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ABSTRACT
Today, blockchain ledgers utilize concurrent deterministic execu-

tion schemes to scale up. However, ordering fairness is not pre-

served in these schemes: although they ensure all replicas achieve

the same serial order, this order does not always align with the

fair, consensus-established order when executing smart contracts

with runtime-determined accesses. To preserve ordering fairness,

an intuitive method is to concurrently execute transactions and

re-execute any order-violating ones. This in turn increases unfore-

seen conflicts, leading to scaling bottlenecks caused by numerous

costly aborts under contention. To address these issues, we pro-

pose Spectrum, a novel deterministic execution scheme for smart

contract execution on blockchain ledgers. Spectrum preserves the

consensus-established serial order (so-called strict determinism)

with high performance. Specifically, we leverage a speculative de-

terministic concurrency control to execute transactions in spec-

ulation and enforce an agreed-upon serial order by aborting and

re-executing any mis-speculated ones. To overcome the scaling

bottleneck, we present two key optimizations based on speculative

processing: operation-level rollback and predictive scheduling, for

reducing both the overhead and the number of mis-speculations.

We evaluate Spectrum by executing EVM-based smart contracts

on popular benchmarks, showing that it realizes fair smart con-

tract execution by preserving ordering fairness and outperforms

competitive schemes in contended workloads by 1.4x to 4.1x.
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1 INTRODUCTION
Blockchain ledger systems [2, 3, 5, 10, 48] have emerged to facilitate

collaborative business among multiple distrusting parties. These

systems use state machine replication to replicate data in hostile en-

vironments. Transactions specified in user-defined smart contracts

[52, 57] are ordered by the Byzantine consensus [13] and executed

deterministically by all replicas for consistent state transitions.

In order to meet the determinism requirement, conventional

approaches enforce each replica to follow sequential execution of

the agreed-upon order but exhibit poor performance and limited

multi-core scalability. To overcome this limitation, several works

exploit transaction parallelism by proposing concurrent determin-

istic execution schemes based on various concurrency controls

[9, 11, 15, 19, 20, 24, 29, 33, 44] and different execution paradigms

[10, 40, 47, 49]. Among them, the recent integration of deterministic

concurrency control (DCC) schemes, originally used in determinis-

tic databases, into blockchain ledgers provides an ideal solution. It

offers independent parallelism for replicas without changing the

traditional blockchain order-execute paradigm.

However, merely ensuring determinism is not sufficient for

blockchain ledgers, as it may vary from the consensus-established

serial order. Unlike traditional databases [28, 51], where all replicas

are controlled by the same party, different replicas in a blockchain

ledger are controlled by multiple parties that are not trusted by each

other. In blockchain ledgers, the specific total order of transactions

can have significant financial implications for involved parties in

order-sensitive applications (e.g., auctions and flash minting scenar-

ios [37, 50]). Hence, replicas are motivated to prevent other parties

from manipulating the ordering to their advantage. To address this

concern, modern Byzantine consensus protocols [31, 32, 61] incor-

porate fairness designs to ensure the ordering is not manipulated

by a single party (even if the consensus leader). Given that the

ordering brings about fairness concerns, it is required for execution

to strictly adhere to the fair ordering to preserve such fairness.

But most DCC schemes fail to meet this requirement. They

merely guarantee deterministic serializability, which can lead to

a deterministic yet different serial order that disrupts ordering

fairness. Fig. 1 provides an example involving an order-sensitive

application: the AccessControl smart contract with a grantAccess
function, where a caller who has access permission can grant per-

mission to a specified address. Consider three transactions in the

agreed-upon fair order: 𝑇1 → 𝑇2 → 𝑇3, where initially 𝑎𝑑𝑑𝑟𝐴 has

permission while others lack it. After serially executing the fair

ordering, its semantics ensure that all four addresses 𝑎𝑑𝑑𝑟𝐴∼𝐷 get
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Figure 1: Merely Determinism Does NOT Preserve Ordering Fairness

permission. However, DCC schemes can produce another determin-

istic serial order due to deterministic reordering: 𝑇2 → 𝑇1 → 𝑇3,

resulting in only 𝑎𝑑𝑑𝑟𝐴 and 𝑎𝑑𝑑𝑟𝐵 getting permission, whose ex-

ecution results destroy ordering fairness. Moreover, transactions

invoking smart contracts may exhibit mutable read/write sets due

to unpredictable, runtime-determined data dependencies. This in-

troduces potential non-determinism issues within existing DCC

schemes, resolving which violates the agreed-upon determinism. If

an execution scheme fails to preserve ordering fairness, the fairness

ensured by consensus becomes ineffective. More severely, it may

allow adversaries to gain an unfair advantage in order-sensitive

applications [18, 34, 37, 50], leading to inequitable outcomes.

For blockchain ledgers, the execution scheme prioritizes pre-

serving ordering fairness, while also having performance concerns.

To ensure the same serial order, a transaction must observe all

modifications of preceding conflicting transactions. Sequential exe-

cution pessimistically holds this guarantee, but with poor efficiency.

To enhance execution efficiency, a practical scheme is to concur-

rently execute transactions while aborting and re-executing order-

violating ones. However, as conflicts are hard to pre-determine, this

scheme faces multi-core scaling bottlenecks in contended work-

loads, typical of on-chain applications during demand spikes (e.g.,

flash minting/sale scenarios) [26]. In such scenarios, numerous and

costly transaction aborts can occur due to unforeseen conflicts that

violate the agreed-upon order, severely degrading overall perfor-

mance. Hence, how to design an execution scheme that ensures

both agreed-upon serial order and high performance remains an

urgent issue to be solved for blockchain ledgers.

This paper addresses the following research questions: Can we

design an execution scheme that preserves ordering fairness by en-

suring strictly-deterministic serializability (SDS, as formally defined

in §3.1)? And can this scheme simultaneously maintain high perfor-

mance under conflicts? Our proposed execution scheme, Spectrum,

addresses both questions concretely. Spectrum is a concurrent and

strictly-deterministic execution scheme for blockchain ledgers, de-

signed to preserve consensus-established ordering fairness with

high performance. The main technical challenges that Spectrum

addresses are as follows: (1) how to achieve SDS in the concur-

rent execution of smart contract transactions; (2) how to minimize

re-execution overhead caused by transaction aborts, especially in

the complex stack-based execution runtime; (3) how to integrate

applicable and efficient scheduling techniques to reduce conflicts

without requiring complete a-priori information.

Spectrum addresses the first challenge by leveraging a spec-

ulative deterministic concurrency control that does not require

complete a-priori knowledge of transactions. With respect to an

agreed-upon ordering, Spectrum runs transactions out-of-orderly,

while aborting and re-executing ones contradicting that order dur-

ing runtime. This implies the transaction commit order is always

equivalent to the agreed-upon order. We prove that this speculative

processing ensures SDS even for smart contract transactions with

mutable read/write sets.

Then, Spectrum introduces an innovative partial rollback mech-

anism to tackle the second one. The main intuition is that when a

transaction is aborted due to mis-speculations, instead of complete

rollback and re-execution, specific executed logics unrelated to the

conflicts can be preserved and reused through re-execution. This

implies partial dependencies can be retained to quickly align with

the pre-ordering. Spectrum proposes a novel persistent structure

to realize this mechanism in the stack-based EVM [57] execution

runtime, enabling operation-level transaction re-execution.

For the last challenge, Spectrum proposes a predictive trans-

action scheduling method that uses merely partial pre-acquired

transaction knowledge to schedule potential conflicting transac-

tions at runtime. If the prediction works, it helps reduce the number

of mis-speculations and their induced aborts, thus maintaining su-

perior performance under contention.

To the best of our knowledge, Spectrum is the first DCC scheme

to ensure both strict determinism and high performance across

diverse workloads. Leveraging Spectrum empowers blockchain

ledgers to realize fair smart contract execution and support various

throughput-centric scenarios.

To summarize, we present the following main contributions:

• We propose Spectrum, a deterministic execution scheme

that achieves both strict determinism and high performance.

It leverages speculative processing to realize fair and speedy

smart contract execution for blockchain ledgers and ad-

dresses the scaling bottleneck with two key optimizations,

enabling effective scaling under diverse workloads.

• We propose a partial rollback mechanism and implement an

efficient, operation-level rollback approach in stack-based

EVM smart contract execution, significantly reducing the

overhead per mis-speculation.

• We design a predictive transaction scheduling method that

uses merely partial a-priori transaction knowledge to pre-

schedule potential conflicting transactions, effectively min-

imizing the number of mis-speculations.

• We evaluate Spectrum by running Ethereum-style smart

contracts on popular benchmarks. The experimental re-

sults on YCSB, SmallBank and TPC-C show that Spectrum

outperforms competitive schemes by 1.4x to 4.1x.

The rest of the paper is organized as follows. We present the

background in §2, problem statement in §3, Spectrum design in

§4, theoretical analysis in §5, implementation in §6, experimental

evaluation in §7, related work in §8, and conclusion in §9.
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2 BACKGROUND
2.1 Parallelizing Transactional Smart Contracts
Blockchain ledgers implement smart contracts as self-executing

programs invoked by users as transactions. The current de facto

standard implementation is Ethereum-style smart contracts. Their

operations are specified in bytecode and run on a stack-based, 256-

bit word-size Ethereum Virtual Machine (EVM). EVM currently

supports over 100 types of operations to facilitate rich semantic

applications. It executes operations to manipulate the stack and

trigger on-chain state transitions. Notably, SLOAD/SSTORE opera-

tions are used to read/write smart contract state, where each state

is mapped to a key/value pair and managed by state storage [59].

