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ABSTRACT

Distance labeling approaches are widely adopted to speed up the

shortest-distance query performance. Due to the explosive growth

of data graphs, a single machine can hardly satisfy the requirements

of both computational power and memory capacity, which causes

an urgent need for efficient distributed methods. As the graph is

distributed across different machines, it is inevitable to frequently

exchange messages among different machines when deploying the

existing centralized distance labeling methods on the distributed

environment, thereby producing serious communication costs and

weakening the scalability. To alleviate this problem, we design a

distributed hop-based index DH-Index, which is designed based

on a newly proposed boundary graph structure and restricts the

index-based hop number of each connected vertex pair within 4

hops. In addition, we propose a hierarchical algorithm to accelerate

the index construction and reduce the communication cost. Further-

more, a bidirectional searching strategy is proposed to efficiently

resolve the query tasks based on DH-Index. The comprehensive

experimental results on eight real-world graphs demonstrate that

DH-Index achieves up to 65.5× and 3 orders of magnitude speedup

than the existing methods in indexing time and query performance

respectively, and exhibits superior capabilities on memory space,

communication cost, and scalability.
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1 INTRODUCTION

The shortest distance query 𝑞(𝑠, 𝑡) requires to return the length of

the shortest path between two vertices 𝑠 and 𝑡 in a given graph.

Answering distance queries is one of the fundamental problems in

graph analytics and serves as a building block in many graph-based

areas, including community searching [9, 16, 20, 21], GPS naviga-

tion [22], fraud detection [30], and route planning services [2, 8,

28, 34]. Due to the inefficiency of many online searching methods,
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such as Dijkstra and the bidirectional BFS strategy [7], the index-

based methods, especially the 2-hop index and its variations, have

attracted much attention recently [18]. Specifically, the 2-hop index

aims to connect any two reachable vertices, where the index-based

hop number of them is no more than 2, thereby quickly answer-

ing the shortest distance queries. Apparently, the improvement of

query performance can reduce the time cost of many graph-based

applications, thus improving the user experience. In addition, the

2-hop index has been applied in many graph-based query prob-

lems, such as the reachability query [5, 14, 27, 32], the shortest path

query [40, 41], and the shortest path counting [25, 26, 29, 43].

Motivation. Numerous excellent centralized techniques are pro-

posed to optimize the building time and index size of the 2-hop

index. For example, a pruned landmark labeling (PLL) method [3]

is proposed to construct a global minimal 2-hop index based on a

vertex ordering strategy. In addition, a parallel shortest distance

labeling (PSL) approach [17] is proposed to further accelerate the

efficiency of index construction on PLL. However, the huge mem-

ory cost of the complete 2-hop index on large-scale graphs is still

expensive. To reduce the index size, CTL [18] adopts the tree decom-

position (TD) method to generate a core-tree structure where only

the core part is equipped with the 2-hop index. This strategy facili-

tates a critical and effective trade-off between the index size and

query time. However, TD is mainly designed for road networks [22]

and is not suitable for dense graphs. This is because the size of the

core graph is possibly enormous when inserting the new edges orig-

inating from the deleted vertices. These algorithms can be treated

as variants of the 2-hop index, indicating that 2-hop-based solutions

are still the state-of-the-art choice. However, with the explosive

growth of data graphs [13, 37–39], building the 2-hop index on

large-scale graphs becomes challenging for a single machine due

to the limited memory and computation resources [18].

Challenges. Since distributed computing clusters provide sufficient

resources in a relatively easy and cheap way [4, 13], it is crucial to

design efficient and scalable distributed 2-hop-based approaches

that can harness the cluster computing resources to reduce the

indexing time while ensuring robust query performance. However,

it is not feasible to directly deploy the 2-hop-based techniques in

the distributed setting. Specifically, the key to building the 2-hop

index is to determine whether the new label entries satisfy the

2-hop cover [17]. Take the vertex pair (𝑣1, 𝑣5) in Fig. 1 (a) as an

example, where (𝑣1, 3) is a label entry of 𝑣5. The verification of

2-hop cover of (𝑣1, 3) relies on 𝐿(𝑣1) and 𝐿(𝑣5), where 𝐿(𝑣) is the
label set of 𝑣 . Due to the graph being distributed across different

machines, it is inevitable for the centralized index construction

methods, such as PLL and PSL, to frequently visit the label entries

of all vertices placed in different machines, which causes serious

communication costs and weakens the scalability. Moreover, it is
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Figure 1: (a) Graph 𝐺 and (b) Boundary graph 𝐺𝐵 of 𝐺

also time-consuming to generate the core graph and build CTL in a

distributed manner since these two processes cannot fully utilize

the computing resources and involve frequent message exchanges

(similar to PLL/PSL), respectively. The detailed analysis of their

drawback in the distributed setting will be presented in Section 2.

