
Fast Commitment for Geo-Distributed Transactions via
Decentralized Co-coordinators

Zihao Zhang
East China Normal University†
zihaozhang@stu.ecnu.edu.cn

Huiqi Hu∗
East China Normal University†

hqhu@dase.ecnu.edu.cn

Xuan Zhou
East China Normal University†

xzhou@dase.ecnu.edu.cn

Yaofeng Tu
ZTE Corporation

tu.yaofeng@zte.com.cn

Weining Qian
East China Normal University†
wnqian@dase.ecnu.edu.cn

Aoying Zhou
East China Normal University†
ayzhou@dase.ecnu.edu.cn

ABSTRACT

In a geo-distributed database, data shards and their respective repli-
cas are deployed in distinct datacenters across multiple regions, en-
abling regional-level disaster recovery and the ability to serve global
users locally. However, transaction processing in geo-distributed
databases requires multiple cross-region communications, espe-
cially during the commit phase, which can significantly impact
system performance.

To optimize the performance of geo-distributed transactions, we
propose Decentralized Two-phase Commit (D2PC), a new trans-
action commit protocol aiming to minimize the negative impact
of cross-region communication. In D2PC, we employ multiple co-
coordinators that perform commit coordination in parallel. Each
co-coordinator is responsible for collecting 2PC votes and making
a PreCommit decision in its local region. This approach allows for
the concurrent invocation of multiple cross-region network round
trips, and each region can end its concurrency control locally before
replication is complete, thus significantly reducing the chances of
blocking and enhancing system concurrency. Moreover, we propose
the bypass leader replication reply method, leveraging decentral-
ized co-coordinators to bypass the leader for message transmission,
thereby reducing the commit latency. Experimental results have
demonstrated that D2PC can reduce commit latency by 43% and im-
prove throughput by up to 2.43 × compared to the geo-distributed
transaction processing methods based on 2PC.
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1 INTRODUCTION

Geo-Distributed databases have become a vital infrastructure for
hosting cross-region applications, such as international banking,
popular e-commerce platforms, social media, etc. Prominent exam-
ples of geo-distributed databases include Spanner [4] and Cock-
roachDB [36]. These databases employ the strategy of partitioning
data into shards and replicating them across datacenters globally.

The competitiveness of a geo-distributed database relies on its
ability to handle geo-distributed transactions that span multiple
regions. To ensure the atomicity of distributed transactions, it is
necessary to employ an atomic commitment protocol like Two-
phase Commit (2PC) to coordinate the commit phases. Additionally,
to ensure high availability, a consensus protocol is used to replicate
the transaction result across regional replicas.

A typical example is Spanner [4, 5], which is the layered archi-
tecture that employs the 2PC protocol over the Multi-Paxos [3]
protocol. However, both commitment and consensus protocols
involve multiple rounds of cross-region communication. In the
geo-distributed deployment where servers span different regions,
the latency is significant, lasting hundreds of microseconds. This
extended latency can prevent critical applications from meeting
their required service level agreements (SLA). It can also increase
lock holding time and thus the chances of contention, posing a
serious threat to overall performance. This often forces upper-layer
applications to give up using geo-distributed transactions for more
sustainable performance. Therefore, to make geo-distributed trans-
actions practical, it is essential to minimize the negative impact of
cross-region communication on transaction processing.

Several recent research works [10, 26, 30, 38–40] have proposed
tightly integrating consensus protocols and commit protocols to
minimize network round trips needed for transaction commitment.
This integration aims to reduce latency by allowing all replicas
to process transactions in a decentralized manner, in contrast to
the layered architecture that relies on the leader for transaction
processing. In non-conflict scenarios, these approaches typically
require only a single round trip to commit a transaction, resulting in
significantly reduced latency. However, in the presence of conflicts,
the impact of cross-region communication on performance remains
outstanding. On one hand, these approaches still require aminimum
of two round trips to commit a conflicting transaction. On the other
hand, multiple cross-region communications may still occur long
concurrency control period, leading to high contention or abort
rates. Meanwhile, involving all replicas in transaction processing is
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fundamentally deviating from the architecture in existing databases
that require a leader node for transaction processing.

In this work, we introduce Decentralized Two-phase Commit
(D2PC), a novel commit protocol tailored for the common layered
architecture in geo-distributed databases. The primary objective
of D2PC is to mitigate the impact of cross-region communication
on concurrency, thereby enhancing the overall throughput of geo-
distributed transactions. Additionally,D2PC also works to minimize
the effects of cross-region communication on transaction latency.

In the layered architecture, we have identified that the single co-
ordinator frequently incurs cross-region communication during the
commit phase. To address this, D2PC distributes the commit coordi-
nation duty among regions, thereby each server can learn the com-
mit decision early from the local coordinator. Furthermore, D2PC
decouples and parallelizes the processes of commit decision-making
and replication, reducing the overall message delays included in
the concurrency control period length. Through the decentralized
coordinators, the replication reply can be relayed in a bypass leader
manner, which reduces the commit latency.

In a nutshell, D2PC deploys a set of co-coordinators across all
datacenters. Each co-coordinator works independently, collecting
votes from participant shards and making a PreCommit decision in
parallel with ongoing replication. This parallel processing allows
the co-coordinator to quickly move to the PreCommit stage and
promptly notifies the local participant leaders to end concurrency
control, without waiting for replication completion. This action
effectively reduces the concurrency control duration in the commit
phase to 0.5 cross-region round trip. Besides, during the commit
phase, each co-coordinator directly relays the replication reply from
its co-located followers to the correspondent coordinator, bypass-
ing communication with the shard leader. This reduces the commit
latency to 1 - 1.5 cross-region round trips. Consequently, D2PC out-
performs existing alternative methods in both concurrency control
duration and latency.

The contributions of this paper can be summarized as follows:
• We observed that the single coordinator in the 2PC protocol

can lead to additional cross-region communication during
transaction commits. To eliminate it, we decentralized the
coordinator into a group of co-coordinators distributed
across every datacenter.

• Building upon co-coordinators, we proposed the decen-
tralized transaction commitment which can minimize the
impact of cross-region communication on concurrency and
commit latency for geo-distributed transactions.

• We conducted extensive experiments in a multi-cloud sce-
nario, using benchmarks of Retwis, TPC-C, and a micro-
benchmark. We combined D2PC with OCC and 2PL. D2PC
improves the throughput by up to 2.43 × than 2PC+OCC.
Similarly, it demonstrates an improved throughput of 1.73
× compared to 2PC+2PL, and this improvement increases
to 2.33 × when read optimization is enabled.

The rest of the paper is organized as follows. § 2 introduces the
background and motivations of D2PC. § 3 sketches ideas and the ar-
chitecture of D2PC. § 4 presents D2PC in greater detail, elaborating
on its commit protocol and the techniques to shorten concurrency
control period. § 5 reports the experimental results. Finally, we
conclude the paper in § 6.

Table 1: Notations and notions in the paper. "✓" denotes exist

in protocol, while "−" denotes not exist.