Ethereum-style smart contracts written in Solidity [7] are quasi-

Turing-complete [57]. This implies that their access patterns, i.e.,

read/write sets (keys), are determined at runtime, making it difficult

to predict accurate ones before execution.

Instead of having all replicas execute smart contract transactions

sequentially for determinism, existing works attempt to exploit

transaction parallelism while still ensuring determinism. These

works can be broadly classified into two categories: primary-follower
parallelism and equally-replicated parallelism.

Primary-Follower parallelism. In the order-execute (OE) par-

adigm, several works [11, 19, 29] explore transaction parallelism

through differential execution designs on the primary and its fol-

lowers. Given that transactions could be first packed and executed

by the primary replica (i.e., the consensus leader) and then replayed

and validated by other replicas, they propose two-phase concurrent

deterministic execution schemes: the primary executes smart con-

tracts concurrently using optimistic concurrency control (OCC) and

records scheduling information in the block structure, facilitating

the followers to replay consistent results with high concurrency. But

these primary-follower approaches are vulnerable and only offer

blocked parallelism. A malicious primary can inhibit the execution

efficiency of followers with misleading schedule information. Addi-

tionally, followers must wait for the primary to finish its execution

before replaying, resulting in low and blocked parallelism.

Equally-Replicated parallelism. Unlike primary-follower par-

allelism, equally-replicated parallelism makes no distinction be-

tween primary replicas and followers. All replicas are treated iden-

tically and utilize the same execution scheme to process ordered

smart contracts, thus providing non-blocked parallelism. Under the

OE paradigm, various works try to modify and integrate concur-

rency control schemes used in databases into blockchain ledgers.

Nathan et al. [39] and OCC-DA [24] each incorporate deterministic

abort rules to non-deterministic concurrency controls, specifically

serializable snapshot isolation (SSI) and OCC, to ensure determinis-

tic execution. However, although they eliminate non-determinism,

the resulting deterministic serial order can differ from sequential

execution of the pre-determined ordering in cases of conflicts.

More recently, several works have achieved transaction paral-

lelism by assuming that complete read/write sets of smart contracts

can be determined prior to execution using static analysis [6] or

simulated execution. ParBlockchain [9] leverages this pre-acquired

information to identify conflicts among transactions. It designs the

OXII protocol, which constructs conflict graphs for each replica

to execute non-conflicting transactions in parallel. PEEP [15] first

Table 1: Comparison with deterministic execution schemes

Deterministic

Execution Schemes

Execution

Paradigm

No Complete

R/W Sets

Strict

Determinism

Scaling in

Contention

▲
HyperLedger Fabric [10] EOV ! % %

▲
Fabric(++, #) [47, 49] EOV ! % !

▲
NeuChain [40] EV ! % %

•
Calvin [55], PWV [22] OE % % !

•
Bohm [23], Caracal [45] OE % % !

•
QueCC [43] OE % % !

•
Aria, AriaFB [38] OE ! % !

•
Sparkle [36] OE ! ! %

▲
Primary-Follower [29] OE ! % !

▲
SSI [39], OCC-DA [24] OE ! % %

▲
OXII [9], PEEP [15] OE % % !

▲
Harmony [33] OE ! % !

▲ Spectrum (Ours) OE ! ! !

•
Scope of Databases

▲
Scope of Blockchains

incorporates deterministic concurrency control from the determin-

istic database Calvin [55] into blockchain ledgers. Based on the

prior assumption, PEEP enables each replica to achieve concurrent

smart contract execution with a determinism guarantee through

an ordered lock scheme. However, these works heavily rely on the

strong prior assumption. For complicated smart contract transac-

tions (e.g., those with data dependencies, branchings, or delegate

calls), accurately acquiring this information through static analysis

or simulation is not feasible, making these schemes less practical.

To address such cases, Harmony [33] builds upon the recent state-

of-the-art deterministic database, Aria [38], which does not require

the early acquisition of read/write sets. However, the adoption of

these DCC schemes cannot maintain both strict determinism and

high performance for blockchain ledgers.

Beyond the OE paradigm, Hyperledger Fabric [10] and its vari-

ants [25, 47, 49] introduce parallelismwith an execute-order-validate

(EOV) paradigm. NeuChain [40] makes ordering implicit through

deterministic execution based on an execute-validate (EV) paradigm.

But these schemes require a redesign of the execution paradigm,

making them incompatible with the widely-used OE paradigm.

Table 1 tabulates a comparison of Spectrum with current deter-

ministic execution schemes.

3 PROBLEM STATEMENT
3.1 Violation of the Agreed-Upon Serial Order
Since the ordering established by consensus upholds fairness for

all replicas, the execution scheme must preserve ordering fairness

by ensuring the same serial order. We first provide a formal defini-

tion of strictly-deterministic serializability (SDS) in Definition 3.1.

Briefly, for a specific agreed-upon ordering of transactions, an ex-

ecution scheme holding this property ensures that its execution

effects remain consistent with those of sequential execution. In the

context of blockchain ledgers, if an execution scheme ensures SDS,

it guarantees that the execution results maintain ordering fairness.

Definition 3.1 (Strictly-Deterministic Serializability, SDS). Given
an agreed ordering of transactions, 𝑂 :⟨𝑇1, . . . ,𝑇𝑛⟩, an execution

schedule of transactions 𝑆 satisfies strictly-deterministic serial-
izability iff its effect is equivalent to the sequential execution of𝑂 ,

which adheres to the transactions commit order, ⟨𝑇1, . . . ,𝑇𝑛⟩.
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Figure 2: A Transaction𝑇𝑖 with Mutable Read/Write Sets

While most DCC schemes ensure a deterministic serial order,

they do not guarantee that this order is equivalent to the agreed-

upon order when processing smart contract transactions with

runtime-determined accesses. The runtime-determined nature leads

to mutable read/write sets. More generally, we define a transaction

with mutable read/write sets as one whose read/write sets can vary

across different snapshots due to runtime-determined logic, such as

branching, dependent transactions, etc. Fig. 2 gives an example. In

this figure, theMutableRW smart contract includes an add function

with a conditional statement. When a transaction𝑇𝑖 invokes the add

function, the read/write sets of 𝑇𝑖 vary according to the snapshots

on which 𝑇𝑖 is executed, as shown at the bottom.

Early DCC schemes, such as Calvin [55] and its follow-ups

[15, 22, 23, 43, 45], require knowing complete transaction read/write

sets in advance to achieve deterministic scheduled execution. Even

though these schemes can utilize the OLLP method [55] to pre-

acquire complete one-shot read/write sets through simulated read-

only execution on a snapshot before scheduling, the smart contract

transaction can incur mutable read/write sets during runtime, lead-

ing to a mismatch with the pre-acquired ones. In such cases, Calvin

merely aborts the transaction to avoid non-determinism, which

entails a different deterministic serial order that contradicts the

agreed-upon one, thus clearly violating SDS.

The recent state-of-the-art deterministic database Aria [38], pro-

poses a DCC scheme without requiring a-priori knowledge. But

Aria employs deterministic reordering techniques by transforming

RAW dependencies to WAR ones, yielding a deterministic result

that differs from that of the agreed-upon order, thus violating SDS.

Further, even in the absence of reordering, Aria still fails to en-

sure strict determinism. We consider AriaFB as the variant of Aria

without reordering, and exemplify its failed attempt to hold SDS.

Aria processes a batch of pre-ordered transactions in two phases:

execution and commit. During the execution phase, all transac-

tions are executed concurrently on a consistent snapshot, with

their writes maintained locally. Once all transactions have been

executed, the commit phase uses their execution results to abort

conflicting transactions and commit the others. AriaFB offers an

efficient fallback strategy to handle these aborted transactions at

the end of the commit phase: the aborted ones are deterministi-

cally re-executed using Calvin’s ordered lock scheme [55], based

Figure 3: An Example of SDS-Violation in AriaFB Processing Trans-
actions with Mutable Read/Write Sets

on their read/write sets obtained in the first phase. However, Ari-

aFB still violates SDS when processing smart contract transactions

with mutable read/write sets, as exemplified in Fig. 3. In the first

phase, five transactions ⟨𝑇1,𝑇2,𝑇3,𝑇4,𝑇5⟩ execute on 𝑆𝑛𝑎𝑝𝑠ℎ𝑜𝑡1 re-

sulting in𝑇1 and𝑇2 commit while𝑇3,𝑇4 and𝑇5 abort in the commit

phase. Aborted transactions are then scheduled based on their ob-

tained read/write sets, to re-execute in parallel. However, during re-

execution, the read/write sets of 𝑇3 change according to 𝑆𝑛𝑎𝑝𝑠ℎ𝑜𝑡2,

causing 𝑇4 to miss 𝑇3’s write on 𝑒 , thus violating SDS. Since the

correctness of the fallback strategy relies on an accurate schedule,

if the schedule mismatches the runtime situation due to mutable

read/write sets, the mismatched transaction has to abort to prevent

potential concurrency anomalies, resulting in SDS-violation.

