
Accelerating Maximal Clique Enumeration via Graph Reduction
Wen Deng

Fudan University
Shanghai, China

wdeng21@m.fudan.edu.cn

Weiguo Zheng
Fudan University
Shanghai, China

zhengweiguo@fudan.edu.cn

Hong Cheng
The Chinese University of Hong Kong

Hong Kong, China
hcheng@se.cuhk.edu.hk

ABSTRACT
As a fundamental task in graph data management, maximal clique
enumeration (MCE) has attracted extensive attention from both
academic and industrial communities due to its wide range of ap-
plications. However, MCE is very challenging as the number of
maximal cliques may grow exponentially with the number of ver-
tices. The state-of-the-art methods adopt a recursive paradigm to
enumerate maximal cliques exhaustively, suffering from a large
amount of redundant computation. In this paper, we propose a
novel reduction-based framework for MCE, namely RMCE, that
aims to reduce the search space and minimize unnecessary compu-
tations. The proposed framework RMCE incorporates three kinds of
powerful reduction techniques including global reduction, dynamic
reduction, and maximality check reduction. Global and dynamic
reduction techniques effectively reduce the size of the input graph
and dynamically construct subgraphs during the recursive sub-
tasks, respectively. The maximality check reduction minimizes the
computation for ensuring maximality by utilizing neighborhood
dominance between visited vertices. Extensive experiments on 18
real graphs demonstrate that the existing approaches achieve re-
markable speedups powered by the proposed techniques.

PVLDB Reference Format:
Wen Deng, Weiguo Zheng, and Hong Cheng. Accelerating Maximal Clique
Enumeration via Graph Reduction. PVLDB, 17(10): 2419 - 2431, 2024.
doi:10.14778/3675034.3675036

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/DengWen0425/RMCE.

1 INTRODUCTION
As one of the most important cohesive structures in graph data,
clique is closely related to other fundamental problems like inde-
pendent set problem [41] and graph coloring problem [14]. In an
undirected graph𝐺 , a clique refers to a subgraph of𝐺 where every
pair of vertices are adjacent. A clique is maximal when no other
vertices can be included to form a larger clique. Maximal clique
enumeration (MCE) is the task of listing all the maximal cliques in
a graph 𝐺 and can be applied in a variety of fields, such as compu-
tational biology [1, 30, 40, 48], social network [28, 47], and wireless
communication networks [2].

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 17, No. 10 ISSN 2150-8097.
doi:10.14778/3675034.3675036

Figure 1: Illustration of the gap between maximal cliques
and vertex visits (the horizontal axis is log-scaled).

1.1 Existing Methods and Limitations
BKdegen [15] and BKrcd [27] are two state-of-the-art algorithms for
MCE, both of which adopt the Bron-Kerbosch (BK) framework [3]
in Algorithm 1 that recursively enumerates all maximal cliques. The
framework involves three sets, i.e., 𝑅, 𝑃 , and 𝑋 , where 𝑅 stores the
partial clique, 𝑃 records the candidate set, and 𝑋 contains vertices
that have already been visited to ensure the maximality (also called
a forbidden set). The recursive function 𝐵𝐾 initializes 𝑅, 𝑃 , and
𝑋 as ∅,𝑉 , and ∅, respectively. To expand a new branch, a vertex
𝑣 is moved from 𝑃 to 𝑅, Then 𝑃 and 𝑋 are updated as 𝑃 ∩ 𝑁 (𝑣)
and 𝑋 ∩ 𝑁 (𝑣) (lines 3-4). After completing this branch, vertex 𝑣
is moved from 𝑃 to 𝑋 (line 5). Once both 𝑃 and 𝑋 are empty, 𝑅 is
reported as a maximal clique (lines 1-2). BKdegen [15] combines
the degeneracy order and pivot selection, effectively bounding the
subproblem scale of each vertex by the degeneracy 𝜆 of graph 𝐺 .
BKrcd [27] leverages the dense nature of subproblems to enumerate
maximal cliques in a top-down manner. A question naturally arises
“can we make the task of maximal clique enumeration even faster?”

In practice, a substantial amount of overhead is incurred due to
the need for repeated visits to specific vertices within the graph dur-
ing the process of maximal clique enumeration. Figure 1 presents
the distribution of the number of maximal cliques in which each
vertex appears and the number of visits to each vertex by differ-
ent algorithms. The results are averaged over 7 real graphs from

Algorithm 1: 𝐵𝐾 (𝑅, 𝑃, 𝑋)
Input: Partial clique 𝑅, Candidate set 𝑃 , Forbidden set 𝑋
Output: All maximal cliques in𝐺 [𝑃] restricted by 𝑋

1 if 𝑃 = ∅ and 𝑋 = ∅ then
2 report 𝑅 as a maximal clique
3 for 𝑣 ∈ 𝑃 do
4 𝐵𝐾 (𝑅 ∪ {𝑣}, 𝑃 ∩ 𝑁 (𝑣), 𝑋 ∩ 𝑁 (𝑣))
5 𝑃 ← 𝑃 \ {𝑣}, 𝑋 ← 𝑋 ∪ {𝑣}

2419

https://doi.org/10.14778/3675034.3675036
https://github.com/DengWen0425/RMCE
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3675034.3675036
https://www.acm.org/publications/policies/artifact-review-and-badging-current

Figure 2: The search process of a toy graph, where the
branches in blue dashed boxes denote the original branches
following the BK algorithm, while those in orange dashed
boxes denote the branches by applying dynamic reduction.

SNAP [24]. We observe a notable gap between the number of max-
imal cliques and the number of vertex visits, especially for low-
degree vertices. For instance, BKdegen and BKrcd visit vertices
with a degree of 3 or less around 84.06 million and 77.27 million
times on average. However, the average number of maximal cliques
that involve vertices with a degree of 3 or less is notably lower, at
approximately 7.55 million. This large gap suggests that there is
significant scope for further improvement in time efficiency.

Motivated by this observation, in order to enhance the perfor-
mance, the key idea is to develop effective techniques to bridge this
gap by reducing the graph size and minimizing unnecessary vertex
visits during the recursive computation process, while preserving the
completeness of maximal cliques.

1.2 Our Approach and Contributions
Example 1. Consider the graph at the top of Figure 2, vertex 𝑢10

forms a single maximal 2-clique with its sole neighbor 𝑢4. However,
following Algorithm 1, there are at most 5 (i.e., the number of neigh-
bors of 𝑢4) subproblems involved in the recursive computation, where
the candidate set 𝑃 and the forbidden set 𝑋 may be intersected with
𝑢4’s neighborhood. This will lead to unnecessary visits of 𝑢10. By re-
moving 𝑢10 and its corresponding edge, we can prevent their duplicate
visits in the recursion, significantly reducing the computation cost.
Meanwhile, we can ensure the completeness of solutions by reporting
the maximal cliques that include the removed vertex in advance.

Inspired by the example above, we propose a novel reduction-
based framework for maximal clique enumeration, namely RMCE,
that integrates three powerful reduction techniques including global
reduction, dynamic reduction, and maximality check reduction.
(1) Global Reduction. Given a graph 𝐺 , RMCE removes the low-
degree vertices (whose degree is less than 3) and identifies the

maximal cliques involving these deleted vertices beforehand. More-
over, we remove edges that do not form triangles with other edges
throughout the graph, as they directly constitute maximal 2-cliques.
For example, in Figure 2, the edges (𝑢2, 𝑢6) and (𝑢3, 𝑢7) can be
removed as they are not contained in any other cliques, forming
maximal cliques themselves. Removing these vertices and edges can
reduce redundant computations during the recursive procedure.
(2) Dynamic Reduction. Enumerating maximal cliques operates in
a recursive manner, creating an extensive number of subtasks. In
each subtask, a subgraph will be dynamically constructed where
new low-degree vertices may appear. RMCE recursively reduces the
subgraph size by removing these vertices. Moreover, the subgraph
is usually very dense and may contain vertices that are adjacent to
all other vertices in the candidate set 𝑃 . Since every maximal clique
in this subtask must contain these vertices, we can move them from
𝑃 into the partial clique 𝑅 directly, and thus reduce the number
of recursive calls (we call it dynamic degree-|𝑃 − 1| reduction). In
the BK algorithm with pivot selection, each recursive call takes
𝑂 ((|𝑃 | + |𝑋 |)2) to choose a pivot. If 𝑘 recursive calls are eliminated
in a subproblem, the time cost will be reduced to 𝑂 ((|𝑃 | + |𝑋 |)2)
from𝑂 ((𝑘 +1) (|𝑃 | + |𝑋 |)2). For example, in the subproblem created
by expanding 𝑢8 in Figure 2, 𝑢6 and 𝑢7 become new low-degree
vertices that can be reduced. In the left branch, 𝑢1, 𝑢2, and 𝑢3 are
adjacent to all other vertices in the subgraph, we can move them to
𝑅 together, decreasing the number of recursive calls from 3 to 1.
(3) Maximality Check Reduction. The concept “maximal clique” in-
volves two criteria: being a clique and achieving maximality. How-
ever, the existing methods have primarily focused on reducing the
candidate vertices, with little attention given to optimizing the for-
bidden set that is used for maximality checks. The forbidden set
size |𝑋 | can be quite large, but not every vertex in 𝑋 is required, es-
pecially when the neighbors of a vertex (e.g., 𝑢𝑖 ∈ 𝑋) are contained
by the neighbors of another vertex (e.g., 𝑢 𝑗 ∈ 𝑋). In such cases, this
vertex (e.g., 𝑢𝑖) can be removed safely from 𝑋 without reporting
cliques that are not maximal. As studied in [18], set intersections
take 73.6% of the running time in MCE. Since the forbidden set is
frequently intersected during the recursion reducing the size of 𝑋
can reduce the cost of set intersection operations. We develop an
efficient algorithm with linear space overhead that minimizes the
forbidden set, significantly reducing unnecessary computations.

In summary, we make the following contributions in this paper.

• To the best of our knowledge, we are the first to propose a
reduction-based framework, namely RMCE, for enumerat-
ing maximal cliques.

• We develop powerful global reduction techniques and dy-
namic reduction techniques that effectively reduce the size
of the input graph globally and the size of subgraphs in
recursive subtasks, respectively.

• We introduce a novel concept of maximality check reduc-
tion for maximal clique enumeration and propose an effi-
cient algorithm to minimize the forbidden set 𝑋 .

• The proposed techniques above are orthogonal to the exist-
ing BK-based methods for maximal clique enumeration.

• Extensive experiments on 18 real networks demonstrate
that our proposed algorithms achieve significant speedups
compared to state-of-the-art approaches.

2420

2 PROBLEM DEFINITION AND PRELIMINARY
2.1 Problem Formulation
Let𝐺 = (𝑉 , 𝐸) be an undirected graphwith𝑛 = |𝑉 | vertices and𝑚 =

|𝐸 | edges. The neighbor vertices of a vertex 𝑣 in 𝐺 are denoted as
𝑁 (𝑣), and the degree of 𝑣 is denoted as 𝑑 (𝑣) = |𝑁 (𝑣) |. The common
neighbors of vertices in 𝑆 are denoted as 𝐶 (𝑆) = ∩𝑣∈𝑆𝑁 (𝑣).

Definition 1. (Induced Subgraph) Given a subset 𝑆 of 𝑉 , an
induced subgraph 𝐺 [𝑆] is defined as 𝐺 [𝑆] = (𝑆, 𝐸′), where 𝑆 ⊆ 𝑉
and 𝐸′ = {(𝑢, 𝑣) ∈ 𝐸 | 𝑢, 𝑣 ∈ 𝑆}. Given a subset 𝑆 of 𝑉 ,

Let 𝑁𝑆 (𝑣) denote the set of vertices in 𝑆 that are adjacent to ver-
tex 𝑣 in graph 𝐺 , and let 𝑑𝑆 (𝑣) denote the number of such vertices,
that is, 𝑁𝑆 (𝑣) = 𝑁 (𝑣) ∩ 𝑆 and 𝑑𝑆 (𝑣) = |𝑁𝑆 (𝑣) |.

