-source or real-world datasets.

We enable customizable configurations to meet diverse testing re-

quirements. Third, we conduct an extensive assessment of index

advisors across database systems in various scenarios. We evaluate

their adaptability and robustness, identifying practical application

scenarios. Fourth, we undertake a fine-grained ablation study by

investigating variants of each building block. We identify effective

variants and pinpoint significant factors impacting index advisors’

performance via explainable machine-learning techniques. Lastly,

we consolidate our findings that could shed light on research direc-

tions to advance the future development of index advisors.
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1 INTRODUCTION

Indexes are crucial for achieving high workload performance in

databases [54]. Traditionally, indexes are identified, built, and main-

tained by the database administrator (DBA) [17, 45]. However, it is
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tedious for DBAs to manage indexes, especially for millions of data-

base instances on the cloud [15, 65]. To automate this process, index

advisors have been proposed [9, 11, 12, 27, 29, 39–41, 43, 53, 56, 64]

to automatically and judiciously find an appropriate set of indexes

to optimize the query performance.

There are two main categories of index advisors: (1) heuristic-
based index advisors [9, 11, 12, 43, 53, 56] utilize predefined heuris-

tic algorithms to create indexes; (2) learning-based index advi-

sors [27, 29, 39–41, 64] build machine learning models based on

training workloads and utilize these models to select indexes or esti-

mate index benefits. These index advisors have different application

scenarios, and it is vital to evaluate their strengths and limitations for
practical usage. For instance, although learning-based methods are

commonly believed to find near-optimal indexes for a given work-

load once well-trained [31], our experimental results show their

performance is unpredictable, e.g., learning-based methods may

perform worse than heuristic-based methods as the storage budget

of indexes increases. Furthermore, existing works either evaluated

heuristic-based index advisors in static scenarios (i.e., fixed work-

loads) and did not assess learning-based index advisors [26] or only

investigated the robustness of index advisors [61, 62].

To tackle these limitations and assist database users in identifying

the most suitable index advisors for their applications, we conduct

an in-depth study of both the heuristic-based and the learning-based

index advisors and make the following contributions.

❶ (End-to-End Analysis) We provide a completed analysis

encompassing the entire workflow of index advisors by con-

structing a taxonomy of an index advisor’s building blocks

and the methodology within each block (Section 2). Although

some heuristic-based index advisors are summarized in [26], there

lacks a completed analysis in an end-to-end workflow for different

index advisors (i.e., heuristic-based and learning-based methods).

To acquire a clear understanding of the working mechanism of

index advisors, we break down an index advisor into three essential

building blocks (i.e., index candidate generation, index selection,

and index benefit estimation), outline their typical methods, and

summarize their strengths and weaknesses.

❷ (Unified Testbed) - We develop a testbed that implements

seventeen index advisors (and up to 144 variants) across

eleven datasets with a unified interface (Section 3). Existing

studies developed index advisors independently [27, 39], did not

provide open-source implementations [49, 58], or only focused on

heuristic-based index advisors [26]. A testbed that accommodates

both the heuristic-based and the learning-based index advisors is

still missing. To fulfill the goal of a thorough assessment, we de-

velop an open-source testbed. (1) Regarding the index advisors,

2405

https://doi.org/10.14778/3675034.3675035
https://github.com/XMUDM/Index_EAB
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3675034.3675035
https://www.acm.org/publications/policies/artifact-review-and-badging-current


we implement both traditional methods widely used in real sys-

tems [11, 12, 53] and newly-developed learning-based index advi-

sors [27, 39, 40, 64]; (2) Regarding the underlying datasets, we pre-

pare testing suites based on multiple standard benchmarks [19, 32]

and real-world datasets [63]; (3) We also support the evaluations

of customizable combinations of various building blocks over a set

of configurable parameters to meet different testing requirements

(e.g., analytical and transactional queries with different patterns).

❸ (Comprehensive Evaluation) - We place index advisors un-

der different scenarios and conduct extensive experiments

to evaluate their adaptability and robustness over both the

open-source and real-world datasets (Section 4). To the best of

our knowledge, there is only a single study [26] that delved into

the experimental evaluation of index advisors. However, this work

only focused on the evaluation of heuristic-based index advisors.

Besides, most previous studies synthesized workloads with limited

and static query templates in OLAP benchmarks [29, 39], which fail

to reflect the performance of index advisors in real scenarios. To

cope with these limitations, we conduct comprehensive evaluations

to test the capability of index advisors in three main scenarios, i.e.,

(1) static analytical scenarios, (2) dynamic analytical scenarios, and

(3) transactional scenarios. For example, we generate workloads

with small (e.g., varying the query frequency) to large changes (e.g.,

generating the query randomly) for assessing the robustness of

index advisors in dynamic analytical scenarios.

❹ (Fine-grained Comparison) - We explore different variants

of index advisors, compare their performance, and utilize

explainablemachine learning techniques to reveal the under-

lying mechanism (Section 5). Previous studies were restricted

to the original implementations of index advisors [26]. As modern

index advisors are getting more complex, it is vital to understand

the causality and contribution of each building block of index advi-

sors. Thus, we create multiple index advisor variants by exploring

diverse combinations of the underlying building blocks. For exam-

ple, we compare the performance of different filtering methods to

generate index candidates and adopt explainable machine learning

techniques [25] to identify the most influential features to predict

useless indexes and filter them accurately.

❺ (Insightful Findings) - We summarize findings from the

evaluation results to shed light on the selection and future

research of index advisors (Section 6).

(1) Learning-based index advisors can identify more effective

indexes than heuristic-based index advisors for static scenarios

with the same queries.

(2) Learning-based index advisors with offline learning policy,

which undergo an offline training stage across various workloads

and directly return indexes for a new workload, are more efficient

than others in most scenarios (especially for large datasets).

(3) Heuristic-based index advisors are more robust than learning-

based index advisors for dynamic scenarios with workload drifts

and data shifts.

(4) Index candidate generation can significantly affect the per-

formance of index selection, i.e., preserving more index candidates

typically contributes to better performance but higher time over-

head. Empirical rules can enhance the effectiveness and efficiency

of index candidate generation.
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Figure 1: Workflow of Index Advisor

(5) The design of the input features for learning-based index

advisors (i.e., the state representation in reinforcement learning) is

critical to finding effective indexes.

(6) Tree-based estimation methods (e.g., XGBoost), utilizing

query plan features (e.g., cardinality and costs) as input, achieve

the highest accuracy in estimating index benefits.

2 INDEX ADVISOR

2.1 Workflow Overview

As shown in Figure 1, for a given workload, an index advisor gen-

erally contains three building blocks. First, Index Candidate Gen-
eration synthesizes promising index candidates using predefined

strategies (Section 2.2). Then, Index Selection iterates over the gen-

erated index candidates and selects indexes based on the underlying

selection mechanisms (Section 2.3). Index Benefit Estimation is

leveraged to estimate the benefit of building an index to assist the

aforementioned two building blocks. It provides estimated statistics

for Index Candidate Generation to determine which index is an

effective candidate. It quantifies the selection criteria to instruct

Index Selection to choose an appropriate solution (Section 2.4).

In designing an index advisor, some key factors need to be con-

sidered. First, the working mechanism, i.e., whether the index advi-

sor employs a learned component. Based on the working mecha-

nism, index advisors can be classified into two categories: (1) the

heuristic-based methods with a series of predefined algorithms; (2)

the learning-based methods involving various learned components

with different learning paradigms (e.g., reinforcement learning,

classification, and regression). Second, the selection constraint, in-

cluding (1) the budget, e.g., the storage of the index or the maximal

number of indexes to be built; (2) the types of the index to be con-

sidered, e.g., single-column index or the multi-column index. Note

that implementing an efficient physical index design [28] is not the

focus of index advisors, which aim to select effective indexes. We

utilize B-Tree as the default physical index design in this work.

Table 1 presents a list of existing index advisors investigated in

this paper.We assess the representative index advisors including the

ones widely utilized in the production systems and the ones newly

emerged in recent studies. We next present a detailed analysis of

each building block of these index advisors (e.g., the taxonomy, the

strengths, and the weaknesses) in the following subsections.