To conclude, despite being the state-of-the-art DCC scheme, Aria

and all its variants (including Aria-based Harmony [33]) fail to guar-

antee SDS, even when not employing the reordering optimization.

In addition to the illustrated example, the rationale is that during

two-phase processing of the Aria scheme, a transaction 𝑇𝑗 can be

committed before 𝑇𝑖 ’s commit, where 𝑇𝑖 ≺ 𝑇𝑗 in the agreed-upon

order. If 𝑇𝑖 happens to have mutable read/write sets that conflict

with those of 𝑇𝑗 , it causes 𝑇𝑗 to miss 𝑇𝑖 ’s update, leading to a dif-

ferent deterministic serial order that violates the agreed-upon one.

In such cases, the execution results of Aria lose expected ordering

fairness ensured by fair consensus in blockchain ledgers.

3.2 Scaling Bottleneck under Contention
To guarantee SDS, an execution scheme should let a transaction

𝑇𝑖 observe all its preceding conflicting transactions. Sequential

execution meets this requirement by letting 𝑇𝑖 wait for all its pre-

ceding transactions to commit before 𝑇𝑖 can execute, but with poor

efficiency. In the database scope, Sparkle [36] fulfills SDS by uti-

lizing an optimistic approach with a speculative commit strategy.

It executes transactions in parallel, optimistically committing sub-

sequent transactions while repeatedly aborting and re-executing

those transactions that are conflicting with the agreed-upon serial

order during runtime. Applying this intuition helps ensure SDS

in concurrent smart contract execution. However, while Sparkle

guarantees SDS, its performance falls short of handling contended

workloads, as its optimistic processing leads to two severe issues

that cause significant performance degradation.
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First, since the optimistic processing impose no constraints on

the transaction processing order, the contended workloads increase

the probability of conflicts occurring, leading to additional transac-

tion rollback and re-execution overhead. This overhead becomes

even more costly when processing smart contract transactions due

to their complex execution runtimes, further impacting overall per-

formance. Second, the increased contention in workloads brings

a higher number of conflicts and aborts. Due to the side effects

of optimism, certain transactions may be aborted repeatedly. And

with an increasing number of threads, the number of aborts also in-

creases sharply. This causes a considerable waste of CPU resources

and restricts the scheme’s multi-core scalability. Although Sparkle

implements a preemptive locking method to reduce conflicts, this

method introduces additional blocking and remains inefficient. We

will further elaborate on these limitations in §4.3 and §4.4.

4 SPECTRUM DESIGN
4.1 Design Overview
The design goal of Spectrum is to ensure both strict determinism

and high performance in concurrent smart contract execution. Cur-

rently, none of the existing DCC schemes can fulfill this goal. Also,

we find it difficult to adapt the current state-of-the-art DCC scheme

Aria for SDS guarantee, owing to its design limitations. Instead,

Spectrum harnesses the power of speculation to ensure SDS for

concurrent smart contract transactions (§4.2). Subsequently, it re-

mains challenging to maintain high performance under contended

workloads. To address this issue, Spectrum introduces two key op-

timizations based on speculative processing: (i) Spectrum proposes

and implements an innovative partial transaction rollback mech-

anism to mitigate the high overhead per mis-speculation (§4.3).

(ii) Spectrum designs a predictive transaction scheduling method

that does not require complete a-priori knowledge, yet effectively

reduces the number of mis-speculations under contention (§4.4).

4.2 Speculative Transaction Execution

Speculative processing. Spectrum incorporates a multi-versioned,

speculative deterministic concurrency control that allows for out-

of-order speculation. The intra-block transactions processed by

Spectrum are pre-ordered through consensus, each assigned a glob-

ally unique and auto-incremented sequence number, which reflects

the total order of all transactions. To achieve SDS, Spectrum en-

sures that the effect of concurrent execution is equivalent to the

result of serial execution ordered by the sequence number. This is

enforced by allowing a transaction 𝑇 to finally commit iff all of

its preceding transactions have finished their final commit and 𝑇

captures all related modifications. Since transactions are executed

in speculation, mis-speculations can cause conflicts that contradict

the agreed-upon total order. Spectrum detects these conflicts at

runtime, aborts the conflicting transactions, and then re-executes

them with the same sequence number to ensure strict determinism

across all replicas. To support this processing, Spectrum leverages a

multi-versioned shared storage and maintains a version list for each

state, wherein versions are arranged in ascending order of sequence

numbers. Additionally, each version keeps a read dependency list

to track transactions that have read it.

Figure 4: Speculative Transaction Execution

The lifetime of a transaction𝑇 includes the following phases: (1)

Execution, (2) Speculative Commit, and (3) Final Commit.

(1) Execution: During its execution, the transaction 𝑇 may

execute multiple read and write operations on different states. For

a read operation, 𝑇 first attempts to read the state from its local

writeset and readset. If the state is not found,𝑇 continues its read in

the shared storage by scanning the state’s version list and retrieving

the version with the largest sequence number that is smaller than its

own sequence number. Due to speculative processing, this retrieved

version may be incorrect, as some other transactions that precede𝑇

could later yield more recent versions. Therefore,𝑇 needs to record

its sequence number in the read dependency list of the accessed

state version, which enables aborting𝑇 if a conflict is detected later.

For a write operation, 𝑇 merely inserts the update into its local

writeset. Spectrum employs an early abort mechanism: Prior to

performing any read or write operation, 𝑇 checks whether it has

been notified to abort. If so, 𝑇 requires a rollback and re-execution

with the same sequence number.

(2) Speculative Commit: Once 𝑇 finishes its execution, it en-

ters the speculative commit phase. In this phase, its local writes

are made visible to other transactions: for each state within its

writeset, 𝑇 applies it to shared storage and checks if there are any

transactions that might have missed reading this version. Specif-

ically, 𝑇 inserts a new state version into the state’s version list at

the position indicated by 𝑇 ’s sequence number, and checks the

read dependencies tracked by the largest preceding state version to

abort transactions with larger sequence numbers, as they missed

𝑇 ’s update on this state. After applying all states in 𝑇 ’s writeset, 𝑇

is considered to be speculatively committed.

(3) Final Commit: Following the speculative commit phase, 𝑇

checks whether it could be finally committed. If so, it must satisfy

both of the following conditions: (i) all transactions that precede 𝑇

have already been finally committed, and (ii) 𝑇 remains unaborted.

If either of these conditions is not met, the check fails, and𝑇 would

be suspended or aborted accordingly. Otherwise, 𝑇 is considered

to be finally committed. Since the writes of 𝑇 have been applied in

the (2) phase, the final commit merely increments the counter that

tracks the sequence number of the latest final commit transaction. It

also removes redundant write versions that precede𝑇 and cleans up

𝑇 ’s inserted read dependencies, as they are no longer needed. Note

that before𝑇 is finally committed,𝑇 remains possible to be aborted

due to mis-speculations, and may undergo (1) and (2) phases several

times until reaching the final commit, as illustrated in Fig. 4.
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Figure 5: Exemplifying the WAR Conflict

Spectrum lets each thread independently execute the pre-ordered

transactions in speculation, thus exhibiting high inter-thread con-

currency. By leveraging speculative transaction execution, the re-

sulting transaction commit order from concurrent execution is guar-

anteed to strictly conform to the agreed-upon serial order, thereby

holding the SDS guarantee. In sharp contrast to Sparkle, Spectrum

tracks read dependencies on each state version for accurate con-

flict detection, supports non-blocking writes, and utilizes proposed

optimizations to maintain high performance under contention.

Conflicts in mis-speculations. As transactions are executed out-

of-orderly during speculation, mis-speculations can occur when

runtime results conflict with the agreed-upon serial order. In such

cases, the conflicting transaction needs to be aborted, removing all

its written versions (also triggering cascading aborts of transactions

that read these versions) and related read dependencies, clearing the

execution contexts, and subsequently re-executingwith the same se-

quence number.We now introduce and discuss the types of conflicts.

During speculation processing, only one type of conflict occurs due

to mis-speculations: the write-after-read (WAR) conflict, as defined

in Definition 4.1. Note that by adopting the multi-versioned design,

multiple written versions can coexist during execution to prevent

the write-after-write (WAW) conflict. Meanwhile, each transaction

only reads the written version of preceding transactions, thus avoid-

ing the read-after-write (RAW) conflict (i.e., 𝑇𝑖 reads the version

written by 𝑇𝑗 , where 𝑖 < 𝑗 ).

Definition 4.1 (Write-After-Read (WAR) Conflict). Transaction 𝑇𝑖
incurs a WAR conflict with 𝑇𝑗 if any 𝑇𝑖 ’s write𝑊𝑇𝑖 (𝑊𝑇𝑖 is visible

after 𝑇𝑖 ’s speculative commit) is missed by 𝑇𝑗 ’s read 𝑅𝑇𝑗 where𝑊𝑇𝑖
conflicts with 𝑅𝑇𝑗 and 𝑖 < 𝑗 .

Fig. 5 illustrates two cases ofWAR conflicts. In Case 1, during𝑇2’s

execution, its read operation on state 𝑎 missed𝑇1’s write. Therefore,

when 𝑇1 reaches the speculative commit phase, it detects a WAR

conflict with 𝑇2 and aborts 𝑇2. In Case 2, after 𝑇4 has speculatively

committed, 𝑇5 reads 𝑇4’s write on state 𝑐 . Later, 𝑇3 encounters a

WAR conflict with 𝑇4 on state 𝑏, thus aborting 𝑇4 and causing 𝑇4 to

cascade abort 𝑇5.