Definition 2. (Degeneracy Order) Given a graph 𝐺 = (𝑉 , 𝐸),
the order of vertices

−→
𝑉 = {𝑣1, 𝑣2, 𝑣3, . . . , 𝑣𝑛} is called the degeneracy

order of 𝐺 if vertex 𝑣𝑖 has the minimum degree in every induced
subgraph𝐺 [{𝑣𝑖 , 𝑣𝑖+1, . . . , 𝑣𝑛}]. The degeneracy of𝐺 , denoted by 𝜆, is
equal to the largest value of 𝑑𝐺 [{𝑣𝑖 ,𝑣𝑖+1,...,𝑣𝑛 }] (𝑣𝑖).

The degeneracy order can be efficiently computed in linear time
by iteratively removing the vertex with the smallest degree from
the graph. In this order, each vertex 𝑣𝑖 has at most 𝜆 neighbors in
the induced graph 𝐺 [{𝑣𝑖 , 𝑣𝑖+1, . . . , 𝑣𝑛}] among its later neighbors.
We use 𝑁 − (𝑣) or 𝑁 + (𝑣) to denote the neighbors ordered before or
later than the vertex 𝑣 , respectively.

Definition 3. (Clique). An induced subgraph 𝐺 [𝑆] of 𝐺 =

(𝑉 , 𝐸) is called a clique if there is an edge (𝑢, 𝑣) ∈ 𝐸 for any two
vertices in 𝑆 . We denote a clique with 𝑘 vertices as a 𝑘-clique.

Definition 4. (Maximal Clique) A clique 𝐺 [𝑆] is a maximal
clique in graph 𝐺 if and only if ∀𝑣 ∈ 𝑉 \ 𝑆, the subgraph induced by
𝑆 ∪ {𝑣} is not a clique.

Example 2. Let us consider the graph shown in Figure 2. The
vertices 𝑢1, 𝑢2, and 𝑢3 induce a 3-clique, but it is not maximal since
we can add vertex 𝑢4 or 𝑢5 to form a larger 4-clique. The clique
{𝑢1, 𝑢2, 𝑢3, 𝑢4} is maximal because there are no other vertices in the
graph that can be included to form a larger clique with these vertices.

Problem Statement. (Maximal Clique Enumeration) Given
a graph 𝐺 , the set of maximal cliques in 𝐺 is denoted by 𝑚𝑐 (𝐺).
Maximal clique enumeration (shorted as MCE) aims to report𝑚𝑐 (𝐺).

2.2 Existing Solutions
BKdegen [15]: Eppstein et al. introduce the degeneracy ordering
before calling the recursive function BKpivot in [39]. BKpivot uti-
lizes a pivot selection strategy that selects a vertex𝑢 from𝑋 ∪𝑃 that
has the most neighbors in 𝑃 . This choice ensures that only 𝑢 and its
non-neighbors will be involved in the subsequent search branches.
The degeneracy order is calculated at the beginning. Then, for each
vertex 𝑣 ,𝑋 is initialized as𝑁 − (𝑣), and 𝑃 is initialized as𝑁 + (𝑣). This
ensures that every subproblem starting from each 𝑣 has a candidate
set 𝑃 whose size is no larger than the degeneracy 𝜆. Consequently,
the worst-case time complexity is reduced to 𝑂 (𝑛3

𝜆
3).

BKrcd [27]: The subgraph induced by 𝑁 + (𝑣) may be very dense
due to the degeneracy ordering. For a dense subgraph, it only needs
to delete a few vertices to obtain a maximal clique. BKrcd removes

Algorithm 2: RMCE(𝐺)
Input: Graph𝐺
Output: All maximal cliques in𝐺

1 𝐺 ← apply global reduction on𝐺
2 compute an order of the reduced graph𝐺
3 for 𝑖 = 1 : 𝑛 do
4 𝑋 ← apply maximality check reduction on 𝑋
5 recursive (𝑅, 𝑃,𝑋)
Procedure recursive(𝑅, 𝑃,𝑋)

6 𝑅, 𝑃,𝑋 ← apply dynamic reduction on (𝑅, 𝑃,𝑋)
7 choose a pivot 𝑢
8 for 𝑤 ∈ (𝑃 \ 𝑁 (𝑢) ∩ 𝑃) do
9 recursive (𝑅 ∪ {𝑤}, 𝑃 ∩ 𝑁 (𝑤), 𝑋 ∩ 𝑁 (𝑤))

10 𝑃 ← 𝑃 \ {𝑤}, 𝑋 ← 𝑋 ∪ {𝑤}

a vertex with the fewest neighbors in 𝑃 until the remaining vertices
form a maximal clique. It then repeats this process on the removed
vertex and its neighborhood. When 𝑃 is a clique and passes the
maximality check, 𝑃 ∪ 𝑅 is reported as a maximal clique.
BKfacen [22]: This approach employs a hybrid data structure,
whereby the adjacency list of a graph is maintained globally, while
an adjacency matrix is utilized in subtasks. The adjacency matrix
accelerates queries for adjacency relationships between vertices.
However, frequent adjacency matrix creation incurs significant
overhead. It deviates from the pivot mechanism in [39], conse-
quently lacking a guaranteed theoretical complexity. Thus, this
approach introduces additional time overhead in numerous graphs.
BKrevised [33]: This approach identifies the pivot by recording the
degree of each vertex in 𝑃 ∪𝑋 . It returns a pivot as soon as a vertex
𝑣 satisfying that |𝑃 \𝑁 (𝑣) ∩𝑃 | ≤ 2, which reduces the time required
for pivot selection in certain boundary conditions. However, it may
not always be the optimal choice for more intricate subproblems.

3 REDUCTION-BASED FRAMEWORK RMCE
Reduction-based Maximal Clique Enumeration (shorted as
RMCE). The basic idea is to reduce the graph size and recursive
search space by removing vertices and edges prior to performing
the exhaustive search.

Algorithm 2 depicts the details of the proposed RMCE framework.
Initially, we apply the global reduction on the graph𝐺 (line 1) before
computing its vertex order (line 2). Subsequently, for each vertex
in the ascending order of the reduced graph 𝐺 , we employ the
maximality check reduction before entering the recursive function
(lines 3-5). The 𝑟𝑒𝑐𝑢𝑟𝑠𝑖𝑣𝑒 function can be any BK-based algorithm,
such as BKpivot and BKrcd. The dynamic reduction is conducted
at the beginning of each recursive function (line 6).
Superiority of RMCE. Our reduction algorithm offers two signifi-
cant advantages. Firstly, it effectively reduces the search branches
during the maximal clique enumeration process, leading to a more
efficient exploration of the solution space. Secondly, enormous
set intersections are involved in the recursive process. RMCE can
reduce the number of neighbors for vertices, enabling faster set
intersections to enhance time efficiency.

RMCE consists of three powerful reduction techniques:

(1) Global Reduction: Global reduction means deleting some ver-
tices and edges and reporting their maximal cliques in advance

2421

without breaking the completeness of the solution. Formally,
if we use𝑚𝑐 (𝐺) denote all maximal cliques of a graph 𝐺 , then
we delete some vertices Δ𝑉 and edges Δ𝐸 such that

𝑚𝑐 (𝐺) =𝑚𝑐 (𝐺 ′) + 𝛼 (Δ𝑉 ,Δ𝐸),
where 𝐺 ′ = (𝑉 \ Δ𝑉 , 𝐸 \ Δ𝐸), where 𝛼 (Δ𝑉 ,Δ𝐸) denotes the
maximal cliques that contain vertices in Δ𝑉 or edges in Δ𝐸. This
reduction technique significantly reduces the scale of the input
graph, enhancing the efficiency of subsequent computations.

(2) Dynamic Reduction: The RMCE framework finds the maxi-
mal cliques by using a recursive search in which subproblems
will be built dynamically.

Definition 5. (Subproblem). In algorithms following the BK
framework, a subproblem is represented by a partial clique 𝑅, a
candidate set 𝑃 , and a forbidden set 𝑋 , denoted as (𝑅, 𝑃, 𝑋). The
maximal cliques in this subproblem are denoted by𝑚𝑐˜ (𝑅, 𝑃, 𝑋).

During the recursive search, the subproblem undergoes contin-
uous changes, providing opportunities for vertices that cannot
be pruned globally to be pruned within the subproblem dynam-
ically. This brings the need for dynamic reduction.
Formally, we delete some vertices Δ𝑃1 from the candidate set
and move some vertices Δ𝑃2 into 𝑅 such that

𝑚𝑐˜ (𝑅, 𝑃, 𝑋) =𝑚𝑐˜ (𝑅′, 𝑃 ′, 𝑋 ′) + �̃� (𝑅,Δ𝑃1, 𝑋),
where𝑅′ = 𝑅∪Δ𝑃2, 𝑃 ′ = 𝑃 \(Δ𝑃1∪Δ𝑃2),𝑋 ′ = 𝑋∩𝐶 (Δ𝑃2), and
�̃� (𝑅,Δ𝑃1, 𝑋) denotes the maximal cliques that contain 𝑅 and
vertices in Δ𝑃1 in the subproblem (𝑅, 𝑃, 𝑋). This technique fur-
ther reduces the size of the subproblem, efficiently minimizing
the search space required for the subsequent search.

(3) Maximality Check Reduction: Maximality check reduction
refers to reducing the size of forbidden set without producing
any non-maximal or losing any maximal cliques, that is

𝑚𝑐˜ (𝑅, 𝑃, 𝑋) =𝑚𝑐˜ (𝑅, 𝑃, 𝑋 \ Δ𝑋),
where Δ𝑋 denotes the deleted vertices from the forbidden set.
This reduction technique prunes unnecessary computations by
identifying and eliminating vertices that can be safely ignored
during the maximality check process.
Our framework efficiently reduces both the graph size and the

recursive search space. Meanwhile, the reduction itself is expected
to take as little time as possible. To achieve this, we carefully develop
reduction rules to avoid introducing excessive extra computation.

4 GLOBAL REDUCTION
4.1 Intuition
Degeneracy order, proposed by Eppstein et al. [15], is widely em-
ployed as the vertex ordering technique in the MCE task. However,
we argue that degeneracy order suffers from two major problems:
(1) Redundant computations for low-degree vertices: Com-

puting the degeneracy order needs to iteratively remove the
vertex with the minimum degree. In fact, identifying maximal
cliques containing low-degree vertices is straightforward due
to their inherent simplicity. However, these vertices and their
associated edges will be redundantly traversed during recur-
sions of the MCE algorithm. This redundancy is expected to be
mitigated through an effective reduction technique.

(2) Redundant computations for edges: In addition to low-
degree vertices, certain edges also undergo repetitive traversals,
especially for edges that do not form triangles with other edges.
The redundant computations associated with these edges can
be minimized through appropriate techniques.
To tackle these challenges, we propose two kinds of reductions

to prevent revisiting deleted edges and vertices in subsequent pro-
cesses, allowing the algorithm to operate on the reduced graph.

4.2 Low-Degree Vertex Reduction
In this subsection, we introduce three efficient reduction rules to
eliminate vertices with a degree no larger than 2.

Lemma 1. (Degree-Zero Reduction) A vertex𝑢 with zero degree
can be removed such that𝑚𝑐 (𝐺) =𝑚𝑐 (𝐺 ′) where𝐺 ′ = (𝑉 \ {𝑢}, 𝐸).

Proof. The proof is straightforward since a clique contains at
least two vertices. □

Lemma 2. (Degree-One Reduction) Let𝑢 be a degree-one vertex
with the only neighbor 𝑣 . The vertex 𝑢 and its edge can be removed
such that |𝑚𝑐 (𝐺) | = |𝑚𝑐 (𝐺 ′) | + 1, where𝐺 ′ = (𝑉 \ {𝑢}, 𝐸 \ {(𝑢, 𝑣)}).