Role Symbol Definition D2PC 2PC

CCoor the correspondent coordinator ✓ −
Co-Coor the co-coordinator ✓ −
Coor the coordinator − ✓

S𝑛 the n-th shard ✓ ✓

L the leader replica of shard ✓ ✓

F the follower replica of shard ✓ ✓

Interfaces for Client Description

Begin() create a transaction ✓ ✓

Read(t, k) txn t read on k, returns val and version ✓ ✓

Write(t, k, v) update k, buffered in local ✓ ✓

Commit(t, rset, wset) commit t’s results to database ✓ ✓

Data Store Functions Description

Prepare(t, rset, wset) returns vote(commit/abort) ✓ ✓

PreCommit(t) end concurrency control early ✓ −
Commit(t) & Abort(t) end transaction ✓ ✓

Transaction State Description

Executed finished execution ✓ ✓

Prepared L agree to commit ✓ ✓

PreCommit Co-Coor makes a pre-commit decision ✓ −
Commit CCoor makes final commit decision ✓ ✓

Abort CCoor makes abort decision ✓ ✓

2 BACKGROUND AND RELATEDWORK

2.1 Two-phase Commit and the Blocking Issue

In distributed database management systems (DDBMS), data is par-
titioned into shards to achieve scalability. However, transactions
that span multiple shards necessitate an atomic commitment pro-
tocol to ensure atomicity. This protocol ensures that all involved
servers achieve a consensus on the commit decision.

Two-phase commit (2PC) is widely used in many DDBMSs to
ensure atomicity. 2PC consists of two phases: the Prepare phase and
the Commit phase. In the Prepare phase, participants send votes
to the coordinator, who can proceed to the Commit phase only if
all participants vote to commit. However, the 2PC protocol faces
a blocking issue. As only one coordinator can make the final com-
mit decision, if the coordinator fails before notifying the decision,
participants may be blocked until the coordinator recovers. This
block prevents the release of transaction resources, such as locks,
impeding system progress.

Some solutions have been proposed to address the blocking
issue. 3PC [33] introduces a new phase called the "prepared to
commit" phase. In this phase, all participants must acknowledge
the commit decision before actually committing. This ensures that
all participants, not just the coordinator, are aware of the decision.
E3PC [23] further enhances the availability of 3PC by introducing
a quorum. Paxos commit [12] combines Paxos [27] with 2PC, using
Paxos to replicate the commit decision to a set of replicas. Easy
Commit [18] mandates participants to forward the coordinator’s
decision to all others before committing. Cornus [15] is a one-phase
commit protocol designed for disaggregated-storage architecture
with the assumption that the storage is high-available.

In summary, these protocols ensure fault-tolerant commit deci-
sions to overcome the blocking issue. Following this principle, we
deploy a set of co-coordinators to tolerate failures, simplifying the
solution of the blocking issue without compromising transaction
processing performance.

2556



Client
S1

(L & Coor)
S2

(F)
S1

(F)

S2

(L)

Datacenter 1 Datacenter 2

C
o
n

cu
rr

e
n

cy
 C

o
n

tr
o
l 

P
e
ri

o
d

① Client sends 2PC Prepare 

message to participant 

shard leaders

③ Leader replicates 

transaction log to 

followers and waits for 

replies from majority

④ Leader sends its vote to 

the coordinator

⑥ Coordinator replicates the 

commit decision

⑦ Coordinator sends 

commit decision to client 

and other shard leaders

② Shard leaders start 

concurrency control

⑤ Coordinator ends 

concurrency control

⑧ Shard leaders end 

concurrency control

Figure 1: Example of committing a transaction using 2PC and

Paxos. Solid and dashed arrows stand for inter-datacenter

and intra-datacenter messages, respectively.

2.2 Transaction Commit in Geo-Distributed

Databases

High availability is a crucial requirement for many applications,
leading databases to adopt consensus protocols like Paxos [27]
or Raft [31] for fault-tolerant replication of shards across multi-
ple replicas. Consequently, in DDBMSs, the transaction protocols
and consensus protocols need to work together. The collaboration
between these two protocols can be summarized in two patterns.
Layered mode. In layered mode, transaction processing and repli-
cation are separated, and connected by the leader. Many com-
mercial geo-distributed databases, including Spanner [4, 5], Cock-
roachDB [36, 37], and TiDB [19], construct their transaction layer,
encompassing the 2PC protocol and concurrency control proto-
col, atop leader-based consensus protocols. Specifically, the leader
replica is responsible for processing transactions and replicating
the results to other replicas by using the underlying consensus
protocol. Then, 2PC is used to coordinate commit decisions among
multiple shards. Both the 2PC and replication need coordination,
the over-coordination introduces significant overhead.

An example in Fig. 1 demonstrates the performance issues caused
by over-coordination. All the notations are listed and explained in
Table 1. To simplify the explanation, we only consider two data
shards, S1 and S2, each with two replicas located in different data-
centers. In practice, there are typically many data shards, each with
at least three replicas. Among participant shard leaders, a leader is
selected as the coordinator (the leader of S1). The process begins
with the client sending a Prepare message to leaders (Process ➀).
The leader validates whether the transaction can be committed and

then replicates the transaction log to the follower replicas (Pro-
cess ➂). After receiving replies from a majority of followers, the
leader sends its vote to the coordinator (Process ➃). The coordina-
tor collects votes from all participant shards and decides whether
to commit or abort. The commit decision is also replicated for fault
tolerance (Process ➅). Finally, the coordinator sends the commit
decision to the client and other leaders (Process ➆). Therefore, com-
mitting transactions incurs a total of 3 inter-datacenter round-trip
times (RTTs).

Over-coordination also causes a long concurrency control period.
The concurrency control period refers to the duration in which a
transaction can affect others. Recall the example in Fig. 1, when
the participant leader receives the Prepare message, it performs
concurrency control like acquire locks (Process ➁). Then the con-
currency control period ends when the Commit message is made or
received (Process ➄ and ➇). Consequently, the concurrency control
period extends over a duration of 3 inter-datacenter RTTs on non-
coordinator shards (e.g., S2 in the example). This extended duration
of exclusive resource access severely restricts the concurrency of
the database system.

In practice, each shard’s vote is replicated to a majority of repli-
cas, ensuring that in the event of coordinator failure, the commit
decision can be recovered by obtaining votes from the replicas of
each participant. Therefore, replicating the commit decision in Pro-
cess ➅ is unnecessary, which reduces both the commit latency and
concurrency control period length to 2 inter-datacenter RTTs.

The over-coordination prompts many efforts to optimize it. For
instance, CockroachDB [37] introduces parallel commit to achieve
single-round commit latency, but this assumes that the coordinator
and shard leaders are co-located, which doesn’t align with geo-
distributed shard scenarios. Replicated Commit [29] conversely
builds Paxos over 2PC, allows each datacenter to make a commit
decision independently then uses Paxos to reach a consensus. This
converts the coordination of 2PC within the datacenter, causing
the cross-datacenter round trips reduced.
Integratedmode.Manyworks [10, 26, 30, 38–41] tightly combined
the processes of transaction processing and consensus to reduce
over-coordination. In these protocols, the 2PC Prepare message
and replication message are combined and sent to all replicas, not
the leader. Each replica will do concurrency control to process the
transaction, and then try to reach a consensus about the commit
decision on the coordinator. If consensus is reached, the transaction
can be committed in one round of communication. Essentially,
integrated mode converts the centralized transaction processing on
the leader to decentralized transaction processing on all replicas,
which eliminates a round of communication, but at the cost of
inefficient conflict resolution.

When conflict occurs, the decisions made by each replica are
difficult to make a consensus, causing extra costs to be incurred to
resolve the inconsistency. For example, MDCC [26] and TAPIR [39]
will abort conflicts, causing high abort rates. Carousel [38] and
STARRY [40] need more communication to let a central node re-
solve conflicts, resulting in the latencies and concurrency control
period lengths being at least 2 RTTs. Janus [30], which handles de-
terministic transactions, also relies on extra coordination to order
transactions according to prior knowledge about read and write
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sets. Compared to them, D2PC reduces the concurrency control
period length, leading to fewer conflicts. Even if conflicts occur,
D2PC relies on the leader to centrally resolve them, which avoids
inconsistency. Therefore, D2PC is less impacted by conflicts than
integrated mode approaches.