To address the above challenges, our goal is to develop an effi-

cient and scalable index-based algorithm to address the shortest

distance query problem in the distributed setting, which needs

to ensure good index construction scalability and enhance query

performance for large-scale graphs. To achieve our objectives, we

need to focus on three challenges: (1) how to quickly construct the

proposed index; (2) how to provide good query performance; and

(3) how to achieve good scalability.

Our approaches. Based on the aforementioned analysis, we pro-

pose an efficient distributed hierarchical hop-based index, called

DH-Index, that simultaneously achieves the above goals. Specifi-

cally, DH-Index is equipped with the interior index 𝐷𝐻𝐼 and the

boundary index 𝐷𝐻𝐵 . 𝐷𝐻𝐼 can be built on all subgraphs in par-

allel and 𝐷𝐻𝐵 is designed based on a boundary graph structure

that collects the shortest distances from different machines, thus

addressing the challenge (1). For example, Fig. 1(b) is the boundary

graph of Fig. 1(a), which collects the shortest distances from the two

machines. Compared to the core tree structure in [18], the bound-

ary graph can be quickly constructed leveraging edge-cut graph

partitioning techniques [24, 31] and exploiting local properties of

shortest distances. Theoretically, we prove that, through DH-Index,

the shortest distance between any connected vertex pair can be

answered within a maximum of four hops. Building upon this, we

devise an efficient bidirectional search strategy to quickly resolve

query tasks, effectively tackling the challenge (2).

Furthermore, we design two strategies to enhance the scalability

of DH-Index, thus addressing the challenge (3). First, the size of the

boundary graph is minimized by ruling out the redundant edges

that are dominated by other edges. This strategy can largely reduce

the computations during the construction of 𝐷𝐻𝐵 . Second, we

design an effective algorithm that can fully utilize the computing

resources in the cluster to construct 𝐷𝐻𝐵 . Specifically, each vertex

in the boundary graph is activated in specific machines to execute

the process of index construction whilst guaranteeing the accuracy

of query results.

Contributions. In this paper, we make the following principal

contributions:

Table 1: Notations and meanings.

Notations Meanings

𝐺=(𝑉 , 𝐸 ) an undirected graph

𝑁 (𝑣,𝐺 ) the neighbor set of 𝑣 in𝐺
𝑑𝑒𝑔 (𝑣) the degree of 𝑣
𝑊𝑢𝑣 the weight value of 𝑒 (𝑢, 𝑣)
𝑝 (𝑠, 𝑡 ) a path from 𝑠 to 𝑡 in𝐺

𝑑𝑖𝑠𝑡 (𝑠, 𝑡 ) the shortest distance between 𝑠 and 𝑡 in𝐺
𝑚 (𝑠 ) the machine where the vertex 𝑠 is placed

{𝐺𝑖 }𝑘𝑖=1 a total number of 𝑘 subgraphs

𝐸𝑐𝑢𝑡 a set of cutting edges

𝐿 (𝑣) a labeling function of 𝑣 to record label entries

𝑉𝐵 and𝑉𝐼 sets of boundary vertices and interior vertices

𝑉𝐶 a set of core vertices

𝑝𝑏𝑑 (𝑠, 𝑡 ) a boundary path between 𝑠 to 𝑡

𝑝𝑖𝑛 (𝑠, 𝑡 ) an interior path between 𝑠 to 𝑡
𝑑ℎ𝑜𝑝 (𝑝 ) the index-based hop number of 𝑝

• We propose a boundary graph-based distributed index, DH-

Index, which bounds the index-based hop number of each

connected vertex pair within 4 hops.