Proof. The vertex set {𝑢, 𝑣} forms a 2-clique by definition, and
𝑁 (𝑣) ∩ 𝑁 (𝑢) = ∅ ensures its maximality. □

Lemma 3. (Degree-Two Reduction) For a degree-two vertex 𝑢
with neighbors 𝑣 and𝑤 , we have the following scenarios:
(1) If (𝑣,𝑤) ∉ 𝐸, the edges (𝑢, 𝑣) and (𝑢,𝑤) are two maximal 2-

cliques. 𝑢 and its edges can be deleted such that |𝑚𝑐 (𝐺) | =
|𝑚𝑐 (𝐺 ′) | + 2, where 𝐺 ′ = (𝑉 \ {𝑢}, 𝐸 \ {(𝑢, 𝑣), (𝑢,𝑤)}).

(2) If (𝑣,𝑤) ∈ 𝐸 and 𝑁 (𝑣) ∩ 𝑁 (𝑤) = {𝑢}, the three edges (𝑢, 𝑣),
(𝑢,𝑤), and (𝑣,𝑤) form amaximal 3-clique. Vertex𝑢 and the three
edges can be safely deleted such that |𝑚𝑐 (𝐺) | = |𝑚𝑐 (𝐺 ′) | + 1,
where 𝐺 ′ = (𝑉 \ {𝑢}, 𝐸 \ {(𝑢, 𝑣), (𝑢,𝑤), (𝑣,𝑤)}).

(3) If (𝑣,𝑤) ∈ 𝐸 and 𝑁 (𝑣) ∩ 𝑁 (𝑤) ⊇ {𝑢}, the three edges (𝑢, 𝑣),
(𝑢,𝑤), and (𝑣,𝑤) form a maximal 3-clique. Vertex 𝑢 and two
edges (𝑢, 𝑣) and (𝑢,𝑤) can be safely deleted such that |𝑚𝑐 (𝐺) | =
|𝑚𝑐 (𝐺 ′) | + 1, where 𝐺 ′ = (𝑉 \ {𝑢}, 𝐸 \ {(𝑢, 𝑣), (𝑢,𝑤)}).

Proof. For the first condition, 𝑁 (𝑢) ∩ 𝑁 (𝑣) = ∅ means {𝑢, 𝑣}
forms a maximal 2-clique. Since ∄𝑢′ ∈ 𝑉 , 𝑁 (𝑢′) ⊇ {𝑢, 𝑣}, (𝑢, 𝑣) can
be deleted. And (𝑢,𝑤) is similar to (𝑢, 𝑣). When (𝑣,𝑤) ∈ 𝐸, (𝑢, 𝑣),
(𝑢,𝑤), and (𝑣,𝑤) form a maximal 3-clique since 𝑁 (𝑢) ∩ 𝑁 (𝑣) ∩
𝑁 (𝑤) = ∅. In the second scenario, 𝑁 (𝑣) ∩ 𝑁 (𝑤) = {𝑢}, ensur-
ing that {𝑣,𝑤} cannot be enlarged by any vertex except 𝑢, which
requires the deletion of (𝑢, 𝑣) to avoid reporting it as a maximal
2-clique again. Otherwise, it implies that ∃𝑆 ⊆ 𝑉 , 𝑆 ∪ {𝑣,𝑤} is also
a maximal clique, indicating that (𝑣,𝑤) cannot be deleted. □

Example 3. Consider the graph presented in Figure 3. Vertices
𝑣1, 𝑣2, 𝑣3, and 𝑣6 can be deleted by our degree-two Reduction. The
vertices 𝑣7 and 𝑣8 can be deleted by our degree-one Reduction.

Algorithm 3 provides an overview of the VertexReduction proce-
dure. First, 𝑄 is initialized with all vertices whose degree is at most
2 (line 1). Then, for each vertex 𝑣 in 𝑄 , we apply either degree-two
reduction, degree-one reduction, or degree-zero reduction based

2422

Figure 3: Illustration of global reduction. Vertices and edges
in blue dashed lines can be deleted by vertex reduction while
the orange dashed edges can be removed by edge reduction.

on its degree (lines 4-9). We also update 𝑄 whenever a new vertex
with a degree of no larger than 2 is encountered (line 10).
Complexity Analysis. Algorithm 3 examines a total of 𝑛 vertices.
Checking the existence of a common neighbor in degree-two reduc-
tion has a worst-case time complexity of𝑂 (2𝑑𝑚𝑎𝑥) by merge-based
algorithm [50], where 𝑑𝑚𝑎𝑥 is the largest degree in graph𝐺 . Hence,
the overall time complexity is 𝑂 (𝑛𝑑𝑚𝑎𝑥). The space cost of 𝑂 (𝑛) is
required to maintain the vertices that need to be removed.

4.3 Non-triangle Edge Reduction
Apart from the vertex-based reduction technique, we also propose
non-triangle edge reduction from the perspective of edges.

Definition 6. (Non-triangle Edge). Edge (𝑢, 𝑣) is defined as a
non-triangle edge if 𝑁 (𝑣) ∩ 𝑁 (𝑢) = ∅.

A non-triangle edge (𝑢, 𝑣) means no other vertex in the graph is
adjacent to both 𝑢 and 𝑣 . The objective is to remove all non-triangle
edges from the graph, guaranteed by the following lemma.

Lemma 4. (Non-triangle Edge Reduction) A non-triangle edge
(𝑢, 𝑣) directly forms a maximal 2-clique and it can be deleted from𝐺

such that |𝑚𝑐 (𝐺) | = |𝑚𝑐 (𝐺 ′) | + 1, where 𝐺 ′ = (𝑉 , 𝐸 \ {(𝑢, 𝑣)}).

Proof. It is straightforward that set {𝑢, 𝑣} cannot be expanded
since adding any vertex into it will break the property of clique. □

Algorithm 4 examines each edge in the graph 𝐺 to determine
whether it can be removed. Initially, for an unvisited edge (𝑢, 𝑣),
if 𝑢 and 𝑣 have no common neighbors (line 4), (𝑢, 𝑣) is classified
as a non-triangle edge, and we can delete it while reporting {𝑢, 𝑣}
as a maximal clique (lines 5-6). Conversely, if a vertex 𝑤 is their

Algorithm 3: VertexReduction(𝐺)
Input: Graph𝐺
Output: Reduced graph𝐺 ′

1 𝐺 ′ ← 𝐺 ,𝑄 ← {𝑣 | 𝑑𝐺 (𝑣) ≤ 2}
2 for 𝑣 ∈ 𝑄 do
3 𝑄 ← 𝑄 \ {𝑣}
4 if 𝑑𝐺 ′ (𝑣) = 2 then
5 𝐺 ′ ← apply the degree-two reduction rule on 𝑣
6 else if 𝑑𝐺 ′ (𝑣) = 1 then
7 𝐺 ′ ← apply the degree-one reduction rule on 𝑣
8 else
9 𝐺 ′ ← apply the degree-zero reduction rule on 𝑣

10 𝑄 ← 𝑄 ∪ {𝑢 |𝑢 ∈ 𝑁𝐺 ′ (𝑣) ∧ 𝑑𝐺 ′ (𝑢) = 2}
11 return𝐺 ′

Figure 4: Search tree of BKdegen. The root is initialized to ∅.

common neighbor, wemark the three edges (𝑢, 𝑣), (𝑢,𝑤), and (𝑣,𝑤)
as visited, since they form a 3-clique (lines 7-8). Once an edge is
visited, this edge will not be checked again in the future (line 3).

Example 4. Consider the graph in Figure 3. The edges in orange
dashed lines (e.g., (𝑢1, 𝑣3) and (𝑣4, 𝑢5)) are non-triangle edges and
can be safely deleted. Note that after deleting (𝑢4, 𝑣5) and (𝑣5, 𝑢8), 𝑣5
becomes a degree-two vertex and can be removed by vertex reduction.
Figure 4 shows a search tree for the graph in Figure 3. By global reduc-
tion, we avoid traversing the red paths, resulting in a notable reduction
in computational cost. Furthermore, even along the remaining black
search paths, the set intersection operations can be accelerated due to
the decreased neighborhood size for multiple vertices.

Complexity Analysis. Algorithm 4 examines a total of𝑚 edges.
Finding a common neighbor takes a worst-case time complexity of
𝑂 (2𝑑𝑚𝑎𝑥). Consequently, the overall time complexity is𝑂 (𝑚𝑑𝑚𝑎𝑥).
The space overhead of recording the visited edges is 𝑂 (𝑚).

5 DYNAMIC REDUCTION
5.1 Intuition
Beyond the global reduction, the recursive procedure of the MCE
program will explore numerous subgraphs, presenting opportuni-
ties for further reducing the redundant computations.

Example 5. Figure 5(a) depicts a subgraph involved in a subprob-
lem, where all vertices are adjacent to the current partial clique 𝑅.
The blue vertices form the forbidden set 𝑋 , while the orange vertices
represent the candidate set 𝑃 . The corresponding recursion tree for
this subproblem is shown in Figure 6(a). By scrutinizing the recursion
tree, we make the following observations:
(1) New low-degree vertices (e.g.,𝑢7,𝑢8, and𝑢9) appear in this subprob-
lem and can be handled similar to global scenarios, without creating
additional recursion or performing set intersection operations.

Algorithm 4: EdgeReduction(𝐺)
Input: Graph𝐺 = (𝑉 , 𝐸)
Output: Reduced graph𝐺 ′

1 𝐺 ′ ← G
2 for (𝑢, 𝑣) ∈ 𝐸 do
3 if (𝑢, 𝑣) is not visited then
4 if 𝑢 and 𝑣 has no common neighbors then
5 𝐺 ′ ← delete the edge (𝑢, 𝑣) from𝐺 ′

6 report {𝑢, 𝑣} as a maximal clique
else

7 𝑤 ← a common neighbor of 𝑢 and 𝑣
8 mark edges (𝑢, 𝑣), (𝑢, 𝑤) , and (𝑣, 𝑤) visited
9 return𝐺 ′

2423

Figure 5: Illustration of dynamic reduction in the subgraph of a subproblem (𝑅, 𝑃, 𝑋).

(2) As presented in Figure 6(a), there are no other branches from 𝑢1 to
𝑢6 in the search path 𝑅 → 𝑢3 → 𝑢1 → 𝑢2 → 𝑢6. Because vertices 𝑢1,
𝑢2, and 𝑢6 connect to all other vertices in 𝑃 ∩ {𝑢3} in the subproblem
(𝑅∪{𝑢3}, 𝑃∩{𝑢3}, 𝑋 ∩{𝑢3}), we can move𝑢1,𝑢2, and𝑢6 into partial
clique 𝑅 ∪ {𝑢3} together instead of creating three additional recursive
calls. Clearly, this will further reduce the computation cost.

5.2 Dynamic Vertex Reduction
Dynamic reduction aims to reduce the subgraph size of subproblem
(𝑅, 𝑃, 𝑋). Different from global reduction, a maximal clique in sub-
graph 𝐺 [𝑃] may not be maximal in 𝐺 , because it may be expanded
by a vertex in 𝑋 . We develop three dynamic reduction techniques
to effectively optimize the search process while ensuring that only
truly maximal cliques are reported. For clarity, a vertex 𝑣 is called a
dynamic degree-𝑘 vertex in the subproblem (𝑅, 𝑃, 𝑋) if |𝑁𝑃 (𝑣) | = 𝑘 .