2.2 Index Candidate Generation

Index candidate generation aims to prepare a set of effective candi-

dates for index selection. As shown in Figure 2, there are four types
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Table 1: Taxonomy and Characteristic of Index Advisors (#Index denotes the number of indexes, S/M denotes the single-column

index and the multi-column index respectively,
𝐶𝑜𝑠𝑡

𝑆𝑡𝑜𝑟𝑎𝑔𝑒
denotes the selection criteria that considers the size of the indexes)

Category Index Advisor Budget Index Type Index Candidate Generation Index Selection (Criteria) Index Benefit Estimation

Heuristic-based

Extend [43] Storage S/M Prefix-based Expansion Heuristic Search Strategy (
𝐶𝑜𝑠𝑡

𝑆𝑡𝑜𝑟𝑎𝑔𝑒
) Statistic-based Method

DB2Advis [53] Storage S/M Random Column Permutation Heuristic Search Strategy (
𝐶𝑜𝑠𝑡

𝑆𝑡𝑜𝑟𝑎𝑔𝑒
) Statistic-based Method

AutoAdmin [12] #Index S/M Prefix-based Expansion Heuristic Search Strategy (𝐶𝑜𝑠𝑡 ) Statistic-based Method

Drop [56] #Index S Random Column Permutation Heuristic Search Strategy (𝐶𝑜𝑠𝑡 ) Statistic-based Method

Relaxation [9] Storage S/M Random Column Permutation Heuristic Search Strategy (
𝐶𝑜𝑠𝑡

𝑆𝑡𝑜𝑟𝑎𝑔𝑒
) Statistic-based Method

DTA [11] Storage S/M Random Column Permutation Heuristic Search Strategy (𝐶𝑜𝑠𝑡 ) Statistic-based Method

GUFLP [10] Storage S/M Random Column Permutation Mathematical Solver (𝐶𝑜𝑠𝑡 ) Statistic-based Method

CoPhy [16] Storage S/M Rule-based Construction Mathematical Solver (𝐶𝑜𝑠𝑡 ) Statistic-based Method

Learning-based

SWIRL [27] Storage S/M Random Column Permutation Learned Selection Policy (
𝐶𝑜𝑠𝑡

𝑆𝑡𝑜𝑟𝑎𝑔𝑒
) Statistic-based Method

DRLindex [40] #Index S Random Column Permutation Learned Selection Policy (𝐶𝑜𝑠𝑡 ) Statistic-based Method

DQN [36] #Index S/M Rule-based Construction Learned Selection Policy (𝐶𝑜𝑠𝑡 ) Statistic-based Method

DBA Bandits [39] Storage S/M Rule-based Construction Learned Selection Policy (Cost) Actual Runtime Statistics

AutoIndex [64] Storage S/M Rule-based Construction Learned Selection Policy (𝐶𝑜𝑠𝑡 ) Learned Estimation Model

BudgetMCTS [58] #Index S/M Prefix-based Expansion Learned Selection Policy (𝐶𝑜𝑠𝑡 ) Statistic-based Method

AI Meets AI [20] #Index S/M Prefix-based Expansion Heuristic Search Strategy (𝐶𝑜𝑠𝑡 ) Learned Estimation Model

DISTILL [49] Storage S/M Learned Filter Model Heuristic Search Strategy (𝐶𝑜𝑠𝑡 ) Learned Estimation Model

ISUM [48] Storage S/M Learned Filter Model Heuristic Search Strategy (𝐶𝑜𝑠𝑡 ) Statistic-based Method

LIB [47] Storage S/M Random Column Permutation Heuristic Search Strategy (𝐶𝑜𝑠𝑡 ) Learned Estimation Model

QueryFormer [60] Storage S/M Random Column Permutation Heuristic Search Strategy (𝐶𝑜𝑠𝑡 ) Learned Estimation Model
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Figure 2: Index Candidate Generation Methods

of index candidate generation methods to alleviate searching over

enormous candidate space [49].

❶ RandomColumn Permutation. The first type generates candi-

dates in a two-step manner. As presented in Figure 2, it first parses

and extracts all the indexable columns in the workloads. Next, it

synthesizes index candidates by conducting permutations over the

extracted columns within a given maximum index width (i.e., the

number of columns in the index). To further reduce the volume of

the candidates, some index advisors [40, 56] only generate single-

column indexes, and others [9, 11, 53] leverage the what-if calls r

to only preserve the indexes utilized in the query plans.

❷ Rule-based Construction. The second type generates candi-

dates using rules that consider query patterns. As shown in Figure 2,

index advisors [29, 39] first parse and classify the indexable columns

into several groups based on the syntactic characteristics (e.g., JOIN
and EQUAL denote the columns appear in join and equal predi-

cates respectively). Then they utilize a series of heuristic rules to

construct effective candidates (e.g., candidate ‘title: (id, kind_id)’
is generated according to ‘Rule2: JOIN + EQUAL’ that combines

columns in join and equal predicates). Apart from the syntactic

features, some index advisors [34, 64] also take the data statistics

of each column (e.g., the columns’ selectivity: ‘selectivity(id) > se-
lectivity(kind_id)’) into account during the generation process.

❸ Prefix-based Expansion. Instead of generating a fixed set of

candidates at the beginning (i.e., a one-time effort), the third type

maintains index candidates dynamically. It continuously refines the

candidates based on the indexes selected in the previous rounds.

As displayed in Figure 2, candidates in each round are generated

by appending columns to the selected indexes (e.g., adding col-

umn ‘kind_id’ to the selected index ‘(id)’ to be a new candidate

‘(id,kind_id)’) [43]. The index width of the index candidates (i.e.,

the number of indexed columns) gradually increases, and a multi-

column index candidate can only be considered when the candidate

of its prefix has been selected [12, 27].

❹ Learned Filter Model. The last type employs learned models

to filter out useless index candidates. As shown in Figure 2, there

are two consecutive models. The Query Filter Model identifies
representative queries in the workload. The model’s inputs are

various statistics (e.g., the table size, the column selectivity, and the

query cost), and the model’s outputs are the filtered representative

queries in the workload. Then, index candidates are generated (i.e.,

permutate the indexable columns) based on the workload with

these representative queries [48]. These index candidates are then

fed to the Index Filter Model, which estimates the benefit of each

index candidate based on index-related features (e.g., the statistics

of each node in the query plan) and eliminates the useless ones (i.e.,

the impact is less than a given filtering threshold) [49].

Training and Inference. The learned filter model is workload-

dependent and is trained with a labeled dataset, including the work-

load statistics. Once well-trained, it can be applied to compress the

testing workloads or filter out useless index candidates. Training

is necessary for each dataset, and retraining is required when the

testing workloads differ significantly from the training workloads.
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2.3 Index Selection

Index selection explores the generated candidates and identifies the

most effective indexes based on various strategies or algorithms.

Generally, the selection is instructed by the formulated criteria,

which either consider the pure cost (i.e.,𝐶𝑜𝑠𝑡 ) [11, 12] or the relative

cost w.r.t. the size of the index (i.e.,
𝐶𝑜𝑠𝑡

𝑆𝑡𝑜𝑟𝑎𝑔𝑒
) [43]. As shown in

Figure 3, there are three types of selection methods.

❶ Heuristic Search Strategy. The first type determines indexes

with different heuristic strategies gradually until the stop criterion is

satisfied (e.g., the selected indexes exceed the storage budget). Based

on the initial status of the selected index, there are two manners to

conduct index selection. (1) incremental: add more indexes from an

empty set; (2) decremental: remove indexes from a full index set.

▶ Incremental Iterative Manner. As displayed in Figure 3, this man-

ner starts from an empty set and adds indexes to the selected index

set incrementally. Specifically, most index advisors adopt greedy

algorithms to choose the indexes that maximize the predefined

selection criteria. Since the solely greedy strategy will likely return

a sub-optimal indexing solution, some index advisors [12] adopt a

mixed search strategy. Specifically, they first utilize the exhaustive

search to derive several optimal indexes in a brute-forcemanner and

then the greedy search to derive the remaining indexes. Another

way to escape a sub-optimal solution is to alter indexes selected

(e.g., randomly exchange some selected indexes with the ones not

selected) and verify whether they are superior [53].