4.3 Fine-Grained Transaction Rollback

Notion of partial transaction rollback.When a WAR conflict

occurs, the aborted transaction triggers a revert process to roll-

back all its execution contexts and modifications. Traditionally, the

rollback-to state is the initial state of the transaction, and subse-

quently, the transaction is reallocated to a free worker thread for

re-executing all of its operations. Though this transaction-level

revert obviously ensures correctness, it could be expensive and

wasteful if a transaction faces conflicts that impact only a small

Figure 6: Operation-Level Transaction Rollback

portion of its execution, yet has to re-execute all of its operations.

Furthermore, smart contract transactions are more complicated

than simple transfer transactions, involving intricate business logic

and complex stack-based execution runtimes. Consequently, the

transaction-level revert not only leads to a significant waste of CPU

resources but also imposes costly re-execution overhead.

To optimize the costly re-execution overhead, our approach al-

lows aborted transactions to re-execute only the specific operations

impacted by conflicts. Meanwhile, other executed operations that

are unrelated to conflicts can be preserved and reused in subsequent

re-execution, thus saving overhead. The insight is that the partial

order implied by these non-conflicting operations conforms to the

agreed-upon serial order, and preserving them helps quickly align

with the established order, thereby achieving SDS. To achieve this,

we propose and incorporate a partial rollback mechanism into spec-

ulative execution. Generally speaking, when a transaction𝑇 should

abort due to a conflict, 𝑇 only needs to rollback to a checkpointed

state right before the conflict occurs, rather than rolling back to

the initial state. During re-execution process, 𝑇 can resume and

continue its execution using the execution context recorded by the

checkpoint, and perform read/write operations for new versions to

proceed with its execution, as exemplified in Fig. 6.

Implementing partial rollback in stack-based EVM. EVM is

currently the dominant standard, and most smart contract execu-

tion runtimes are EVM-compatible. Each smart contract transaction

runs an EVM instance, which consists of a program counter (PC), a
runtime Stack, and a temporary Memory table. EVM executes oper-

ations indicated by the PC to manipulate the runtime stack. When

performing an operation-level rollback, the PC and the written

Memory can be stored and recovered easily. However, recovering

previous stack states is non-trivial.

Compared to converting stack-based operations into register-

based representations [14], having stack-native support for par-

tial rollback is a more general and ideal approach. But unlike the

register-based VM that stores operands in registers and allows

for easy tracking, the stack-based VM manages operands within a

stack, without explicitly knowing the operand addresses. In order

to support partial rollback, it is necessary to journal all potential

stack states that might be reverted to in the future. One strawman

approach is to take a complete snapshot of all the elements residing

in the stack, copying and storing them when a checkpoint needs to

be created. However, this approach is highly inefficient, incurring

significant memory and maintenance costs, as validated in §7.3.
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Figure 7: An Overview of pStack-Based Stack Frame Management

To overcome this limitation, we design pStack, a persistent data
structure that efficiently restores and operates on multiple stack

snapshots, as illustrated in Fig. 7. Conceptually, pStack functions

like a standard stack but with enhanced capabilities. It can addi-

tionally access all elements by indexing while tracking previously

recorded stack snapshots. The pStack partitions the stack into sev-

eral memory segments, each tracking𝑚 consecutive stack elements.

This enables efficient snapshotting by sharing parts of the stack

state (unmodified segments) across multiple snapshots instead of

copying the entire stack.

A snapshot of the stack state is indicated by a stack frame (SF).

Each SF consists of three parts: a pointer list to memory segments,

a stack height, and a list of boolean ref-markers. The ref-markers

track whether current SF shares the segment with a previous SF,

facilitating the Copy-on-Write (CoW) mechanism at the segment

level. The pStack exposes three primitive methods:

• write(elementIndex, value): It updates current SF while
preserving previous data. The SF first locates a target seg-

ment to be written with elementIndex. If its ref-marker is

false, the value is directly written to the target segment.

Otherwise, the operation clones that segment into a newly

allocated memory segment, and writes value on the new

memory segment. After that, the ref-marker is set to false,

indicating that the new segment is solely owned by the

current SF. Standard stack operations, such as push and

pop can be implemented trivially using this method.

• fork(): It creates a new stack frame SF as a snapshot of the

current stack, and returns a unique snapshotID. When a new

SF is created, it copies the stack height and pointers in the

previous SF, and marks all segments with true ref-markers,

meaning all segments are shared.

• rollback(snapshotID): It restores the stack state to the

previous SF indicated by the snapshotID. This operation
can be simply implemented as removing all SFs created

after snapshotID, and deallocating segments in the SF if the

corresponding ref-marker is false in that SF.

To implement partial rollback in the EVM, Spectrum replaces

the runtime Stack with pStack and makes the Memory table multi-

versioned. Then, we present how to integrate the partial rollback

implementation with speculative execution in Algorithm 1. In gen-

eral, we need to add checkpointing during execution, modify the

speculative commit, and redesign the abort process to support

operation-level rollback and re-execution.

Algorithm 1: Operation-Level Transaction Rollback

/* Add-on EVM Primitives to Support Rollback */

1 function 𝑟𝑒𝑣𝑒𝑟𝑡𝑆𝑡𝑎𝑡𝑒𝑇𝑜 (𝐸𝑉𝑀,𝑅𝐾𝑒𝑦 𝑘𝑒𝑦) :
2 𝑃𝐶,𝑀𝑒𝑚𝑜𝑟𝑦, 𝑠𝑛𝑎𝑝𝑠ℎ𝑜𝑡𝐼𝐷=𝐸𝑉𝑀.𝑔𝑒𝑡𝐶ℎ𝑒𝑐𝑘𝑝𝑜𝑖𝑛𝑡 (𝑘𝑒𝑦) ;
3 𝐸𝑉𝑀.𝑠𝑒𝑡𝑃𝐶𝑎𝑛𝑑𝑀𝑒𝑚𝑜𝑟𝑦 (𝑃𝐶,𝑀𝑒𝑚𝑜𝑟𝑦) ;
4 𝐸𝑉𝑀.𝑝𝑆𝑡𝑎𝑐𝑘.𝑟𝑜𝑙𝑙𝑏𝑎𝑐𝑘 (𝑠𝑛𝑎𝑝𝑠ℎ𝑜𝑡𝐼𝐷 ) ;
5 function𝑚𝑎𝑘𝑒𝐶ℎ𝑒𝑐𝑘𝑝𝑜𝑖𝑛𝑡 (𝐸𝑉𝑀,𝑅𝐾𝑒𝑦 𝑘𝑒𝑦) :
6 𝑠𝑛𝑎𝑝𝑠ℎ𝑜𝑡𝐼𝐷=𝐸𝑉𝑀.𝑝𝑆𝑡𝑎𝑐𝑘.𝑓 𝑜𝑟𝑘 ( ) ;
7 𝑃𝐶,𝑀𝑒𝑚𝑜𝑟𝑦=𝐸𝑉𝑀.𝑟𝑒𝑐𝑜𝑟𝑑𝑃𝐶𝑎𝑛𝑑𝑀𝑒𝑚𝑜𝑟𝑦 ( ) ;
8 𝐸𝑉𝑀.𝑎𝑑𝑑𝐶ℎ𝑒𝑐𝑘𝑝𝑜𝑖𝑛𝑡 (𝑘𝑒𝑦, 𝑃𝐶,𝑀𝑒𝑚𝑜𝑟𝑦, 𝑠𝑛𝑎𝑝𝑠ℎ𝑜𝑡𝐼𝐷 )

/* Transaction Primitives */

9 function 𝑑𝑟𝑎𝑖𝑛𝑊𝑟𝑖𝑡𝑡𝑒𝑛𝐸𝑛𝑡𝑟𝑖𝑒𝑠𝐴𝑓 𝑡𝑒𝑟 (𝑐𝑜𝑛𝑓 𝑙𝑖𝑐𝑡𝐾𝑒𝑦) ;
10 function 𝑑𝑟𝑎𝑖𝑛𝑅𝑒𝑎𝑑𝐸𝑛𝑡𝑟𝑖𝑒𝑠𝐴𝑓 𝑡𝑒𝑟 (𝑐𝑜𝑛𝑓 𝑙𝑖𝑐𝑡𝐾𝑒𝑦) ;
11 function 𝑓 𝑖𝑛𝑑𝐸𝑎𝑟𝑙𝑖𝑒𝑠𝑡𝐶𝑜𝑛𝑓 𝑙𝑖𝑐𝑡𝐾𝑒𝑦 (𝑘𝑒𝑦𝑆𝑒𝑡 ) ;