Lemma 5. (Dynamic Degree-Zero Reduction) For a dynamic
degree-zero vertex 𝑢 ∈ 𝑃 in the subproblem (𝑅, 𝑃, 𝑋), we have
(1) If 𝑁 (𝑢) ∩ 𝑋 = ∅, 𝑅 ∪ {𝑢} is a maximal clique. We can remove 𝑢

from 𝑃 , and |𝑚𝑐˜ (𝑅, 𝑃, 𝑋) | = |𝑚𝑐˜ (𝑅, 𝑃 ′, 𝑋) |+1, where 𝑃 ′ = 𝑃 \{𝑢}.
(2) If 𝑁 (𝑢) ∩ 𝑋 ≠ ∅, 𝑅 ∪ {𝑢} is not maximal. Thus, we can remove

𝑢 from 𝑃 and𝑚𝑐˜ (𝑅, 𝑃, 𝑋) =𝑚𝑐˜ (𝑅, 𝑃 ′, 𝑋), where 𝑃 ′ = 𝑃 \ {𝑢}.

Proof. For the dynamic degree-zero vertex 𝑢, we have 𝑢 ∈ 𝑃 ,
which guarantees the clique property. When 𝑁 (𝑢) ∩ 𝑋 = ∅, it
indicates that 𝑅 ∪ {𝑢} is maximal since 𝑁𝑃 (𝑢) = ∅, which proves
the first condition. Otherwise, adding 𝑢 into 𝑅 will produce a non-
empty𝑋 , making 𝑅∪{𝑢} not maximal. Thus,𝑢 can be removed. □

Lemma 6. (Dynamic Degree-One Reduction) Consider a dy-
namic degree-one vertex 𝑢 ∈ 𝑃 with its only neighbor 𝑣 ∈ 𝑃 in the
subproblem (𝑅, 𝑃, 𝑋). There are two scenarios:
(1) If ∃𝑤 ∈ 𝑋 such that 𝑢, 𝑣 ∈ 𝑁 (𝑤), vertex 𝑢 can be immediately

removed such that𝑚𝑐˜ (𝑅, 𝑃, 𝑋) =𝑚𝑐˜ (𝑅, 𝑃 ′, 𝑋) where 𝑃 ′ = 𝑃\{𝑢}.
If 𝑣 is also a dynamic degree-one vertex before 𝑢’s removal, then 𝑣
should also be removed, that is𝑚𝑐˜ (𝑅, 𝑃, 𝑋) =𝑚𝑐˜ (𝑅, 𝑃 \{𝑢, 𝑣}, 𝑋).

(2) If ∄𝑤 ∈ 𝑋 such that 𝑢, 𝑣 ∈ 𝑁 (𝑤), 𝑅 ∪ {𝑢, 𝑣} is a maximal clique
and vertex𝑢 is deleted such that |𝑚𝑐˜ (𝑅, 𝑃, 𝑋) | = |𝑚𝑐˜ (𝑅, 𝑃 ′, 𝑋) |+1
where 𝑃 ′ = 𝑃 \ {𝑢}. If 𝑣 is also a dynamic degree-one vertex
before 𝑢’s removal, then 𝑣 should be removed as well, that is
|𝑚𝑐˜ (𝑅, 𝑃, 𝑋) | = |𝑚𝑐˜ (𝑅, 𝑃 \ {𝑢, 𝑣}, 𝑋) | + 1.

Proof. If ∃𝑤 ∈ 𝑋 such that 𝑢, 𝑣 ∈ 𝑁 (𝑤), moving {𝑢, 𝑣} into
𝑅 would result in an empty 𝑃 but non-empty 𝑋 , as 𝑤 ∈ 𝑋 . This

(a) Original Recursion Tree (b) Our Recursion Tree

Figure 6: Comparison of two recursion trees.

indicates a non-maximal clique. Otherwise, 𝑋 will be empty, signi-
fying the discovery of a maximal clique. 𝑣 will become a dynamic
degree-zero vertex if it is a dynamic-one vertex before. It needs to
be removed because 𝑁 (𝑢) ⊇ 𝑅 ∪ {𝑣} indicates that 𝑣 cannot form a
maximal clique in the subproblem (𝑅, 𝑃 \ {𝑢}, 𝑋). □

In Lemma 6, for each dynamic degree-one vertex 𝑢 ∈ 𝑃 in the
subproblem, we need to determine whether𝑢 and 𝑣 share a common
vertex in the forbidden set𝑋 . Thus, the overall time cost is𝑂 ((|𝑋 | +
𝑑𝑚𝑎𝑥) |𝑃 |). Since the reduction is expected to introduce as little
extra computation cost as possible, we develop a relaxed version of
dynamic degree-one reduction as follows.

Lemma 7. (Relaxed Dynamic Degree-One Reduction) Con-
sider a dynamic degree-one vertex 𝑢 ∈ 𝑃 with its only neighbor 𝑣 ∈ 𝑃
in the subproblem (𝑅, 𝑃, 𝑋). If 𝑁 (𝑢) ∩ 𝑋 = ∅ or 𝑁 (𝑣) ∩ 𝑋 = ∅,
𝑅 ∪ {𝑣,𝑢} forms a maximal clique and vertex 𝑢 can be removed from
𝑃 such that |𝑚𝑐˜ (𝑅, 𝑃, 𝑋) | = |𝑚𝑐˜ (𝑅, 𝑃 ′, 𝑋) | + 1 where 𝑃 ′ = 𝑃 \ {𝑢}. If
𝑣 is also a dynamic degree-one vertex before 𝑢’s removal, 𝑣 will be
removed as well, that is |𝑚𝑐˜ (𝑅, 𝑃, 𝑋) | = |𝑚𝑐˜ (𝑅, 𝑃 \ {𝑢, 𝑣}, 𝑋) | + 1.

Proof. The condition implies that ∄𝑤 ∈ 𝑋 such that 𝑣,𝑢 ∈
𝑁 (𝑤). We can deduce the conclusion using Lemma 6. □

Note that the cost of conducting this reduction rule is trivial since
we can efficiently maintain 𝑁 (𝑣) ∩𝑋 by traversing the neighbors of
each vertex in the forbidden set𝑋 just once. Subsequently, applying
Lemma 7 on dynamic degree-one vertices only requires traversing
the candidate set 𝑃 . The overall time complexity is 𝑂 (|𝑋 | |𝑃 |).

Example 6. Let us consider the subproblem presented in Figure 5(a).
The vertices in the candidate set 𝑃 are in orange color and the forbidden
set 𝑋 consists of vertices in blue color. Through the reduction rules,

2424

Algorithm 5: dynamicVertexReduction(𝑅, 𝑃, 𝑋)
Input: Partial clique 𝑅, Candidate set 𝑃 , Forbidden set 𝑋
Output: Reduced 𝑅′, 𝑃 ′, 𝑋 ′

1 for 𝑣 ∈ 𝑋 do
2 for 𝑢 ∈ 𝑁𝑃 (𝑣) do
3 mark 𝑢
4 for 𝑣 ∈ 𝑃 do
5 if 𝑑𝑃 (𝑣) = 0 then
6 𝑃 ′ ← apply the dynamic degree-zero reduction rule on 𝑣
7 else if 𝑑𝑃 (𝑣) = 1 then
8 𝑢 ← 𝑣’s only neighbor
9 if 𝑣 is not marked or 𝑢 is not marked then
10 𝑃 ′ ← apply the relaxed dynamic degree-one reduction

rule on 𝑣
11 for 𝑣 ∈ 𝑃 ′ do
12 if 𝑑𝑃 ′ (𝑣) = |𝑃 ′ | − 1 then
13 𝑃 ′, 𝑅′ ← apply the dynamic degree-(|𝑃 | − 1) reduction

rule on 𝑣
14 𝑋 ′ ← 𝑋 ∩𝐶 (𝑅′) ; // Update the forbidden set 𝑋

15 return 𝑅′, 𝑃 ′, 𝑋 ′

we can safely remove the dynamic degree-zero vertices 𝑢9 and 𝑢11,
resulting in the new subgraph of the subproblem shown in Figure 5(b).
Additionally, removing the degree-one vertices 𝑢7, 𝑢8, and 𝑢10 leads
to the subgraph of this subproblem in Figure 5(c).

Lemma 8. (Dynamic Degree-(|𝑃 | − 1) Reduction) If a vertex
𝑢 ∈ 𝑃 satisfies |𝑁𝑃 (𝑢) | = |𝑃 | − 1 in the subproblem (𝑅, 𝑃, 𝑋), 𝑢 is
called a dynamic degree-(|𝑃 | − 1) vertex. In this case, we can directly
move 𝑢 from 𝑃 into 𝑅, ensuring that 𝑚𝑐˜ (𝑅, 𝑃, 𝑋) = 𝑚𝑐˜ (𝑅′, 𝑃 ′, 𝑋 ′),
where 𝑅′ = 𝑅 ∪ {𝑢}, 𝑃 ′ = 𝑃 \ {𝑢}, and 𝑋 ′ = 𝑋 ∩ 𝑁 (𝑢).

Proof. Given a dynamic degree-(|𝑃 | − 1) vertex 𝑢, we have
|𝑁𝑃 (𝑢) | = |𝑃 | − 1, which means ∀𝑆 ⊆ 𝑃 and 𝑢 ∉ 𝑆 , 𝑢 ∈ 𝐶 (𝑆).
Assume there exists a subset 𝑆 ⊆ 𝑃 that 𝑢 ∉ 𝑆 and 𝑆 ∪ 𝑅 is a clique.
Then 𝑆 ∪𝑅 is not maximal due to𝑢 ∈ 𝑃 ∩𝐶 (𝑆). That is any maximal
clique in the subproblem (𝑅, 𝑃, 𝑋) must contain the vertex 𝑢. □

Example 7. Let us revisit the subproblem presented in Figure 5(a).
Based on the updated subgraph in Figure 5(c), 𝑢1, 𝑢2, 𝑢3, and 𝑢6
are identified as dynamic degree-(|𝑃 | − 1) vertices. Thus, adding
them to 𝑅 will make the subgraph of this subproblem much smaller,
with only two isolated vertices, as shown in Figure 5(d). Hence, the
overall search tree of this subproblem derived from our reduction
rules is shown in Figure 6(b). Eliminating low-degree vertices from
the original subproblem enhances the efficiency of dynamic degree-
(|𝑃 | − 1) reduction, further reducing the scale of the subproblem.

Algorithm 5 outlines our dynamic reduction procedure in detail.
It starts by marking each neighbor 𝑢 of each vertex 𝑣 in forbidden
set𝑋 if𝑢 ∈ 𝑃 , where a marked vertex𝑢 means𝑁 (𝑢)∩𝑋 ≠ ∅ (lines 1-
3). Subsequently, we iterate through each vertex 𝑣 ∈ 𝑃 . For dynamic
degree-zero vertices, we remove them according to Lemma 5 (lines
5-6). For dynamic degree-one vertices, we selectively remove some
of them following the relaxed dynamic degree-one reduction rule
in Lemma 7 (lines 7-10). Afterward, we reiterate through reduced
𝑃 ′ again to perform the dynamic degree-(|𝑃 | − 1) reduction (lines
11-13). Once all reduction operations are completed, we update the
forbidden set 𝑋 so that ∀𝑣 ∈ 𝑋 ′, 𝑅′ ⊆ 𝑁 (𝑣) (line 14).