• We design an efficient index construction method to build

DH-Index in a distributed manner and propose a bidirectional

searching strategy that leverages DH-Index to quickly resolve

the query tasks.

• We design two optimization strategies to reduce the boundary

graph size and improve the utilization of distributed computing

resources, respectively.

• Extensive experiments on seven datasets with various work-

loads demonstrate that DH-Index achieves up to 65.5× and 3

orders of magnitude speedup than distributed PSL and BiBFS

in indexing time and query performance, respectively.

Roadmap. The rest of the paper is organized as follows. Section 2

defines the shortest distance problem and discusses state-of-the-

art methods. Section 3 elaborates on the DH-Index structure and

the corresponding query algorithm, while Section 4 outlines our

method for index construction. Section 5 assesses our approach

through extensive experiments. Related work is reviewed in Sec-

tion 6, and Section 7 concludes the paper.

2 PRELIMINARY

In this section, we begin by presenting the problem of shortest

distance query. Next, we thoroughly examine the state-of-the-art

approaches. Table 1 summarizes frequently used notations in this

paper.

2.1 Problem Definition

Let 𝐺=(𝑉 , 𝐸) be an undirected graph where 𝑉 and 𝐸 are sets of 𝑛

vertices and𝑚 edges, respectively. 𝑁 (𝑣,𝐺)={𝑢 |𝑒 (𝑢, 𝑣)∈𝐸} denotes
the neighbor set of 𝑣 in𝐺 and 𝑑𝑒𝑔(𝑣)=|𝑁 (𝑣,𝐺) | denotes the degree
of 𝑣 . Given a vertex pair (𝑠, 𝑡), we represent a path between 𝑠 and

𝑡 as 𝑝 (𝑠, 𝑡)=⟨𝑣0 = 𝑠, 𝑣1, . . . , 𝑣𝑘−1, 𝑣𝑘 = 𝑡⟩, where 𝑒 (𝑣𝑖 , 𝑣𝑖+1) ∈ 𝐸

for 𝑖 ∈ [0, 𝑘−1]. The shortest path between 𝑠 and 𝑡 is denoted as

𝑠𝑝 (𝑠, 𝑡), and 𝑑𝑖𝑠𝑡𝐺 (𝑠, 𝑡) = |𝑠𝑝 (𝑠, 𝑡) | is the shortest distance between
two vertices in 𝐺 . Without ambiguity, 𝑑𝑖𝑠𝑡𝐺 (𝑠, 𝑡) is represented by

𝑑𝑖𝑠𝑡 (𝑠, 𝑡).
Graph partitioning. In this paper, the data graph 𝐺 (𝑉 , 𝐸) is di-
vided into a set of vertex-induced subgraphs {𝐺𝑖 (𝑉𝑖 , 𝐸𝑖 )}𝑘𝑖=1 and a

set of cutting edges 𝐸𝑐𝑢𝑡 , where𝑉 =
⋃𝑘

𝑖=1𝑉𝑖 and 𝐸 =
⋃𝑘

𝑖=1 𝐸𝑖∪𝐸𝑐𝑢𝑡 .
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For each vertex 𝑣 ,𝑚(𝑣) denotes the machine where 𝑣 is placed and

the adjacency list of 𝑣 is also stored in the same machine. In this

paper, we use {𝐺𝑖 }𝑘𝑖=1 ∪ 𝐸𝑐𝑢𝑡 to denote the distributed graph. Re-

ferring to the works [38, 39], we make the following definition to

classify all vertices based on the distribution of neighbors.

Definition 1 (Vertex Category). Given a distributed graph
{𝐺𝑖 }𝑘𝑖=1∪𝐸𝑐𝑢𝑡 ,𝑉𝐵 and𝑉𝐼 are the sets of boundary vertices and interior
vertices respectively, which are defined as follows.
• 𝑉𝐵 = {𝑣 | ∃𝑒 (𝑢, 𝑣) ∈ 𝐸,𝑚(𝑢) ≠𝑚(𝑣)}.
• 𝑉𝐼 = {𝑣 | ∀𝑒 (𝑢, 𝑣) ∈ 𝐸,𝑚(𝑢) =𝑚(𝑣)}.
• 𝑉 = 𝑉𝐵 ∪𝑉𝐼 and 𝑉𝐵 ∩𝑉𝐼 = ∅.