In summary, the optimization goal of integrated mode is to re-
duce the commit latency, but sacrifices the efficiency of conflict
resolution. The fundamental design behind integrated mode di-
verges from the traditional architecture that relies on a single leader
for transaction processing, necessitating significant customization
of the transaction and storage layers. This customization poses a
challenge for seamless integration into existing databases.

In contrast, our method D2PC can achieve the minimum concur-
rency control period length, and a comparable reduction in commit
latency as integrated mode. Moreover, D2PC is based on the lay-
ered architecture, it relies on leaders to process transactions, which
maintains compatibility with existing database infrastructures.

2.3 Timing of Write to be Visible

Databases usually delay the writes to be visible until the transac-
tion is committed to ensure recoverability, which also prolongs the
concurrency control period length. Consider a transaction 𝑇1 write
on data 𝑥 , then transaction 𝑇2 reads 𝑇1’s write on 𝑥 , the system
must ensures that𝑇2 is committed after𝑇1, thus preventing𝑇1 from
aborting after 𝑇2 is committed. A schedule is recoverable [2] if the
commit order follows the read-after-write dependencies. There-
fore, the concurrency control usually ends until the transaction is
committed, to ensure a correct commit order.

Many works have investigated early write visibility in concur-
rency control protocol [7, 11, 16, 24, 25, 34], which enables transac-
tions to read uncommitted writes, and then forces the commit order
to follow the read-after-write dependencies to maintain recoverabil-
ity [2, 17, 21, 32]. Most of them are designed for locking-based pro-
tocols. For example, ELR [8, 20, 24, 35] allows the transactions that
have finished execution to release locks before logging. CLV [11]
is proposed for the same goal and it re-designs the lock table to
track and enforce the commit order of dependent transactions. Bam-
boo [14] explores violating 2PL by allowing lock release during
execution to further enhance concurrency. There are also some
works that employ early write visibility in non-locking protocols.
PWV [9] is designed for deterministic databases and leverages the
determinism that orders transactions before execution. This allows
updates made by transactions to be visible before their execution is
completed. Hekaton [6, 28] proposes a protocol for multi-version
concurrency control that allows uncommitted dirty data to be read
if it is in the "preparing" state. However, research on applying early
write visibility for distributed transactions is sparse. DLV [13] in-
vestigated four timings to perform the lock violation in distributed
databases and analyzed their performance and impact on transac-
tion correctness.

Compared to these works, D2PC is designed for geo-distributed
databases and offers a comprehensive solution to reduce both con-
currency control period length and commit latency. D2PC is com-
patible with both 2PL and OCC. Most importantly, D2PC effectively
minimizes the concurrency control period length without violating
serializability.

Executed Abort

PreCommitPrepared

① participant leader 
aggre to commit

③ all participants
vote to commit

⑤ replication 
completed

⑦ replication fails 

⑥ all participants votes to commit
 and replication completed

④ someone votes abort or 
replication fails

Commit

② participant leader decides to abort

Figure 2: Transition Graph of Transaction State.

3 DESIGN OVERVIEW

In this section, we provide a concise overview of the design of D2PC,
highlighting the rationale behind decentralized commit, the par-
allelization of processes, and the strategies employed to minimize
concurrency control period length and reduce commit latency.

3.1 Notions in D2PC

Before introducing our idea, we first detail notions listed in Table 1.
Server Setup. As the backend for global applications, the geo-
distributed database is deployed in multiple datacenters across
regions. Specifically, the database is partitioned into data shards,
with 2F+1 replicas per shard, each replica located in a distinct
datacenter. Among replicas of a shard, there is a leader to process
transactions, and then replicate results to other follower replicas.

In D2PC, we separate the coordinator in 2PC into a group of
co-coordinators, with each datacenter having one. Co-coordinators
collect votes and make PreCommit decisions in a decentralized man-
ner, which facilitates the early termination of concurrency control
period for participant leaders. For each individual transaction, there
is a correspondent coordinator, which is the co-coordinator located
in the same datacenter as the client. The correspondent coordinator
is responsible for making the final commit decision since it can
ensure the replication is completed.

There are also multiple clients in each datacenters, which are
application servers that execute transactions. They interact with
databases through interfaces in Table 1.When starting a transaction,
the client invokes Begin() to create a transaction object with a
unique ID (tid). Then the client calls the Read(t, k) function to read
data, either from the shard leader or the local replica (details in
§ 4.6), and buffers the results locally. For write operations, the client
does not interact with the database, write results will be buffered
locally and be committed to the database through the Commit(t)
function after execution is finished.
Data Store. D2PC is agnostic to the underlying data store. In this
work, we use key-value store as the backend. Each shard replica
contains a key-value store for data storage and concurrency control.
The data store provides several functions for transactions as shown
in Table 1. On receiving the commit request from the client, the
data store invokes Prepare(t, rset, wset) function to perform concur-
rency control and generate a vote, the vote and transaction log will
be replicated to all datacenters. Once a shard leader receives the
PreCommit decision, it invokes the PreCommit(t) function to end
the concurrency control period. Upon receiving the final commit
result, the shard leader will invoke either the Commit(t) or Abort(t)
function to end the transaction accordingly.
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Figure 3: Example of how to shorten the concurrency control period and reduce the commit latency in D2PC.

Transaction State. Fig. 2 illustrates the transitions of transaction
states. The main difference of D2PC from 2PC is the PreCommit
state. After the co-coordinator collects votes andmakes a PreCommit
decision, the transaction is set to PreCommit state. Then when the
correspondent coordinator makes the final commit decision after it
receives enough replication replies, it transitions the transaction
to the Commit state. If some shard vote to abort or replication fails,
the transaction will be set to Abort state.

3.2 Decentralized Commit and Processes

Decoupling

The location of the coordinator significantly impacts the length of
concurrency control period. When the coordinator is located in a
different region than the participant leader, the communications
between them are inter-datacenter, resulting in extended time for
participant leaders to end the concurrency control period.

This issue primarily arises from the reliance on a single coordina-
tor in the 2PC protocol, which makes the location of the coordinator
critical. To address this, we propose a shift from a centralized to
a decentralized commit coordination pattern. This involves de-
ploying a set of co-coordinators across all datacenters. By doing
so, each server can be co-located with a co-coordinator, enabling
intra-datacenter communication between the participant leader
and the co-coordinator. As a result, the waiting time for the commit
decision can be reduced.

Another reason that causes long concurrency control period is
the interleaving of the 2PC and replication processes. Specifically,
two essential steps must be completed before committing a transac-
tion: 2PC vote collection (receiving votes from all participants), and
replication (where all participant leaders replicate the transaction
log). As shown in Fig. 1, two steps are interleaved, with processes
➀ and ➃ for 2PC, and process ➂ for replication. The interleaving
results in all message delays being included in the concurrency
control period length.

However, we observe that the processes of 2PC and replication
are independent of each other. Hence, we decouple and parallel
their processes and illustrate them in Fig. 3. In this figure, (a) depicts
the reduction in concurrency control period length, and (b) shows
the optimization of commit latency (details in § 3.3).

