I/0 Efficient Label-Constrained Reachability Queries in Large
Graphs

Long Yuan Xia Li Zi Chen*
Nanjing University of Science and The University of New South Wales Nanjing University of Aeronautics
Technology xiali@unsw.edu.au and Astronautics
longyuan@njust.edu.cn zichen@nuaa.edu.cn
Xuemin Lin Xiang Zhao Wenjie Zhang
Shanghai Jiaotong University National University of Defense The University of New South Wales
xuemin.lin@gmail.com Technology wenjie.zhang@unsw.edu.au

xiangzhao@nudt.edu.cn

ABSTRACT

Computing the reachability between two vertices in a graph is a
fundamental problem in graph data analysis. Most of the existing
works assume that the edges in the graph have no labels, but in
many real application scenarios, edges naturally come with edge-
labels, and label constraints may be placed on the edges appearing
on a valid path between two query vertices. Therefore, we study the
label-constrained reachability (LCR) queries in this paper, where
we are given a source vertex s, a target vertex ¢, a label set A, and
the goal is to check whether there exists any path from s to ¢ such
that all the labels of edges on the path belong to A.

A plethora of methods have been proposed in the literature to
support the LCR queries. All these methods take the assumption
that the graph is resident in the main memory of a machine. Never-
theless, the graphs in many real application scenarios are generally
big and may not reside in memory. In these cases, existing methods
suffer from serious scalability problem, i.e., result in huge I/O costs.
Motivated by this, in this paper, we study the I/O efficient LCR
query problem and aim to efficiently answer the LCR queries when
the graph cannot fit in the main memory. To achieve this goal, we
propose a reduction-based indexing approach. We introduce two
elegant graph reduction operators which aims to reduce the size of
the graph loaded in memory while preserving the LCR information
among the remaining vertices. With these two operators, we devise
an index named LCR-Index and propose algorithms to adaptively
construct the index based on the available memory. Equipped with
LCR-Index, we can answer a LCR query by only scanning the LCR-
Index sequentially. Experiments demonstrate our query processing
algorithm can handle graphs with billions of edges.

PVLDB Reference Format:

Long Yuan, Xia Li, Zi Chen, Xuemin Lin, Xiang Zhao, Wenjie Zhang. I/O
Efficient Label-Constrained Reachability Queries in Large Graphs. PVLDB,
17(10): 2590 - 2602, 2024.

doi:10.14778/3675034.3675049

* Zi Chen is the corresponding author.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 17, No. 10 ISSN 2150-8097.
doi:10.14778/3675034.3675049

2590

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made avail-
able at https://www.dropbox.com/scl/fo/ngye29akb1ukk55s0elw5/h?rlkey=
wigazy8oqsmo07kr5rbk0j70d&dl=0.

1 INTRODUCTION

The reachability query which asks if one vertex can reach another
vertex or not is one of the fundamental problems in graph analysis
[39, 40]. This seemingly simple but very challenging problem has
attracted extensive research for decades [8, 11, 14, 20-22, 41-43, 45,
49-51, 58, 62]. Most of the existing works assume that the edges
in the graphs have no labels. However, in many real applications,
not all edges are the same, i.e., edges are associated with labels to
denote different types of relationships between vertices [7, 56, 57].
For example, in social networks, two persons may have different
types of relationships, such as "parentOf", "friendOf", "employeeOf",
"colleagueOf", etc. Therefore, many applications place constraints
on the edges appearing on a valid path when determining the
reachability between two vertices, which leads to the study of label-
constrained reachability (LCR) queries [6, 19, 37, 44, 64]. Formally,
given a source vertex s, a target vertex ¢, and a label set A, a LCR
query checks whether there exists a path from s to ¢, where the
label of each edge on the path belongs to A.

Applications. LCR queries can be used in many real application
scenarios, for example,

(A) Relationship discovery in social network. In a social network,
a vertex represents an entity (e.g., user, poster, organization) and
there is an edge if two entities are related. These relationships
could be different types like "brotherOf", "friendOf", "employeeOf",
"colleagueOf", "like", "follow". A LCR query can be used to determine
if two persons are related via a series of given relationships. For
example, a common practice in social network analysis for counter-
terrorism is to check if two suspects are connected by certain types
of relationships such as "friendOf", "brotherOf" [13].

(B) Metabolic chain reaction in metabolic networks. In metabolic
networks, each vertex represents a chemical compound and a direct
edge indicates a chemical reaction from one compound to another
where the edge label records the enzymes which control the reac-
tion. One of the basic questions is to determine whether there is a

https://doi.org/10.14778/3675034.3675049
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3675034.3675049
https://www.dropbox.com/scl/fo/ngye29akb1ukk55s0elw5/h?rlkey=wfgazy8oqsmo07kr5rbk0j70d&dl=0
https://www.dropbox.com/scl/fo/ngye29akb1ukk55s0elw5/h?rlkey=wfgazy8oqsmo07kr5rbk0j70d&dl=0
https://www.acm.org/publications/policies/artifact-review-and-badging-current

certain pathway between two compounds that can be active or not
under a set of enzymes, which can be modeled as LCR queries [19].

(C) One of the most important operators for the language of regular
path queries. Regular path queries have been extensively studied
[26, 31, 36] and are supported in practical graph query languages
such as SPARQL, PGQL, and openCypher [44]. A LCR query can
be can be described by the regular expression (I1|lz| ... |lx)*, where
A ={l,ly,...,It}, | denotes alternation, and * denotes the Kleen
star. LCR query is one of the most important operators in regular
path queries. An analysis of SPARQL query logs on Wikidata17
knowledge graph reveals that 65% of the regular path queries can
be expressed by LCR queries [3].

Motivation. Due to its wide application, LCR queries have at-
tracted considerable attention in recent years and a plethora of
methods have been proposed in the literature to accelerate the LCR
query processing [6, 19, 37, 44, 64]. All the existing methods assume
that graphs are resident in memory. However, as graphs continue
to grow to have billions of vertices and edges, the size of many
real-world graphs exceeds the capacity of the main memory, which
leads to serious scalability problems for existing methods. On the
other hand, people have started to leverage the massive storage
to keep the large-sized edge data for holding a large-scale graph
at low cost and devise various scalable I/O efficient techniques to
achieve high performance graph processing, and remarkable re-
sults have been obtained in other graph problems [9, 53, 59, 61]. A
natural question, therefore, is whether it is possible to devise an
I/O efficient solution to the LCR queries? Motivated by this, in this
paper, we study I/O efficient algorithms for LCR queries when the
input graph G cannot be entirely held in main memory.

Our approach. Nevertheless, it is challenging to design such an
I/O efficient algorithm for LCR queries due to the inherent poor
locality caused by irregular access pattern of graph data [12, 35]. To
address this challenge, we propose a new reduction-based indexing
framework for I/O efficient LCR query processing. Since the large
size of graphs leads to the insufficiency of main memory, the main
idea of our framework is to make the size of the input graph smaller
than that of the available memory by reduction while keep the LCR
information in the reduced graph as much as possible. The benefits
of this idea are twofolds: 1) as the size of the graph is reduced, a
smaller graph facilitates the design of an I/O efficient algorithm
intuitively; 2) since the graph is reduced based on the size of main
memory, the available memory can be fully used as well. Following
this idea, we propose the concept of LCR preserved graph (LCR-PG)
which has a smaller size than the input graph while preserves the
LCR information among the vertex pairs in it, and two graph reduc-
tion operators are designed accordingly. With the graph reduction
operators, our new framework generates a series of LCR-PGs as
the index. Since LCR-PG preserves LCR information of the input
graph, we can answer a given query just through the correspond-
ing LCR-PG, which means the given query can be processed with
limited memory. However, to make the new framework practically
applicable, the following issues need to be addressed: (1) How can a
good LCR-PG be obtained in an I/O efficient manner? and (2) How
can the LCR-PGs be used to answer the given query I/O efficiently?

Contributions. In this paper, we answer these questions and make
the following contributions:

2591

(1) The first work for I/O efficient LCR query processing. In this paper,
we aim to answer the LCR queries in massive graphs by considering
the I/O issues when the memory size is inadequate. To the best of
our knowledge, this is the first work to study the I/O efficient LCR
query processing problem.

(2) A new reduction-based LCR query processing framework. Our
main idea to address the problem is through graph reduction. We
introduce the concept of LCR preserved graph and propose two
graph reduction operators, VR and ER, to reduce the vertex and
edge of the graph, respectively. We discuss how to use these two
graph reduction operators to generate a series of LCR preserved
graphs as index, and answer the query through the corresponding
LCR preserved graph.

(3) I/O efficient indexing and query processing algorithms. Following
the reduction-based framework, we propose I/O efficient algorithms
to construct the index and process the given query. Remarkably, our
query processing algorithm can answer a LCR query by scanning
the index on the disk sequentially once. We also provide theoretical
I/O complexity analysis of the proposed algorithms.

(4) Extensive performance studies on large datasets. We conduct
extensive performance studies using real-world graphs. The exper-
imental results demonstrate that our query processing algorithm
can handle graphs with billions of edges and achieve up to 3 orders
of magnitude speedup compared with the existing solutions.

2 RELATED WORK

In this section, we review the related work from three categories,
namely, label-constrained reachability queries, reachability queries
on unlabelled graphs, and other I/O efficient graph algorithms.