Algorithm 6: forbiddenSetReduction(𝑣, 𝑃, 𝑋, 𝑖𝑔𝑛𝑜𝑟𝑒𝐼𝑑)
Input: Vertex 𝑣 inducing the subproblem with partial clique {𝑣},

candidate set 𝑃 , and forbidden set 𝑋 ; an array 𝑖𝑔𝑛𝑜𝑟𝑒𝐼𝑑
Output: Reduced 𝑋 ′

1 𝑋 ′ ← {𝑢 |𝑢 ∈ 𝑋 ∧ 𝑖𝑔𝑛𝑜𝑟𝑒𝐼𝑑 [𝑢] ≥ 𝑣’s order}
2 for 𝑢 ∈ 𝑃 do
3 if 𝑃 ⊆ 𝑁 + (𝑢) then
4 𝑖𝑔𝑛𝑜𝑟𝑒𝐼𝑑 [𝑣] ← min(𝑢’s order, 𝑖𝑔𝑛𝑜𝑟𝑒𝐼𝑑 [𝑣])
5 else if 𝑁 + (𝑢) ⊆ 𝑃 then
6 𝑖𝑔𝑛𝑜𝑟𝑒𝐼𝑑 [𝑢] ← min(𝑣’s order, 𝑖𝑔𝑛𝑜𝑟𝑒𝐼𝑑 [𝑢])
7 return 𝑋 ′

Complexity Analysis. Marking the vertices in 𝑃 takes the cost
𝑂 (𝜆 |𝑋 |) (lines 2-4), where 𝜆 is the degeneracy of the graph 𝐺 .
Traversing the vertices in 𝑃 and their neighbors costs 𝑂 (𝜆 |𝑃 |). Up-
dating the set 𝑋 also requires 𝑂 (𝜆 |𝑋 |) time. Thus, the overall time
cost of Algorithm 5 is 𝑂 (𝜆(|𝑋 | + |𝑃 |)) in the worst case. The space
overhead is 𝑂 (|𝑃 |) as we need to mark the vertices in 𝑃 .

6 MAXIMALITY CHECK REDUCTION
Considerable effort has been focused on reducing the candidate set
to enhance the efficiency, while the cost of the maximality check
has often been overlooked. Here, we shed light on the observation
that the forbidden set involves substantial redundant computation
and introduce a technique that efficiently reduces the forbidden set.

6.1 Forbidden Set Reduction
The insight above leads to a method of reducing the forbidden set
by checking the neighborhood dominance between vertices in 𝑋 .

Lemma 9. (Forbidden Set Reduction by Neighbor Contain-
ment) For two vertices 𝑢, 𝑣 ∈ 𝑋 , if 𝑁𝑃 (𝑢) ⊆ 𝑁𝑃 (𝑣), it holds that
𝑚𝑐˜ (𝑅, 𝑃, 𝑋) =𝑚𝑐˜ (𝑅, 𝑃, 𝑋 ′), where 𝑋 ′ = 𝑋 \ {𝑢}.

Proof. Assume a non-maximal clique 𝑅∪Δ𝑅 becomes maximal
due to the removal of 𝑢 where Δ𝑅 ⊆ 𝑃 , which means Δ𝑅 ⊆ 𝑁𝑃 (𝑢).
While 𝑋 ∩𝐶 (Δ𝑅) = ∅ implies that Δ𝑅 ⊇ 𝑁𝑃 (𝑣), which contradicts
the condition 𝑁𝑃 (𝑢) ⊆ 𝑁𝑃 (𝑣). Thus, the Lemma 9 holds. □

Example 8. Consider the graph in Figure 5(a). 𝑁𝑃 (𝑣1) = {𝑢1, 𝑢7},
𝑁𝑃 (𝑣3) = {𝑢1, 𝑢2, 𝑢3}, and 𝑁𝑃 (𝑣4) = {𝑢9} are subsets of 𝑁𝑃 (𝑣2) =
{𝑢1, 𝑢2, 𝑢3, 𝑢7, 𝑢9}. If we remove 𝑣1, 𝑣3, and 𝑣4 from 𝑋 , the solution
of the current subproblem will remain unaffected, that is, any non-
maximal cliques will not be reported and any maximal cliques will
not be lost. For example, 𝑅 ∪ {𝑢9} is not a maximal clique due to the
adjacent relationship with 𝑣4 and 𝑣2. After removing 𝑣4 from 𝑋 , the
clique 𝑅 ∪ {𝑢9} will not be maximal due to the existence of vertex 𝑣2.

Establishing the neighbor containment relationship between ver-
tices in 𝑋 by traversing them and their neighbors in each subtask
incurs significant time overhead. Thus, we design an efficient ap-
proach (i.e., Algorithm 6) that continuously builds the neighbor
containment relationship between vertices during the MCE process,
which can prune 𝑋 without incurring additional time overhead.

A subproblem induced by vertex 𝑣 refers to the subproblem with
𝑅 = {𝑣}, 𝑃 = 𝑁 + (𝑣), and 𝑋 = 𝑁 − (𝑣). Algorithm 6 aims to establish
neighbor containment relationships between 𝑣 and vertices in 𝑃 of
the subproblem induced by 𝑣 , and efficiently prunes 𝑋 . It utilizes

2425

an array of size 𝑛, called 𝑖𝑔𝑛𝑜𝑟𝑒𝐼𝑑 , to record the order in which
vertices can be excluded from constructing the set 𝑋 . Initially, all
elements are set to 𝑛, indicating that no vertex will be ignored.
For a subgraph induced by the later neighbors of a vertex 𝑣 , if a
candidate vertex 𝑢 satisfies 𝑃 ⊆ 𝑁 + (𝑢), i.e., 𝑁 + (𝑣) ⊆ 𝑁 + (𝑢), then
𝑣 can be ignored in all subsequent subproblems after completing
the 𝑗-th iteration, where 𝑗 is the order of 𝑢. This is because in
any subproblem after that, if 𝑣 ∈ 𝑋 , then 𝑢 must be contained
in 𝑋 , which allows us to prune 𝑣 following Lemma 9. Thus, the
𝑖𝑔𝑛𝑜𝑟𝑒𝐼𝑑 of vertex 𝑣 will be updated as the minimum of 𝑗 and its
current value (line 4). Conversely, if 𝑁 + (𝑢) ⊆ 𝑃 , it means 𝑢 can be
ignored instantly after this iteration since 𝑁𝑃 (𝑢) will be dominated
by 𝑁𝑃 (𝑣) in all subsequent subproblems (line 6).
Complexity Analysis. Reducing the size of the forbidden set 𝑋
runs in 𝑂 (|𝑋 |), which is linear in the size of 𝑋 . The process of
updating 𝑖𝑔𝑛𝑜𝑟𝑒𝐼𝑑 for each vertex in 𝑃 involves traversing their
later neighbors. Thus, the time complexity of Algorithm 6 is𝑂 (𝜆 |𝑃 |).
The space complexity is 𝑂 (𝑛) due to the array ignoreId of size 𝑛.

6.2 Correctness of RMCE framework
Based on all the reductions, we give the correctness proof of the
RMCE framework. For a more detailed proof, please refer to our
technical report. Here, we provide an outline of the proof.

Lemma 10. Algorithm 2 delivers all and only maximal cliques in
the input graph 𝐺 .

Proof. (1) Firstly, we establish the correctness of the global
reduction in the RMCE framework by proving𝑚𝑐 (𝐺) =𝑚𝑐 (𝐺 ′) +
𝛼 (Δ𝑉 ,Δ𝐸), where Δ𝑉 and Δ𝐸 represent the deleted vertices and
edges in the global reduction and 𝛼 (Δ𝑉 ,Δ𝐸) denotes the maximal
cliques that contain vertices inΔ𝑉 or edges inΔ𝐸 whose correctness
has been proved in Section 4. To establish this, we only need to
show the following cases: case (i) all maximal cliques in 𝐺 ′ are
also maximal cliques in 𝐺 and, case (ii) all maximal cliques not in
𝛼 (Δ𝑉 ,Δ𝐸)must be included by𝑚𝑐 (𝐺). The two cases can be proved
by contradiction, where it can be shown that all counterexamples
would conflict with global reduction conditions.

(2) Secondly, we assume that the recursive function in any BK
framework returns all and only the maximal cliques that con-
tain all vertices in 𝑅, certain vertices in 𝑃 , and no vertices in 𝑋
in each subproblem (𝑅, 𝑃, 𝑋) (as demonstrated in existing works
such as [3, 15, 27, 39]). As the dynamic reduction and maximal-
ity check reduction only modify the subproblem, we only need
to establish 𝑚𝑐˜ (𝑅, 𝑃, 𝑋) = 𝑚𝑐˜ (𝑅′, 𝑃 ′, 𝑋 ′) + �̃� (𝑅,Δ𝑃1, 𝑋), where �̃�
represents the maximal cliques containing the deleted vertices
Δ𝑃1 that are determined through dynamic reduction. For maxi-
mality check reduction, we have Δ𝑃1 = ∅ and �̃� (𝑅,Δ𝑃1, 𝑋) = 0.
𝑚𝑐˜ (𝑅, 𝑃, 𝑋) =𝑚𝑐˜ (𝑅′, 𝑃 ′, 𝑋 ′) is directly proven using Lemma 9.

For subproblemsmodified by dynamic reduction, �̃� (𝑅,Δ𝑃1, 𝑋) in-
cludes all maximal cliques containing any vertices in Δ𝑃1 under the
subproblem (𝑅, 𝑃, 𝑋), which is proved in Section 5. We only need to
demonstrate that (i) all maximal cliques in (𝑅′, 𝑃 ′, 𝑋 ′) are also max-
imal cliques in (𝑅, 𝑃, 𝑋), and (ii) all maximal cliques in (𝑅, 𝑃, 𝑋) that
are not in �̃� (𝑅,Δ𝑃1, 𝑋) must be included in𝑚𝑐˜ (𝑅′, 𝑃 ′, 𝑋 ′). Similarly,
the two cases can be proved by showing that all counterexamples
will conflict with dynamic reduction conditions. □

Table 1: Graph statistics, where 𝜆 represents the degeneracy.

Graph Abbr. #Vertices #Edges 𝑑𝑚𝑎𝑥 𝜆

as-skitter as 1696415 11095298 35455 111
ca-CondMat ca 23133 93439 279 25
cit-Patents cp 3774768 16518947 793 64
com-dblp cd 317080 1049866 343 113
com-orkut co 3072441 117185083 33313 253

com-youtube cy 1134890 2987624 28754 51
email-EuAll ee 265009 364481 7636 37

flickr fl 105938 2316948 5425 573
inf-road-usa in 23947346 28854311 9 3
large_twitch lt 168114 6797557 35279 149
loc-gowalla lg 196591 950327 14730 51
roadNet-CA rc 1965206 2766607 12 3

sc-delaunay_n23 sd 8388608 25165784 28 4
soc-pokec sp 1632803 22301964 14854 47

soc-twitter-higgs st 456631 12508440 51386 125
web-Google wg 875713 4322051 6332 44
web-Stanford ws 281903 1992636 38625 71
wiki-Talk wt 2394385 4659565 100029 131

7 APPLYING TO TEMPORAL GRAPHS
We will further explore the possibilities of extending our reduction
techniques to special graphs, with temporal graphs as an example.

Definition 7. (Temporal Graph) A temporal graph 𝐺𝑇 is a
triple (𝑉 , 𝐸,𝑇) where𝑉 denotes the vertex set, 𝐸 ⊆ 𝑉 ×𝑉 ×𝑇 denotes
a set of time-edges, and 𝑇 = [𝑡𝑠 , 𝑡𝑒] denotes the time interval of the
graph. 𝑡𝑒 − 𝑡𝑠 is called the lifetime of the graph 𝐺𝑇 where 𝑡𝑠 , 𝑡𝑒 ∈ N.

Definition 8. (Δ-clique) Let Δ ∈ N, a Δ-clique in a temporal
graph 𝐺𝑇 = (𝑉 , 𝐸,𝑇) is defined as a tuple 𝐶 = (𝑆, 𝐼 = [𝑎, 𝑏]) with
𝑆 ⊆ 𝑉 , 𝑏 − 𝑎 ≥ Δ, and 𝐼 ⊆ 𝑇 such that for all 𝜏 ∈ [𝑎, 𝑏 − Δ] and for
all 𝑢, 𝑣 ∈ 𝑆 there exists a ({𝑣,𝑤}, 𝑡) ∈ 𝐸 with 𝑡 ∈ [𝜏, 𝜏 + Δ].

A Δ-clique 𝐶 = (𝑆, 𝐼) is called time-maximal if we cannot in-
crease the time interval 𝐼 without removing any vertex in 𝑆 . It is
called vertex-maximal if we cannot enlarge the vertex set 𝑆 without
decreasing the time interval 𝐼 . A Δ-clique is maximal when it is
both time-maximal and vertex-maximal.