The core idea of D2PC is that if the 2PC vote collection occurs
in parallel with the replication, the vote collection can be completed
before replication is done via decentralized co-coordinators. As shown

in Fig. 3, the second dashed red line can be regarded as the com-
pletion of vote collection, and the third dashed red line represents
the completion of replication. Therefore, we intend to decouple
and parallelize the processes of 2PC and replication, allowing each
datacenter to collect votes and make a PreCommit decision early via
the co-coordinator, thereby shortening the length of concurrency
control period.

To be specific, in Fig. 3(a), when a participant leader receives
the Prepare message(message ①), it replicates the transaction log
and its vote to followers (message ②). Each follower then forwards
the vote to the co-located co-coordinator (message ③), e.g., the
followers of S1 and S3 send the vote to the co-located co-coordinator
in DC2 upon receiving the replication message from their respective
leaders. Upon the co-coordinator collects votes from the co-located
replicas, it can make PreCommit decision before the replication is
completed, and promptly notify the co-located participant leaders
about the decision (message ④).

At this stage, the global serial order of transactions has already
been determined, as all participant shards have agreed to commit.
Therefore, ending concurrency control at this point not only ex-
cludes aborts caused by violating serializable, but also achieves a
much shorter concurrency control period length. Considering that,
participant leaders end concurrency control early.

As shown in Fig. 3(a), concurrency control period starts when
leader receives the Prepare message (message ①), and ends when
the co-coordinator receives all votes (message ③). Therefore, the
concurrency control period length is only 0.5 inter-datacenter RTT.

3.3 Bypass Leader Replication Reply

As in leaderless replication methods [10, 26, 30, 38–40], they make
the replication bypass leader to reduce commit latency. We also
propose the bypass leader replication reply method by utilizing
co-coordinators. In this approach, replication replies are directed
to bypass the leader to the correspondent coordinator, which can
reduce the commit latency.

As depicted in Fig. 3(b), after the leader replicates to followers,
each follower notifies the co-located co-coordinator about the vote
and includes the replication reply in the message (message ③). Sub-
sequently, the co-located co-coordinator transfers the replication
reply directly to the correspondent coordinator (message ④). In
this way, the replication reply can bypass the leader, which reduces
one inter-datacenter network delay for the correspondent coor-
dinator to be aware of the replication result. Therefore, after 1.5
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Figure 4: Example of committing transaction in D2PC. Solid

and dashed arrows stand for inter-datacenter and intra-

datacenter messages, respectively.

inter-datacenter RTTs, the correspondent coordinator has received
the replies from each participant’s majority of followers, which
indicates that replication has been completed.

4 D2PC PROTOCOL

4.1 Commit Processes in D2PC

After a new transaction is initiated, the client executes the transac-
tion logic and generates the read and write sets of the transaction.
The read set contains tuples of ⟨ key, version ⟩ for each read data,
while the write set includes tuples of the format ⟨ key, new_value ⟩.
Once the transaction is Executed, it enters the PreCommit phase
of the D2PC protocol.
PreCommit Phase.When the client invokes the Commit function,
a Prepare request is sent to all participant leaders (Process ① in
Fig. 4). Each participant leader receiving the Prepare request re-
trieves the transaction ID (tid) along with the transaction’s read
and write set specific to that shard. Subsequently, the participant
leader invokes the Prepare function of the data store to validate
whether the transaction can be successfully committed. If the par-
ticipant leader agrees to commit the transaction, it is marked as
Prepared. The leader then generates a log entry for the transaction,
which includes tid, read and write sets. The log entry, along with
the vote and involved shard list, is subsequently replicated to all
replicas, including the leader itself (Process ③). In cases where a
datacenter lacks a replica, the leader directly sends its vote to the
co-coordinator of that datacenter.

Upon receiving the replication message, each replica notifies the
co-located co-coordinator of the vote, its replication reply, and the
involved shard list (Process ④). At this point, each co-coordinator

can collect votes of each shard and make the PreCommit decision
(Process ⑤). After that, each co-coordinator forwards the replica-
tion replies it collects to the correspondent coordinator (Process
⑦). Once the correspondent coordinator receives replication replies
from the majority of replicas for each participant, it confirms the
fault-tolerance of the transaction result. At this point, the corre-
spondent coordinator can safely commit the transaction and the
transaction enters the Commit phase.

The process described above, where the correspondent coordina-
tor directly obtains the replication reply bypassing the leader, can
be considered the fast path. Additionally, there is a slow path that
acts the same as commit processes in layered mode as described
in Fig. 1, where the follows also send the replication replies to the
leader. After the leader receives majority replies, it informs the cor-
respondent coordinator of its vote and replication result. Since both
fast and slow paths make commit decision according to the vote of
each shard, they always produce the same output. This slow path is
retained to ensure that the correspondent coordinator can still learn
the replication results even if bypass leader replies are interrupted
due to failures. In the slow path, the correspondent coordinator will
directly transform the state from Prepared to Commit.
Commit Phase. Once the correspondent coordinator has made
the decision to either commit or abort, it promptly sends a response
to the client (Process ⑥). Subsequently, it asynchronously notifies
all participant leaders of the decision. This notification step is not
part of the commit path and does not impact the commit latency.
Commit Latency Analysis. The transaction commit process
begins when the client sends a Prepare message and ends upon
receiving a notification from the correspondent coordinator. As the
notification from the correspondent coordinator to client is an intra-
datacenter, which is trivial compared to the delay required for inter-
datacenter communication, it can be assumed that the transaction
commit ends when the correspondent coordinator makes the final
commit decision.

The correspondent coordinator must meet two conditions to
make the commit decision. (𝑖) It must receive votes from all par-
ticipant shards. As shown in Fig. 4, to collect votes, it must go
through Process ➀, ➂, and ➃. Since messages in Process ➀ and ➂

are inter-datacenter, and messages in ➃ are intra-datacenter, which
is negligible, the total message delay is 1 round of inter-datacenter
communication. (𝑖𝑖) The correspondent coordinator must receive
the replication replies from a majority of followers of each shard.
This must go through Process ➀, ➂, ➃, and ➆. As only messages in
Process ➀, ➂, and ➅ are inter-datacenter, it requires 1.5 rounds of
inter-datacenter communication to ensure replications are finished.
Therefore, the overall commit latency is 1.5 inter-datacenter RTTs.

An important observation to highlight is that in the commonly
adopted three-replica deployment, if each shard has a replica co-
locates with the correspondent coordinator, the commit latency
is only 1 inter-datacenter RTT. In this deployment, two replicas,
including the leader and a follower, can form a majority. Since one
follower receives a replication message indicating that the leader
has persisted the log before, a majority already formed. Therefore,
in Process ➄ in Fig. 4, when the correspondent coordinator receives
the replication reply from the local follower, it ensures the replica-
tion has been finished. Meanwhile, at this point, it also has collected
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votes from all participants, the transaction can be safely committed,
which only takes 1 inter-datacenter RTT.

4.2 Decentralized Commit via Co-coordinators

As shown in Fig. 4, upon collecting votes of all participant shards
from local followers, the co-coordinator independently makes the
PreCommit decision. Precisely, if abort exists in votes, the transac-
tion will be Abort. Otherwise, the transaction is PreCommit. Since
each co-coordinator can only make the decision according to the
votes of each participant, consistent PreCommit decisions are al-
ways reached. After that, they notify the co-located participant lead-
ers immediately. When a participant leader receives the PreCommit
decision, it promptly ends the concurrency control period, e.g., re-
leases locks in case of 2PL and removes the transaction from the
validation list in OCC. Then transaction updates are visible.