/* Abort 𝑇 with Received Conflict Keys. */

12 function 𝑙𝑜𝑐𝑎𝑙𝐴𝑏𝑜𝑟𝑡 (𝑇 ) :
13 𝑘𝑒𝑦𝑆𝑒𝑡 = 𝑎𝑡𝑜𝑚𝑖𝑐𝑇𝑎𝑘𝑒 (𝑇 .𝑐𝑜𝑛𝑓 𝑙𝑖𝑐𝑡𝐾𝑒𝑦𝑆𝑒𝑡 ) ;
14 𝑐𝑜𝑛𝑓 𝑖𝑐𝑡𝐾𝑒𝑦 =𝑇 .𝑓 𝑖𝑛𝑑𝐸𝑎𝑟𝑙𝑖𝑒𝑠𝑡𝐶𝑜𝑛𝑓 𝑙𝑖𝑐𝑡𝐾𝑒𝑦 (𝑘𝑒𝑦𝑆𝑒𝑡 ) ;
15 𝑟𝑒𝑣𝑒𝑟𝑡𝑆𝑡𝑎𝑡𝑒𝑇𝑜 (𝑇 .𝐸𝑉𝑀,𝑐𝑜𝑛𝑓 𝑖𝑐𝑡𝐾𝑒𝑦) ;
16 𝑟𝑒𝑎𝑑𝐸𝑛𝑡𝑟𝑖𝑒𝑠 =𝑇 .𝑑𝑟𝑎𝑖𝑛𝑅𝑒𝑎𝑑𝐸𝑛𝑡𝑟𝑖𝑒𝑠𝐴𝑓 𝑡𝑒𝑟 (𝑐𝑜𝑛𝑓 𝑙𝑖𝑐𝑡𝐾𝑒𝑦) ;
17 for ⟨𝑘𝑒𝑦, 𝑣𝑎𝑙𝑢𝑒 ⟩ in 𝑟𝑒𝑎𝑑𝐸𝑛𝑡𝑟𝑖𝑒𝑠 do
18 𝑀𝑉𝐶𝐶𝑇𝑎𝑏𝑙𝑒.𝑟𝑒𝑚𝑜𝑣𝑒𝑅𝑒𝑎𝑑𝐷𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑦 (𝑇 .𝑖𝑑, 𝑘𝑒𝑦) ;
19 𝑤𝑟𝑖𝑡𝑡𝑒𝑛𝐸𝑛𝑡𝑟𝑖𝑒𝑠 =

𝑇 .𝑑𝑟𝑎𝑖𝑛𝑊𝑟𝑖𝑡𝑡𝑒𝑛𝐸𝑛𝑡𝑟𝑖𝑒𝑠𝐴𝑓 𝑡𝑒𝑟 (𝑐𝑜𝑛𝑓 𝑙𝑖𝑐𝑡𝐾𝑒𝑦) ;
20 for ⟨𝑘𝑒𝑦, 𝑣𝑎𝑙𝑢𝑒, 𝑎𝑙𝑟𝑒𝑎𝑑𝑦𝑃𝑢𝑏𝑙𝑖𝑐 ⟩ in 𝑤𝑟𝑖𝑡𝑡𝑒𝑛𝐸𝑛𝑡𝑟𝑖𝑒𝑠 do
21 if 𝑎𝑙𝑟𝑒𝑎𝑑𝑦𝑃𝑢𝑏𝑙𝑖𝑐 then
22 𝑀𝑉𝐶𝐶𝑇𝑎𝑏𝑙𝑒.𝑟𝑒𝑚𝑜𝑣𝑒𝑉𝑒𝑟𝑠𝑖𝑜𝑛 (𝑇 .𝑖𝑑, 𝑘𝑒𝑦) ;

/* Speculatively Commit a Transaction */

23 function 𝑠𝑝𝑒𝑐𝑢𝑙𝑎𝑡𝑖𝑣𝑒𝐶𝑜𝑚𝑚𝑖𝑡 (𝑇 ) :
24 for ⟨𝑘𝑒𝑦, 𝑣𝑎𝑙𝑢𝑒, 𝑎𝑙𝑟𝑒𝑎𝑑𝑦𝑃𝑢𝑏𝑙𝑖𝑐 ⟩ in𝑇 .𝑤𝑟𝑖𝑡𝑡𝑒𝑛𝐸𝑛𝑡𝑟𝑖𝑒𝑠 do
25 if not 𝑎𝑙𝑟𝑒𝑎𝑑𝑦𝑃𝑢𝑏𝑙𝑖𝑐 then
26 𝑀𝑉𝐶𝐶𝑇𝑎𝑏𝑙𝑒.𝑖𝑛𝑠𝑒𝑟𝑡𝑉𝑒𝑟𝑠𝑖𝑜𝑛 (𝑇 .𝑖𝑑, 𝑘𝑒𝑦, 𝑣𝑎𝑙𝑢𝑒 ) ;
27 𝑎𝑙𝑟𝑒𝑎𝑑𝑦𝑃𝑢𝑏𝑙𝑖𝑐 = 𝑇𝑟𝑢𝑒 ;

Lines 1-11 describe the additional primitives for the EVM and the

transaction. In Spectrum’s design, the transaction makes a check-

point before reading an external state. Since the EVM performs read

through SLOAD operations, a transaction 𝑇 calls the makeCheck-
point(·) primitive before executing any SLOAD operation satisfying

that the state to be read is missed from its local read/write set. When

aWAR conflict occurs, the conflict key (the key causing the abort) is

recorded in the aborted transaction’s conflictKeySet. If 𝑇 detects to

be aborted, it invokes the localAbort(·) primitive. 𝑇 first atomically

retrieves conflict keys and finds the latest checkpoint prior to any

of these conflicts. Then, 𝑇 invokes the revertStateTo(·) primitive to

partially rollback to this checkpoint (lines 12-15). Afterwards, 𝑇

cleans up the affected read dependencies and written versions (lines

16-22). Note that after the rollback, 𝑇 can re-execute based on the

execution context recorded by the checkpoint and proceed with

recorded PC to perform new operations. Since the partial rollback

has preserved unconflicted versions, the process of speculative com-

mit merely needs to insert versions that are newly-written after

the latest abort (lines 23-27).
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Figure 8: An Overview of Predictive Transaction Scheduling

4.4 Predictive Transaction Scheduling
The fine-grained rollback effectively reduces the overhead per mis-

speculation. Nevertheless, under highly-contended workloads, the

significantly increased number of mis-speculations cause numerous

aborts, consuming a majority of CPU resources, while yielding rare

commits. The main reason for such aborts stems from that the

out-of-order speculative processing enforces no partial order of

conflicting transactions due to assuming no prior knowledge, then

the arbitrary scheduling leads to more frequent mis-speculations

that limit the scheme’s multi-core scalability under contention.

Sparkle proposes a preemptive locking method to partially re-

duce conflicts: before writing a state, a transaction𝑇 locks the state,

preventing 𝑇 ’s following transactions from accessing it until 𝑇 fin-

ishes execution. However, this method fails to eliminate all cases

of mis-speculations and also blocks write-after-write, resulting in

significantly degraded execution parallelism.

Instead, Spectrum proposes a predictive scheduling method us-

ing pre-acquired information to effectively reduce mis-speculations.

We observe that although obtaining accurate and complete a-priori

read/write sets for smart contract transactions is not feasible, ac-

quiring partial ones is indeed practical. This is because some states
within the smart contract are accessed in a deterministic manner, i.e.,

their accesses are not changed by runtime-determined data depen-

dencies. Therefore, the access keys can be determined and acquired

before execution through static analysis or simulated execution.

By leveraging this partial information, the predictive scheduling

pre-schedules conflicting transactions to achieve superior multi-

core scalability under contention, as outlined in Fig. 8. To clarify,

our method assumes only partial prior knowledge, and even if this

information is incorrect, it introduces only inefficiency but does

not compromise the SDS guarantee of speculative execution.

Pre-Scheduling. The pre-scheduling takes partial pre-acquired

read/write sets to schedule potentially conflicting transactions at

runtime. For instance, if𝑇𝑖 is found to cause a WAR conflict with𝑇𝑗
on state 𝑎, the pre-scheduling blocks 𝑇𝑗 ’s read on 𝑎 until 𝑇𝑖 reaches

the final commit, thus pessimistically avoiding potential runtime

WAR conflicts. Spectrum realizes partial ordered scheduling with a

contention table (CT). For a transaction 𝑇 , CT maintains 𝑇 ’s pre-

acquired knowledge to find WAR conflicts, and pre-schedules 𝑇 in

the topological order based on WAR conflicts in prediction. If the

prediction is correct, this helps reduce runtime mis-speculations.

Algorithm. We apply the predictive scheduling only to highly-

conflicted keys, which can be identified by setting an abort rate

threshold. Algorithm 2 describes the detailed scheduling procedure.

CT maintains an ordered list for each state to record read/write at-

tempts. Before executing a transaction𝑇 , the worker thread inserts

Algorithm 2: Predictive Transaction Scheduling

/* Runtime Pre-Scheduling */

1 function 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒 (𝑇 ) :
2 𝐶𝑇 .𝑖𝑛𝑠𝑒𝑟𝑡𝐼𝑛𝑓 𝑜 (𝑇 .𝑝𝑟𝑒𝑆𝑐ℎ𝑒𝐼𝑛𝑓 𝑜 ) ;
3 wait until: 𝑙𝑎𝑠𝑡_𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑 + 1 == 𝑇 .𝑖𝑑 ;

4 𝑙𝑎𝑠𝑡_𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑 = 𝑙𝑎𝑠𝑡_𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑 + 1;

5 function 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 (𝑇 ) :
6 before read a scheduled key:

7 wait until:𝑇 .𝑠ℎ𝑜𝑢𝑙𝑑𝑊𝑎𝑖𝑡 (𝑘𝑒𝑦) ≤ 𝑙𝑎𝑠𝑡_𝑓 𝑖𝑛𝑎𝑙𝑖𝑧𝑒𝑑 ; . . .
8 function 𝑓 𝑖𝑛𝑎𝑙𝐶𝑜𝑚𝑚𝑖𝑡 (𝑇 ) :
9 𝑙𝑎𝑠𝑡_𝑓 𝑖𝑛𝑎𝑙𝑖𝑧𝑒𝑑 = 𝑙𝑎𝑠𝑡_𝑓 𝑖𝑛𝑎𝑙𝑖𝑧𝑒𝑑 + 1;

10 𝐶𝑇 .𝑐𝑙𝑒𝑎𝑟 (𝑇 .𝑝𝑟𝑒𝑆𝑐ℎ𝑒𝐼𝑛𝑓 𝑜 ) ; . . .