▶ Decremental Iterative Manner. As displayed in Figure 3, this man-

ner initializes with all the candidates. It reduces the set of the

selected indexes by discarding indexes until the given budget is

satisfied. To acquire a reduced set of indexes (i.e., a smaller number

or a lower storage budget), some index advisors [56] iteratively ex-

clude the most “useless” index, e.g., removing the index that results

in a smaller workload cost than removing other indexes. Others

employ index transformations [9], including: (1) Merging: append
the columns of one index to the end of another index. For example,

it merges the index ‘title: (id)’ and the index ‘title: (kind_id)’ to
get a new index ‘title: (id, kind_id)’; (2) Splitting: split two indexes

with shared prefix columns into three indexes. For example, it splits

the two indexes (‘title: (id, kind_id)’ and ‘title: (id,title)’) into three

Table 2: Characteristics of Learned Selection Policy

Index Learning State Represetation Action Reward

Advisor Algorithm Workload Action Space Function

SWIRL [27]

PPO

(Offline Learning)

1. Query Representation

2. Query Frequency

3. Query Cost

1. Storage Info

2. Cost Sum Info

3. Index Status

Random Column

Permutation

𝐶𝑜𝑠𝑡
𝑆𝑡𝑜𝑟𝑎𝑔𝑒

DRLindex [40]

DQN

(Offline Learning)

1. Query Representation

2. Accessed Column

3. Column Selectivity

Index Status

Random Column

Permutation

𝐶𝑜𝑠𝑡

DQN [29, 35]

DQN

(Online Learning)

Query Frequency Index Status

Rule-based

Construction

𝐶𝑜𝑠𝑡

DBA Bandits [39]

MAB

(Online Learning)

N/A Index Status

Rule-based

Construction

𝐶𝑜𝑠𝑡

AutoIndex [64]

MCTS

(Online Learning)

N/A Index Status

Rule-based

Construction

𝐶𝑜𝑠𝑡

BudgetMCTS [58]

MCTS

(Online Learning)

N/A Index Status

Prefix-based

Expansion

𝐶𝑜𝑠𝑡

indexes, i.e., the shared prefix (‘title: (id)’) and two indexes with the

remaining columns (‘title: (kind_id)’ and ‘title: (title)’); (3) Truncat-
ing: truncate the last column of an index. For example, it removes

the column ‘kind_id’ in index ‘title: (id, kind_id)’ and gains a new

index ‘title: (id)’; (4) Removing: remove an index from the candidate

set; (5) Promotion to a clustered index: transform a non-clustered

index to a clustered index. The new clustered index could speed up

range queries in the target workload and reduce the index size.

❷ Mathematical Solver. The second type models index selection

as a linear programming problem (LP) [7]. The choice of indexes is

treated as binary variables, and the overall workload cost is a linear

objective function based on the workload statistics (i.e., the work-

load cost) and the choice of indexes. An off-the-shelf mathematical

solver derives the solution (i.e., the indexes) that minimizes the

objective function subject to a set of constraints (e.g., the storage

budget) [16, 42]. Moreover, to reduce the complexity of the problem,

some index advisors restrict the solution space by only allowing

a single index for each query [10]. Others decompose the original

problem into several smaller ones and solve these smaller problems

simultaneously to enhance the selection procedure [44].

❸ Learned Selection Policy. The third type transforms the se-

lection procedure into a Markov Decision Process (MDP) [14] and

utilizes reinforcement learning to solve this problem. Specifically,

with state representation (information like workload characteristics)

as the input, these methods iterate over a predefined action space
(index candidates) via a learned selection policy (to decide an action

of an index candidate) and refine the policy based on the reward
function. Based on whether these methods can adapt to dynamic

workloads, they can be classified into (1) online learning policy or

(2) offline learning policy. The details about the MDP modeling of

different methods are summarized in Table 2.

▶ Online Learning Policy. As displayed in Figure 3, this method

learns to identify optimal indexes for a static workload through iter-

ative trial-and-error attempts, where the selection overhead refers

to the online training effort over the given workload. It captures

the environment information (i.e., the workload characteristics and

the current index status) at a coarse granularity. The workload is

modeled by a one-dimensional query frequency vector where each

channel corresponds to an individual query [29, 35]. The index

candidates are modeled as a multi-hot index vector where each

channel indicates whether the index candidate has been selected

(e.g., 0 denotes not selected). The order of the columns in the index

and the derived statistical information (e.g., the estimated size of

the index) are also taken into account in some index advisors [39].

As opposed to using vector representations for indexes, some index

advisors [58, 64] maintain a selection tree where each tree node
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corresponds to a valid index combination. To optimize the policy,

different learning algorithms are adopted, including Deep Q Net-

work (DQN) [36] and Multi-armed Bandits (MAB) [39], which train

a Neural network to represent the action policy and Monte Carlo

Tree Search (MCTS) [8] which computes optimal actions through

numerous simulations (i.e., without a neural network).

▶ Offline Learning Policy. Instead of conducting index selection for

a static workload, this method handles dynamic workloads. The

selection overhead only includes the inference overhead, facilitated

by an offline training step. As shown in Figure 3, it first under-

goes an offline training process across various workloads. Then,

the learned policy directly returns indexes for a new workload.

Specifically, this method models environmental information in a

fine-grained manner. These methods characterize a workload with

a query representation matrix, where each row is the representation

generated by learned models [27] or filled with statistic vectors

(e.g., the number of accessed column occurrences in the query) [40].

Some index advisors [40] also introduce other features like column

selectivity. These methods leverage a multi-hot vector to reflect the

status of current indexes. Some index advisors [27] also incorporate

meta information (e.g., the storage budget). The selection policy is

learned via Deep Q Network (DQN) [36] that estimates the Q-value

(i.e., the index benefit) of each index and Proximal Policy Optimiza-

tion (PPO) [46] that adjusts the parameters of the policy network

to maximize the rewards (i.e., the index benefit).

Training and Inference. The learned selection policy is workload-

dependent and is trained over a dataset with various workloads. For

online learning policy, the training and the testing dataset contain

the same workload. It only learns to identify indexes for the given

workload and requires retraining when a new workload arrives (i.e.,

online learning process). For offline learning policy, the training

and the testing datasets are different workloads. It directly returns

indexes for the testing workload with the knowledge (e.g., the index-

related query patterns) acquired over the training workloads (i.e.,

offline learning process). It undergoes training for each dataset and

requires retraining when significant query drift occurs.

2.4 Index Benefit Estimation

Index benefit estimation aims to estimate the benefits of utilizing

the selected indexes without actually building the indexes (i.e., the

actual runtime statistics), which includes two main types.

❶ Statistic-based Method. The first type utilizes the estimated

statistics from the database optimizer to calculate the index ben-

efits. It derives the estimated statistics via the what-if calls of the

database optimizer with the usage of hypothetical indexes (e.g., the

database optimizer equipped with the HypoPG [1] extension in

PostgreSQL [3]). Specifically, the what-if calls return (1) the query

cost by an empirical cost function about the weighted sum of dif-

ferent operations (e.g., seq_page_cost) [57] and (2) the index size

by a predefined size function based on the estimated statistics (e.g.,

the tuple_num and the page_size) [1].
❷ Learned Estimation Model. The second type employs learned

models to estimate index benefit. These models are trained to serve

as a mapping function from the input workload statistics and in-

dexes to the value that reflects its benefit (e.g., the relative cost

reduction [47]). Unlike learned cardinality or cost estimation mod-

els [50, 51], which require only workload features (e.g., the joined
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Figure 4: Workflow of the Proposed Testbed

tables), learned index benefit estimation models require features

that characterize the index (e.g., the selectivity of the columns in

the index) to estimate its benefit. Overall, there are two categories:

▶ Classification Model. The first model takes estimation as a clas-

sification problem and predicts which of the two input indexes is

more effective. Given two indexes and the corresponding query

plans, [20] trains a classifier to return the index with a larger index

benefit based on the well-defined feature vectors of the query plan

(e.g., the sum of the estimated cost of each node).

▶ Regression Model. The second model treats estimation as a regres-

sion problem and estimates the workload cost (𝑐𝑜𝑠𝑡𝑤/ 𝑖𝑛𝑑𝑒𝑥 ) or its

reduced ratio (1− 𝑐𝑜𝑠𝑡𝑤/ 𝑖𝑛𝑑𝑒𝑥

𝑐𝑜𝑠𝑡𝑤/𝑜 𝑖𝑛𝑑𝑒𝑥
) [47, 49] over the given indexes. They

propose deep learning models (e.g., the attention-based model [47])

to characterize index-related features for an accurate estimation.

For example, they utilize the operation information (e.g., the op-

erator type affected by the index in the query plan), the database

statistics (e.g., the distinct ratios of the indexed columns), and the

index information (e.g., the order of the columns in the index) to

estimate index benefit [47, 60].

Training and Inference. The learned estimation model is workload-

dependent and predicts index benefits given the index-related fea-

tures. Specifically, it undergoes an offline training process with a

labeled dataset, including the workload features (e.g., the query

plan) and the actual index benefits (e.g., the reduced query latency).