By leveraging decentralized commit, the concurrency control
period starts when the participant leader receives the Preparemes-
sage, and ends at the time of receiving the PreCommit decision. The
message path includes Process ➂ and Process ➃. Only the mes-
sages in Process ➂ are inter-datacenter, therefore, the concurrency
control period length is 0.5 inter-datacenter RTT.

Note that when 2PL is adopted, the concurrency control pe-
riod starts when acquiring read locks during execution, which will
extend the concurrency control period length. But with the read
optimization that will be introduced in § 4.6, the concurrency con-
trol period length of D2PC+2PL can also be reduced to only 0.5
inter-datacenter RTT.

After a transaction is committed, co-coordinators establish con-
sensus to ensure the fault tolerance of the commit decision, which
simplifies the resolution of 2PC blocking. As outlined in § 4.4, in the
event of a correspondent coordinator failure, the commit decision
can be recovered from other co-coordinators.

To achieve this, once the correspondent coordinator makes the
final commit decision, it notifies all co-coordinators. When the
correspondent coordinator receives replies from a majority of co-
coordinators, the commit decision reaches fault-tolerant. It is im-
portant to note that the replication of commit decisions occurs
asynchronously after the transaction is committed, which means
it is not on the transaction commit path and has no impact on the
commit latency.

Because each co-coordinator needs to handle all transactions, to
prevent co-coordinators from becoming bottlenecks, we design a
co-coordinator sharding strategy that shards co-coordinators into
multiple co-coordinator groups. For example, when co-coordinators
become the bottleneck, they can be partitioned into N groups, with
N co-coordinators in each datacenter. In this way, the load on one
co-coordinator can be balanced on N co-coordinators by taking the
transaction ID modulo N.

4.3 Dependency Tracking

If the concurrency control period is ended before the transaction is
committed, it is crucial to have strategies to ensure both serializ-
ability and recoverability. To ensure serializability, all dependencies,
including war , raw, and waw dependencies, should be tracked to
prevent them from forming cycles. To ensure recoverability, we
should prevent a transaction that reads uncommitted data from
being committed. For example, 𝑇2 reads the uncommitted updates

Algorithm 1: Function calls in D2PC
/* 𝑡𝑢𝑝𝑙𝑒.𝑝𝑟𝑒𝑐𝑜𝑚𝑚𝑖𝑡 # List of PreCommit

transactions on the tuple */

1 Function Read(𝑡𝑥𝑛, 𝑡𝑢𝑝𝑙𝑒)

2 𝑡 ← 𝑡ℎ𝑒 𝑙𝑎𝑠𝑡 𝑒𝑛𝑡𝑟𝑦 𝑖𝑛 𝑡𝑢𝑝𝑙𝑒.𝑝𝑟𝑒𝑐𝑜𝑚𝑚𝑖𝑡

3 𝑡 .𝑜𝑢𝑡 .𝑎𝑑𝑑 (𝑡𝑥𝑛)
4 𝑡𝑥𝑛.𝑖𝑛 + +
// calls when receiving the PreCommit decision

from the co-located co-coordinator.

5 Function PreCommit(𝑡𝑥𝑛)

6 for ∀ 𝑡𝑢𝑝𝑙𝑒 ∈ 𝑡𝑥𝑛.𝑤𝑠𝑒𝑡 do
7 𝑡𝑢𝑝𝑙𝑒.𝑝𝑟𝑒𝑐𝑜𝑚𝑚𝑖𝑡 .𝑎𝑑𝑑 (𝑡𝑥𝑛)

// calls when receiving the commit decision from

the correspondent coordinator.

8 Function Commit(𝑡𝑥𝑛, 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛)

9 for ∀ 𝑡 ∈ 𝑡𝑥𝑛.𝑜𝑢𝑡 do
10 if 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 == Commit then

11 𝑡 .𝑖𝑛 − −
12 else if 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 == Abort then
13 𝑡 .𝑖𝑛 ← −1

14 for ∀ 𝑡𝑢𝑝𝑙𝑒 ∈ 𝑡𝑥𝑛.𝑤𝑠𝑒𝑡 do
15 𝑡𝑢𝑝𝑙𝑒.𝑝𝑟𝑒𝑐𝑜𝑚𝑚𝑖𝑡 .𝑟𝑒𝑚𝑜𝑣𝑒 (𝑡𝑥𝑛)

of 𝑇1 and commits before 𝑇1. If 𝑇1 is later aborted and the server
failure occurs, 𝑇2 cannot be recovered as it has read non-existent
data. Hence, to ensure recoverability, raw dependencies should
be tracked. In D2PC, we choose to end the concurrency control
period when the PreCommit decision is made. At this stage, the
global serial order has been established. Therefore, concluding the
concurrency control period will not violate serializability. Thus,
D2PC only needs to track raw dependencies.

D2PC introduces a PreCommit list for each tuple, which can
efficiently identify and manage raw dependencies. When a partic-
ipant leader receives the PreCommit decision of a transaction, it
ends the concurrency control period and adds the transaction id to
the PreCommit list of each write key. For a subsequent transaction
that reads a key, it checks the key’s PreCommit list to determine
if any transaction has updated this key but not committed yet. If
so, a raw dependency is identified. After identifying raw dependen-
cies, D2PC effectively manages them using the register-and-report
method [28]. On each participant shard, each transaction maintains
a counter called in, which records the number of transactions it
depends on (i.e., the uncommitted transactions whose updates are
read by it). Additionally, each transaction maintains a list named
out, which captures all the transactions that depend on it (i.e., the
transactions that have read its updates).

The maintenance of raw dependencies is illustrated in Algo-
rithm 1. For each read operation, the system checks if the read
tuple has any PreCommit transactions. If so, a raw dependency is
detected, and the corresponding in and out counters are updated
accordingly (lines 2-4). Upon receiving the PreCommit decision,
the participant leader invokes the PreCommit function to add the
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transaction to the PreCommit list of all write keys (lines 6-7). When
the final commit message is received, the Commit function is called,
which removes the transaction from PreCommit lists (line 15). If
the transaction is committed, all transactions that depend on it
decrement their in counters by one. Conversely, if the transaction is
aborted due to replication failure (arrow ➆ in Fig. 2), the in counter
of the dependent transaction is set to -1 (lines 9-13).

To ensure that transactions are committed in accordance with the
raw dependency order, we enforce a rule that when a transaction’s
in counter is greater than 0, the participant leader should indicate
that it has uncommitted dependencies in its vote. This prevents
correspondent coordinator from actually committing it, but co-
coordinators can still make the PreCommit decision. Only when
all its dependent transactions are committed, it will notify the
correspondent coordinator to be committed.

One issue raised by making writes visible early is the cascading
abort [1], where the failure of a transaction causes aborting all
subsequent transactions that have read its writes. However, inD2PC,
updates made by PreCommit transactions are stored in memory
within a write set, rather than taking effect in place. Therefore,
when a new transaction reads a key, it locates the last PreCommit
transaction on this key and uses the transaction ID to retrieve the
write set to obtain the up-to-date value.

When a transaction is aborted, all following transactions that
have read it can be identified by dependencies. Since these trans-
actions have not been committed and their updates have not been
applied to the database, they can be just aborted by setting the in
counters to -1. These transactions will be directly removed from the
memory. This design simplifies the process of aborting since there
is no need to maintain the undo log for rolling back the database to
a old state.