Label-constrained reachability query. In the literature, exten-
sive research efforts have been devoted to the label-constrained
reachability queries. A direct approach to answering the query is
based on online search as follows: starting from s and t, we traverse
the graph in BFS manner following the edges with labels in A. If
these two traverses can meet at a vertex, then t is reachable from t
regarding A. Otherwise, ¢ is not reachable from t regarding A. [19]
is the first work on the index-based approach for LCR queries. It de-
vises a tree-based index framework to process the label-constrained
reachability queries. Following the idea of [19], [64] leverages the
strongly connected components in the graph to further improve
the query processing performance. [44] proposes a landmark-based
index by utilizing the reachability information of important ver-
tices. Recently, P2H+ [37] designs a 2-hop labelling index for the
label-constrained reachability queries and shows that the proposed
method outperforms [44] in terms of the query processing. [6]
extends P2H+ [37] to support the dynamic update of the graphs.
Nevertheless, all the existing methods assume that the input graphs
reside in main memory, and thus cannot be directly used to address
our problem due to the large amount of I/Os [34]. Then, another
natural question raised is whether is it possible to extend these
approaches for I/O efficient setting to address our problem? Un-
fortunately, the answer is negative. For example, I/O efficient BFS
algorithms for directed graphs have been investigated in the litera-
ture [4, 23, 25] and can be adjusted for our problem. The-state-of-art
1/O efficient BFS algorithm for directed graphs [23] uses a buffered
repository tree [4] to record the edges that point to previously seen

nodes and an external queue [46] to conduct the traversal. However,
it needs Q(n + m/B) I/Os [23], where n/m represents the number
of vertices/edges of the graph and B represents the block transfer
size between main memory and disk. Thus, it is impracticable for
real applications [2]. [63] alleviates the I/O issue by allowing all the
vertices of the graph to be kept in the memory, but the query pro-
cessing performance is still poor as evaluated in our experiments.
For the index-based approaches, the index structures of these meth-
ods are generally large and the index construction algorithms are
complex, which makes them infeasible to be extended to support
efficient LCR queries when the input graphs are stored on external
storage devices. Take the state-of-the-art approach P2H+ in this
category as an example. P2H+ adopts a 2-hop labelling strategy and
answers a given LCR query q(s, ¢, A) by only iterating the elements
attached in s and t in the index. However, the space consumption of
the P2H+ index structure is O(n? - lel), where || is the number of
the edge labels in the graph. Clearly, this approach is not scalable
for large graphs even though the index structure could be stored
on the disk. Moreover, in the procedure of the index construction,
a series of BFS explorations have to be performed, which further
makes this approach inapplicable in our I/O efficient scenario as
analyzed above. Therefore, we have to design a new I/O efficient
method from scratch for LCR queries.

Reachability query on unlabelled graphs. Reachability query
on unlabelled graphs has been studied in the literature. The clas-
sic approach to answering the reachability is BFS. However, this
approach is inefficient as it may traverse the entire network. There-
fore, index-based approaches are studied to tackle this problem
[8, 11, 14, 15, 20-22, 41-43, 45, 48-51, 62]. [52] provides a com-
prehensive survey on the reachability query on unlabelled graphs.
However, these approaches just consider the unlabelled graphs and
they cannot be used directly to answer our queries.

I/0 efficient graph algorithms. With the proliferation of graph
applications [5, 27, 29, 32, 33], several graph algorithms focusing
on I/O efficiency have been proposed in the literature. [9] describes
an I/O efficient algorithm for the core decomposition in massive
networks. [60] studies an I/O efficient algorithm to compute the
strongly connected components in a graph in the semi-external
model and [59] extends the algorithm to the external memory model.
I/O efficient algorithms for the triangle enumeration problem are
presented in [18]. And I/O efficient algorithms for the maximal
clique enumeration related problems are proposed in [10, 53]. The
1/O efficient algorithms for the k-truss decomposition problem and
k-edge connected component decomposition problem are inves-
tigated in [47] and [54, 55], respectively. An I/O efficient semi-
external algorithm for DFS is proposed in [61]. [24] devises an I/O
efficient algorithm for subgraph enumeration. However, all these
1/0 efficient algorithms are designed for other graph problems and
cannot be used for LCR queries.

3 PROBLEM DEFINITION

Let G = (V,E, 2, A) be a directed edge-labeled graph where V is
a set of vertices, E is a set of directed edges, ¥ is a set of edge
labels, and A : E — X is a function that assigns each edge a
label I € 3. We use n = |V| and m = |E| to denote the num-
ber of vertices and edges in the graph, respectively. For each

2592

Figure 1: LCR Reachability Query

vertex v € V, the in-neighbors (resp. out-neighbors) of v, de-
noted as nbr™ (v, G) (resp. nbr* (v, G)), is defined as nbr™ (v,G) =
{u|(u,v) € E} (resp. nbr*(v,G) = {u|(v,u) € E}). The in-degree
(resp. out-degree) of a vertex v € V, denoted by deg™ (v, G) (resp.
deg* (v, G)), is the number of in-neighbors (resp. out-neighbors) of
v, i.e., deg” (v,G) = |nbr~(v,G)| (resp. deg* (v, G) = |nbr* (v, G)|).
We call the in-neighbors and out-neighbors together of a vertex v
as its neighbors and the number of neighbors as its degree, denoted
by nbr(v, G) and deg(v, G), respectively. For each directed edge
e = (u,v) € E, we use A((u,0v), G) to denote its associated label. In
the graph G, a path is a sequence of vertices py, .o, = (01,02, -, 0g),
where (v;,0;41) € Eforeach1 < i < k. Given apath p in G, the path
label of p, denoted by £(p), is defined as £(p) = Uy, 4)epA((w,0), G).
Given two paths py, », and py, o, the concatenation of py, ,, and
Do;o generates a path py, o, With €(po,,0) = €(Poy,0;) U (o0)-

Definition 3.1: (Label-Constrained Reachable) Given two ver-
tices s, t in a graph G = (V,E, 3, 1) and a set of edge labels A C 3,
let be the set of all paths from s to ¢ in G, t is label-constrained
reachable from s, denoted by s = t(G), if there is a path p € P
such that £(p) C A. O

For simplicity, we omit G in the notations hereafter if the context
is self-evident. For any vertex v, v is label-constrained reachable
from itself regarding any A C X.

Example 3.1: Consider the graph shown in Figure 1, 2 = {a, b, c},
and the label of each edge is shown beside the corresponding
edges. For example, A((vg,v1)) = a. For path py 0, = {v0,01,02},
€(payos) = @b} as A((00,01)) = {a} and A((01,09)) = {b}. For
vertices vg and vs, if A = {a, b}, then vy P (b} U5 as there exists a
path pyg o5 = {00,091, 02,05}, £(Pog,0s) = {a, b} € A = {a, b}. o

Problem Statement. Given two vertices s, ¢ in a graph G and a
set of edge labels A, a label-constrained reachability (LCR) query
q(s, t, A) asks whether ¢ is label-constrained reachable from s re-
garding A.

Since the graphs in real applications can be massive, in this
paper, we assume that the graph G cannot reside entirely in the
main memory. We aim to design I/O efficient algorithms where
the input graph resides in the disk to answer the label-constrained
reachability queries. When analyzing the I/O complexity of our
algorithms, we use the standard I/O complexity notations in [1] as
follows: M is the main memory size and B is the disk block size. The
I/O complexity to scan N elements is scan(N) = @(%), and the
I/O complexity to sort N elements is sort(N) = O(% . log% %)

4 A REDUCTION-BASED FRAMEWORK

In this section, we present the general idea of our algorithm. As
discussed in Section 1, the main reason leading to the insufficiency

(a) Indexing Phase

(b) Query Processing Phase

Figure 2: Main Framework of Our Approach

of memory is the input graph is too large, which means if we can
reduce the input graph to the size that can fit in memory while the
reachability information can be recovered based on the reduced
graph, then the problem is totally addressed. Following this idea,
our I/O efficient solution to the LCR queries contains two phases:
reduction-based indexing phase and index-based query processing
phase. Figure 2 illustrates the main framework of our idea.

Phase 1. Reduction-based indexing. In the reduction-based in-

dexing phase, we aim to reduce the input graph size as much as
possible while preserving the LCR reachability information to fa-
cilitate the query processing in phase 2. To achieve this seemingly
contradictory goal, we generate a series of LCR preserved graphs
Gy, G1, . . ., Gg, which are defined as follows:

Definition 4.1: (LCR Preserved Graph) Given a graph G, a LCR
Preserved Graph (LCR-PG) G’ is a graph with V(G’) c V(G)
such that Vs,t € V(G’), if s > t(G’), then s > t(G), where
V(G’)/V(G) denotes the vertices of G’/G. m|

Specifically, starting from Gy = G, we generate G; based on G;_1

by two reduction operators (denoted by dashed ring and shadowed
ring in Figure 2 (a)), where 1 < i < k, and guarantee that G; is a
LCR-PG of G;_1. The indexing phase stops when Gy can be loaded
in the main memory. The benefits of this approach are twofolds: (1)
since V(Gi+1) C V(G;), we can often obtain a smaller graph as the
indexing procedure continues, while G;1 is the LCR-PG of G; that
means the LCR reachability information could be kept. (2) since
the indexing phase stops when Gy can be loaded in the memory
which means it can use the available memory effectively, and the
performance can be improved naturally from the availability of
extra memory.
Phase 2. LCR-PG-based query processing. According to Defini-
tion 4.1, to answer a label-constrained reachability query q(s, ¢, A),
if s and t are in Gy, then we can directly answer the query based
on Gg. Otherwise, we can construct the LCR-PG G; containing s
and ¢ first, and then obtain the reachability information on LCR-PG
accordingly.

Challenges. Following the above approach, the LCR queries can

be answered with limited memory obviously. However, to make our

approach practically applicable, the following challenges should be

addressed when designing our algorithm:

o Reducibility: for a given graph G; in the indexing phase, the size
of the graph should be able to be reduced continuously to meet
the limited memory condition.

2593

e LCR preservability: for a given graph G; generated in the index-
ing phase, the label-constrained reachability information regard-
ing two vertices s and ¢ in G; should be retained for the LCR

query processing.

I/O efficiency: since the available memory is limited, all the al-
gorithms should be able to be implemented in an I/O efficient
manner.

5 INDEX CONSTRUCTION AND QUERY
PROCESSING

In this section, we focus on how to address the challenges discussed
above. We first introduce the main idea of the indexing approach
and show how to guarantee the reducibility and LCR preservability
during the indexing. Then, we present our techniques to construct
the index in an I/O efficient manner. At last, we present the query
processing algorithm based on the proposed index.