Then, it can be applied to estimate the index benefit given the test-

ing workloads and the indexes. It needs to be trained once for each

dataset and requires retraining when significant query drift occurs.

3 EXPERIMENTAL TESTBED

We develop the first open-source testbed that (1) includes heuristic-

based and learning-based index advisors with 17 methods in total,

(2) supports a fine-grained comparison over the building blocks of

index advisors with up to 144 variants, and (3) provides a unified

interface to conduct evaluation over 11 datasets with various user-

specified parameters in different scenarios. As shown in Figure 4,

the testbed includes three modules.

▶ Configuration Loader. This module initializes a series of evalu-

ation settings, which involve the following aspects. (1) Benchmark:
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the datasets (e.g., the OLAP benchmark TPC-H [5]), the query pa-

rameters (e.g., the number of queries), and the workload generation

methods (e.g., query template-based generation); (2) Index Advi-
sor: the assessed index advisors, the methods of the three building

blocks, and the selection constraints (e.g., the storage budget); (3)

Database: the target databases, i.e., PostgreSQL and openGauss,

that support hypothetical indexes [1].

▶Workload Generator. This module supports three methods for

generating workloads with diverse features (e.g., query changes

due to typical workload drifts [33]) to simulate the requirements

posed by various scenarios. (1) Template-based Method generates

queries by filling placeholders in the predefined query templates

with different values (e.g., the 22 templates in TPC-H benchmark);

(2) Perturbation-based Method augments queries by applying a

series of perturbations (i.e., minor query changes). It simulates the

workload drifts due to daily transactions or user behavior [19, 54]

by perturbing the given queries [61], such as (𝑎) modifying values

in the filter predicates, (𝑏) adding additional columns in the SELECT
clause, and (𝑐) adjusting the order of the columns in theORDER BY
clause; (3) Random Method synthesizes Select-Project-Join (SPJ)
queries based on the PrimaryKey-ForeginKey (PK-FK) relations (i.e.,
the specified join predicates) with varying numbers of randomly

generated filter predicates [24, 51, 55, 59]. More details about the

workloads are in the experimental settings of each section.

▶ Index Advisor Selector. This module implements index advi-

sors listed in Table 1, including seven heuristic-based index advi-

sors and ten learning-based index advisors. (1) Heuristic-based:
We refactor the implementations of heuristic-based index advisors

in [26] (e.g., extend the selection constraints to include both the stor-

age budget and the maximum allowable number). We implement

index advisors with the selection policy of mathematical solver (e.g.,

CoPhy [16]); (2) Learning-based:We implement index advisors

that employ learned components in the three building blocks. For

Index Candidate Generation, we implement DISTILL [49] with mul-

tiple tree-based variants (e.g., XGBoost [13]). For Index Selection,
we implement DRLindex [40] with the proposed state representa-

tion (i.e., the query representation matrix, the column selectivity

vector, the assessed column vector, and the multi-hot index status

vector). We implement DQN [29, 35] by leveraging the state repre-

sentation in SWIRL [27] (i.e., the query representation, the query

frequency/cost vector, the multi-hot index status vector, the cost

sum, and the storage budget) to support dynamic workloads. For

Index Benefit Estimation, we implement the classifier of tree-based

models with the statistical features (i.e., the query cost and cardinal-

ity) and model it as a regression problem (i.e., a cost estimator) [20].

We refactor the implementations of LIB [47] and QueryFormer [60]

to support workloads across datasets.

BenchmarkDataset. We employ various open-source benchmarks

and real-world datasets for evaluating performance in the OLAP

or OLTP scenario. For the OLAP scenario, we adopt five bench-

marks with different characteristics and complexities. (1) TPC-H [5]:
an open-source decision support benchmark, where the data is

uniformly distributed with a small schema of 22 query templates

and 61 columns; (2) TPC-DS [4]: an open-source decision support

benchmark, which is complex with a large schema of 99 query

templates and 429 columns; (3) JOB [32]: a real-world IMDB dataset

with 113 query templates and 108 columns, where the overuse of

Table 3: Comparison of Learning-based Methods (RL denotes

reinforcement learning and SL denotes supervised learning)

Index Advisor Model Type

Model Size

(MB)

#Parameters

Training

Time (s)

Training

Paradigm

SWIRL [27] Network 3.58 927,065 5,090 RL

DRLindex [40] Network 1.17 300,527 985 RL

DQN [29] Network 1.12 281,891 1,467 RL

AI Meets AI [20] Tree-based 26.43 N/A 44 SL

DISTILL [49] Tree-based 3.03 N/A 17 SL

LIB [47] Network 0.39 9,1617 2,343 SL

QueryFormer [60] Network 11.95 3,118,167 3,360 SL

indexes leads to performance regression; (4) TPC-H Skew [39]: an
augmented version of TPC-H with a skewed data distribution of 22

query templates and 61 columns; (5) DSB [19]: an enhanced version

of TPC-DS with 52 more complex query templates and 429 columns.

For the OLTP scenario, we create multiple TPC-C benchmarks [18]

with varying Read/Write ratios by adjusting the proportions of

the five transactions, along with multiple real-world datasets con-

taining transaction queries [63]. Note that our testbed can add other

datasets with little effort (e.g., specify the database connection).

Evaluation Metric. (1) Relative Cost Reduction: the benefit of the
indexes, i.e., the ratio of reduced workload cost (i.e., 1− 𝑐𝑜𝑠𝑡𝑤/ 𝑖𝑛𝑑𝑒𝑥

𝑐𝑜𝑠𝑡𝑤/𝑜 𝑖𝑛𝑑𝑒𝑥
)

returned by various index advisors; (2) Time Duration: the time

overhead required to get the indexes returned by different index

advisors. For learning-based index advisors with offline learning

policy (e.g., SWIRL), their training overhead is exclusively consid-

ered and reported beyond this metric; (3)Query Latency: the actual
query runtime with the selected indexes; (4) Throughput: the num-

ber of queries or transactions processed within a given time horizon

with the selected indexes; (5) Q-Error: the estimation accuracy (i.e.,

𝑚𝑎𝑥 ( 𝑏𝑒𝑛𝑓 𝑖𝑡𝑎𝑐𝑡
𝑏𝑒𝑛𝑒𝑓 𝑖𝑡𝑒𝑠𝑡

,
𝑏𝑒𝑛𝑒𝑓 𝑖𝑡𝑒𝑠𝑡
𝑏𝑒𝑛𝑒𝑓 𝑖𝑡𝑎𝑐𝑡

)) of the index benefit estimation models;

(6) F1 Score: the classification performance [31] of the learned filter

model in identifying effective index candidates.

Implementation. Experiments are conducted with Python 3.7,

PostgreSQL 12.5, and openGauss 5.0.0 on a workstation with two

Intel (R) Xeon (R) CPU E5-2678 v3 @ 2.50GHz, 256 GB main mem-

ory, and 4 GeForce RTX 2080 Ti graphics cards. The default selection

constraint is the storage budget, set at half the size of the dataset

(e.g., 500MB for a 1GB dataset), and the default maximum index

width (the number of used columns) is 2. For learning-based index

advisors, the workloads are split into training/validation/testing set

by 8:1:1. The hyperparameters are determined by employing the

values from the original implementations or utilizing grid search

and cross-validation methods. The offline training overhead for the

offline learning policy is set to be 100,000 epochs by default. We

compare important training parameters of learning-based methods

in Table 3. For example, Training Time displays the time spent to

train the model within a given budget (e.g., the same predefined

epochs for methods with the same Model Type and Training Para-
digm). The results are derived over three runs to alleviate the impact

of external factors (e.g., the fluctuation in resource availability).

4 OVERALL PERFORMANCE EVALUATION

In this section, we evaluate the overall performance of index advi-

sors across different scenarios. Our investigation delves into their

performance over workloads with diverse features (e.g., analytical

or transactional queries). We also consider the selection granularity,

i.e., delivering indexes for a query or a workload.
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Figure 5: Workload-level Performance (① denotes heuristic-

based index advisor; ② denotes learning-based index advisor)

Table 4: Training Overhead of Learning-based Index Advisors

Method TPC-H TPC-DS JOB TPC-H Skew DSB

SWIRL [27] 1h 24m 50s 7h 46m 47s 6h 11m 7s 51m 51s 5h 35m 3s

DRLindex [40] 16m 25s 2h 39m 25s 22m 32s 14m 17s 55m 22s

DQN [29] 24m 27s 4h 13m 50s 43m 43s 23m 53s 3h 1m 21s

–RQ4.1:How effectively can index advisors handle complex analyt-

ical queries in static analytical scenarios? Furthermore, how about

their performance over workload-level and query-level selection?