𝑇 ’s pre-acquired read/write sets (only hotspot) into CT. During

the inter-thread concurrent process, CT continually updates the

𝑠ℎ𝑜𝑢𝑙𝑑𝑊𝑎𝑖𝑡 transaction on each𝑇 ’s read key. By ensuring CT man-

ages all transactions preceding 𝑇 , the worker thread could identify

potential WAR conflicts related to 𝑇 (lines 1-4). When executing 𝑇 ,

if 𝑇 attempts to read a scheduled key, it must wait until preceding

writes on this key finalize (lines 5-7). When 𝑇 is finally committed,

it clears all its inserted attempts from CT and sets the last finalized

transaction to itself. This implicitly notifies those waiting transac-

tions (lines 8-10). Compared to Calvin’s ordered lock pre-scheduling,

our method schedules only WAR conflicts and partial transaction

keys, leveraging concurrent maintenance and sequential granting

to avoid using the limited single-threaded lock manager.

Independent predictive scheduling across replicas. The pre-
dictive scheduling is tailored for blockchain ledgers with multi-

ple mutually-distrusting replicas. Each replica can independently

generate a predictive schedule. Despite different predictions, spec-

ulative execution enforces the same agreed-upon serial order to

maintain consistency across replicas. Blockchain ledgers commonly

use Byzantine consensus protocols to negotiate the total order, as-

suming at most 𝑓 malicious replicas out of 𝑛 (𝑛 ≥ 3𝑓 + 1). Even if

𝑓 malicious replicas intentionally provide inefficient scheduling,

the system performance is unaffected because the majority execute

independently in speculation to obtain consistent results.

5 ANALYSIS AND DISCUSSIONS

SDS analysis.We present a theoretical analysis of the SDS guaran-

tee of our proposed execution scheme.

Theorem 5.1. The speculative transaction execution of an agreed-
upon block of smart contract transactions enforces SDS.

Proof. (By Contradiction.) The block 𝐵ℎ contains a set of pre-

ordered transactions ⟨𝑇1, ...,𝑇𝑛⟩ satisfying 𝑇1 ≺ 𝑇2 ≺ · · · ≺ 𝑇𝑛 . The

speculative transaction execution imposes a constraint on the com-

mit order of transactions: transaction 𝑇𝑖 is finally committed 𝑖 𝑓 𝑓

all its preceding transactions are finally committed. This implies

that the execution finally committed by𝑇𝑖 is based on the snapshot

taken after all preceding transactions ⟨𝑇1, · · · ,𝑇𝑖−1⟩ were commit-

ted. Specifically, even if 𝑇𝑖 has mutable read/write sets, its finally

committed read/write sets are executed on the correct snapshot

aligned with sequential semantics, thus ensuring SDS.
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Assume there is an SDS schedule 𝑆 that does not impose the

above constraint on the transaction commit order. Then, in a pos-

sible schedule, 𝐹𝐶𝑇𝑗 ≺ 𝐹𝐶𝑇𝑖 and 𝑖 < 𝑗 (we use 𝐹𝐶𝑇𝑘 to indicate

𝑇𝑘 ’s final commit). If𝑇𝑖 WAR conflicts with𝑇𝑗 , the execution finally

committed by 𝑇𝑗 misses 𝑇𝑖 ’s writes, however, sequential execution

always commits 𝑇𝑖 before 𝑇𝑗 as 𝑖 < 𝑗 . Consequently, after execut-

ing 𝐵ℎ , the serial order of 𝑆 is not equivalent to that of sequential

execution, thus contradicting the SDS guarantee of 𝑆 . □

Additionally, we discuss the phantom reads [21], which may

occur in range scans. Notably, smart contract runtimes do not

natively support range scans. Even if implemented manually (which

is highly inefficient), Spectrum can capture WAR conflicts on the

metadata (e.g., key set size) to prevent SDS-violation.

Analysis of partial rollback. The correctness of the partial roll-
back is evident, as it preserves unconflicted logics aligned with

the total order and relies on speculative execution to finally keep

consistent with the agreed-upon order. Its efficiency is tied to the

expected operation savings in re-execution overhead, contingent

upon the positions of mis-speculated read operations. We give

a quantified efficiency analysis: Suppose we have a table with 𝑘

keys. A smart contract transaction has 𝑛 operations denoted as𝑇 =

⟨𝑂𝑃𝑖 | 1 ≤ 𝑖 ≤ 𝑛⟩. Among these, there are 𝑡 read/write operations

accessing unique keys, S = ⟨𝑂𝑃𝑟𝑤 (𝑖 ) | 1 ≤ 𝑖 ≤ 𝑡, 1 ≤ 𝑟𝑤 (𝑖) ≤ 𝑛⟩.
And out of these 𝑡 operations, 𝑟 are read operations, denoted as

S′ = ⟨𝑂𝑃𝑟𝑤 (ℎ 𝑗 ) ∈ S | 1 ≤ 𝑗 ≤ 𝑟, 1 ≤ ℎ 𝑗 ≤ 𝑡⟩. We assume that key

access follows a uniform distribution.

The probability of a WAR conflict is calculated as follows: Since

each read operation involves a unique key, the probability of the

conflict occurring in the transaction is
𝑟
𝑘
. By adopting the early

abort mechanism, we assume that the conflict could be detected

prior to the next read/write operation. Thus, the number of roll-

backed operations due to conflict at position 𝑟𝑤 (ℎ 𝑗 ) for complete

rollback and partial rollback are respectively 𝑟𝑤 (ℎ 𝑗 +1) and 𝑟𝑤 (ℎ 𝑗 +
1) − 𝑟𝑤 (ℎ 𝑗 ) (if ℎ 𝑗 = 𝑡, 𝑟𝑤 (ℎ 𝑗 + 1) = 𝑛). Consequently, the ex-

pected number of rollbacked operations for complete rollback is

𝐸 (𝑂𝑃𝑐_𝑟𝑜𝑙𝑙𝑏𝑎𝑐𝑘 ) = 𝑟
𝑘
·∑𝑟𝑗=1 ( 1𝑟 · (𝑟𝑤 (ℎ 𝑗 + 1))), whereas for partial

rollback, it is 𝐸 (𝑂𝑃𝑝_𝑟𝑜𝑙𝑙𝑏𝑎𝑐𝑘 ) = 𝑟
𝑘
·∑𝑟𝑗=1 ( 1𝑟 · (𝑟𝑤 (ℎ 𝑗 +1)−𝑟𝑤 (ℎ 𝑗 ))).

The expected number of operations saved per conflict indicates CPU

resource savings from re-execution, and can be represented as

𝐸 (𝑂𝑃𝑠𝑎𝑣𝑒𝑑 ) = 𝐸 (𝑂𝑃𝑐_𝑟𝑜𝑙𝑙𝑏𝑎𝑐𝑘 ) − 𝐸 (𝑂𝑃𝑝_𝑟𝑜𝑙𝑙𝑏𝑎𝑐𝑘 )

=
1

𝑘

𝑟∑︁
𝑗=1

(𝑟𝑤 (ℎ 𝑗 ))

6 IMPLEMENTATION
To ensure a fair comparison, we implement Spectrum and all base-

lines in the same codebase following the C++20 standard. We incor-

porate evmone
1
, a C++ implementation of EVM, for smart contract

execution environment, and write all smart contracts in Solidity.

We assign each transaction a globally unique 64-bit TID (Trans-

action ID) to indicate the agreed-upon total order of transactions.

In a real deployment, transactions would be ordered and assigned

1
https://github.com/ethereum/evmone

TIDs by consensus protocols. Given that ordering is an orthogo-

nal issue to the execution scheme, we simply assign TIDs when

generating transactions. States are managed by an in-memory con-

current hash table, maintaining key-value pairs where each value

represents either a single state version or a list of versions (if multi-

version is adopted). In Spectrum, for each transaction, we maintain

a pStack-integrated EVM, called EVMCoW, and empirically set the

pStack segment size𝑚 = 2. For predictive scheduling, we let threads

handling scheduled reads wait until they receive notifications.

7 EVALUATION
7.1 Experimental Setup

Testbed. Our experiments are conducted on a physical machine

equipped with 2 Intel Xeon Gold 6330 CPU @ 2.00GHz processors.

Each processor has 28 physical cores with 84MB L3 cache and

resides within one NUMA zone, for a total of two NUMA zones.

Each NUMA zone has 128 GB DRAM, for a total of 256GB DRAM.

The machine runs Ubuntu 20.04 LTS with 5.15.0 Linux Kernel.