Our reduction techniques can be applied to the enumeration of
maximal Δ-cliques with careful modifications. We have developed
Temporal Degree-One Reduction, Temporal Degree-Two Reduction
and Temporal Non-triangle Edge Reduction for the global scenario,
Temporal Dynamic Degree-Zero Reduction, Temporal Dynamic
Degree-One Reduction and Temporal Dynamic Degree-(|𝑃 | − 1)
Reduction for the dynamic scenario, as well as Temporal Forbidden
Set Reduction. Further details can be found in our technique report.

8 EXPERIMENTS
8.1 Experimental Settings
Dataset. As referenced in Table 1, we use 18 real networks from
SNAP [24] and Network Repository [35] in the experiments.
Algorithms. We evaluate the performance of enhancing four ex-
isting methods BKdegen, BKrcd, BKfacen, and BKrevised.
• BKdegen [15]: The degeneracy-based algorithm, which is the

fastest algorithm among existing methods in most cases.
• BKrcd [27]: The top-down algorithm for MCE.
• BKfacen [22]: MCE algorithm that uses hybrid data structure

with adjacency list and partial adjacency matrix.

2426

Figure 7: Overall performance: each bar represents the speedups of its corresponding algorithm enhanced by our reduction
methods over the original algorithm (e.g., RMCEdegen represents running time of BKdegen

running time of RMCEdegen). The “+” symbol denotes that our
method completes within 12 hours while the original one fails. The “*” symbol denotes that both our method and the original
algorithm failed to complete within 12 hours.

• BKrevised [33]: MCE algorithm with a revised pivot strategy.
• RMCEdegen: Our method uses the recursion of BKdegen.
• RMCErcd: Our method uses the recursion of BKrcd.
• RMCEfacen: Our method uses the recursion of BKfacen.
• RMCErevised: Our method uses the recursion of BKrevised.

All experiments are conducted on a Linux Server equipped with
Intel(R) Xeon(R) CPU E5-2696 v4 @ 2.20GHz and 128G RAM. All
algorithms except the temporal solutions (implemented in Python)
are implemented in C++ and compiled with -𝑂3 option.

8.2 Overall Results
Taking the running time cost of each original algorithm as the
baseline, we compute the speedups of our methods over BKdegen,
BKrcd, BKfacen, and BKrevised, respectively. Figure 7 presents the
results for 18 graphs. we observe that our methods consistently
outperform the original methods. Specifically, RMCEdegen, RM-
CErcd, RMCEfacen, and RMCErevised achieve peak speedups of
4.29×, 3.77×, 44.7×, and 26.8× in graphs in, fl, ws, and lt, respec-
tively. The detailed running time is presented in Table 2. Due to
the space limit, we omit the running time of BKfacen (it can be
inferred based on the speedup depicted in Figure 7). It is clear that
each method exhibits noteworthy improvements by incorporating
our reduction techniques. The average speedups are 2.2, 2.5, 13.4,
and 4.4 for BKdegen, BKrcd, BKfacen, and BKrevised, respectively.

From the result shown in Figure 7 and Table 2, we can see that
BKdegen runs faster among the existing methods in 7 graphs (e.g.,
as and lg). While in other 9 graphs (e.g., cp and cd), BKrcd out-
performs other existing methods. However, its improvement over
BKdegen is marginal and it may lead to significant degradation
on certain graphs (e.g., lt and co). BKfacen exhibits the slowest
performance among all graphs, possibly due to the lack of a ro-
bust pivot selection mechanism, which often leads to performance
degradation in larger graphs. Additionally, the frequent creation of
adjacency matrices in memory can result in out-of-memory issues
in certain graphs (e.g., sd). In the dataset sd, BKrevised runs faster
than other existing methods, and it closely approaches BKdegen
on numerous graphs. This is attributed to its continued utilization
of the BKdegen framework, with modifications made to the pivot
selection criteria in boundary cases.

Table 2: Detailed running time (in seconds). The “-” symbol
denotes that the method failed to complete within 12 hours.

Graph BKdegen RMCEdegen BKrcd RMCErcd BKrevised RMCErevised RMCEfacen

as 80.55 57.49 126.75 60.63 206.68 58.22 200.67
ca 0.20 0.05 0.09 0.04 0.12 0.06 0.15
cp 56.11 22.14 47.19 22.52 41.94 22.54 29.82
cd 1.64 0.67 1.39 0.67 1.88 0.69 1.10
cy 6.84 4.01 6.07 3.99 8.41 4.22 10.02
ee 0.99 0.47 0.81 0.38 1.36 0.48 0.80
lg 2.68 1.91 2.79 1.51 3.57 1.91 5.32
rc 3.19 0.95 2.89 0.95 2.93 0.94 0.82
sp 73.97 44.77 61.89 44.54 91.86 44.82 103.62
st 554.99 391.48 1184.87 389.70 1632.51 394.27 1541.28
wg 6.55 2.55 5.30 2.54 6.01 2.67 5.65
ws 2.95 1.51 2.33 1.27 4.04 1.52 4.98
wt 109.40 76.68 213.42 77.51 268.63 77.01 305.84
fl 287.84 178.86 664.91 176.01 1348.76 180.19 801.14
in 49.38 11.51 43.98 11.42 44.07 11.43 10.97
lt 469.48 325.24 1077.11 329.65 8792.72 328.09 1302.74
co 3554.64 2393.59 7176.81 2404.62 9742.07 2431.44 8957.91
sd 28.25 11.52 29.14 11.72 26.61 12.67 -

After integrating our reduction techniques, all methods have
shown improved runtime speeds. RMCEdegen exhibits the fastest
performance on 7 graphs (e.g., as and cp), while RMCErcd shows
the fastest execution on 9 graphs (e.g., ca and cd). In datasets fl, lt,
and co, the gap between RMCEdegen and RMCErcd has been signifi-
cantly narrowed compared to previous results. Overall, RMCEdegen
proves to be relatively superior and stable in larger datasets, while
RMCErcd exhibits better performance in smaller datasets.
Discussion. Let us consider the state-of-the-art methods BKde-
gen, BKrcd, and BKrevised. Although our methods have achieved
an average speedup of around 3 times compared to the original
methods, it is worth mentioning that optimizing maximal clique
enumeration itself, being a fundamental task in the field of graph
mining, is yet highly challenging. For instance, BKrcd, built upon
BKdegen, only exhibits marginal improvements on a few graphs (up
to 2.17× speedup on the ca dataset), and even performs much worse
than BKdegen in graphs like fl, lt, and co. On average, its speedup is
merely 0.98 (i.e., it performs worse than BKdegen). Therefore, our
method’s average improvement of 3 times is relatively significant
(and the best speedups achieved in BKdegen, BKrcd, and BKrevised
are 4.29, 3.77, and 26.8 times, respectively). Furthermore, we have

2427

Figure 8: Reduction ratio of global reduction.

Figure 9: Ratio of recursive calls. The symbol “*” denotes that
the original method fails to complete.

Figure 10: Reduction ratio of maximality check reduction.

surprisingly found that our reduction techniques can achieve sig-
nificant speedup improvements on particular graphs (e.g., temporal
graphs) as well. For more details, please refer to Section 8.6.

8.3 Detailed Evaluation
The Effect of Global Reduction. To evaluate the effect of global re-
duction, Figure 8 shows the ratio of deleted vertices and the ratio
of deleted edges compared to the original graph. There are over
35% vertices in 12 graphs (e.g., cp and cy) and over 20% edges in 9
graphs (e.g., ee and wt) that can be removed by global reduction.
In particular, all vertices and edges in graphs in and rc have been
deleted due to their sparsity (thus, we exclude them from subse-
quent experiments). In contrast, no vertices and edges in the sd
dataset have been deleted, verifying the effectiveness of dynamic
reduction and maximality check reduction on the other hand.
Number of Recursive Calls. We investigate the number of recursive
calls during the MCE algorithm to show the pruning power of our
reduction method. We define the ratio of recursive calls as

#recursive calls of a method (like RMCEdegen)
#recursive calls of original algorithm (like BKdegen)

As depicted in Figure 9, RMCEdegen, RMCErcd, RMCEfacen, and
RMCErevised reduce the number of recursive calls to no more
than 17.6%, 28.5%, 4.5%, and 20.5% of the original, respectively. In
instances like in and rc, no recursive calls are needed since all the
vertices and edges have been removed by global reduction. The
ratio of the number of recursive calls serves as an indicator of the
effectiveness of a method, as each recursive call typically involves
set intersection and pivot selection. The superior pruning ability of
our algorithms is evident from these results.

Effect of Forbidden Set Reduction. To evaluate the impact of forbid-
den set reduction, we examine two key metrics: the ratio of pruned
vertices when constructing the forbidden set 𝑋 for each subprob-
lem (𝑟𝑣𝑒𝑟𝑡𝑒𝑥 =

∑︁ |𝑋 ′ |∑︁ |𝑋 |) and the ratio of subproblems where for-

bidden set reduction occurs (𝑟𝑠𝑢𝑏𝑝𝑟𝑜𝑏𝑙𝑒𝑚 =
#{𝑠𝑢𝑏𝑝𝑟𝑜𝑏𝑙𝑒𝑚 |𝑋 ′⊂𝑋 }

#𝑠𝑢𝑏𝑝𝑟𝑜𝑏𝑙𝑒𝑚) in
the outer iteration. The results are depicted in Figure 10. Remark-
ably, we observe that in many datasets like ca and cd, the ratio
of pruned vertices (i.e., 𝑟𝑣𝑒𝑟𝑡𝑒𝑥) can reach close to 50%. Addition-
ally, in datasets like fl and sd, the ratio of reduced subproblems
(𝑟𝑠𝑢𝑏𝑝𝑟𝑜𝑏𝑙𝑒𝑚) achieves nearly 40%, indicating the significant prun-
ing effect of our maximality check reduction technique. These re-
sults highlight the effectiveness of our method in reducing the
computational overhead of the maximality check process.
Reduction of Vertex Visits. We also report the distribution of vertex
visits with respect to their degrees. Due to limited space, we report
the results of 4 graphs. As shown in Figure 11, RMCEdegen yields a
substantial reduction in the number of vertex visits across different
degrees. In wg (Figure 11(a)), RMCEdegen reduces 88% vertex visits
compared to BKdegen (70% compared to BKrcd) at degree 20. In cp
(Figure 11(b)), RMCEdegen reduces 82% vertex visits compared to
BKdegen (82% compared to BKrcd) at degree 15. And in cd (Figure
11(d)), RMCEdegen reduces 73% vertex visits compared to BKdegen
(61% compared to BKrcd) at degree 3. While for graphs whose
vertices may be with a higher degree such as sp in Figure 11(c),
our method can also reduces the vistis of high-degree vertices.
For example, RMCEdegen reduces 46% vertex visits compared to
BKdegen (54% compared to BKrcd) at degree 100 in sp. Similar
results can be seen in cp as shown in Figure 11(b).
Time Overhead. The time overhead is measured by the ratio of the
time consumed by the reduction techniques to the total running
time (i.e., time cost of reduction technique

total running time). As depicted in Figure 12,
the global reduction technique often introduces a substantial time
overhead, accounting for 78% of the total runtime in the rc dataset.
However, the benefits obtained from this technique often outweigh
the time overhead, since all cliques can be efficiently identified
through this technique in the rc dataset. In complex datasets like
co and lt, global reduction imposes minimal time overhead (3% and
1% for co and lt, respectively). In dataset sd, additional overhead is
incurred as no vertices and edges are pruned. Nonetheless, in most
scenarios, the sparsity of the graph ensures the effectiveness of
global reduction. In most cases, the time ratio of dynamic reduction
is less than 10%, such as in datasets cd, lt, and co. Atmost, it accounts
for approximately 11.6% of the total running time in the ca dataset.
Note that maximality check reduction costs less than 1.3% of the
total time overhead in all algorithms, as observed in the wg dataset.
In numerous datasets, this overhead is even below 0.1% (e.g., lt and
fl), which shows that maximality check reduction can improve the
running speed without introducing significant overhead.
Memory Overhead. The memory overhead is shown in Figure 13.
The memory overhead of BKdegen and RMCEdegen is measured by
the peak memory usage during the execution. The global reduction
and maximality check reduction incur the same memory over-
head. They use an integer array to track whether a vertex has been
globally deleted and the neighborhood containment relationship
between vertices, respectively. Dynamic reduction incurs slightly

2428

Figure 11: Illustration of the gaps between maximal cliques and vertex visits on four graphs (the horizontal axis is log-scaled).