5.1 Overview of Index Construction Algorithm

Our index is based on the LCR dominating label set, which is defined
as follows:

Definition 5.1: (LCR dominating label set) Given a graph G,
for an edge (u,v), a LCR dominating label set of (u,v), denoted
by ®((u,v),G) = (¢1, ..., Pn), is a set of edge label sets such that
¢i ST and A ¢’ € d((u,0),G) with ¢’ C ¢; forevery1 <i<n. O

Obviously, for each edge (u,v), the edge label A((u,v),G) as-
signed by A in G is a special case of LCR dominating label set.

Definition 5.2: (LCR dominating label set concatenation op-
erator ®) Given the LCR dominating label sets ®((u,v),G) of
(u,0) and ®((v, w),G) of (v, w), let C be the set of all concate-
nations of ¢, , and ¢, ., after removing repeated labels, where
duo € ®((1,0),G) and ¢y € ®((v, W), G), the LCR dominating
label set concatenation of ®((u,v), G) and ®((v, w), G) is defined
as ®((4,0),G) ® ®((v,w),G)={p e Clh¢d’ €C, ¢’ C ¢}. o

Definition 5.3: (LCR dominating label set union operator v)
Given two LCR dominating label sets ®((u,v), G) and &’ ((u,), G)
of (u,v), the LCR dominating label set union of ®((u,v),G) and
@’ ((u,0),G) is defined as: ®((4,0),G) W ' ((1,0),G) = {P €
{2((1,0),G) UL ((1,0),G) A" € {((1,0),G) U P ((,0),G)},
¢’ < ¢} o

For the ease of presentation, Definition 5.3 only shows two
operands for ¥ operator, but it supports more than two operands in
the same way. Based on the LCR dominating label set, we define the

Vo

Figure 3: VR(v2, G) and ER((vg,v4), G))

LCR vertex reduction operator and LCR edge reduction operator,
which lay the foundation of our indexing construction.

Definition 5.4: (LCR vertex reduction operator VR(v,G))
Given a graph G, for a vertex v € V, the LCR vertex reduction opera-
tor applied on v in G, denoted by VE(v, G), transforms G into a new
graph G’ as follows: the vertex v and its incident edges are removed
first. Then, for every pair of u € nbr™(v,G) and w € nbr* (o, G),
if (u,w) ¢ E(G), a new edge (u, w) with LCR dominating label
set ®((u,w),G’) = ®((u,0v),G) ® ®((v,w),G) is inserted. Oth-
erwise, the LCR dominating label set of (u, w) is updated with
®((u,w),G") = 0((u, w),G) W (®((1,0),G) ® ((v, w), G)). O

Definition 5.5: (LCR edge reduction operator ER((u,v),G))
Given a graph G, for an edge (u,v), the LCR edge reduction opera-
tor applied on (u,0) in G, denoted by ER((u, v), G), transforms G
into a new graph G’ as follows: (u,v) is removed from G if there
exist two edges (u, w) € E(G) and (w,v) € E(G) such that for each
¢ € ®((u,v),G), there exists ¢’ € ®((u,0),G) & ®((v, w), G) with
¢’ C ¢ . Otherwise, G’ keeps the same as G. |

Example 5.1: Consider the graph G shown in Figure 1, Figure 3
shows VR(v2, G) and ER((vg,v4), G)) on G, which are illustrated
by dash lines. Specifically, when applying LCR vertex reduction
operator on vz, as nbr~ (v2, G) = {v1} and nbr*(vs, G) = {v5}, and
A((v1,02)) = {b}, A((v2,vs5)) = {b}. Then vertex vy together with
(v1,0v2) and (vg,v5) are removed from G and a new edge (v1,vs)
with LCR dominating label set ®((v1,02),G) ® ®((vg,v5),G) =
{b} is inserted. When applying LCR edge reduction operator on
(v6, v4), as A((v6,v5)) = {b} and A((v5,04)) = {b}, P((v6,05), G) &
®((vs,04),G) = {b} C ®((vg,v4),G) = {b}, then (vs,v4) is re-
moved from G. O

With the vertex reduction operator and edge reduction operator,
we are ready to show our index construction algorithm, which is
based on the following definition:

Definition 5.6: (Maximal independent set) Given a graph G,
the independent set of G is a set of vertices in G such that no
two vertices in the set are adjacent in G. A maximal independent
set (MIS) is an independent set that is not a subset of another
independent set in G. O

The main framework of the index construction algorithm is
shown in Algorithm 1. For a given graph G, Gy is initialized as G and
i and k are initialized as 0 (line 1). After that, the index construction
algorithm iteratively generates a series of graphs G1,Ga, ..., Gk
where G; is generated based on G;_;1 with a smaller number of
nodes (line 2-8). In each iteration, the maximal independent set I;
of G; is computed first (line 3). Then, for each v € I;, the vertex
reduction operator is applied on v in G; (line 4-5). When the vertex

2594

Algorithm 1 LCRIndexCons(G)

i,k < 0;G; « G;
while G; cannot be loaded in main memory do
I; — MIS(G;);
for each v € I; do
G;i < VR(9,Gj);
for each (u,v) € E(G;) do
G; « ER((u,0), Gj);
Giy1 — Giyi — i+ 1L,k — i;

[I = N B N T

reduction finishes, the edge reduction operator is applied on each
edge (u,0) in G; (line 6-7). The index construction stops when Gy
can be loaded in the main memory (line 2).

Example 5.2: Figure 4 shows the procedures of Algorithm 1 to
construct the index. It finishes the constructions in two iterations.
In first iteration, the maximal independent set I = {vg, v2, v3,v8, U9}
of Gy is computed, which is shown by circle in Figure 4(a). Then,
it conducts the vertex reduction on the vertices in Iy and edge re-
duction on the edge (vg, v1) and (vs, v4) to obtain Gi. In the second
iteration, the maximal independent set I; = {v1,v6,010} of Gy is
computed, which is shown in Figure 4(c). After that, it conducts
the vertex reduction on the vertices in I; and no edge can be re-
duced following Definition 5.5. The reduced graph G is shown in
Figure 4(d). Assume Gz can be loaded in the memory, and the index
construction finishes. O

Following the procedure of Algorithm 1, it is obvious that the
index satisfies the reducibility property due to the vertex/edge
reduction in line 5/7. Meanwhile, the index also satisfies the LCR
preservability property, which is proved as follows:

Definition 5.7: (Maximal independent set order) Given a ver-
tex v in graph G, let Gy, Gy, . . ., Gy be the graphs generated during
the indexing phase, the maximal independent set order of v, de-
noted by o(v), is defined as the maximum i such that v € V(G;).

O

Theorem 5.1: Given two vertices u and v in graph G, for a set of
edge labels A C 3, if there is a path p fromu tov in G with £(p) C A,
then, there is a path p’ fromu tov in G; such that £(p’) C £(p) C A,
where i < min{o(u),0(v)}.

According to Theorem 5.1, the LCR preservability is also guar-
anteed regarding the index generated by Algorithm 1.

5.2 1/0 Efficient Index Construction

As shown in Algorithm 1, the key procedures of the indexing phase
are maximal independent set computation, vertex reduction, and
edge reduction. In the following, we will introduce them in order.

5.2.1 /O Efficient Vertex Reduction.

I/O efficient maximal independent set computation. Intu-
itively, the size of the maximal independent set I; computed in
line 3 of Algorithm 1 should be as large as possible to reduce the
number of iterations of Algorithm 1, which lead to the maximum
independent set problem. No matter how desirable, the maximum
independent set problem is known to be NP-hard [38], and for any
€ > 0, there is no polynomial-time n!~¢ approximation algorithm
for the maximum independent set problem [17]. On the other hand,

(a) Iteration 1 (MIS Computation, Gy)

(b) Iteration 1 (VR/ER, Gy)

Vs
Vit
b vz a __vn
b b N
c abc
Va

(c) Iteration 2 (MIS Computation, G1) (d) Iteration 2 (VR/ER, Gy)

Figure 4: Index Construction Procedure

Algorithm 2 IOMIS(G)

1: reassign a new vertex id to each vertex v such that for two vertices u
and o, if u < o, the new id of u is less than v;

: G’ «transforms the edges in G with the new vertex id, and reverse the
direction of an edge (u, v) if the new id of u is bigger than that of .

: sort the edge (u, v) € E(G’) based on the non-decreasing order of the
new id of u;

: I/O efficient Priority Queue Q « 0;

: for each vertex v in the increasing order of their new ids do

pop all the elements (v, I(¢v")) related to v in Q;

if 31(v') = 1thenI(v) « 0;else I(v) « 1;

for each out-neighbor u of v in G’ do
push element (u, I(v)) into Q;

-
<

return I < all the vertices with I(v) = 1;

[16] shows that show that for general graphs of bounded degree D,
the greedy algorithm produces D+l _factor approximation result
for the maximum independent set problem and [28] experimentally
shows that greedy algorithm works well on real graphs in prac-
tice. Therefore, we leverage the greedy-based I/O efficient maximal
independent set algorithm in the literature [28, 30] for our index
construction whose pseudocode is shown Algorithm 2.

Briefly, Algorithm 2 processes the vertices in the non-decreasing
order of their degrees (the vertex with smaller id comes first if two
vertices have the same degree). Then, it selects the vertex whose
processed neighbors are not in the maximal independent set as a
member of the maximal independent set. Specifically, given a graph
G, the algorithm first define an order < of the vertices such that
u < vif (1) deg(u) < deg(v); (2) deg(u) = deg(v) and id(u) < id(v).
Then, it pre-processes the input graph by: (1) reassigning a new
vertex id to each vertex v such that for two vertices u and v, if u < v,
the new id of u is less than v (line 1). (2) transforming the edges of G
with the new vertex id, and reversing the direction of an edge (u, v)
if the new id of u is bigger than that of v (line 2). (3) sorting the
edge (u,v) € E(G’) based on the non-decreasing order of the new
id of u (line 3). After the pre-processing, the < relationship between
two vertices incident to an edge can be directly determined by their
new ids. Then, it initializes an I/O efficient minimum priority queue
[46] (line 4) and iterates the vertices in the increasing order of their
new ids (line 5). For each vertex v, it uses I(v) = 1/0 to indicate v
is in/not in the maximal independent set. It pops all the elements
(v,1(’)) in Q that maintains the information about whether the
processed neighbors of v are in the maximal independent set or not
(line 6). If there exists at least one I(v”) is 1, then it sets I(v) as 0.
Otherwise, I(v) is set as 1 (line 7). After that, for each out-neighbor
u of v, (u,I(v)) with the priority of the new id of u is further pushed
into Q (line 8-9). The procedure finishes all the vertices have been

2595

processed (line 5). At last, the vertices with I(v) = 1 are returned
as the maximal independent set (line 12). As shown in [30], the I/O
complexity of Algorithm 2 to compute the maximal independent
set for a given graph G is O(sort(G)).