Baselines.We compare Spectrum with the following deterministic

execution schemes. Among them, Calvin, Aria, and AriaFB fail to

ensure SDS and are evaluated only for performance comparison.

Serial: Serial executes and commits transactions sequentially

using one single worker thread.

Calvin: Calvin [55] uses an ordered lock scheme for deterministic

scheduled execution. We implement this scheme with optimized

concurrent maintenance and sequential granting features. We use

simulated execution to obtain the pre-acquired read/write sets.

Aria (with reordering): Aria [38] uses a deterministic batch pro-

cessing technique to ensure determinism without the need for

pre-acquisition of read/write sets. Our implementation of Aria in-

corporates both reordering and fallback optimizations.

AriaFB (without reordering): AriaFB employs the fallback strat-

egy but does not adopt reordering optimization. Note that AriaFB

still fails to promise SDS when processing mutable read/write sets.

Sparkle: Sparkle [36] has two variants in its paper: single-node

and distributed.We implement the single-node one (with early abort

enabled) as this paper does not discuss distributed transactions.

Benchmarks.We select three popular benchmarks and implement

them using smart contracts to conduct extensive experiments.

YCSB: The YCSB benchmark [17] is a benchmark suite designed

to evaluate the performance of data management systems. We

implement a YCSB-like smart contract with a global mapping to

represent a key-value store, where both key and value are 256-bit

integers. Our evaluation incorporates a transactional YCSB bench-

mark, where we group 10 read/write operations into a function

to be invoked by a transaction. Each operation accesses a single

unique key, and the read/write ratio is set to 50%:50%.

SmallBank: The Smallbank benchmark [8] simulates common

operations in banking applications. We implement a SmallBank-

like smart contract with global mappings to represent the sav-

ingStore and checkingStore, whose keys indicate accounts and

the values record their balance, both are 256-bit integers. We real-

ize six functions: getBalance(2r), depositChecking(1r1w), transact-

Saving(1r1w), writeCheck(2r1w), amalgamate(2r2w), and sendPay-

ment(2r2w). These functions are invoked with equal probability.
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(a) Throughput (Uniform) (b) Throughput (Skewed)

Figure 9: YCSB Throughput of Varying Threads

(a) Throughput (Uniform) (b) Throughput (Skewed)

Figure 10: SmallBank Throughput of Varying Threads

Note that the read/write sets of transactions that invoke sendPay-

ment are mutable due to the presence of branching logic.

TPC-C: The TPC-C benchmark [1] models an industry-grade

order processing application. We implement a TPC-C alike smart

contract that supports the NewOrder, Payment, and Delivery trans-

action. These three transactions comprise 92% of the standard mix

TPC-C workload. Since smart contract runtimes do not natively

support range scans, we omit the other two transactions requir-

ing range queries. In the experiment, for higher contention, we

evaluate under a single-warehouse setting [22, 45] and invoke the

NewOrder, Payment, and Delivery transactions in a ratio of 11:11:1.

Workload.We generate two workloads for YCSB and SmallBank:

uniform workload (Uniform) and skewed workload (Skewed). For
the former, keys accessed by a transaction are uniformly chosen. For

the latter, keys are selected via a Zipfian distribution, controlled by a

Zipf parameter. A higher Zipf leads to more skewed and contended

workload. For TPC-C, we vary the number of orderlines per order

(each orderline incurs about 4 reads and 5 writes) to increase the

contention degree. In all workloads, the default block/batch size is

100 and the keys are chosen from a set of 1 million keys.

7.2 Scheme Comparison
In this comparison, we evaluate Spectrum that uses solely operation-

level rollback without applying predictive scheduling. Detailed

evaluation of predictive scheduling is presented in §7.4 and §7.5.

Throughput. We compare the throughput by varying the number

of worker threads under both uniform and skewed workloads.

YCSB Results: Fig. 9 shows YCSB results. Under the uniform

workload shown in Fig. 9(a), both Spectrum (583 KTxn/s) and

Sparkle (607 KTxn/s) scale well with 36 worker threads, and out-

perform that of Aria (437 KTxn/s), AriaFB (405 KTxn/s), Calvin

(299 KTxn/s) and Serial (24 KTxn/s). This is because Spectrum and

Sparkle realize superior inter-thread concurrency. Spectrum incurs

(a) Throughput (10 orderlines / order) (b) Throughput (20 orderlines / order)

Figure 11: TPC-C Throughput of Varying Threads

checkpointing overhead, which slightly lowers its throughput rela-

tive to Sparkle. In contrast, Aria and AriaFB have extra overhead of

phase synchronization, and Calvin is constrained by the overhead

of managing locks. Fig. 9(b) depicts the results under the skewed

workload with Zipf = 0.9. At 36 threads, Spectrum achieves 1.4x,

1.5x, 1.5x, 5.0x and 15.4x higher throughput than Sparkle, Aria,

AriaFB, Calvin and Serial, respectively. As the number of threads

increases, Sparkle suffers from numerous costly aborts that limit

its scalability, while Spectrum effectively reduces the overhead per

abort with its fine-grained rollback mechanism, thus performing

the best. Aria has similar performance to AriaFB since very few

RAW dependencies could be transformed through the reordering

optimization in the evaluation. Meanwhile, the weaker isolation

requirement of Aria cannot compensate for the phase synchroniza-

tion overhead, resulting in lower throughput than Spectrum.

SmallBank Results: Fig. 10 shows SmallBank results. Fig. 10(a)

shows similar findings under the uniform workload: The through-

put of Spectrum is comparable to Sparkle and surpasses Aria, Ari-

aFB, Calvin and Serial by 1.5x, 1.5x, 2.1x and 18.7x respectively.

Since SmallBank entails fewer read/write operations than YCSB,

the increased proportion of phase synchronization overhead im-

pacts the scalability of Aria and AriaFB, while Spectrum and Sparkle

do not introduce such overhead. Fig. 10(b) chooses a higher Zipf =

1.1 and depicts the results. As the number of threads increases, the

throughput of Sparkle reaches its peak (489 KTxn/s) at 18 threads

and gradually decreases due to costly overhead of increased mis-

speculations. In contrast, Spectrum reduces the overhead per mis-

speculation, reaching a peak at 30 threads (582 KTxn/s). Overall,

with 36 threads, Spectrum achieves 542 KTxn/s, outperforming

Sparkle by 39%, Aria variants by 29%, and Calvin by 216%.

TPC-C Results: Fig. 11 reports TPC-C results. We choose 10 and

20 orderlines per order to evaluate longer transaction scenarios

than YCSB/SmallBank. Fig. 11(a) and Fig. 11(b) show the corre-

sponding results: Spectrum achieves the highest throughput within

both experiments, benefiting from its high concurrency and partial

rollback optimization. As the number of read/write operations per

transaction increases, the advantage of partial rollback proposed

by Spectrum becomes more evident. The throughput of Spectrum

surges from 1.15x to 1.52x compared to Sparkle. Besides, Spectrum

achieves up to 2.16x, 2.15x, and 1.92x higher throughput than Aria,

AriaFB, and Calvin, respectively.

Transaction & block latency.We compare the p50 and p95 trans-

action latency, and block latency of all schemes.

YCSB Results: We evaluate YCSB transaction latency using 36

threads under the skewed workload with Zipf = 0.9. In Fig. 12(a),
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(a) YCSB (b) SmallBank (c) TPC-C

Figure 12: Transaction Latency

(a) YCSB (b) SmallBank (c) TPC-C

Figure 13: Block Latency

Serial (32 us ~ 34 us) achieves the lowest latency as it avoids coor-

dination and aborts. Spectrum (76 us/p50, 123 us/p95) exhibits low

re-execution overhead and thus much lower latency than Sparkle

(112 us/p50, 211 us/p95). Aria variants have higher latency (184 us

~ 270 us) since commits within a batch must wait for the entire

batch to complete. Moreover, Calvin incurs the highest latency due

to locking overhead. Fig. 13(a) displays the average block latency:

Spectrum has the lowest (270 us), followed by Sparkle (377 us), Aria

(402 us), AriaFB (404 us), Calvin (1352 us), and Serial (4183 us).

SmallBank Results: The latency results (36 threads, Zipf = 1.1) of

SmallBank are depicted in Fig. 12(b) and Fig. 13(b). Despite shorter

transactions, Spectrum (83 us/p95) saves p95 latency by up to 64%

than Sparkle (233 us/p95, whose p95 spikes are caused by repeated

and costly aborts), 32% than Aria and AriaFB, and 54% than Calvin.

Besides, as Spectrum achieves the highest throughput, it also re-

duces the block latency by 28.7% (Sparkle), 22.0% (Aria), 22.6%

(AriaFB), 53.9% (Calvin) and 88.0% (Serial).

TPC-C Results: Fig. 12(c) shows the transaction latency results

of TPC-C with 20 orderlines per order. Among concurrent schemes,

Spectrum remains the lowest p50 (1351 us) and p95 (1876 us) latency,

saving latency by 14.3% to 72.3% compared to others. Calvin avoids

aborts by scheduling, where the benefits outweigh its overhead

for longer transactions, resulting in lower latency than Sparkle,

Aria and AriaFB, but still higher than Spectrum. Fig. 13(c) presents

the block latency results. Compared to other concurrent schemes,

Spectrum reduces the block latency by a large margin (39% ~ 53%) .