– RQ 4.2: To what extent can index advisors adapt to dynamic ana-

lytical scenarios with workload drifts? For example, how well do

they handle minor changes (e.g., similar query templates with vary-

ing query frequency) and extreme changes (e.g., random queries)?

– RQ 4.3: How effectively can index advisors manage the trans-

actional workloads, including the IUD statements (i.e., INSERT,
UPDATE, and DELETE statements) that induce data shifts?

4.1 Static Analytical Scenarios

Experimental Setting. We construct workloads based on the

OLAP benchmark in Section 3, where the same query templates

are populated with different parameter values via distinct random

seeds. The workload size varies from one (i.e., query-level selection)

to the number of templates in the benchmark (i.e., workload-level

selection). The query frequency is randomly assigned by a value in

[1, 1000]. The training and the testing workloads for all the learning-

based methods are the same workloads. The results are the average

performance of index advisors over these workloads.

O1 (Selection Effectiveness): Learning-based index advisors

can identify more effective indexes but with a higher perfor-

mance variance than heuristic-based index advisors over

static workloads of same queries. As displayed in Figure 5,

learning-based index advisors return more effective indexes than

heuristic-based index advisors when the training and the testing

workloads are comprised of the same queries. For example, SWIRL

achieves a higher Relative Cost Reduction, i.e., 37.48% than 26.30%

of heuristic-based index advisors over JOB benchmark on average.

However, learning-based index advisors exhibit a higher perfor-

mance variance, i.e., the standard deviation of the Relative Cost
Reduction is 5.01 (2.55× of heuristic-based index advisors). It might

be attributed to the fact that the learning algorithms enable learning-

based index advisors to capture various workload patterns essen-

tial for selecting effective indexes via substantial trial-and-error

attempts. However, the trial-and-error strategy might involve incor-

rect attempts that mislead the training process, introduce significant

uncertainty regarding the quality of the learned policy, and lead to

performance oscillation of learning-based index advisors.

Figure 6: Query-level Performance

Table 5: Time Duration (s) of Each Building Block

Method

TPC-H TPC-DS

Index Candidate

Generation +

Index Selection

Index Benefit Estimation Index Candidate

Generation +

Index Selection

Index Benefit Estimation

Simulation Cost Request Simulation Cost Request

Extend [43] 1.01 (8.1%) 0.33 (2.6%) 11.16 (89.3%) 58.6 (9.5%) 3.84 (0.6%) 554.48 (89.9%)

DB2Advis [53] 0.15 (22.7%) 0.25 (37.9%) 0.26 (39.4%) 1.77 (19.7%) 2.39 (26.7%) 4.8 (53.6%)

Relaxation [9] 7.85 (18.6%) 1.76 (4.2%) 32.58 (77.2%) 6076.14 (36.3%) 92.31 (0.5%) 10574.86 (63.2%)

DTA [11] 13.95 (8.5%) 6.08 (3.7%) 143.4 (87.8%) 176.1 (8.8%) 14.82 (0.7%) 1824.83 (90.5%)

AutoAdmin [12] 1.49 (5.8%) 1.54 (6.0%) 22.68 (88.2%) 45.87 (4.1%) 21.68 (2.0%) 1037.37 (93.9%)

Drop [56] 7.73 (44.5%) 1.12 (6.4%) 8.54 (49.1%) 5282.8 (88.0%) 29.27 (0.5%) 689.62 (11.5%)

CoPhy [16] 0.79 (7.2%) 0.30 (2.7%) 9.85 (90.1%) 14.57 (4.8%) 2.12 (0.7%) 286.83 (94.5%)

On the contrary, heuristic-based index advisors return indexes

with a smaller performance variance than learning-based index

advisors. Among them, DTA [11] outperforms others with the Rel-
ative Cost Reduction, i.e., 36.14% on average. It might be attributed

to the fact that DTA compares and considers candidates effective

for a single query in the workload, which are likely to have a larger

impact on the workload. Moreover, it supports the selection of multi-

column indexes that accelerate the retrieval of multiple conjunctive

filter predicates without restricting the width of index candidates

(i.e., the number of columns) at the beginning [12].

O2 (Selection Efficiency):Learning-based index advisors with

offline learning policy aremore efficient thanheuristic-based

index advisors and learning-based index advisors with online

learning policy. As shown in Figure 5, learning-based index advi-

sors with offline learning policy (i.e., SWIRL [27], DRLindex [40]

and DQN [29]) require less overhead
1
, i.e., 591.39𝑚𝑠 , 163.32× faster

than others on average. The reason is that they return indexes

without the time-consuming search process (i.e., enumerate and

compare different indexes) and the online training procedure (i.e.,

update the policy network). Among them, DRLindex requires the

shortest selection time 301.79𝑚𝑠 , which is 1.44× faster than others.

It might stem from: (1) the absence of maintaining index candidates

dynamically in SWIRL; (2) a smaller set of index candidates (i.e.,

only single-column index) to select from than DQN. These also con-

tribute to less training overhead for DRLindex. As shown in Table 4,

DRLindex requires the least training overhead, i.e., 3216.2𝑠 of 100

thousand epoch (2.43× faster than SWIRL and DQN on average).

On the contrary, heuristic-based index advisors with decremental

iterative manner are the most time-consuming, especially over large

datasets. For example, the time overhead of Relaxation and Drop

is 10.26× than other heuristic-based index advisors over TPC-DS
and DSB benchmark on average. The underlying reason is that the

decremental iterative manner includes all the index candidates

initially. It requires more steps to remove indexes of larger datasets

than the incremental iterative manner. To further identify the most

time-consuming step of heuristic-based index advisors, we calculate

the time distribution over each building block of index advisors in

Table 5. We observe that the time spent on Index Benefit Estimation

1
Note the time overhead of the offline training process is not included in time duration,

which is reported in Table 4.
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Figure 7: Performance w.r.t. Varying Budget Constraints

occupies a large proportion (i.e., 79.53% on average). It involves

the usage of the what-if calls to simulate hypothetical indexes (i.e.,

Simulation) and derive estimated query costs (i.e., Cost Request) to
calculate index benefits. Cost Request is the most time-consuming

step, which occupies 72.73% of the selection time on average.

O3 (Selection Granularity): Index advisors perform better

over the query-level selection than the workload-level selec-

tion. In contrast to the results in Figure 5, index advisors obtain

higher Relative Cost Reduction over query-level selection as shown
in Figure 6. Specifically, the respective values of heuristic-based and

learning-based index advisors are 48.11% and 41.47% over query-

level selection compared with 31.82% and 21.13% over workload-

level selection. The time overhead of heuristic-based index advisors

is also within an acceptable range, i.e., < 10𝑠 . DB2Advis is even

more efficient than SWIRL across all the benchmarks. It indicates

that a simple workload (i.e., only a single query) alleviates the dif-

ficulty of index selection (e.g., a smaller index space to explore).

Thus, index advisors are expected to handle it well, regardless of

their diverse internal designs.

O4 (Selection Budget): Heuristic-based index advisors iden-

tify more effective indexes given a larger storage budget,

while learning-based index advisors might return inferior

indexes when the storage budget increases. As displayed in

Figure 7, the Relative Cost Reduction of heuristic-based index ad-

visors shows an increasing tendency as the value of Storage and
#Index increases. For example, the Relative Cost Reduction of DTA

rises from 8.61% to 32.95% when Storage increases from 100MB to

900MB, and from 14.02% to 35.73% when #Index increases from 1

to 17. However, this is not the case for learning-based index advi-

sors. As shown in Figure 7, the Relative Cost Reduction of SWIRL

and DRLindex decline when the storage increases from 500MB to

900MB (i.e., from 26.53% to 21.75% for SWIRL and 23.75% to 19.40%

for DRLindex). It aligns with the discovery of learned cardinality es-

timation models in [23, 55] that the estimated cardinality increases

for queries with an additional predicate. Such unpredictability of

learning-based methods raises concerns about their reliability. The

lack of interpretability renders them inappropriate for real-world

applications with rigorous requirements [6, 37].