Figure 5: I/O Efficient MIS and Vertex Reduction on Gy

Example 5.3: Consider the graph G shown in Figure 1, Figure 5
shows the maximal independent set of G computed by Algorithm 2,
which is illustrated by circle. Following the definition of <, we have
Vg < Uy < U3 <Ug <Ug <V < U] < U4 <U5 <0y <vg <0y (For
the clearness of presentation, we omit the pre-processing in line
1-3 of Algorithm 2 and assume we have known the < relationship
between two vertices). As vy has the smallest order and there is
no element related to vy in Q, I(vp) = 1 and (o1, 1) is pushed in Q.
g, 03, U, U9 are processed similarly. For v19, as (v19, 1) is pushed in
Q when processing vg, I(v19) = 0. When Algorithm 2 finishes, the
computed maximal independent set contains {vg, v2,v3,v8,09}. O

I/0 efficient vertex reduction. For the vertex reduction, if we
perform the reduction on each vertex individually following Defi-
nition 5.4, it needs at least O(]I]) I/Os, which is inefficient. More-
over, as the vertex reduction involves new edge generation and
edge elimination, this approach may process the same edge several
times repeatedly, which would lead to unfruitful I/Os. To address
these problems, we propose an I/O efficient vertex reduction al-
gorithm that processes the vertices in I as a whole and integrates
the operations on the related edges accordingly, which is shown in
Algorithm 3.

Given the maximal independent set I of G, it first sorts the ver-
tices in the increasing order of their ids (line 2). Then, the edges
(u,v) of G are sorted based on {id(u), id(v)} and stored as E*(line
3). Similarly, it reverses the edges in G, sorts these edges in the
same way as line 3, and stores them as E™ (line 4). After that, for
each vertex v, it retrieves the in-neighbors and out-neighbors of v
by sequentially scanning E~ and E*, and generates the edge (u, w)
with labels ®((u,v), G) ® ®((v, w), G) following Definition 5.2 (line
6-11). The newly generated edges are stored in S (line 10), and
the edges that have a vertex incident to vertices in the maximal

Algorithm 3 10VertexReduction(I, G)

Algorithm 4 I0EdgeReduction(G)

1: S 0,8 « 0;

2: V « sort(ov € I) based on {id(v) };

3: E* « sort((u,v) € E(G)) based on {id(w), id(v) };

4: E~ « reverse the direction of edges in G and sort these edges as line 3;

5: for each v € V do

6: if (v,u) € E~ by scan(E”) then

7. for each (v,u) € E” by scan(E™) do

8 E— EU (u,0);

9 if (v, w) € E* by scan(E*) then

10: O((u, w),G) « ®((1,0),G) ®P((v, w),G); S «— SU (u, w);

11: E—8EU (v, w);

12: else for each (v, w) € E* by scan(E*) do & « E U (v, w);

13: & « sort((u,v) € &) based on {id(u),id(v) };

14: E"* « remove edges (u,v) € E* that is also in & by scan(E*) and
scan(&);

15: 8 « sort((u,v) € S) based on {id(u),id(v) };

16: E”* « add edges (u,v) € S’ to E'" and update ®((u, v), G) following

W if (u, v) € E"™ by scan(S’) and scan(E'*);
17: return G’ (V(G) — I, E");

independent set are stored in & (line 8, 11, 12). Then, the edges
(u,0) € & are sorted based on {id(u),id(v)} and removed from
E* (line 13-14). At last, the edges (u,v) € S are sorted based on
{id(u), id(v)} (line 15) and added into E’* by scanning scan(S’)
and scan(E™"). If (u,v) are also in E’*, ®((u, v), G) is updated by
unionizing the LCR dominating label set of (u,v) in S and E’* (line
16). The newly generated graph is returned in line 17.

Example 5.4: Continue Example 5.3 in which maximal indepen-
dent set I = {vg, v2, 03,08, 09} is computed. To conduct the vertex
reduction, Algorithm 3 first sorts the vertices in I by their ids,
namely V = {09, v2, 03,08, 09}. Then, E¥/E™ is obtained by sorting
the edges (u, v) based on {id(u), id(v) }/{id(v), id(u)}, namely E* =
{(v0, v1, @), (01,02, b), (01,05, b), (v2,05,b), ..., (011,09, ¢) } and
E” {(v1,v0, @), (v1,03,b), (01,04, b), (v1,06,b), ..., (011,07, @) }.
Then it scans V, E* and E~ simultaneously to perform the
vertex reduction. vy does not have any in-neighbors, which is
a trivial case, and only (vg,v1,a) is added into &. For vy, its
in-neighbor is 01 by E™ and its out-neighbor is vs, then it sets
®((01,05),G) = @((01,02),G) ® ®((v2,05)) = {b}, and adds
(v1,0s,b) into S, and (v1, 02, b), (v2,vs, b) are inserted into &. The
remaining vertices in V are processed similarly. We have & =
{(vo,v1, @), (01,02, b), (v2,v5, b), (v3,v1,b), (v4, 03,), (06, v3, a), (v7,

vg, a), (v9, 010, b), (v11,09,¢)}, S (v1,0s,b), (v4, 01, b), (011,010,
bc). After that, the edges in & are sorted and removed from E*,
which leads to E’*. At last, the edges in S are sorted and inserted
in E’*. The subgraph induced by the solid edge in Figure 5 is the
returned graph when Algorithm 3 finishes. O

5.2.2 /O Efficient Edge Reduction.

For the edge reduction, it is obvious that applying the edge reduc-
tion operator on each edge following Algorithm 1 directly lead to
O(m) I/Os at least, which is inefficient. To reduce the I/Os, we have
to design an algorithm that can fully utilize every I/O when handling
the edge reduction. Nevertheless, different from the in-memory al-
gorithm which knows the whole input graph, it is challenging to
design such an I/0 efficient algorithm as the memory is limited and
the global information about the input graph is unknown. Consider

2596

1: E* « sort((u,v) € E(G)) based on {id(u),id(v)};

2: E~ « sort((u,v) € E(G)) based on {id(v),id(u) };

3: 85— 0;S— 0,8« 0

4: for each v € V(G) do

S «— SU {v};$* « S*U {v} Unbr (v,G) Unbrt(o,G);

6: if (% > cM) then

7: scan(E*) and scan(E~) to extract Gs;

8: foreachu € V(Gg+) do

9: for each v € nbr* (u,Gs+) do

10: for each w € nbr* (v, Gs+) do

11: if w € nbr*(u, Gs+) then

12: for each ¢ € ®((u, v), Gs+) do

13: if B¢’ € ®((u, w),Gs*) ® ®((w,0),Gs+) s.t. ¢’ C ¢ then
14: break;

mark (u, v) as removed from Ggx;

16: E—&U{(u0v)};

17: S« 0;S" « 0;

18: sort((u,v) € &) based on {id(w),id(v) };

19: remove edges in & from E* by scan(&) and scan(E*);
20: return G(V(G), E*);

the graph shown in Figure 6 (a), which is the result graph after the
vertex reduction shown in Example 5.4, Assume that we conduct
the edge reduction following the order (vs, v1), (v, v4), (vs, vs5). Ide-
ally, (vs, v1)/(v6, v4) are reduced due to (e, v4) and (va,v1)/(ve, v5)
and (uv5,04), and (ve, vs) is kept to guarantee the LCR preservabil-
ity. However, in the I/O efficient environment, it is quite possible
that these three edges are not processed in memory as a whole.
In this case, (vg,vs5) may also be reduced since the reduction of
(v6,v1)/ (v, v4) is unknown when processing (vg, v5). As a result,
the LCR information between vg and v1/v4/v5 is lost. To address
this problem, we first define:

Definition 5.8: (Seed Vertex Set Ego-Subgraph) Given a graph
G, let S be a set of vertices in G, the ego vertex set of S, denoted
by S*, is defined as S* = S U {ulu € {nbr~(u) U nbr*(u)}}. The
vertex set ego-subgraph, denoted by G-, is defined as the induced
subgraph in G by S*. m]
According to Definition 5.8, we have the following lemma:

Lemma 5.1: Given a set of vertices S in G, let (u,v) be an edge in G
with at least one incident vertex in S, if there exist two edges (u, w)
and (w,v) in G such that V¢ € ®((u,0),G), ¢’ € ®((u, w),G) &
®((w,0),G) with ¢’ C ¢, then there exist two edges (u, w) and
(w,v) in Gs+ such thatV¢ € ®((u,v),Gs+), I ¢" € ®((u, w), Gs+) ®
®((w,0),Gs») with ¢’ C ¢.

Proor: This lemma can be directed approved by Definition 5.5 and

Definition 5.8. O
Algorithm. According to Lemma 5.1 and Definition 5.5, it is clear
that for the edges with at least one incident vertex in S, we can
conduct the edge reductions for these edges on Gg- instead of G.
Therefore, we can partition the vertices of G into disjoint subsets
whose ego-subgraph can be loaded in the main memory and per-
form the edge reduction in the main memory accordingly. Following
this idea, our I/O efficient edge reduction algorithm is shown in
Algorithm 4.