4.4 Failure and Recovery

Correspondent Coordinator Failure. The correspondent coor-
dinator is the only node that can make the final commit decision,
and as such, its failure may cause participant leaders and other co-
coordinators to time out waiting for the decision. We will discuss
how to handle correspondent coordinator failure in different cases.

Case 1. If the correspondent coordinator fails after the final
decision has been sent to some participants and co-coordinators
but not all of them, some co-coordinators will timeout while await-
ing the decision. In such a scenario, a co-coordinator is elected as
the correspondent coordinator and initiates the recovery phase by
asking other co-coordinators to determine if anyone has received
the decision. Upon receiving a reply containing the decision, the
decision will be accepted and notified to participant leaders and
other co-coordinators.

Case 2. In the event that the correspondent coordinator fails
before the final decision is sent out, a co-coordinator is elected
as the correspondent coordinator and initiates the recovery phase
as distributed in Case 1. Since the decision was not made or sent
out before the previous correspondent coordinator failed, none of
co-coordinators has received the decision. Consequently, this co-
coordinator proceeds with the termination protocol, which needs
to ask all participant shard leaders for their votes and replication
results. Once the replies are received from all participant shards,
this co-coordinator makes the commit decision. It then notifies all

participant leaders and co-coordinators, and ends the process of
the undetermined transaction.
Co-coordinator Failure. If a co-coordinator fails, the participant
leader co-located with it may not receive the PreCommit decision.
When the leader eventually receives the decision from the corre-
spondent coordinator, it can safely end the transaction. If more than
F co-coordinators fail, there is a possibility that the correspondent
coordinator may not receive the replication replies through the fast
path. Nevertheless, the correspondent coordinator can still obtain
the replication results from participant leaders via the slow path,
as described in § 4.1. Thus, the failure of a co-coordinator does not
bother the successful commit of transactions.
Participant Shard Replica Failure. When a participant shard
leader fails, the correspondent coordinator can still receive the vote
and replication replies from shard followers. Once the correspon-
dent coordinator has collected votes and replication replies from a
majority of followers, it can ensure that the replication has been
completed and makes the final commit decision. If less than a ma-
jority of replies are received, the correspondent coordinator is not
certain about the replication result. In this scenario, the correspon-
dent coordinator will wait for a new leader to be elected and process
this transaction. Once the new leader notifies the replication result,
the correspondent coordinator can make the final decision and end
the recovery of this transaction.

If a shard follower fails, the co-located co-coordinator may not
receive the vote of this shard. This prevents participant leaders
from concluding concurrency control period early because the
co-located co-coordinator cannot make the PreCommit decision.
Therefore, only after receiving the final commit decision from the
correspondent coordinator, the participant leaders in this datacenter
can safely end the transaction.

4.5 Correctness

Follows the properties proposed in [2] that ensures the correctness
of atomic commitment protocol,D2PC is also proved to satisfy these
five properties. Properties AC3 and AC4 are inherently maintained
in D2PC since we do not change them at all. Therefore, we only
prove D2PC satisfies other properties due to limited space.

AC1: All processes that reach a decision reach the same one.
Proof: Each participant can only learn the final decision in two

ways: (i) from the correspondent coordinator or (ii) by executing
the recovery protocol. In the first case, as proved in proof of AC2,
the decision made by the correspondent coordinator is unique,
the decision learned from the correspondent coordinator will be
identical for all participants. The second case will be proven in the
proof of AC5.

AC2: A process cannot reverse its decision after reaching one.
Proof: The correspondent coordinator can only make the Com-

mit decision based on votes and replication results. Once a leader
votes for a transaction, it has determined the order of the transaction
on this shard, and the vote will not change later. After replication is
successful, each shard’s vote has been stored on at least a majority
of replicas, and will never lose. Therefore, the commit decision will
never be reversed.
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Table 2: Network latency between datacenters (ms). Datacen-

ters are located in Hangzhou (East China), Beijing (North

China), Shenzhen (South China), San Francisco (US West),

Virginia (US East), and Frankfurt (Europe).

Hangzhou San Francisco Frankfurt Beijing Virginia Shenzhen

Hangzhou 0.2 140 231 30 203 29
San Francisco 0.2 151 150 67 160
Frankfurt 0.25 240 98 270
Beijing 0.2 215 40
Virginia 0.3 229
Shenzhen 0.3

AC5: Consider any execution containing only failures that the
algorithm is designed to tolerate. At any point in this execution,
if all existing failures are repaired and no new failures occur for
sufficiently long, then all processes will eventually reach a decision.

Proof: AC5 describes that the decision can survive from fail-
ures. In D2PC, as described in § 4.2, the correspondent coordinator
will replicate the final decision to co-coordinators. According to
the recovery rule in Case 1 in § 4.4, this decision can be recov-
ered from alive co-coordinators, which is the decision made by the
correspondent coordinator before.

If none of the co-coordinators have received the decision, each
shard’s vote, which is the essential information tomake the decision,
is persisted on a majority of replicas through replication. As shown
in Case 2 in § 4.4, the decision can always be recovered by collecting
votes of each participant shard from their replicas, and the recovery
protocol will make a decision that is identical to the correspondent
coordinator’s decision since shards’ votes are unchanged.

Therefore, during recovery, the decision can always be restored
and is identical to the previously made by the correspondent coor-
dinator, which proves both AC5 and AC1 are satisfied.

4.6 Read Optimization

During transaction execution, read operations are typically served
by shard leaders to ensure data recency, but accessing remote lead-
ers incurs substantial costs. Considering that each shard may have a
replica that co-locates with the client, we allow the client to directly
read from local replicas to reduce inter-datacenter communication,
which is a common optimization in many protocols [10, 22, 38].

However, reading from follower replicas may read stale data. To
ensure serializability, we will perform a read version verification
during committing. The Prepare message will be accompanied by a
read set containing the read versions of the transaction. When a
leader receives the Prepare message, it first verifies if read versions
are up-to-date, and then aborts those who have read stale data. Only
when all read operations pass the recency validation, the leader
continues to process the transaction.

The local read strategy is compatible with both 2PL and OCC.
Since OCC is a verification-based approach, integrating the read
optimization aligns naturally with OCC. However, adopting it with
2PL can potentially compromise fairness and lead to transaction
starvation. Since no read locks are required during execution, trans-
actions with large reads could frequently abort due to stale reads,
which could be avoided in standard 2PL protocol. To address this,
the second execution of aborted transactions is enforced to acquire
read locks from the shard leader. This allows D2PC to mitigate per-
formance penalties associated with remote reads while preserving
fairness in 2PL. In our evaluation, detailed in § 5, we separately eval-
uate the performance of 2PL with and without read optimization,
whereas OCC consistently incorporates read optimization.

Table 3: Transaction profile for Retwis workload.

Transaction Type # gets # puts workload%

Add User 1 3 5%
Follow/Unfollow 2 2 15%

Post Tweet 3 5 30%
Load Timeline rand(1,10) 0 50%

5 EVALUATION

5.1 Experimental Setup

The Testbeds. All experiments were conducted on Alibaba Cloud
ECS instances distributed across six datacenters. Table 2 outlines the
network latencies between datacenters. By default, the experiments
were conducted with a 3-replica deployment, where the replicas
were located in Hangzhou, San Francisco, and Frankfurt. In § 5.4,
the replicas in all datacenters were also involved in the evaluation.