7.3 Evaluation of Partial Rollback

Reduction of re-execution overhead. We test the re-execution

overhead savings through partial rollback (denoted as Spectrum-P)

compared to complete rollback (denoted as Spectrum-C), measured

by throughput and number of rollback operations per final commit

transaction. Fig. 14 shows the results of all benchmarks using 36

threads with varying the contention degree. As depicted in Fig.

14(a), 14(b), and 14(c), the partial rollback mechanism improves the

scheme throughput by up to 1.86x (YCSB), 4.17x (SmallBank), and

2.05x (TPC-C) compared to complete rollback. This improvement

stems from that the partial rollback effectively reduces the num-

ber of operations needed to be rollbacked and re-executed. More

(a) YCSB Throughput (b) SmallBank Throughput (c) TPC-C Throughput

(d) YCSB Saved OPs (e) SmallBank Saved OPs (f) TPC-C Saved OPs

Figure 14: Reduction of Re-Execution Overhead

(a) Memory Cost (b) Checkpoint Time Cost (c) YCSB Throughput

Figure 15: Detailed Evaluation of Partial Rollback

precisely, Spectrum-P saves up to 79.8% (YCSB), 57.6% (SmallBank)

and 62.4% (TPC-C) rollback operations per committed transaction

compared to Spectrum-C, as reported in Fig. 14(c), 14(d), and 14(e).

Note that under high contention, the sharply increased number of

aborts adversely affect overall throughput, as analyzed in §4.4.

Efficiency of pStack. We compare pStack with the strawman

approach that copies all stack elements when checkpointing, mea-

suring their memory cost, time cost, and throughput impact. Their

integrated EVMs are EVMCoW and EVMStraw. Our evaluation uses

YCSB with Zipf = 0.9 and 36 threads. Fig. 15(a) shows the memory

cost of checkpoints created by each final commit transaction. By

sharing memory of unmodified segments, EVMCoW incurs only 34

KB memory cost per commit, reducing the cost by 84.8% compared

to EVMStraw (223 KB/Commit). Fig. 15(b) reports the average time

cost of creating a checkpoint. EVMCoW is highly efficient in manag-

ing snapshots, requiring only 0.6 us to make a checkpoint, whereas

EVMStraw consumes over 4 us. Fig. 15(c) presents a throughput

comparison, including complete rollback for clearer contrast. EVM-

CoW efficiently implements checkpointing with the Copy-on-Write

mechanism, its partial rollback exhibits the highest throughput,

up to 25.5% higher than complete rollback. In contrast, EVMStraw

incurs significant memory and maintenance costs, making it slow

and cache-unfriendly, resulting in even 13.6% lower throughput

than complete rollback, and 31.2% lower than EVMCoW.

7.4 Evaluation of Predictive Scheduling
In the following evaluation, Spectrum-P𝑆𝑐ℎ𝑒𝑑 implements both

predictive scheduling and partial rollback, Spectrum-C𝑆𝑐ℎ𝑒𝑑 and

Spectrum-P respectively only apply the former and the latter, and

Spectrum-C employs neither of these optimizations.
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(a) Throughput of Varying Zipf (b) Aborts/Commit in Varying Zipf

Figure 16: Detailed Evaluation of Predictive Scheduling

We compare scheme performance under various contendedwork-

loads. Fig. 16(a) shows 36 threads YCSB throughput in varying𝑍𝑖𝑝 𝑓

(0.9 ~ 1.3). Spectrum-P𝑆𝑐ℎ𝑒𝑑 predictively schedules hotspot keys

(top 10th to 20th, 7.2% of total accesses). With a higher 𝑍𝑖𝑝 𝑓 , the

throughput of all schemes decreases due to increased conflicts and

degraded parallelism. At 𝑍𝑖𝑝 𝑓 = 0.9, Spectrum-P𝑆𝑐ℎ𝑒𝑑 underper-

forms Spectrum-P by 3.7% due to scheduling overhead outweighing

benefits. As 𝑍𝑖𝑝 𝑓 increases, predictive scheduling shows clear ben-

efits: from 𝑍𝑖𝑝 𝑓 1.0 to 1.3, Spectrum-P𝑆𝑐ℎ𝑒𝑑 outperforms Spectrum-

P by 1.3x, 1.2x, 1.6x, 2.3x and yields 1.5x, 2.0x, 3.5x, 6.8x higher

throughput than Spectrum-C by further reducing mis-speculations

and induced overhead. In contrast, AriaFB re-executes the aborted

transaction at most once, outperforming Spectrum-P𝑆𝑐ℎ𝑒𝑑 , but fail-

ing to ensure SDS. Despite Calvin avoiding aborts, it lags behind

Spectrum-P𝑆𝑐ℎ𝑒𝑑 due to large locking overhead. Fig. 16(b) reports

the number of aborts per final commit. By leveraging scheduling

method, Spectrum-P𝑆𝑐ℎ𝑒𝑑 reduces the number of aborts by up to

28.2% and 62.3% compared to Spectrum-P and Spectrum-C.

7.5 Evaluation of Integration
For an in-depth analysis, we conduct ablation studies on Spectrum

by integrating one optimization at a time. We also apply proposed

optimizations to Sparkle for overall comparison. Fig. 17 reports the

results on YCSB by setting 𝑍𝑖𝑝 𝑓 = 1.1 with varying the number

of threads. Clearly, Spectrum-C and Sparkle-C scale poorly under

contention due to a significant increase in costly aborts. On the

contrary, Spectrum-P𝑆𝑐ℎ𝑒𝑑 scales the best within 36 threads, ben-

efiting from both partial rollback and predictive scheduling. At

36 threads, Spectrum-P𝑆𝑐ℎ𝑒𝑑 achieves the highest throughput (118

KTxn/s), 1.6x than Spectrum-P, 2.8x than Spectrum-C, 1.6x than

Sparkle-P𝑆𝑐ℎ𝑒𝑑 and 4.1x than Sparkle-C. More precisely, the im-

provement of using only pre-scheduling (Spectrum-C𝑆𝑐ℎ𝑒𝑑 , 1.6x

than Spectrum-C) is less than that of using only partial rollback

(Spectrum-P, 1.8x than Spectrum-C), but leveraging both yields the

best performance (Spectrum-P𝑆𝑐ℎ𝑒𝑑 , 2.8x than Spectrum-C).

Then, we adjust the number of scheduled keys to evaluate the

trade-offs between scheduling and abort overhead, identified as

Spectrum-P𝑆𝑐ℎ𝑒𝑑
∗
(top 10th to 40th, 13.2% of total accesses), and

Spectrum-P𝑆𝑐ℎ𝑒𝑑
∗∗

(top 5th to 10th, 7.6% of total accesses). Though

Spectrum-P𝑆𝑐ℎ𝑒𝑑
∗
further reduces aborts by scheduling more keys,

the increased scheduling overhead causes throughput merely com-

parable to Spectrum-P𝑆𝑐ℎ𝑒𝑑 . Besides, Spectrum-P𝑆𝑐ℎ𝑒𝑑
∗∗

schedules

hotter keys, notably increasing the number and overhead of blocked

executions awaiting notifications, making its throughput 7.3% lower

than Spectrum-P𝑆𝑐ℎ𝑒𝑑 , yet still 44.1% higher than Spectrum-P.

(a) Throughput of Varying Threads

Figure 17: Ablation Studies on Integrated Optimizations

8 RELATEDWORK

Deterministic concurrency control. DCC schemes are able to

concurrently execute transactions while ensuring a determinis-

tic serial order. Their potential to optimize the overhead of repli-

cation protocols has gained great interest from both academia

[22, 23, 30, 36, 42, 43, 45, 54, 55, 62] and industry [4] for over a past

decade. Early works assume a-priori transaction knowledge, they

are either single versioned, e.g., Calvin [55], PWV [22], and QueCC

[43], or multi-versioned, e.g., Bohm [23], Orthrus [46], and Caracal

[45]. More recently, Aria [38] and Sparkle [36] break through the

pre-acquisition limitations. However, they fail to maintain both

ordering fairness and high performance for blockchain ledgers.

Furthermore, DCC schemes hold promise for simplifying the dis-

tributed commit protocol, with several works [36, 42, 55, 62] propos-

ing related solutions tailored for multi-partition transactions.

Optimized on-chain transaction processing. Recent works aim
to optimize on-chain transaction processing in terms of consensus,

execution, and storage. [12, 27, 35, 58] propose performant Byzan-

tine consensus protocols to scale ordering performance. Besides

exploiting execution concurrency, [16, 53] leverage pipelined ex-

ecution to improve performance. Regarding storage, [41, 56, 60]

design optimized state stores to alleviate read/write amplifications.

9 CONCLUSION
We present Spectrum, a concurrent and strictly-deterministic execu-

tion scheme that preserves consensus-established ordering fairness

with high performance for blockchain ledgers. Spectrum produces

the same agreed-upon serial order through speculative transac-

tion execution and introduces two novel optimizations to maintain

high performance under contention. The operation-level rollback

optimization reduces the overhead per mis-speculation with min-

imal costs. The predictive scheduling optimization incorporates

partial ordered scheduling to further minimize the number of mis-

speculations. Future work includes enhancing Spectrum for intra-

transaction parallelism and data-partitioned sharding settings.
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