Specifically, it first sorts the edges (u,v) in the given graph G
based on {id(u), id(v) } (line 1) and {id(v), id(u)} (line 2), which can
be used to obtain the out-neighbors and in-neighbors of a vertex
easily. After that, it initializes S, S*, and & as empty (line 3). Then,
it continuously adds a new vertex v in S, and its neighbors in S*
based on the size of Gs+ and the available main memory M (line
4-6). In line 6, we use the average degree deg of vertices in G to
estimate the size of Gg+ and parameter 0 < ¢ < 1 is used to ensure
the estimated Gg- size is less than M. For the case that S* leads to
|Gs+| > M, we can further split S* into smaller sets and construct
Gg+ accordingly. Gs+ can be obtained by scan(E*) and scan(E™)
(line 7). Currently, Gg+ is kept in main memory, and we only store
the out-neighbors in Gg- to fully utilize the available memory. For
each vertex u in Gg-, it iterates each out-neighbor v of u (line 9),
and if w is the out-neighbor of both u and v (line 10) while for each
¢ € ®((u,v), Gs+), there exists ¢’ € ®((u,v), Gs+) ® P((v, w), Gg+)
such that ¢’ C ¢ (line 12-13), it means (u,v) can be reduced based
on Definition 5.5. Therefore, (u,v) is marked as removed in Gg=
and added into & (line 15-16). When all the edges in G have been
loaded in the main memory and processed once (line 4), the edges
stored in & are sorted (line 18) and removed from E* (line 19). The
reduced graph is returned in line 20.

Example 5.5: Figure 6 shows the procedure of Algorithm 4 in
the iteration 1 during the index construction. Assume that the
main memory is large enough to store 7 edges. Algorithm 4 first
selects {01, v4, 05,06} as S, which is illustrated in shadow. The ver-
tex set ego-subgraph Gs+ of S is the subgraph induced by the
solid lines in Figure 6 (b). It conducts the edge reduction for the
edges (v1,05), (vs,01), (v5,04), (06, 01), (06, 04), (v6,05), (v6,v1) and
(vg, v4) are reduced, which are shown in dashed line. It continues to
select (v7,v10,011) as S and no more edges can be reduced. Figure 6
(c) shows the final edge reduction result of iteration 1. o

Lemma 5.2: Give two vertices u and v in a graph G, let G’ be the
output graph of Algorithm 4, for a set of edge labels A C 3, if there
is an path p fromu tov in G with £(p) C A, then, there is a path p’
fromu tov in G’ such that £(p’) C £(p) C A.

Optimization. In Algorithm 4, we perform the reduction for each
edge in every iteration. However, except the first iteration, perform-
ing the reduction for every edge in the remaining iterations involves
lots of unnecessary computations. Reconsider the procedure of Al-
gorithm 2 and Definition 5.5, an edge (u, v) can be reduced possibly
if and only if the in-neighbors/out-neighbors of u/v are changed
due to the vertex reduction. In other words, when conducting the
edge reduction, we do not need to consider these edges (u,v) that
the in-neighbors/out-neighbors of u/v are not changed after the
vertex reduction. Following this idea, instead of conducting the
edge reduction based on the output of Algorithm 3, we can record
the newly added or updated edges in line 14 of Algorithm 3 and
denote them as Epey. Based on the above discussion, only the edges
in Epew could lead to the reduction of edges. Therefore, we take the
subgraph induced by the vertices incident to Epey, and their neigh-
bors as the input of Algorithm 4, and we can not only guarantee
the correctness of the edge reduction but also significantly improve
the edge reduction performance.

2597

Algorithm 5 IOLCRIndexCons(G)

1 1 0;G; « Gy

: while G; cannot be loaded in main memory do
I; < IOMIS(G;);

G’ « IOVertexReduction(G’);

G’ « I0EdgeReduction(G’);

Giy1 —Ghi—i+1;k i

1
2
3:
4:
5
6

5.2.3 /O Efficient Index Construction.

Following the above procedures, the I/O efficient algorithm to con-
struct the index is straightforward, which is shown in Algorithm 5.
Starting from i = 0, the algorithm iteratively computes the maximal
independent set of G; and applies the vertex reduction and edge
reduction on G;. The construction terminates when Gy can fit in
the main memory. The correctness of Algorithm 5 can be directly
obtained based on Theorem 5.1 and Lemma 5.2. Moreover, we have:

Theorem 5.2: Given a graph G, the I/O complexity of Algorithm 5
is O(Zi.‘zo(sort(Gi) +k; - scan(G;j))), where k; is the number of seed
vertex sets generated by Algorithm 4 for G;.

Proor: To construct the index, Algorithm 5 generates a series of
LCR preserved graphs Gy, Gi, . . ., Gg. For each LCR-PG G;, the /O
complexity of maximal independent set computation is O(sort(G;))
as shown in [30]. For vertex reduction, Algorithm 3 needs to sort
the edges of G; first and then scans the edges of G; to conduct the
vertex reduction, which takes O(sort(G;)) I/Os. For edge reduction,
Algorithm 4 needs to scan G; once to obtain the seed vertex set ego-
subgraph for a seed vertex set, and thus it needs O(k; - scan(G;))
I/Os to conduct the edge reduction for G;. Therefore, the total I/Os
ll?zo(sort(Gi) +k; - scan(Gj))).
Remark. In Algorithm 5, we conduct vertex reduction before edge
reduction. However, we can also conduct edge reduction before
vertex reduction as well. For a specified reduction round, conduct-
ing vertex reduction before edge reduction can reduce more edges
generated by vertex reduction while conducting edge reduction
before vertex reduction can lead to a simplified input graph for
vertex reduction, which means both reduction orders have their
own advantages. On the other hand, following Algorithm 5, the
reduction can be conducted in several rounds, and thus the per-
formance difference is leveled out if the reduction procedure is
considered as a whole. Therefore, the reduction orders of vertex
and edge have little effect on the effectiveness of our proposed
algorithm. Here, we follow the reduction order of vertex and edge
for convention. For Theorem 5.2, O(scan(G;)) = O(@), where
B is the block transfer size between main memory and disk and
current operating systems generally use 8KB as default size [46].
Consider k; is usually not very large and it only involves sequential
reads, O(k; - scan(G;j)) is better than O(m). Moreover, as discussed
in Section 4, the general framework of Algorithm 5 can also be
adjusted to optimize other graph algorithms to handle the scenario
that main memory is limited if I/O efficient reduction operators
that guarantee the reducibility and algorithm-specific property
preservability can be designed.

to construct the index is O(2

5.3 Index Structure on Disk

The index construction algorithm generates a series of LCR pre-
served graphs as shown in Algorithm 5. According to Theorem 5.1,

(a) Challenges of Edge Reduction

”

(b) Seed Vertex Set Ego-Subgraph

Figure 6: 1/0 Efficient Edge Reduction

we can answer a given LCR query q(s, £, A) based on Grin(o(s),0(2) }5
where o(s)/o(t) is the maximal independent set order of s/t follow-
ing Definition 5.7. However, directly storing these graphs on the
disk as an index is insufficient for an I/O efficient LCR query pro-
cessing as this approach only transforms the problem from query
processing on G to query processing on Guin {o(s),0(¢)} @nd in worst
case Gmin{o(s),0(¢)} could be G. To address this problem, we devise
a new index in which the edges in the generated LCR preserved
graphs are reorganized to facilitate the I/O efficient query process-
ing. Specifically, it contains two parts:

Upper-Index: Upper-Index stores the vertices v € {V(G) \
V(Gy)} following the maximal independent set order. Moreover,
it also stores the out-neighbors v” of v in G, (,) and the corre-
sponding LCR dominating label set ®((v,2"), Gy(o))-

Lower-Index: Lower-Index stores the vertices in v € {V(G) \
V(Gg)} following the maximal independent set order. Moreover,
it also stores the in-neighbors v of v in G, (,,) and the correspond-
ing LCR dominating label set ®((v’,0), Gy (y))-

Example 5.6: Following the index construction procedure illus-
trated in Figure 4, Figure 7 shows the corresponding Upper-Index
and Lower-Index of G. Take Lower-Index as an example, the max-
imal independent set order of vg,v2,v3,08,09 is 0, and that of
01,06, 010 is 1. Therefore, Lower-Index stores the in-neighbors of
9,03, 08, U9 and the labels in the corresponding LCR dominating la-
bel set, namely (v2,v1, b), (v3, v4, b), (vs, v, a), (v, v7, a), (v9, V11, C)
(vo has no in-neighbors in Gy), in Gy sequentially. Following that,
(v1,04,), (v10,011,bc) in Gy (vs has no in-neighbors in Gy) are
stored for the same reason. The Upper-Index is processed in the
same way. m|

Following the index construction procedure presented in Sec-
tion 5.2, it is clear that Lower-Index and Upper-Index can be ob-
tained by line 6 and line 8 of Algorithm 3. Therefore, it does not
affect the time complexity analysis in Theorem 5.2.

5.4 Query Processing

For the ease of presentation, we denote Lower-Index and Upper-
Index as 7 and 1, respectively, and call Gy, 1}, and 7, together as
the LCR-Index afterwards. With LCR-Index, the simplest case for
the LCR query g(s, t,A) is s, t € V(Gy). In this case, it is clear that
t is reachable from s regarding A in G if and only if ¢ is reachable
from s regarding A in G following the LCR preservability of Gy
as proved in Theorem 5.1, therefore, we can answer the query by a
BFS search on Gy, following the edges with label in A directly. As
this case does not involve I/Os when processing the query, it is the

2598

i Vs l
i b l
; b Ve | B
a !] F/ \
vir | ‘ i a Vi1,
\'24 1 : b : V7 i
a bc iy b o a be |
V1o ! ve |1 Vo !
© (¢) Edge Reduction Result
(vo,vi,a) | |
(v2, vs, b) : Vs (v2, v1, b)
(vs, v1, b) : . (vs, v4, b)
(v9, V10, b) : v 8 > Vit \\ (vs, ve, @)
(1, vs, b) : b b .v’. \\ ? (vs, vz, Q)
(vs, vs, b) : R\ abc \\ 11 (ve, v, ©)
(ve, v7, b) : va /l ll : (v1, v4, b)
(v10, v7, @) V____,// V: (v10, v11, bc)
Upper-Index Gk Lower-Index

Figure 7: Lower-Index, Upper-Index on Disk and G in Memory
most efficient case. When s and t are not in Gy, we need to leverage
the Lower-Index and Upper-Index to answer the query. Following
the structure of Lower-Index and Upper-Index, we have:

Lemma 5.3: Given a graph G and its corresponding Lower-Index
I;/Upper-Index I, for two vertices u,v € 1;/ 1y, if u/v precedes v/u
in 1;/1,, then o(u) < o(v).