Each cloud server was equipped with 4 CPU cores and 8GB of
memory. The system configuration involved 3 - 7 data shards, with
each shard consisting of 3 - 5 replicas. Each cloud server hosted
a replica for each shard. The leaders of shards were distributed
among different datacenters. Furthermore, within each datacenter,
a server acted as the co-coordinator to serve co-located servers.
Candidates for Comparative Study. First, we compared D2PC
with standard 2PC-based transaction protocol named 2PC+2PL,
which is the combination of 2PC, 2PL, and Multi-Paxos. There is
also an approach named 2PC+OCC, which replaces the concur-
rency control protocol with OCC. Both 2PC+2PL and 2PC+OCC
represent layered mode architecture and exhibit a commit latency
and concurrency control period length of 2 inter-datacenter RTTs.

Additionally, we conducted a comparison between D2PC and
integrated mode protocols including Carousel [38], TAPIR [39],
and STARRY [40]. In conflict-free scenarios, all three protocols
can reach a consensus in 1 inter-datacenter RTT. However, in con-
flict scenarios, they must put more effort into resolving conflicts.
Carousel and STARRY fall back to slow paths which take 2 and 2.5
inter-datacenter RTTs to commit. TAPIR will abort many conflict-
ing transactions, leading to a high abort rate. As the concurrency
control protocol used in all three protocols is OCC, we will compare
D2PC+OCC with them.

To ensure a fair comparison, all protocols are implemented in
the same code prototype and integrated with the read optimization
detailed in § 4.6. For 2PL, we also conducted evaluations without
read optimization, denoted as 2PC+2PL-NRO and D2PC+2PL-NRO.
Workload. We used three workloads for evaluation. The first was
a synthetic workload for the Retwis application, which simulates
Twitter’s functionality. The Retwis workload contains four types of
transactions, as outlined in Table 3. On average, each transaction
accesses 4-10 data items across 2-3 shards. The secondworkloadwas
TPC-C, which is the most commonly used workload for transaction
processing. TPC-C contains five transaction types. In our evaluation,
we only choose the three read-write transaction types. The third
was a micro-benchmark which we can adjust the transaction length.

5.2 Retwis

Performance with increasing load. Firstly, we evaluated the
performance of different protocols under the Retwis workload with
medium contention (Zipf coefficient = 0.7).

Fig. 5 illustrates the performance with 2PL. We first set both
D2PC+2PL and 2PC+2PL disable the read optimization to clearly
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Figure 5: Retwis: increasing the number of clients (2PL).
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Figure 6: Retwis: varied contention levels (2PL).
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Figure 7: Retwis: increasing the number of clients (OCC).
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Figure 8: Retwis: varied contention levels (OCC).

show the improvement brought byD2PC.We can see that D2PC+2PL-
NRO achieves 1.73 × throughput than 2PC+2PL-NRO. This is be-
cause D2PC+2PL-NRO can reduce the latency by 25% and shorten
the concurrency control period length by 44%. After enabling read
optimization, both D2PC+2PL and 2PC+2PL achieve significant
improvement in throughput and latency, and the performance ad-
vantages of D2PC+2PL expand further. As shown in Fig. 5(a), (b),
and (c), compared to 2PC+2PL, D2PC+2PL can realize a 2.33 ×
improvement in throughput, 42% reduction in latency, and 66%
reduction in locking time.

Fig. 7 illustrates the performance under OCC. D2PC+OCCdemon-
strates a substantial performance improvement compared to the
other protocols. As the number of clients increases, the through-
put of D2PC+OCC exhibits a more rapid growth rate compared
2PC+OCC. The enhanced performance of D2PC+OCC can be attrib-
uted to low latency and short concurrency control period length.
For example, with 300 clients, the commit latency of D2PC+OCC
is approximately 250 milliseconds, which is reduced by about 43%
compared to 2PC+OCC, and D2PC+OCC also achieves a reduction
in the concurrency control period length of 64%, enabling higher
concurrency and resulting in the throughput increases to 2.43 ×
that of 2PC+OCC.

We also compared D2PC with Carousel, TAPIR, and STARRY, all
of which can achieve fast commitment. In comparison, D2PC+OCC
achieves similar or lower commit latency. As depicted in Fig. 7 (b),
when the load is low, the latency is comparable, because all of them
can commit a transaction in one inter-datacenter RTT. As the client
number increases, the likelihood of conflicts rises, the comparison
protocols have to pay more cost to resolve conflicts.

For example, Carousel and STARRY switch to the slow path to
let a central node resolve conflicts, which introduces extra com-
munication, and TAPIR will abort conflicts and retry. Therefore,
D2PC+OCC outperforms these protocols in transaction latency as
the concurrency increases. In terms of concurrency control period

length, D2PC+OCC demonstrates a significant advantage. The con-
currency control period lengths of the comparison protocols are at
least one inter-datacenter RTT, D2PC+OCC is only 0.5. This reduced
concurrency control period length contributes to D2PC+OCC’s
higher throughput.

Performance under contention. By varying the Zipf coeffi-
cient, we simulated different contention levels and evaluated the
performance. The workload adopted was Retwis, and the client
number was fixed at 150.

Fig. 6 and 8 depict the performance under contention with 2PL
and OCC respectively. As the contention increases, the through-
put of all protocols gradually decreases and shows a sharp decline
trend when the Zipf coefficient exceeds 0.7. Comparatively, the
throughput of D2PC remains significantly higher than other ap-
proaches in both two 2PL and OCC under high contention. In the
case of 2PL, Fig. 6 shows that D2PC outperforms 2PC+2PL with a
throughput that is at most 3.06 × higher. When read optimization
is disabled, D2PC+2PL-NRO also achieves 1.8 × throughput than
2PC+2PL-NRO. Similarly, in OCC, as shown in Fig. 8, when setting
Zipf coefficient to 0.9, the throughput of D2PC surpasses 2PC+OCC
by 2.35 ×. Compared with integrated mode protocols, D2PC con-
sistently achieves higher throughput, surpassing Caoursel, TAPIR,
and STARRY by 1.41 ×, 3.1 ×, and 2.79 × respectively.

The performance advantages of D2PC can be attributed to its
shorter concurrency control period, as evident from Fig. 6 (c) and 8
(d). Regardless of the contention load, D2PC consistently exhibits
the shortest concurrency control period. This reduction in concur-
rency control period mitigates contention, resulting in the lowest
transaction abort rate, as demonstrated in Fig. 8 (c).

5.3 TPC-C

In the TPC-C evaluation, we only used three read-write transaction
types with a proposition of neworder (48%), payment (47%), and
delivery (5%).
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Figure 9: TPC-C: increasing loads.
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Figure 12: Performance under single continent setting.

Performance with varied client numbers. Fig. 9 shows the
performance under increasing loads, and each shard contains 10
warehouses. As the number of clients increases, the throughput of
D2PC climbs until reaches 17410 TPM, surpassing all competing
protocols. Carousel, despite its fast commit path, still performs
18% lower than D2PC due to its longer concurrency control period,
as depicted in Fig. 9(d). For 2PC, since it requires two rounds of
communication to commit, its peak is only 61% of D2PC. For TAPIR
and STARRY, under low conflict, they can achieve fast commitment,
and their throughputs are similar to D2PC. However, as the conflict
increases, their abort rates increase rapidly, causing the throughput
to drop more rapidly than all other protocols.

Peformance with varied warehouse numbers. In the TPC-C
workload, the number of warehouses is critical for tuning the con-
tention level. With fewer warehouses, more transactions are com-
peting to operate in the same warehouse, causing high contention.
Fig 10 shows the performance with varied warehouse numbers per
shard. D2PC, Carousel, and 2PC, which centrally resolve conflicts,
cause their throughputs to be less impacted by contention than
TAPIR and STARRY. Regardless of the level of contention, D2PC
always shows the strongest ability in handling conflicts due to its
shortest concurrency control period.