4.2 Dynamic Analytical Scenarios

Experimental Setting. We construct workloads (split into the

training/validation/testing set by 8:1:1 for learning-based index ad-

visors) with different degrees of workload drifts (i.e., query changes)

Figure 8: Relative Cost Reduction of (a) index advisors w.r.t.

different workload changes and (b) learning-based index ad-

visors with offline learning policy at each training epoch.

to verify the robustness of index advisors (i.e., the ability to main-

tain stable performance over dynamic workloads). (1) Varying Fre-
quency: queries in the workloads remain the same but are assigned

by a random frequency in [1, 1000]; (2)Query Perturbation: a series
of perturbations (i.e., add a new predicate) are applied to queries

in the workloads to simulate typical workload drifts [33, 61] intro-

duced in Section 3; (3) Random Generation: queries in the work-

loads are randomly synthesized through the method (e.g., varying

numbers of selection predicates based on the specified join pred-

icates) in [24, 59]. It simulates extreme workload changes due to

large workload drifts and poses large requirements for the robust-

ness of index advisors.

O5 (Varying Frequency & Query Perturbation): Heuristic-

based and learning-based index advisors are robust over

workloads with varying frequency and small perturbations.

As shown in Figure 8 (a), learning-based and heuristic-based index

advisors achieve similar Relative Cost Reduction over workloads of

Varying Frequency andQuery Perturbation over TPC-H benchmark.

The respective Relative Cost Reduction is 28.53% and 27.29% on av-

erage. However, the performance is significantly worse, i.e., 38.58%

and 30.31% on average over TPC-H Skew benchmark with a skewed

data distribution. We plot the training curves of learning-based

index advisors with offline learning policy in Figure 8 (b). We ob-

serve that their training curves show a higher degree of oscillation

for workloads of Query Perturbation over TPC-H Skew benchmark

than workloads of Varying Frequency over TPC-H benchmark. All

of these indicate the capability of learning-based index advisors

to handle dynamic workloads of slight changes over simple data

distributions since they can capture essential query patterns and

identify effective indexes within a few trial-and-error attempts.

O6 (Random Generation): Learning-based index advisors are

less robust than heuristic-based index advisors, and they con-

verge poorly over random workloads. As shown in Figure 8 (a),

learning-based index advisors obtain lower Relative Cost Reduc-
tion than heuristic-based index advisors over Random Generation
workloads. The Relative Cost Reduction of learning-based index

advisors is 28.10% compared with 40.61% of heuristic-based index

advisors over TPC-H benchmark on average. For TPC-H Skew bench-
mark, the Relative Cost Reduction is 19.12% of learning-based index

advisors against 41.31% of heuristic-based index advisors. Besides

having lower effectiveness, learning-based index advisors converge
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Figure 9: Performance over Simple Transactional Query

Table 6: Performance over TPC-C Benchmark Variants

Datasets DEFAULT READ HEAVY WRITE HEAVY

Method

Throughput

(requests / s)

Latency

(ms)

Throughput

(requests / s)

Latency

(ms)

Throughput

(requests / s)

Latency

(ms)

Heuristic-based Index Advisor

Extend [43] 194.95 5115.40 689.48 1444.20 220.99 4513.60

DB2Advis [53] 201.25 5009.20 204.70 4932.80 220.37 4526.00

Relaxation [9] 203.73 4943.60 191.25 5219.80 221.75 4498.20

DTA [11] 213.62 4669.40 205.06 4871.20 221.42 4504.40

AutoAdmin [12] 192.88 5177.00 708.84 1407.00 221.30 4506.60

Drop [56] 48.61 20588.00 12.50 80457.00 148.20 6751.60

CoPhy [16] 210.70 4738.20 0.77 9121877.80 223.30 4468.40

Learning-based Index Advisor

SWIRL [27] 1.21 1528165.93 148.94 21142.47 3.55 1326983.13

DRLindex [40] 7.48 271020.00 10.42 664973.93 9.87 1319985.93

DQN [29] 37.67 44955.53 108.85 14266.67 105.24 20294.20

MCTS [58, 64] 9.61 116962.00 102.07 34237.40 49.06 20363.00

DBA Bandits [39] 34.14 96717.20 114.49 18338.60 206.74 4820.60

poorly over Random Generation workloads. According to the train-

ing curves in Figure 8 (b), index advisors exhibit poor convergence

performance, especially over TPC-H Skew benchmark. Random

workloads encompass diverse query patterns, which poses a signif-

icant challenge to learning a well-behaved selection policy. Thus,

index advisors require extensive trial-and-error attempts to find

effective indexing solutions.

4.3 Transactional Scenarios

Experimental Setting. We evaluate the performance of index ad-

visors over transactional workloads and investigate the impact of

data shifts [33, 38] incurred by the IUD statements (i.e., INSERT,
UPDATE and DELETE statements). (1) For transactional workloads,

we conduct experiments over the real-world dataset and the open-

source benchmark. Regarding the real-world dataset, we utilize five

datasets introduced in [63] to assess their performance in manag-

ing simple transactional queries. These datasets possess different

complexities with 750 to 1265 columns. Regarding the open-source

benchmark, we vary the configurations in OLTPBench [18] to con-

struct multi-version TPC-C benchmarks. We adjust the proportions

of the five transactions (NewOrder, Payment, OrderStatus, Deliv-

ery, and StockLevel) in TPC-C benchmark to construct workloads

with different Read/Write ratios. Specifically, we construct three

TPC-C variations, i.e.,DEFAULT, READHEAVY, andWRITE HEAVY.
DEFAULT corresponds to the standard transaction proportions in

TPC-C benchmark. WRITE HEAVY focuses on workloads of high

write ratio with two transactions (NewOrder and Payment). READ
HEAVY only involves SELECT statements of two transactions (Or-

derStatus and Stock Level); (2) For data shifts, we assess the capabil-

ity of index advisors to handle data shifts by manipulating the data

volume of various benchmarks, e.g., learning-based index advisors

are trained on a 1GB dataset but tested on a 10GB dataset.

O7 (Transactional Workload): Index advisors perform well

over transactionalworkloadswith simple SELECT statements.

As shown in Figure 9, index advisors achieve comparable Relative

Figure 10: Performance over Data Shift (1GB → 10GB de-

notes that learning-based index advisors are trained on a

1GB dataset but are tested on a 10GB dataset)

Cost Reduction across five datasets, e.g., 72.71% for heuristic-based

index advisors and 65.57% for learning-based index advisors on av-

erage. Furthermore, the Time Duration is typically low, i.e., < 100𝑠

across datasets. The underlying reason might be attributed to the

characteristics of transactional queries, which are Select-Project-
Join (SPJ) queries from predefined templates, with fewer selection

predicates (e.g., the number of the selection predicates is only 3.5

across the five datasets on average) and without multiple nested

subqueries of complex analytical queries in Section 4.1. The sim-

ple characteristics lead to fewer index candidates, alleviating the

difficulty in identifying effective indexes.

O8 (Varying Read/Write Ratio): Heuristic-based index advi-

sors performwell overREADHEAVYworkloads, and learning-

based index advisors are not effective over workloads includ-

ing IUD statements. As shown in Table 6, heuristic-based index

advisors can achieve good performance over READ HEAVY work-

loads. For example, Extend and AutoAdmin outperform other index

advisors with the Throughput, i.e., 699.16 𝑟𝑒𝑞𝑢𝑒𝑠𝑡/𝑠 on average

(5.36× larger than others) and the Latency, i.e., 1425.6𝑚𝑠 on average

(698.38× smaller than others). However, their superiority dimin-

ishes over DEFAULT or WRITE HEAVY workload of high write

ratios. For example, all the heuristic-based index advisors other

than Drop achieve a roughly 200 𝑟𝑒𝑞𝑢𝑒𝑠𝑡/𝑠 of Throughput over
these two workloads. Meanwhile, learning-based index advisors

hardly outperform the heuristic-based index advisors, especially

over DEFAULT or WRITE HEAVY workloads with IUD statements.

For instance, SWIRL demonstrates an extremely low Throughput,
i.e., 1.21 𝑟𝑒𝑞𝑢𝑒𝑠𝑡/𝑠 and 3.55 𝑟𝑒𝑞𝑢𝑒𝑠𝑡/𝑠 on DEFAULT and WRITE
HEAVY workload, respectively. The underlying reason might be

attributed to the fact that existing index advisors only consider the

benefit of indexes for the SELECT statements during the selection

process. They ignore the overhead of the IUD statements, e.g., the

index maintenance cost associated with updating the underlying

index structure. Thus, index advisors are unable to account for the

negative impact induced by the IUD statements and exhibit poor

performance when handling workloads with a large volume of the

IUD statements (i.e., a high write ratio).