ProoF: This lemma can be directly proved following the definition
of 7; and 7,,. O

Lemma 5.4: Given a graph G and its corresponding Lower-Index
I/ Upper-Index 1, for each edge (u,v) € I;/1,, o(u) < o(v).
Proor: This lemma can be proved similarly as Lemma 5.3. O

According to Lemma 5.3 and Lemma 5.4, the vertices and edges
are stored in order based on their maximal independent set order,
which implies any graph G; (0 < i < k) can be easily obtained by
scanning J; and J;, sequentially. Considering the LCR preservability
of G;, it means we can answer the given LCR query via sequen-
tial scan of 7; and 7, without any random I/Os (Note that 7;/7;,
stores the in-neighbors/out-neighbors of the vertices, respectively,
therefore, both 7; and 7;, are needed).

Algorithm. Following the above idea, our I/O efficient query pro-
cessing algorithm, IOQuery, is shown in Algorithm 6. Given a LCR
query q(s,t,A), it maintains a hash table H to record the LCR
reachable from s regarding A (line 1). It first scans the items in
I, until s is encountered (line 2) and pushes the out-neighbors u
of s such that there is a ¢ € ®(s,u) with ¢ C A in H (line 3-5).
Then, it continues the sequential scan of 7;,, and for each edge (u, v)
encountered during the scan, if u has been pushed in H and there
isa¢ € ®(u,v) with ¢ C A (line 6-7), if v is the query vertex t, then
t is LCR reachable from s regarding A and true is returned (line 8).
Otherwise, v is also pushed in H (line 9). When all the edges in
7, has ben explored, it initializes a empty queue Q in line 10 and
pushes the vertices in H in Q (line 11-12). Since Gy can be loaded

Algorithm 6 10Query(s, t, A, Gy, 11, 1,,)

1: H—0;

2: scan the edges in 7, until encountering s;

3: for each edge (s,u) € 7, do

4: if 3¢ € ®(s,u) st. ¢ C A then

5. if u ¢ H then push u into H;

6: for each edge (u,v) € 7, by scanning 7, do
7. ifueHand 3 $ € P(u,0) sit. ¢ C Athen
8: if v =t then return true;

9: if v ¢ H then push v into H;

10: Q « 0;

11: for each v € H do

12: pushoin Q;

13: while Q # 0 do

14: pop o from Q;

15: for each out-neighbor w of v in G do

16: if 3¢ € (v, w) sit. ¢ € A then

17: if v = t then return true;

18: if w ¢ H then push w into H; push w into Q;
19: for each edge (u, v) in the reverse order in 7; do
20: if o e Hand ¢ € P(u,0) s.t. ¢ C A then
21 if u = ¢t then return true;

22: if u ¢ H then push u into H;

23: return false;

in the main memory, it just conducts a BFS manner search starting
the vertices in H via the edges (v, w) in G that has ¢ € ®(v, w)
with ¢ C A (line 13-18). If t is reached during the search of Gy, it
returns true in line 17. Otherwise, it scans 7j in reverse following
the vertices in H in a similar manner as that in 7;, (line 19-23). If ¢
is encountered, it returns true (line 21). Otherwise, it returns false
in line 23.

Example 5.7: Consider the LCR query q(vo, vs, {a, b}), Figure 7
also shows the procedures of Algorithm 6 to answer the query,
which are illustrated by the dashed line arrow. Specifically, it first
scans the Upper-Index Z;, and finds vg is located in the fourth item of
1. As @(v9,v19) = {b} C {a, b}, vy is pushed into H. It continues
to scan I, and encounters (v19,v7) with ®(v19,07) = {a} C {a, b},
then v7 is added into /. After that, it conducts the BFS search from
v7 on Gy and encounters v17 with ®(v7,0v11) = {a} C {a, b}, thus
v11 is pushed in H. After that, it scans the Lower-Index 7;. It first
encounters v19 and ®(v19,011) = {bc} & {a, b}. Then, it encounters
vg with ®(vg,0v11) = {c} € {a, b}. At last, it encounters vg, and
®(vs,v7) = a C {a}. As vg is the target query vertex of g, it means
vg is LCR reachable from vg regarding {a, b}, and true is returned.

]

Theorem 5.3: Given a LCR query q(s, t, A), Algorithm 6 answers q
correctly.

Theorem 5.4: Given a LCR query q(s, t, A), Algorithm 6 answers q
in O(scan(|Z;| + | 1,])) I/Os.

Proor: Following the procedures of Algorithm 6, to answer g,
it only sequentially scans the Upper-Index and Lower-Index once
and no other I/Os are needed. Therefore, the I/O complexity of
Algorithm 6 is O(scan(|Z;| + |Z])). The theorem holds. O

2599

Remark. Based on Algorithm 6, we also keep the vertices encoun-
tered during the query processing in memory, which means we
need extra memory besides Gr.. However, even in worst case, the
number of such vertices can be bounded by O(n), which is signif-
icantly smaller than the number of edges in the graph. Actually,
the number of such vertices is fewer in practice as verified in our
experiment. Therefore, we can construct a G smaller than the
available memory by adjusting the value of ¢ in line 6 Algorithm 5
and reserve some memory for Q and H for query processing.

6 EXPERIMENT

In this section, we compare our algorithms with the state-of-the-art
I/O efficient methods for label-constrained reachability queries. All
experiments are conducted on a machine with an Intel Xeon, and 8
GB main memory running Linux.

Table 1: Datasets used in Experiments

Dataset | Name 4 |E| dmax |davg || Zul + 11|
DBLP DB 326,186 1,615,400 238 5.0 129MB
Google GO 875,713 5,105,039 6,332 5.8 237MB
UK-2005| UK | 39,459,925 | 936,364,282 | 1,776,852 | 23.7 5.1GB
1T-2004 IT 41,291,594 |1,150,725,436 | 1,326,745 | 27.9 5.7GB
Twitter | TW | 41,652,230 |1,468,365,182| 2,997,487 | 70.5 8.7GB
SK-2005 SK 50,636,154 |1,949,412,601 | 8,563,808 | 38.5 10.8GB
Wikidata| WK [113,782,967|1,376,148,923|96,140,796 | 12.1 8.1GB
YAGO YG [177,319,207 |1,472,473,745|79,168,293| 8.3 8.9GB

Datasets. We evaluate our algorithms on eight real-world graphs,
which are demonstrated in Table 1. GO is downloaded from SNAP
(http://snap.stanford.edu/data/index.html). DB, UK, IT, TW and SK
are downloaded from LAW (http://law.di.unimi.it/datasets.php). YG
is downloaded from https://yago-knowledge.org/downloads/yago-
4-5 and WK is downloaded from https://www.wikidata.org/wiki/
Wikidata:Database_download. Among the graphs, YG and WK have
natural edge labels, and for rest of graphs without edge labels, we
generate label for each edge following the approach used in [37, 44]
with 2| = 8.
Algorithms. We compare the following four algorithms:
e EM-BFS: external-memory BFS based algorithm [23] where the
vertices and edges cannot fit in the main memory and only the
edges with label in A are explored on the disk during the search.

o SEM-BFS: semi-external memory BFS based algorithm [63] in
which the vertices are kept in the main memory and the search
is performed by scanning the edges with label in A on the disk.

o P2H+: the state-of-the-art index-based in-memory LCR query
processing algorithm [37].
o LCR-Index: our proposed I/O efficient algorithm (Algorithm 6).
All the algorithms are implemented in C++ and complied in
GCC 8.3.1 with -O3 flag. In the experiments, we set the default
memory limit as 2GB and default |A| = 4. For LCR-Index, we keep
running the index construction algorithm (Algorithm 5) until G
can fit inside the available memory. The time cost is measured as the
amount of wall-clock time elapsed during the program’s execution.
If a query cannot be processed in 10,000 seconds, we denote the
processing time as OT.

http://snap.stanford.edu/data/index.html
http://law.di.unimi.it/datasets.php
https://yago-knowledge.org/downloads/yago-4-5
https://yago-knowledge.org/downloads/yago-4-5
https://www.wikidata.org/wiki/Wikidata:Database_download
https://www.wikidata.org/wiki/Wikidata:Database_download

-5~ LCR-Index -\~ SEM-BFS —>¢ EM-BFS —A~ P2H+
"~ 10" 0 10"
2 10 // - 2 10 ///X N
E10” s Ei0" st
10° 10°
10° 10— 22— 10° .
2 4 6 810 2 4 6 8§ 10 p) 3 6 8§ 10 2 4 6 8§ 10
(a) DB (Processing Time) (b) DB (I/Os) (c) GO (Processing Time) (d) GO (I/0Os)
oT oT oT oT
~10° 10" ~10° 10"
210 S 210 <
L 10 s 10
10 o 10'{5 °
10° 10/ 10° 10/
2 4 6 § 10 2 P! 6 8 10 2 3 6 8 10 2 4 6 8 10
(e) TW (Processing Time) (f) TW (I/0s) (g) SK (Processing Time) (h) SK (1/0s)
oT oT oT oT
~10° 10" ~10’ 10"
E 102 g 9 E 102 g 9
= 10 = 10
10'4 ° o e o 10
0 7 0 © 7
057 % % 10 Y35 3 6 3§ 10 93 3 & § 10 ©U3TF % § 10
(i) WK (Processing Time) (j) WK (I/Os) (k) YG (Processing Time) (1) YG (I/0s)
Figure 8: Processing time and I/Os when varying query vertices distance
-~ LCR-Index -\~ SEM-BFS —< EM-BFS
10* 102 10* 102
210 ~10°
s 10 s 10
101 ° 1076 2
0 7 0 7
10773 3 6 g 103 3 6 g 1073 3 6 8 10773 3 6 8
(a) TW (Processing Time) (b) TW (I/Os) (c) SK (Processing Time) (d) SK (I/0s)
]04 10" 104 10"
~10° 10’
g 10’ g 210’ g .,
s 10 s 10
10 10
) e
10° 107 10° - - 107
2 4 6 8 2 4 6 8 2 4 6 8 p) 4 6 8