5.4 Varied Replica Locations

We further measured the performance with varied replica locations
to better demonstrate the applicability of our approach under var-
ious setups. The concurrency control protocol was OCC, and the
workload was Retwis with Zipf coefficient set to 0.7.

Five replicas under wide geo-distribution. Firstly, we mea-
sured the performance with a 5-replica setup that includes servers
in the US East, US West, Europe, East China, and North China, to
simulate a more extensive geo-distribution.

As depicted in Fig 11, D2PC achieves the highest peak through-
put (Fig. 11(a)), outperforms 2PC, Carousel, TAPIR, and STARRY by
2.2 ×, 1.29 ×, 1.64 ×, and 1.57 × resepctively. As for latency, D2PC’s
commit latency slightly increases in the 5-replica setup due to the
requirement of 1.5 inter-datacenter RTTs to complete the commit.
Nevertheless, D2PC still maintains commit latency comparable to
protocols with fast commit paths and significantly lower latency

than 2PC+OCC. As the number of clients increases, D2PC+OCC ex-
hibits a lower abort rate and average latency compared to Carousel,
TAPIR, and STARRY because all of these protocols need extra costs
to resolve conflicts.

Single continent setting. We further measured the perfor-
mance under a single continent setup including replicas in East
China, North China, and South China. Fig 12 shows that the transac-
tion latencies are significantly reduced due to lower communication
latency. Therefore, all protocols reach peak throughput faster than
in previous experiments, with D2PC still achieving the highest
peak throughput. As the client number further increases, the per-
formance gap between D2PC and other protocols becomes wide,
demonstrating the stable advantage of D2PC in handling contention
under various settings.

5.5 Sensitivity Analysis of Performance

In this experiment, we used various situations to evaluate the ro-
bustness of D2PC.

Firstly, we used a micro-benchmark and controlled the operation
number in a transaction. The number of clients is fixed to 150. In
Fig. 13(a) and (b), as the transaction length increases, more conflicts
occur, causing a rapid decline in throughput across all protocols.
However, D2PC still shows an advantage in handling conflicts.

Secondly, we varied the number of shards from 3 to 7. In Fig 13(c)
and (d), the increase in shard number doesn’t have a huge impact
on the throughput of all protocols, but the abort rates show a slow
decline, because the loads are balanced on more shards, causing a
reduction on conflicts.

Then, we evaluated the throughput of D2PC under co-coordinator
failures. In Fig. 14(a), we artificially shut down two co-coordinator
servers. Co-coordinator failure causes some transactions to fail to
PreCommit, the throughput of D2PC will decrease. When only one
co-coordinator is alive,D2PC essentially behaves like 2PC, requiring
2 RTTs to commit a transaction, leading to lower throughput than
Carousel. However, participant leaders co-located with the alive
co-coordinator can still benefit from early PreCommit decisions,
D2PC maintains an advantage over 2PC.

Finally, we evaluated the efficacy of the co-coordinator sharding
strategy in improving co-coordinator scalability. To simulate the
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Figure 15: Comparsion of concurrency control period length.

scenario of co-coordinator bottleneck, we allocated only 1 CPU and
512 MB memory to co-coordinator servers. Fig. 14(b) shows that
when a single co-coordinator group is deployed, throughput stabi-
lizes as the client number increases. After sharding co-coordinators
into two groups (with two co-coordinators in each datacenter), the
load will be balanced, resulting in much higher throughput.

5.6 Detailed Study of Concurrency Control

Period Length

In this experiment, we conducted a detailed analysis of concurrency
control period lengths. The experiment used the default 3-replica
setup, and each transaction access all three shards. The number of
clients is fixed at 150, distributed evenly among all three datacenters.

We first define three kinds of time. 𝐿𝑖− 𝑗 denotes the RTT between
datacenter 𝑖 and 𝑗 . 𝐿𝑖−𝑚𝑎𝑥 refers to the maximum time required for
datacenter 𝑖 to receive replies from all datacenters, determined by
the network latency with the most distant datacenter. 𝐿𝑖−𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦

indicates the time required for datacenter 𝑖 to receive replies from
a majority of datacenters.

Table 4 presents an overview of the concurrency control period
length for different protocols. We assume that the transaction is
initiated at datacenter𝑎, and analyze the concurrency control period
length of shard leaders at datacenter 𝑏.

Theoretically, the number of round trips in the concurrency con-
trol period can be identified by calculating the coefficient of the for-
mulas in Table 4, the coefficient is 𝑛 indicates contains 𝑛 round trips.
The coefficient of Carousel’s concurrency control period length is
1, while 2PC’s coefficient is 2, therefore, their concurrency control
period lengths are 1 inter-datacenter RTT and 2 inter-datacenter
RTTs, respectively. Consequently, their actual concurrency control
period lengths follow the same increasing order, as depicted in
Fig.15(b) and (c).

In contrast, D2PC’s coefficient is 1/2 after simplification, which
means the concurrency control period length is only 0.5 inter-
datacenter RTT. However, the concurrency control period length
of D2PC exhibits significant variation across different datacenters.
This is because the concurrency control period of D2PC is related
to the locations of both the client and servers.

Table 4: Analysis of concurrency control period length of

shard leaders at 𝑏 (transaction initiated at 𝑎).

D2PC Carousel 2PC

max
𝑖∈𝑝

𝐿𝑎−𝑖+𝐿𝑖−𝑏−𝐿𝑎−𝑏
2 𝐿𝑎−𝑚𝑎𝑥 max

𝑖∈𝑝
(𝐿𝑎−𝑖 + 𝐿𝑖−𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦)

We set the timing of commit initiation as 0. For the shard leader in
datacenter 𝑏, the concurrency control period starts when it receives
the Prepare message at time 𝐿𝑎−𝑏

2 , and ends when receives all vote
messages from other participant shards at the time max

𝑖∈𝑝
𝐿𝑎−𝑖+𝐿𝑖−𝑏

2 ,

where 𝑝 is the set of participant datacenters. Therefore, the concur-
rency control period length is max

𝑖∈𝑝
𝐿𝑎−𝑖+𝐿𝑖−𝑏−𝐿𝑎−𝑏

2 .

This formula shows that the concurrency control period of D2PC
is negatively correlated to the network latency between 𝑎 and 𝑏. For
example, taking Hangzhou as the initiated datacenter 𝑎, and Frank-
furt as 𝑏. Referring to the network latencies in Table 2, the network
latency between them is the highest. Therefore, the concurrency
control period of Frankfurt is the shortest.

As a result, the concurrency control period length in D2PC ex-
hibits variation depending on the locations. However, the overall
concurrency control period length of D2PC is still significantly
lower than other protocols.

6 CONCLUSION

This paper proposed the decentralized transaction commit protocol
that offers several key insights. The primary objective is to mini-
mize the impact of cross-region communication on system currency
and commit latency. To achieve this, D2PC leverages decentralized
commit via co-coordinators, and parallels processes of 2PC and
replication. Compared to commit approaches based on 2PC, D2PC
demonstrates significant performance improvements in terms of
throughput and latency. Furthermore, when compared to integrated
mode approaches that achieve fast commitment, D2PC realizes a
similar reduction in commit latency while also delivering higher im-
provements in throughput. Our experimental study demonstrated
these promising characteristics.
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