O9 (Data Shift): Heuristic-based index advisors are robust

over data shift, while learning-based index advisors undergo

performance regression when data shift occurs. As shown

in Figure 10, heuristic-based index advisors showcase consistent

performance when the volume of the underlying data shifts be-

tween 1GB and 10GB. However, learning-based index advisors

encounter performance regression when a data shift occurs. For

example, SWIRL experiences a 14.89% decrease of Relative Cost Re-
duction over TPC-H Skew benchmark on average. This phenomenon

might be attributed to the difference in the working mechanism of

heuristic-based index advisors and learning-based index advisors.
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Figure 11: Performance of Candidate Generation Variants

Heuristic-based index advisors directly conduct index selection

from scratch for a workload over any given data distribution. How-

ever, learning-based index advisors return indexes with the learned

policy acquired in an offline process, which is tailored for specific

data distribution. Thus, the learned policy does not apply to the

changed data distribution, and learning-based index advisors en-

counter performance regression due to the mismatch between the

learned policy and the new data distribution. We further investigate

the impact of data shifts by training learning-based index advisors

with two training manners, i.e., training from scratch without any

knowledge of the previous dataset and continuous retraining with

the acquired knowledge. The experimental results can be find at [2].

5 INFLUENCE OF BUILDING BLOCKS

In this section, we investigate the impact of the three building

blocks of index advisors summarized in Section 2. We construct and

compare the performance of various index advisor variants with

different combinations of the underlying building blocks, which

are assessed over workloads with the same generation methods in

Section 4.1. The testing workloads of learning-based index advisors

are the same query templates as their training workloads but might

be filled with different parameter values.

– RQ 5.1:What is the most effective candidate generation method?

– RQ 5.2: What are the most influential factors in index selection?

How do they influence the selection of effective indexes?

–RQ5.3:What is themost accurate index benefit estimationmodel?

How do they affect the end-to-end workload performance?

5.1 Index Candidate Generation

Experimental Setting. According to Table 1, there are four types

of index candidate generation methods; three of them are heuristic-

based, and one is learning-based (i.e., learned filter model). On the

one hand, we assess the end-to-end performance (i.e., the Rela-
tive Cost Reduction and the Time Duration) of various heuristic-
based candidate generation methods by replacing the original build-

ing block in each index advisor with three variants with different

methods
2
and making other building blocks unchanged. (1) Per-

mutation: columns are randomly permutated to generate indexes,

which are further filtered out via the what-if calls of the database

optimizer (i.e., reserve the ones that appear in the query plan); (2)

SyntacticRule: the heuristic rules proposed in [29], which consider

the syntactic characteristics of queries; (3) openGauss: the method

utilized in [34, 64], which not only takes the syntactic query fea-

tures into account but also the statistics of the indexed columns.

On the other hand, we compare the performance of the learned

2
We do not create variants with prefix-based expansion since it is tightly coupled with

the underlying selection algorithm and is not applicable to all the index advisors.

Figure 12: Distribution of Importance Scores for Four Input

Signals in Learned Filter Model

Table 7: F1 Score of Different Filter Methods

Datasets TPC-H TPC-DS JOB

Method 𝛿 > 0.05 𝛿 > 0.2 𝛿 > 0.5 𝛿 > 0.05 𝛿 > 0.2 𝛿 > 0.5 𝛿 > 0.05 𝛿 > 0.2 𝛿 > 0.5
PostgreSQL [3] 0.94 0.85 0.82 0.90 0.85 0.63 0.93 0.81 0.67

openGauss [34] 0.95 0.89 0.86 0.89 0.87 0.67 0.94 0.84 0.75

DIS-XGBoost [49] 0.95 0.91 0.88 0.94 0.90 0.84 0.94 0.87 0.81

DIS-LightGBM [49] 0.95 0.91 0.87 0.93 0.90 0.83 0.94 0.87 0.73

DIS-RandomForest [49] 0.95 0.89 0.84 0.92 0.89 0.83 0.94 0.88 0.68

filter model with the methods leveraging the estimated statistics

from the database optimizer. We implement multiple variants of

the learned filter models in DISTILL [49] with four input signals:

(1) Improvement: calculate and sum up the cost of each node in the

query plan that the index can reduce; (2)Query Shape: represent
each table by concatenating the type of the node in the query plan

that involves the table with a bottom-up traversal; (3) Index Shape:
replace each column of the index with the first operation (e.g., the

selection or the join operation) in the query that utilizes the col-

umn; (4) Operator: represent each node in the query plan with the

statistics of the involved indexed columns (e.g., the distinct ratio).

We construct a dataset (split into the training/validation/testing

set by 8:1:1) including the above features to train the models and

compare their performance (i.e., the F1 Score of filtering out the

useless index candidates) to identify the most critical input feature.

O10 (GenerationMethod): Candidates generated by rule-based

construction can enhance the effectiveness of learning-based

index advisors and the efficiency of heuristic-based index

advisors. As shown in Figure 11, learning-based index advisors

are more effective with candidates generated by rule-based con-

struction (i.e., SyntacticRule and openGauss). For example, SWIRL

obtains a higher Relative Cost Reduction, i.e., 21.04% with Syn-
tacticRule and openGauss than 13.40% with Permutation on aver-

age. Besides, heuristic-based index advisors are more efficient with

the rule-based construction method, especially over large datasets.

For example, Relaxation requires 24.44× less time over TPC-DS
benchmark and 2.92× over TPC-H benchmark with the rule-based

construction method on average. It might be attributed to the can-

didates generated by rule-based construction are typically effective

indexes with a small volume. Therefore, learning-based index advi-

sors require less training effort to learn a good selection policy over

these effective indexes, and heuristic-based index advisors spend

less time overhead to explore a small set from the candidate space.

O11 (Learned Filter Model): Tree-based filter models effec-

tively filter out useless index candidates, where the Improve-
ment is the most critical input feature. As displayed in Table 7,

tree-based filter models achieve a higher F1 Score than methods

based on the estimated statistics from the database optimizers. For

example, DIS-XGBoost achieves the F1 Score, i.e., 0.89 compared

with the F1 Score, i.e., 0.82 of PostgreSQL over different filter thresh-
olds 𝛿 on average. To further identify the most critical input feature

that contributes to the effectiveness of these models, we display

the distribution of the importance scores over the input features in

Figure 12. We observe that Improvement is the most critical feature.

It aligns with the functionality of indexes, which optimizes the

operation of the node in the query plan (e.g., reduce the cost of Seq
Scan by replacing it with Index Scan). Thus, models can estimate

the impact of indexes and filter out candidates with a low impact.
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Figure 13: (a) Importance Distribution over State Representa-

tion and (b) Performance Variance over Same Workload

5.2 Index Selection

Experimental Setting. Since heuristic-based index advisors adopt

nearly the same greedy algorithms in Index Selection, we evaluate
the performance of various learning-based index advisor variants.

Specifically, we explore the influence of the state representation

that captures the environmental information and distinguishes

workloads in learning-based index advisors. We first calculate the

importance scores of different features in the state representation

by excluding them from the input (i.e., the corresponding feature

values are set to zero) and observing the change of the Relative Cost
Reduction. Then, we verify whether existing index advisors can

return consistent indexes for the same workloads where queries

are organized in different orders (i.e., the permutation invariance

property [23]). Finally, we develop multiple index advisor variants

with the workload representation based on (1) SQL Text or (2)
Query Plan. These representations are further transformed into a

fixed sized with three dimension reduction methods (i.e., PCA [52],

LSI [21], and Doc2Vec [30]). The workloads are the same query

templates with different parameter values and are split into the

training/validation/testing set by 8:1:1.

O12 (State Representation): Learning-based index advisors

are not stable in representing permutation invariance prop-

erty, where query-plan-based workload representation is

most critical. Figure 13 (a) displays the distribution of the im-

portance scores of state representation features, where each row

corresponds to a feature of the state, and each column is a work-

load sample. We observe the workload representation is the most

critical feature in the state representation. Specifically, theWork-
load Embedding, the Workload Matrix, and the Query Cost are
the most crucial features of SWIRL, DRLindex, and DQN, respec-

tively. The intuition is that existing learning-based index advisors

are workload-dependent and workload representation is crucial for

them to identify effective indexes for the given workload during

training. However, existing workload representations are problem-

atic since they cannot preserve the permutation invariance property

(i.e., return the same index for a permutated workload) [23]. As

shown in Figure 14 (b), index advisors fail to yield consistent Rel-
ative Cost Reduction (i.e., return the same index) for the same

workload where queries are randomly shuffled (i.e., organized in

different orders). The underlying reason is that index advisors pro-

cess queries in the workload in order (e.g., associate them with

specific rows in a matrix), which contradicts the unordered nature

of the workload processed in a batch manner. We also find that

workload representations based on Query Plan are more effective

than SQL Text. Figure 14 presents the performance of SWIRL with

various workload representations. We notice that SWIRL obtains

the respective Relative Cost Reduction, i.e., 18.08% and 10.03%,

with workload representation based onQuery Plan and SQL Text

Figure 14: Performance over Various State Representation

on average.Query Plan involves more index-specific information

that reflects the optimization opportunity with indexes (e.g., build-

ing indexes with columns in Seq Scan can optimize it with Index
Scan). Thus, workload representation based on Query Plan is more

instructive in identifying effective indexes than on SQL Text.