(e) WK (Processing Time) (f) WK (1/0s)

(g) YG (Processing Time) (h) YG (I/0s)

Figure 9: Processing time and I/0Os when varying |A|

Exp-1: Efficiency when varying query vertex distance. In this
experiment, we evaluate the query performance by varying the
distance between two vertices in the query. For each dataset, we
randomly generate 5 groups of queries and each group contains
100 LCR queries in which the distance between two query vertices
are from 2 to 10. We report the average time and I/Os to process
each query and Figure 8 shows the results. Note that P2H+ works
entirely in memory, thus, there is no I/Os associated with P2H+.
As shown in Figure 8, for the three algorithms designed to handle
the graphs that cannot be kept in the main memory, namely, EM-
BFS, SEM-BFS, and LCR-Index, LCR-Index always outperforms the
baseline algorithms EM-BFS and SEM-BFS, and the performance
gap increases as the distance grows. This is because as the query
distance increases, the search space to answer the query increases.

2600

As a result, the I/Os involved in EM-BFS and SEM-BFS increases.
However, due to the introduction of the index structure, LCR-Index
can significantly reduce such I/Os, which is also verified by the
reported I/Os in Figure 8. Moreover, on the billion-scale datasets,
both baseline algorithms run out of time when the query distance
becomes large, while LCR-Index can always answer the queries
efficiently, which is consistent with the theoretical analysis shown
in Theorem 5.4. Regarding P2H+, which stores the entire graph in
memory, it demonstrates exceptional performance as long as the
graph is small enough to fit within the available memory. However,
when the graph size increases (i.e., on all graphs except DB and
GO), it fails to compute the result because it exhausts the available
memory (Thus, the results on these datasets are not shown in
Figure 8). Based on the results, it is clear our algorithm is not only

-5~ LCR-Index -\~ SEM-BFS —¢ EM-BFS
10* 10*
~10° ~10°
2 10° E 10°
10" 10' O\G\M
10° Q\G\e\@ 10
05G 1G 2G 4G 0.5G 1G 2G 4G
(a) UK) IT
10* 10*
10’ 10°
210’ 210°
" 10' — o " 10’ — o
10° 10°
05G 1G 2G 4G 0.5G 1G 2G 4G
© TW () SK

Figure 10: Processing time when varying M

I/O efficient in answering the LCR queries but is also able to handle
billion-scale graphs with limited memory resources.

Exp-2: Efficiency when varying |A|. In this experiment, we eval-
uate the query efficiency by varying |A| of queries. To do this, we
randomly generate 4 groups of queries and each group has 100
queries. For each query g = (s, t,A) in group i, the size of A is 2i,
and s can reach t following the edges with label in A. The average
processing time and I/Os for each query is shown in Figure 9.

As shown in Figure 9, it is clear that LCR-Index always outper-
forms EM-BFS and SEM-BFS. The reasons are the same as discussed
in Exp-1. Moreover, when the size of A increases, the processing
time for all evaluated algorithms remains relatively constant. This is
because a larger |A| leads to an increase in the number of potential
vertices explored during the query process. However, this is offset
by a corresponding decrease in the path length to reach the target
vertex from the source, resulting in a quicker path discovery. As a
result, the overall processing time remains stable.

Exp-3: Efficiency when varying M. In this experiment, we evalu-
ate the efficiency of the query processing algorithms as the available
memory M increases from 0.5 GB to 4 GB on four large datasets.
For LCR-Index, we build the index for each dataset and process
the queries under these varying memory constraints. We randomly
generate 100 queries and report the average processing time for
each query in Figure 10. Due to the limited space, I/Os are not
shown afterwards, but the trends are similar to Exp-1 and Exp-2.
As shown in Figure 10, when M increases, the processing time
of LCR-Index decreases. This improvement is attributed to the in-
creased capacity of memory to accommodate a larger size of Gy,
thus reducing the I/Os associated with accessing data from 7, and
7). In contrast, the performance of SEM-BFS and EM-BFS algo-
rithms remains relatively consistent, regardless of the increased
memory size. This is primarily because, even at a memory size
of 4 GB, the sheer scale of the billion-scale graphs prevents them
from being fully accommodated in the memory. Moreover, these
two methods lack the systematic ability to fully use the available
memory. Consequently, these algorithms still incur a large number
of I/Os, leading to relatively stable processing time.
Exp-4: Index construction evaluation. In this experiment, we
evaluate the time to construct the index on all datasets and report
the size of G; (1 < i < 7) as the index construction progresses

2601

= 70007 2
s g 79| &
1;% 11IEs

GO DB UK IT TW SK YG WK

(b) |G|

(a) Index construction time

Figure 11: Index construction evaluation

.o [University o .
locatlon@leﬂde
ennsylvania

spouse children children children,

[ORTIRG

Figure 12: Case study

on four large datasets to show the effectiveness of our proposed
reduction techniques. The results are shown in Figure 11. Moreover,
the size of | 7| + |7;| is also reported in Table 1.

As shown in Figure 11 (a), the index construction time increases
as the size of the input graph increases. This is because the larger
the input graph is, the more I/Os are required to construct the
index. For the size of G;, it is clear that the size of the input graph is
significantly reduced as shown in Figure 11 (b). Moreover, Figure 11
(b) shows that the size of G; decreases sharply in the first three
iterations. After that, the size of G; decreases stably. This is because
at first, lots of vertices are in the computed maximal independent
set. However, as the construction progresses, the newly generated
Gijs become dense, and the size of computed maximal independent
set decreases consequently. As a result, fewer vertices and edges can
be reduced in the later iterations. Regarding the index size, Table 1
shows that the index structure stored on the disk is comparatively
not large considering the graph size due to our reduction methods.

Exp-5: Case study on social networks analysis with LCR
queries. Figure 12 presents a real-world example of LCR queries
on social network analysis. In Figure 12, part of "Donal Trump"’s
social network is shown. Assume that we want to find the rela-
tives of "Donald Trump", if we do not consider the labels on the
edges, "Joe Biden" could be possible misidentified as a relative
of "Donal Trump" due to their reachability through path "Don-
ald Trump" -[alumniOf]->"University of Pennsylvania"-[location]-
>"USA"-[leader]->"Joe Biden". On the other hand, if we use LCR
queries with A = {children, spouse}, we can avoid the above issue
and obtain the correct result. Based on this case study, it is clear that
LCR queries provide the users with the capacity for fine-grained
precise social network analysis.

7 CONCLUSION

In this paper, we study the I/O efficient LCR query problem that
aims to answer the LCR query efficiently when the graphs are too
big to reside in memory. We propose a reduction-based indexing
approach and devise an index named LCR-Index. Based on the
LCR-Index, we propose an efficient query processing algorithm
with a theoretical I/O bound. We conduct experiments on real-
world datasets and the results demonstrate the efficiency of our
proposed algorithms.

REFERENCES

[12]
[13]

[14

[15]

[16]

[17]
(18]
[19]

[20

[21

[22]

[23

[24

[25]

[30]
[31]

[32]

[33]

A. Aggarwal and S. Vitter, Jeffrey. The input/output complexity of sorting and
related problems. Communications of the ACM, 31(9):1116-1127, 1988.

D. Ajwani, U. Meyer, and V. Osipov. Improved external memory bfs implementa-
tions. In Proceedings of ALENEX, pages 3-12, 2007.

A. Bonifati, W. Martens, and T. Timm. An analytical study of large SPARQL
query logs. Proc. VLDB Endow., 11(2):149-161, 2017.

A. L. Buchsbaum, M. H. Goldwasser, and S. Venkatasubramanian. On external
memory graph traversal. In Proceedings of SODA, pages 859-860, 2000.

L. Chen, Y. Gao, Y. Zhang, C. S. Jensen, and B. Zheng. Efficient and incremental
clustering algorithms on star-schema heterogeneous graphs. In Proceedings ICDE,
pages 256-267, 2019.

X. Chen, Y. Peng, S. Wang, and J. X. Yu. DLCR: efficient indexing for label-
constrained reachability queries on large dynamic graphs. Proc. VLDB Endow.,
15(8):1645-1657, 2022.

Z. Chen, B. Feng, L. Yuan, X. Lin, and L. Wang. Fully dynamic contraction
hierarchies with label restrictions on road networks. Data Science and Engineering,
8(3):263-278, 2023.

J. Cheng, S. Huang, H. Wu, and A. W. Fu. Tf-label: a topological-folding labeling
scheme for reachability querying in a large graph. In Proceedings of SIGMOD,
pages 193-204, 2013.

J. Cheng, Y. Ke, S. Chu, and M. T. Ozsu. Efficient core decomposition in massive
networks. In Proceedings of ICDE, pages 51-62, 2011.

J. Cheng, Y. Ke, A. W.-C. Fu, J. X. Yu, and L. Zhu. Finding maximal cliques in
massive networks. TODS, 36(4):1-34, 2011.

J. Cheng, J. X. Yu, X. Lin, H. Wang, and P. S. Yu. Fast computation of reachability
labeling for large graphs. In Proceedings of EDBT, pages 961-979, 2006.

Y.-J. Chiang, M. T. Goodrich, E. F. Grove, R. Tamassia, D. E. Vengroff, and J. S.
Vitter. External-memory graph algorithms. 1995.