Figure 12: Time overhead.

Figure 13: Memory overhead.

higher memory overhead, employing a boolean array to mark ver-
tices in 𝑃 and an integer array to store the degree of each vertex in
the current subgraph. The memory overhead of these three reduc-
tions is linear to the number of vertices, which is approximately two
orders of magnitude smaller than the peak memory usage. Further-
more, RMCEdegen incurs even less memory overhead compared to
BKdegen, as the reductions can reduce the recursive calls.

8.4 Ablation Study
To evaluate the individual effectiveness of the proposed three re-
duction methods, we implement four variant algorithms, named
Variant1, Variant2, Variant3, and Variant4. We have incorporated
Global Reduction into the BKdegen algorithm, naming it Variant1.
Building upon it, we added Dynamic Reduction, resulting in Vari-
ant2. Variant1 and Variant2 serve to analyze the step-by-step impact
of our reduction techniques on the efficiency of the algorithm. Ad-
ditionally, for the sake of completeness, we have also removed the
Global Reduction and Dynamic Reduction techniques from the RM-
CEdegen algorithm, creating Variant3 and Variant4, respectively.

From Table 3, we can observe that the complete version RM-
CEdegen outperforms all other variants in 11 datasets. However,
Variant3 runs faster in 7 datasets. As we can see that Variant1 slows
down the original BKdegen algorithm in datasets like as and sd.
Nevertheless, in datasets like cp and rc, Global Reduction provides
a significant acceleration. The runtime gap between Variant3 and
RMCEdegen is relatively small, confirming the overall effectiveness

Table 3: Ablation study (in seconds)

Graph BKdegen Variant1 Variant2 RMCEdegen Variant3 Variant4
as 80.55 84.78 60.77 57.49 51.22 70.52
ca 0.20 0.14 0.11 0.05 0.05 0.06
cp 56.11 31.91 24.86 22.14 25.71 25.85
cd 1.64 1.03 0.90 0.67 0.75 0.90
cy 6.84 6.23 4.19 4.01 3.74 4.47
ee 0.99 0.97 0.44 0.47 0.39 0.48
lg 2.68 2.62 2.06 1.91 1.74 2.38
rc 3.19 1.19 0.96 0.95 1.41 0.97
sp 73.97 71.28 48.93 44.77 43.69 49.62
st 554.99 548.24 415.12 391.48 405.62 478.73
wg 6.55 4.38 2.69 2.55 2.57 3.00
ws 2.95 2.42 1.53 1.51 1.52 2.08
wt 109.40 113.08 80.63 76.68 75.63 90.74
fl 287.84 282.91 185.40 178.86 184.36 249.78
in 49.38 11.54 11.62 11.51 19.07 11.82
lt 469.48 447.39 344.67 325.24 341.99 408.66
co 3554.64 3479.7 2451.96 2393.59 2475.37 2867.58
sd 28.25 32.27 12.04 11.52 9.28 13.53

of global reduction. Removing the dynamic reduction significantly
degrades the performance in most datasets (e.g., as and fl) since it
effectively prunes a substantial number of search branches during
recursion. The benefits can also be observed in Variant2. The last
column of the table demonstrates that maximality check reduction
consistently improves the time efficiency across all datasets. As it
only takes linear space overhead without incurring additional com-
putations. These results validate the efficiency and effectiveness of
our reduction methods in optimizing the MCE algorithm.

8.5 Applying to Parallel Algorithms
To further demonstrate the efficiency of our algorithm, we integrate
the reduction techniques into a parallelized MCE algorithm. We
have implemented the recent shared-memory parallel algorithm
called parMCE proposed in [11]. ParMCE parallelizes both the
expansion of subproblems and the pivot selection process. Our
reduction techniques can be applied to parMCE easily since parMCE
also adopts the BK framework. Besides, our reduction techniques
can also be parallelized. Table 4 shows the running time of partial
datasets to save space, while the complete version can be found
in the technique report. The algorithm enhanced by our reduction
techniques is called parRMCE and the largest threads are set to 32.
From the table, we can find our parRMCE runs faster than parMCE
in all datasets. Note that it takes even more time than the sequential
methods mentioned above in some large graphs like co and lt. This
is primarily due to the imbalance in workload among subproblems

2429

Figure 14: Running time vs. Δ on temporal graphs (in seconds).

Table 4: Result of applying to parallel experiment (in seconds)

Graph as cp co in lt rc sp wg
parMCE 180.72 20.30 6354.41 29.31 1100.96 2.76 40.71 5.16
parRMCE 110.71 9.82 5208.12 7.41 759.67 0.64 24.89 3.05

which is a common issue in the field of parallelized MCE algorithms.
However, this phenomenon does not undermine the evidence of
the effectiveness of our reduction techniques in parallel algorithms.

8.6 Experiments on Temporal Graphs
Since the source code of existing solution BKDelta [20] is imple-
mented in Python, we implement our reduction version RMCEDelta
by incorporating our reduction techniques in Python for fair com-
parison. We use four real temporal graphs in this experiment,
which are downloaded from SNAP [24].

The running time of BKDelta and RMCEDelta is shown in Figure
14. The average speedups of RMCEDelta over BKDelta on datasets
bitcoinotc, CollegeMsg, mathoverflow, and redditHyperlinks are
6.2, 3.3, 9.2, and 3.6, respectively. Due to the introduction of the tem-
poral dimension in temporal graphs, the solution space of maximal
cliques is often more complex. Surprisingly, effective reduction tech-
niques can yield significant time savings, allowing for more efficient
computations. Our reduction techniques can achieve an average of
5.6 speedups on these temporal graphs, further demonstrating the
effectiveness and scalability of our reduction techniques.

9 RELATEDWORK
Maximal Clique Enumeration. The BK algorithm[3] is a classic
recursive backtracking algorithm that solves MCE. They also first
propose the naive pivot technique which chooses the first vertex as
the pivot. Tomita et al. [39] prove that the worst-case time complex-
ity is𝑂 (𝑛3

𝑛
3) by choosing the pivot 𝑢 which maximizes |𝑁 (𝑢) ∩ 𝑃 |

from 𝑃 ∪ 𝑋 . Eppstein et al. [15] further introduce the degener-
acy order and reduce the worst-case time complexity to 𝑂 (𝑛3

𝜆
3).

Li et al. [27] propose a top-to-down approach, that repeatedly re-
moves the vertex with the smallest degree until a clique is reached,
which aims to efficiently solve the MCE in these dense neighbor-
hoods. Other studies have explored solving MCE using external
memory [7] or using GPUs to accelerate the BK algorithm [46]. Ad-
ditionally, the output-sensitive algorithm [6, 8, 29, 41] is a branching
algorithm that guarantees the time interval between two consecu-
tive outputs (also known as delay) at the polynomial level. The enu-
meration time of this algorithm is related to the number of all output

maximal cliques. Many works focus on solving the MCE problem
in other variant graphs, such as uncertain graphs[10, 26, 32], dy-
namic graphs[12, 38], temporal graphs[20, 31, 42], heterogeneous
graphs[21], and attributed graphs[34, 49].
Parallel Approach. Numerous parallel algorithms have been de-
signed for MCE [11, 13, 25, 36, 37]. Du et al. [13] implement a
method that regards each vertex and its neighborhood 𝑁 (𝑣) as a
basic task, with each processor responsible for multiple basic tasks
according to a simple serial number mapping. Schmidt et al. [37] im-
prove load balancing of parallel algorithms through a work stealing
strategy, where an idle thread randomly polls one or more search
tree nodes at the bottom of the stack of other threads. Lessley et al.
[25] introduce an approach consisting of data-parallel operations
on shared-memory, multi-core architectures, aiming to achieve
efficient and portable performance across different architectures.
Das et al. [11] also present a shared-memory parallel method that
parallelizes both pivot selection and sub-problem expansion.
Cohesive Subgraph Mining. Similar to MCE, many tasks also
focus on the mining of cohesive subgraphs [16, 23, 43–45]. For ex-
ample, Lijun Chang [4] introduces several efficient reduction rules
to tackle the maximum clique problem. 𝑘-clique densest subgraph
detection is an important task for identifying “near-cliques”, and a
highly efficient algorithm incorporating reduction techniques has
been proposed in [19] to achieve the state-of-the-art performance,
significantly contributing to the advancement of cohesive subgraph
mining. Reduction rules have also been applied to another classical
task maximum independent set [5, 9, 17].

10 CONCLUSION
In this paper, we introduce a novel reduction-based framework
RMCE for enumerating maximal cliques. To reduce the computa-
tion cost, RMCE incorporates powerful graph reductions including
global reduction, dynamic reduction, and maximality check reduc-
tion. We conduct comprehensive experiments over 18 real graphs.
The empirical results confirm the effectiveness of our proposed
reduction techniques.

ACKNOWLEDGMENTS
This work was supported by Key Projects of the National Natural
Science Foundation of China (Grant No. U23A20496), Huawei Tech-
nologies Co., Ltd. (Grant No. TC20220804023), and the Research
Grant Council of the Hong Kong Special Administrative Region,
China (Grant No. CUHK 14217622). Weiguo Zheng is the corre-
sponding author.

2430

REFERENCES
[1] Faisal N Abu-Khzam, Nicole E Baldwin, Michael A Langston, and Nagiza F

Samatova. 2005. On the relative efficiency of maximal clique enumeration
algorithms, with applications to high-throughput computational biology. In
International Conference on Research Trends in Science and Technology. 1–10.

[2] Kamanashis Biswas, Vallipuram Muthukkumarasamy, and Elankayer Sithirase-
nan. 2013. Maximal clique based clustering scheme for wireless sensor networks.
In 2013 IEEE Eighth International Conference on Intelligent Sensors, Sensor Networks
and Information Processing. IEEE, 237–241.

[3] Coen Bron and Joep Kerbosch. 1973. Algorithm 457: Finding All Cliques of an
Undirected Graph. Commun. ACM 16, 9 (sep 1973), 575–577.

[4] Lijun Chang. 2019. Efficient maximum clique computation over large sparse
graphs. In Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining. 529–538.

[5] Lijun Chang, Wei Li, and Wenjie Zhang. 2017. Computing a near-maximum
independent set in linear time by reducing-peeling. In Proceedings of the 2017
ACM International Conference on Management of Data. 1181–1196.

[6] Lijun Chang, Jeffrey Xu Yu, and Lu Qin. 2013. Fast maximal cliques enumeration
in sparse graphs. Algorithmica 66 (2013), 173–186.

[7] James Cheng, Yiping Ke, AdaWai-Chee Fu, Jeffrey Xu Yu, and Linhong Zhu. 2011.
Finding maximal cliques in massive networks. ACM Transactions on Database
Systems (TODS) 36, 4 (2011), 1–34.

[8] Alessio Conte, Roberto Grossi, Andrea Marino, and Luca Versari. 2016. Sublinear-
space bounded-delay enumeration for massive network analytics: Maximal
cliques. In 43rd International Colloquium on Automata, Languages, and Program-
ming (ICALP 2016), Vol. 148. 1–148.