5.3 Index Benefit Estimation

Experimental Setting. We evaluate the estimation accuracy and

the end-to-end performance (i.e., lower query latency) of various

benefit estimation models. (1) For the estimation accuracy, we as-

sess the what-if calls of the database optimizers in a prevalent

DBMS (i.e., PostgreSQL [3]) and an open-source DBMS (i.e., open-

Gauss [34]). Besides, we evaluate the tree-based models (i.e., XG-

Boost and LightGBM [20]), the attention-based model (i.e., LIB [47]),

and the transformer-based model (i.e., QueryFormer [60]). We also

identify the critical input features of these models with explain-

able machine learning algorithms in [25]; (2) For the end-to-end

performance, we integrate the learned models into the database

and replace the database optimizer with them to calculate the in-

dex benefits during the selection process and the training process

(for learning-based index advisors). We compare the query latency

with the indexes returned by different index advisors using these

learned models. The learned models are trained and tested based

on the dataset (split into the training/validation/testing set by 8:1:1)

containing the estimated information (i.e., the statistics in the query

plan) and the actual statistics (i.e., the query latency).

O13 (Estimation Accuracy): Tree-based models with the in-

put features based on the estimated cardinality and cost are

more accurate than other estimation models. As displayed

in Table 8, tree-based models outperform others across various

datasets. Specifically, AI-XGBoost and AI-LightGBM obtain the

95th Q-Error, i.e., 18.26, which is 231.34× lower than the database

optimizer and 171.50× lower than other learned models on aver-

age. It might be attributed to the well-defined index-related feature

vectors tree models utilized to estimate the index benefit. However,

other models require a training process with more effort (i.e., higher

training difficulty) to effectively learn the correlations among input

features. Figure 15 presents the importance distribution over the in-

put features, where each row corresponds to the importance scores

calculated by the explainable machine learning algorithms [25]. We

observe that the estimated cardinality (i.e., Card), the estimated

cost (i.e., Cost), and the predicate information (i.e., Predicate) are
critical input features for these learned models. It aligns with the

functionality of indexes, e.g., accelerating the retrieval over dif-

ferent selection predicates, especially the ones of high selectivity

(calculated based on cardinality).

O14 (End-to-End Performance): Learned benefit estimation

model with a higher accuracy might not contribute to better

end-to-end performance. According to the results in Table 8 and
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Figure 15: Importance Distribution over Input Feature and

End-to-End Performance of Different Estimation Models

Table 8: Q-Error of Different Index Benefit EstimationModels

Datasets TPC-H TPC-DS JOB

Method Mean 90th 95th Mean 90th 95th Mean 90th 95th

PostgreSQL [3] 21490.41 42.68 477.71 43003.55 1738.09 12445.39 762.33 46.35 555.13

openGauss [34] 11018.69 69.89 543.76 9348.81 2203.21 10943.32 272.05 53.94 494.00

AI-XGBoost [20] 88.91 3.53 8.58 358.31 8.06 36.56 7.01 2.63 4.12

AI-LightGBM [20] 40.32 4.78 12.40 198.03 8.85 42.96 9.00 2.91 4.96

LIB [47] 304.12 644.53 1272.73 7505.93 2835.82 14390.48 277.12 525.33 1160.78

QueryFormer [60] 256.67 4.63 13.58 348.20 4.46 11.56 593.37 868.11 2053.93

Figure 15, a more accurate learned model might not contribute to

better end-to-end performance, i.e., return more effective indexes

with a smaller query latency when integrated into the database

to return index benefits during the selection process. For example,

QueryFormer obtains a 95th Q-Error over TPC-H benchmark, i.e.,

13.58 (34.18× lower than PostgreSQL), while the Query Latency is

32521.21𝑚𝑠 , i.e., 1.58× than 20643.83𝑚𝑠 of PostgreSQL on average.

It might be attributed to the discrepancy between the optimization

goal of learned benefit estimation models (i.e., higher estimation

accuracy) and index selection (i.e., more effective indexes). Thus,

achieving high accuracy in the estimation model might not con-

tribute to a better indexing solution. Similar discoveries have been

observed in prior studies of the learned cardinality model that a

learned model with lower Q-Error (i.e., more accurate) might not

contribute to a better query plan with lower latency [22].

6 SUMMARIZED FINDINGS

▶ Application Scenario. As shown in Figure 16, we summarize

application scenarios of heuristic-based and learning-based index

advisors. (1) Static Analytical Scenario: Heuristic-based index ad-
visors can perform well over query-level selection with a small time

overhead. Learning-based index advisors can identify more effective

indexes than heuristic-based index advisors over workload-level se-

lection, which includes diverse query patterns. Moreover, learning-

based index advisors with offline learning policy are more efficient

than heuristic-based index advisors and learning-based index ad-

visors with online learning policy. However, learning-based index

advisors exhibit higher performance variance and might encounter

performance regression for a larger storage budget; (2) Dynamic
Analytical Scenario: Learning-based index advisors can adapt to

small workload drifts (e.g., varying query frequency) and medium

workload drifts, e.g., query perturbations over datasets with small

schema and uniform data distribution (e.g., TPC-H). Heuristic-based
index advisors are more robust than learning-based index advisors

over large workload drifts, e.g., query perturbations over complex

datasets with complex schema and skewed data distribution (e.g.,

TPC-H Skew) and random workloads; (3) Transactional Scenario:
Heuristic-based index advisors perform well over READ HEAVY

workloads with simple transactional queries (i.e., a few filtering

predicates). Moreover, they are more robust to data shifts than

learning-based index advisors over WRITE HEAVY workloads.

▶ Design Choice. (1) Index Candidate Generation: Heuristic-
based index advisors are more efficient, and learning-based index
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Figure 16: Application Scenario of Different Index Advisors

advisors are more effective with Rule-based Construction than

Random Column Permutation, especially over large datasets.

Prefix-based Expansion is highly dependent on the quality of

the underlying selection algorithm and does not apply to all in-

dex advisors (e.g., methods with decremental iterative manner).

Learned Filter Model of tree-based models are effective in filter-

ing out useless index candidates, where the estimated index impact

is the most critical input feature; (2) Index Selection: ForHeuristic

Search Strategy, the decremental iterative manner is more time-

consuming than the incremental iterative manner, especially over

large datasets with many candidates. ForMathematical Solver,

it showcases constant efficiency over varying storage budgets. For

Learned Selection Policy, workload representation based on the

query plan is the most critical input feature; (3) Index Benefit
Estimation: Tree-based models with the estimated cardinality and

cost as the input feature are more accurate than other models.

▶ Future Direction. (1) Further investigation of generalization is

required for an advanced index advisor to handle various scenarios.

Specifically, learning-based index advisors need to be more robust

over query drifts and data shifts (e.g., with additional training pro-

cesses of fast transfer learning techniques). Heuristic-based index

advisors need to be more efficient over large-scale workloads (e.g.,

with effective index candidate filtering techniques); (2) More factors

need to be addressed to facilitate the application of index advisors

across real-world scenarios. For example, the consideration of the

overhead for updating the indexes over the INSERT or the UPDATE
statements; the modeling of essential and relevant database status

(e.g., the existence of other physical structures and the currently

available resources); the calculation of the index benefits with dif-

ferent index physical implementations (e.g., B-Tree or Hash).

7 CONCLUSION

We present the first comprehensive review of existing heuristic-

based and learning-based index advisors, coupling this with exten-

sive experiments to evaluate their performance and explore their

suitable application scenarios. Additionally, we delve into the im-

pact of the individual building blocks by constructingmultiple index

advisor variants, thereby identifying the most effective methods

and the most influential factors. Finally, we summarize the findings

and present guidance for users in selecting suitable index advisors

for their application scenarios. We also offer an open-source testbed

designed to ease the evaluations of various index advisors.
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