P. Choudhary and U. Singh. A survey on social network analysis for counter-
terrorism. International Journal of Computer Applications, 112(9):24-29, 2015.
E. Cohen, E. Halperin, H. Kaplan, and U. Zwick. Reachability and distance queries
via 2-hop labels. SIAM J. Comput., 32(5):1338-1355, 2003.

Y. Gao, T. Zhang, L. Qiu, Q. Linghu, and G. Chen. Time-respecting flow graph
pattern matching on temporal graphs. IEEE TKDE, 33(10):3453-3467, 2020.

M. Halldérsson and J. Radhakrishnan. Greed is good: Approximating independent
sets in sparse and bounded-degree graphs. In Proceedings of the STOC, pages
439-448, 1994.

J. Hastad. Clique is hard to approximate within n!~€. In Proceedings of FOCS,
pages 627-636, 1996.

X. Hu, Y. Tao, and C.-W. Chung. Massive graph triangulation. In Proceedings of
SIGMOD, pages 325-336, 2013.

R. Jin, H. Hong, H. Wang, N. Ruan, and Y. Xiang. Computing label-constraint
reachability in graph databases. In Proceedings of SIGMOD, pages 123-134, 2010.
R.Jin, N. Ruan, S. Dey, and J. X. Yu. SCARAB: scaling reachability computation
on large graphs. In Proceedings of SIGMOD, pages 169-180, 2012.

R. Jin and G. Wang. Simple, fast, and scalable reachability oracle. PVLDB,
6(14):1978-1989, 2013.

R. Jin, Y. Xiang, N. Ruan, and D. Fuhry. 3-hop: a high-compression indexing
scheme for reachability query. In Proceedings of SIGMOD, pages 813-826, 2009.
I. Katriel and U. Meyer. Elementary graph algorithms in external memory. In
Algorithms for Memory Hierarchies, volume 2625 of Lecture Notes in Computer
Science, pages 62-84, 2002.

H.Kim,]J. Lee, S. S. Bhowmick, W. Han, J. Lee, S. Ko, and M. H. A. Jarrah. DUALSIM:
parallel subgraph enumeration in a massive graph on a single machine. In
Proceedings of SIGMOD, pages 1231-1245, 2016.

V. Kumar and E. J. Schwabe. Improved algorithms and data structures for solving
graph problems in external memory. In Proceedings of SPDP, pages 169-176, 1996.
L. Libkin and D. Vrgo¢. Regular path queries on graphs with data. In Proceedings
of ICDE, pages 74-85, 2012.

B. Liu, L. Yuan, X. Lin, L. Qin, W. Zhang, and J. Zhou. Efficient (a, f)-core
computation in bipartite graphs. The VLDB Journal, 29(5):1075-1099, 2020.

Y. Liu, J. Lu, H. Yang, X. Xiao, and Z. Wei. Towards maximum independent sets
on massive graphs. PVLDB, 8(13):2122-2133, 2015.

C. Ma, J. Li, K. Wei, B. Liu, M. Ding, L. Yuan, Z. Han, and H. V. Poor. Trusted
ai in multiagent systems: An overview of privacy and security for distributed
learning. Proceedings of the IEEE, 111(9):1097-1132, 2023.

A. Maheshwari and N. Zeh. I/o-efficient algorithms for graphs of bounded
treewidth. Algorithmica, 54(3):413-469, 2009.

W. Martens and T. Trautner. Evaluation and enumeration problems for regular
path queries. In Proceedings of ICDT, volume 98, pages 19:1-19:21, 2018.

L. Meng, Y. Shao, L. Yuan, L. Lai, P. Cheng, X. Li, W. Yu, W. Zhang, X. Lin, and
J. Zhou. A survey of distributed graph algorithms on massive graphs. CoRR,
abs/2404.06037, 2024.

L. Meng, L. Yuan, Z. Chen, X. Lin, and S. Yang. Index-based structural clustering
on directed graphs. In Proceedings ICDE, pages 2831-2844, 2022.

2602

N
=

[51]
[52]

[53

(54

[55

[56

[57

[58

[59

[60

[61

[62

U. Meyer and P. Sanders. Algorithms for memory hierarchies: advanced lectures,
volume 2625. Springer Science & Business Media, 2003.

A. Mukkara, N. Beckmann, and D. Sanchez. Cache-guided scheduling: Exploiting
caches to maximize locality in graph processing. AGP’17, 2017.

A.Pacaci, A. Bonifati, and M. T. Ozsu. Regular path query evaluation on streaming
graphs. In Proceedings SIGMOD, pages 1415-1430, 2020.

Y. Peng, Y. Zhang, X. Lin, L. Qin, and W. Zhang. Answering billion-scale label-
constrained reachability queries within microsecond. PVLDB, 13(6):812-825,
2020.

J. M. Robson. Algorithms for maximum independent sets. Journal of Algorithms,
7(3):425-440, 1986.

S. Sahu, A. Mhedhbi, S. Salihoglu, J. Lin, and M. T. Ozsu. The ubiquity of
large graphs and surprising challenges of graph processing. Proc. VLDB En-
dow,, 11(4):420-431, 2017.

S. Sahu, A. Mhedhbi, S. Salihoglu, J. Lin, and M. T. Ozsu. The ubiquity of large
graphs and surprising challenges of graph processing: extended survey. VLDB 7.,
29(2-3):595-618, 2020.

R. Schenkel, A. Theobald, and G. Weikum. HOPI: an efficient connection index
for complex XML document collections. In Proceedings of EDBT, pages 237-255,
2004.

S. Seufert, A. Anand, S. J. Bedathur, and G. Weikum. FERRARI: flexible and
efficient reachability range assignment for graph indexing. In Proceedings of
ICDE, pages 1009-1020, 2013.

K. Simon. An improved algorithm for transitive closure on acyclic digraphs.
Theory Computer Science, 58:325-346, 1988.

L.D.]. Valstar, G. H. L. Fletcher, and Y. Yoshida. Landmark indexing for evaluation
of label-constrained reachability queries. In Proceedings SIGMOD, pages 345-358,
2017.

S.J. van Schaik and O. de Moor. A memory efficient reachability data structure
through bit vector compression. In Proceedings of SIGMOD, pages 913-924, 2011.
J. S. Vitter. Algorithms and Data Structures for External Memory. Now Publishers
Inc, 2008.

J. Wang and J. Cheng. Truss decomposition in massive networks. In Proceedings
of VLDB, pages 812-823, 2012.

K. Wang, M. Cai, X. Chen, X. Lin, W. Zhang, L. Qin, and Y. Zhang. Efficient
algorithms for reachability and path queries on temporal bipartite graphs. The
VLDB Journal, pages 1-28, 2024.

H. Wei, J. X. Yu, C. Lu, and R. Jin. Reachability querying: An independent
permutation labeling approach. PVLDB, 7(12):1191-1202, 2014.

Y. Yano, T. Akiba, Y. Iwata, and Y. Yoshida. Fast and scalable reachability queries
on graphs by pruned labeling with landmarks and paths. In Proceedings of CIKM,
pages 1601-1606, 2013.

H. Yildirim, V. Chaoji, and M. J. Zaki. GRAIL: a scalable index for reachability
queries in very large graphs. VLDB J., 21(4):509-534, 2012.

J. X. Yu and J. Cheng. Graph reachability queries: A survey. In Managing and
Mining Graph Data, pages 181-215. 2010.

L. Yuan, L. Qin, X. Lin, L. Chang, and W. Zhang. Diversified top-k clique search.
The VLDB Journal, 25(2):171-196, 2016.

L. Yuan, L. Qin, X. Lin, L. Chang, and W. Zhang. I/O efficient ECC graph decom-
position via graph reduction. PVLDB, 9(7):516-527, 2016.

L. Yuan, L. Qin, X. Lin, L. Chang, and W. Zhang. I/O efficient ECC graph decom-
position via graph reduction. VLDB ¥., 26(2):275-300, 2017.

J. Zhang, L. Yuan, W. Li, L. Qin, and Y. Zhang. Efficient label-constrained shortest
path queries on road networks: A tree decomposition approach. PVLDB, 15(3):686—
698, 2021.

J. Zhang, L. Yuan, W. Li, L. Qin, Y. Zhang, and W. Zhang. Label-constrained
shortest path query processing on road networks. VLDB 7., 33(3):569-593, 2024.
T. Zhang, Y. Gao, L. Chen, W. Guo, S. Pu, B. Zheng, and C. S. Jensen. Efficient
distributed reachability querying of massive temporal graphs. The VLDB Journal,
28:871-896, 2019.

Z. Zhang, L. Qin, and J. X. Yu. Contract & expand: I/O efficient sccs computing.
In Proceedings of ICDE, pages 208-219, 2014.

Z. Zhang, J. X. Yu, L. Qin, L. Chang, and X. Lin. I/O efficient: computing sccs in
massive graphs. The VLDB Journal, 24(2):245-270, 2015.

Z.Zhang,]. X. Yu, L. Qin, and Z. Shang. Divide & conquer: I/O efficient depth-first
search. In Proceedings of SIGMOD, pages 445-458, 2015.

Z.Zhang,]. X. Yu, L. Qin, Q. Zhu, and X. Zhou. I/O cost minimization: reachability
queries processing over massive graphs. In Proceedings of EDBT, pages 468479,
2012.

D. Zheng, D. Mhembere, R. Burns, J. Vogelstein, C. E. Priebe, and A. S. Szalay.
Flashgraph: Processing billion-node graphs on an array of commodity ssds. In
Proceedings of FAST, pages 45-58, 2015.

L. Zou, K. Xu, J. X. Yu, L. Chen, Y. Xiao, and D. Zhao. Efficient processing of label-
constraint reachability queries in large graphs. Information Systems, 40:47-66,
2014.

	Abstract
	1 Introduction
	2 Related Work
	3 Problem Definition
	4 A Reduction-Based Framework
	5 Index Construction and Query Processing
	5.1 Overview of Index Construction Algorithm
	5.2 I/O Efficient Index Construction
	5.3 Index Structure on Disk
	5.4 Query Processing

	6 Experiment
	7 Conclusion
	References