[9] Jakob Dahlum, Sebastian Lamm, Peter Sanders, Christian Schulz, Darren Strash,
and Renato F Werneck. 2016. Accelerating local search for the maximum inde-
pendent set problem. In Experimental Algorithms: 15th International Symposium,
SEA 2016, St. Petersburg, Russia, June 5-8, 2016, Proceedings 15. Springer, 118–133.

[10] Qiangqiang Dai, Rong-Hua Li, Meihao Liao, Hongzhi Chen, and Guoren Wang.
2022. Fast maximal clique enumeration on uncertain graphs: A pivot-based
approach. In Proceedings of the 2022 International Conference on Management of
Data. 2034–2047.

[11] Apurba Das, Seyed-Vahid Sanei-Mehri, and Srikanta Tirthapura. 2018. Shared-
memory parallel maximal clique enumeration. In 2018 IEEE 25th International
Conference on High Performance Computing (HiPC). IEEE, 62–71.

[12] Apurba Das, Michael Svendsen, and Srikanta Tirthapura. 2019. Incremental
maintenance of maximal cliques in a dynamic graph. The VLDB Journal 28
(2019), 351–375.

[13] Nan Du, Bin Wu, Liutong Xu, Bai Wang, and Xin Pei. 2006. A parallel algo-
rithm for enumerating all maximal cliques in complex network. In Sixth IEEE
International Conference on Data Mining-Workshops (ICDMW’06). IEEE, 320–324.

[14] Igor Dukanovic and Franz Rendl. 2007. Semidefinite programming relaxations
for graph coloring and maximal clique problems. Mathematical Programming
109, 2-3 (2007), 345–365.

[15] David Eppstein, Maarten Löffler, and Darren Strash. 2010. Listing all maximal
cliques in sparse graphs in near-optimal time. In Algorithms and Computation:
21st International Symposium, ISAAC 2010, Jeju Island, Korea, December 15-17,
2010, Proceedings, Part I 21. Springer, 403–414.

[16] Yixiang Fang, Kai Wang, Xuemin Lin, and Wenjie Zhang. 2021. Cohesive Sub-
graph Search over Big Heterogeneous Information Networks: Applications, Chal-
lenges, and Solutions. In Proceedings of the 2021 International Conference on
Management of Data. 2829–2838.

[17] Fedor V Fomin, Fabrizio Grandoni, and Dieter Kratsch. 2009. A measure &
conquer approach for the analysis of exact algorithms. Journal of the ACM
(JACM) 56, 5 (2009), 1–32.

[18] Shuo Han, Lei Zou, and Jeffrey Xu Yu. 2018. Speeding up set intersections in
graph algorithms using simd instructions. In Proceedings of the 2018 International
Conference on Management of Data. 1587–1602.

[19] Yizhang He, KaiWang,Wenjie Zhang, Xuemin Lin, and Ying Zhang. 2023. Scaling
Up k-Clique Densest Subgraph Detection. Proc. ACM Manag. Data 1, 1 (2023),
69:1–69:26. https://doi.org/10.1145/3588923

[20] Anne-Sophie Himmel, Hendrik Molter, Rolf Niedermeier, and Manuel Sorge.
2016. Enumerating maximal cliques in temporal graphs. In 2016 IEEE/ACM
International Conference on Advances in Social Networks Analysis and Mining
(ASONAM). IEEE, 337–344.

[21] Jiafeng Hu, Reynold Cheng, Kevin Chen-Chuan Chang, Aravind Sankar, Yixiang
Fang, and Brian YH Lam. 2019. Discovering maximal motif cliques in large
heterogeneous information networks. In ICDE. 746–757.

[22] Yan Jin, Bowen Xiong, Kun He, Yangming Zhou, and Yi Zhou. 2022. On fast
enumeration of maximal cliques in large graphs. Expert Systems with Applications
187 (2022), 115915.

[23] Victor E. Lee, Ning Ruan, Ruoming Jin, and Charu Aggarwal. 2010. A Survey of
Algorithms for Dense Subgraph Discovery. Springer US, Boston, MA, 303–336.

[24] Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large Network
Dataset Collection. http://snap.stanford.edu/data.

[25] Brenton Lessley, Talita Perciano, Manish Mathai, Hank Childs, and E Wes Bethel.
2017. Maximal clique enumeration with data-parallel primitives. In 2017 IEEE
7th Symposium on Large Data Analysis and Visualization (LDAV). IEEE, 16–25.

[26] Rong-Hua Li, Qiangqiang Dai, GuorenWang, ZhongMing, Lu Qin, and Jeffrey Xu
Yu. 2019. Improved algorithms for maximal clique search in uncertain networks.
In ICDE. 1178–1189.

[27] Yinuo Li, Zhiyuan Shao, Dongxiao Yu, Xiaofei Liao, and Hai Jin. 2019. Fast
maximal clique enumeration for real-world graphs. In International Conference
on Database Systems for Advanced Applications. Springer, 641–658.

[28] Zhenqi Lu, Johan Wahlström, and Arye Nehorai. 2018. Community detection in
complex networks via clique conductance. Scientific reports 8, 1 (2018), 5982.

[29] Kazuhisa Makino and Takeaki Uno. 2004. New algorithms for enumerating all
maximal cliques. In Algorithm Theory-SWAT 2004: 9th Scandinavian Workshop on
Algorithm Theory, Humlebæk, Denmark, July 8-10, 2004. Proceedings 9. Springer,
260–272.

[30] Tsutomu Matsunaga, Chikara Yonemori, Etsuji Tomita, and Masaaki Muramatsu.
2009. Clique-based data mining for related genes in a biomedical database. BMC
bioinformatics 10 (2009), 1–9.

[31] Hendrik Molter, Rolf Niedermeier, and Malte Renken. 2021. Isolation concepts
applied to temporal clique enumeration. Network Science 9, S1 (2021), S83–S105.

[32] Arko Provo Mukherjee, Pan Xu, and Srikanta Tirthapura. 2015. Mining maximal
cliques from an uncertain graph. In ICDE. 243–254.

[33] Kevin A Naudé. 2016. Refined pivot selection for maximal clique enumeration in
graphs. Theoretical Computer Science 613 (2016), 28–37.

[34] Minjia Pan, Rong-Hua Li, Qi Zhang, Yongheng Dai, Qun Tian, and Guoren Wang.
2022. Fairness-aware maximal clique enumeration. In 2022 IEEE 38th International
Conference on Data Engineering (ICDE). IEEE, 259–271.

[35] Ryan A. Rossi and Nesreen K. Ahmed. 2015. The Network Data Repository with
Interactive Graph Analytics and Visualization. In Proceedings of the Twenty-Ninth
AAAI Conference on Artificial Intelligence, January 25-30, 2015, Austin, Texas, USA,
Blai Bonet and Sven Koenig (Eds.). AAAI Press, 4292–4293.

[36] Pablo San Segundo, Jorge Artieda, and Darren Strash. 2018. Efficiently enumer-
ating all maximal cliques with bit-parallelism. Computers & Operations Research
92 (2018), 37–46.

[37] Matthew C Schmidt, Nagiza F Samatova, Kevin Thomas, and Byung-Hoon Park.
2009. A scalable, parallel algorithm for maximal clique enumeration. Journal of
parallel and distributed computing 69, 4 (2009), 417–428.

[38] Shengli Sun, Yimo Wang, Weilong Liao, and Wei Wang. 2017. Mining Maximal
Cliques on Dynamic Graphs Efficiently by Local Strategies. In 2017 IEEE 33rd
International Conference on Data Engineering (ICDE). 115–118.

[39] Etsuji Tomita, Akira Tanaka, and Haruhisa Takahashi. 2006. The worst-case time
complexity for generating all maximal cliques and computational experiments.
Theoretical computer science 363, 1 (2006), 28–42.

[40] Armin Töpfer, Tobias Marschall, Rowena A Bull, Fabio Luciani, Alexander Schön-
huth, and Niko Beerenwinkel. 2014. Viral quasispecies assembly via maximal
clique enumeration. PLoS computational biology 10, 3 (2014), e1003515.

[41] Shuji Tsukiyama, Mikio Ide, Hiromu Ariyoshi, and Isao Shirakawa. 1977. A new
algorithm for generating all the maximal independent sets. SIAM J. Comput. 6, 3
(1977), 505–517.

[42] Tiphaine Viard, Matthieu Latapy, and Clémence Magnien. 2016. Computing
maximal cliques in link streams. Theoretical Computer Science 609 (2016), 245–
252.

[43] Kai Wang, Wenjie Zhang, Xuemin Lin, Ying Zhang, and Shunyang Li. 2022.
Discovering Hierarchy of Bipartite Graphs with Cohesive Subgraphs. In ICDE.
2291–2305.

[44] Kai Wang, Gengda Zhao, Wenjie Zhang, Xuemin Lin, Ying Zhang, Yizhang He,
and Chunxiao Li. 2023. Cohesive Subgraph Discovery Over Uncertain Bipartite
Graphs. IEEE Transactions on Knowledge and Data Engineering 35, 11 (2023),
11165–11179.

[45] Kai Wang, Gengda Zhao, Wenjie Zhang, Xuemin Lin, Ying Zhang, Yizhang He,
and Chunxiao Li. 2023. Cohesive Subgraph Discovery Over Uncertain Bipartite
Graphs. IEEE Trans. Knowl. Data Eng. 35, 11 (2023), 11165–11179.

[46] Yi-Wen Wei, Wei-Mei Chen, and Hsin-Hung Tsai. 2021. Accelerating the Bron-
Kerbosch algorithm for maximal clique enumeration using GPUs. IEEE Transac-
tions on Parallel and Distributed Systems 32, 9 (2021), 2352–2366.

[47] Xuyun Wen, Wei-Neng Chen, Ying Lin, Tianlong Gu, Huaxiang Zhang, Yun
Li, Yilong Yin, and Jun Zhang. 2016. A maximal clique based multiobjective
evolutionary algorithm for overlapping community detection. IEEE Transactions
on Evolutionary Computation 21, 3 (2016), 363–377.

[48] Haiyuan Yu, Alberto Paccanaro, Valery Trifonov, and Mark Gerstein. 2006. Pre-
dicting interactions in protein networks by completing defective cliques. Bioin-
formatics 22, 7 (2006), 823–829.

[49] Qi Zhang, Rong-Hua Li, Minjia Pan, Yongheng Dai, Qun Tian, and Guoren Wang.
2023. Fairness-Aware Maximal Clique in Large Graphs: Concepts and Algorithms.
IEEE Transactions on Knowledge and Data Engineering 35, 11 (2023), 11368–11387.

[50] Weiguo Zheng, Yifan Yang, and Chengzhi Piao. 2021. Accelerating Set Intersec-
tions over Graphs by Reducing-Merging. In Proceedings of the 27th ACM SIGKDD
Conference on Knowledge Discovery & Data Mining (KDD ’21). Association for
Computing Machinery, New York, NY, USA, 2349–2359.

2431

https://doi.org/10.1145/3588923
http://snap.stanford.edu/data

	Abstract
	1 Introduction
	1.1 Existing Methods and Limitations
	1.2 Our Approach and Contributions

	2 Problem Definition and Preliminary
	2.1 Problem Formulation
	2.2 Existing Solutions

	3 Reduction-based Framework RMCE
	4 Global Reduction
	4.1 Intuition
	4.2 Low-Degree Vertex Reduction
	4.3 Non-triangle Edge Reduction

	5 Dynamic Reduction
	5.1 Intuition
	5.2 Dynamic Vertex Reduction

	6 Maximality Check Reduction
	6.1 Forbidden Set Reduction
	6.2 Correctness of RMCE framework

	7 Applying to Temporal Graphs
	8 Experiments
	8.1 Experimental Settings
	8.2 Overall Results
	8.3 Detailed Evaluation
	8.4 Ablation Study
	8.5 Applying to Parallel Algorithms
	8.6 Experiments on Temporal Graphs

	9 Related Work
	10 conclusion
	Acknowledgments
	References