Similarly, the paths can also be categorized into two categories

as follows.

Definition 2 (Path Category). Given a distributed graph
{𝐺𝑖 }𝑘𝑖=1 ∪ 𝐸𝑐𝑢𝑡 , the paths between any two vertices 𝑠 and 𝑡 , 𝑝 (𝑠, 𝑡) =
{𝑣0 = 𝑠, 𝑣1, ..., 𝑣𝑘−1, 𝑣𝑘 = 𝑡} can be categorized as follows.
• If𝑚(𝑣𝑖 )≠𝑚(𝑣𝑖+1) for ∃𝑖∈[0, 𝑘−1], 𝑝𝑏𝑑 (𝑠, 𝑡) is a boundary path.
• If𝑚(𝑣𝑖 )=𝑚(𝑣𝑖+1) for ∀𝑖∈[0, 𝑘−1], 𝑝𝑖𝑛 (𝑠, 𝑡) is an interior path.

Problemdefinition.Given a distributed undirected graph𝐺 (𝑉 , 𝐸) =
{𝐺𝑖 }𝑘𝑖=1 ∪ 𝐸𝑐𝑢𝑡 and a vertex pair (𝑠, 𝑡), the shortest distance query
𝑞(𝑠, 𝑡) returns the shortest distance 𝑑𝑖𝑠𝑡 (𝑠, 𝑡) between 𝑠 and 𝑡 .

Example 1. Fig. 1(a) depicts a partitioning graph 𝐺 stored in 2
machines. We have
• Vertex category: The gray vertices (𝑣0 to 𝑣6) are the boundary

vertices since they have at least one neighbor stored in other
machines, while the white vertices (𝑣7 to 𝑣15) are the interior
vertices.

• Cutting edges: There are a total of 5 cutting edges represented by
the dotted lines in Fig. 1(b).

• Path category: Given a vertex pair (𝑣1, 𝑣2), 𝑝𝑖𝑛 = ⟨𝑣1, 𝑣2⟩ is an in-
terior path since𝑚(𝑣1) =𝑚(𝑣2). By contrast,𝑝𝑏𝑑 = ⟨𝑣1, 𝑣3, 𝑣0, 𝑣2⟩
is a boundary path since𝑚(𝑣1) ≠𝑚(𝑣3).

• Shortest path and distance: For the vertex pair (𝑣1, 𝑣2), we have
𝑠𝑝 (𝑣1, 𝑣2) = ⟨𝑣1, 𝑣2⟩ and 𝑑𝑖𝑠𝑡 (𝑣1, 𝑣2) = 1.

2.2 2-hop index for Distance Queries

State-of-the-art solutions for shortest distance queries primarily

rely on the 2-hop index. To set the context, we begin by providing

a brief overview of the 2-hop index [6] before delving into these

solutions. The strength of the 2-hop index lies in its query efficiency.

It is designed so that the distance of any two connected vertices

can be answered within 2 hops using the index.

Index structure. For each vertex 𝑣 ∈ 𝑉 , the 2-hop index requires

building a label set 𝐿(𝑣), which consists of a set of key/value pairs

(𝑢,𝑑𝑖𝑠𝑡 (𝑣,𝑢)). Then, ⋃𝑣∈𝑉 𝐿(𝑣) is a complete 2-hop index of 𝐺

when satisfying the 2-hop cover below.

Definition 3 (2-hop cover [3, 17]). For any two vertices 𝑠
and 𝑡 , there exists𝑤 ∈ 𝐿(𝑠) ∩ 𝐿(𝑡) such that 𝑑𝑖𝑠𝑡 (𝑠, 𝑡) = 𝑑𝑖𝑠𝑡 (𝑠,𝑤) +
𝑑𝑖𝑠𝑡 (𝑤, 𝑡).

Index size. The label set size of each vertex 𝑣 is the number of

entries in 𝐿(𝑣). Then, the index size of 2-hop index is𝑂 (𝑛 ·𝛿), where
𝛿 is the maximum label set size in 𝐺 [17], i.e., 𝛿 = max𝑣∈𝑉 |𝐿(𝑣) |.
Query process. Given a query 𝑞(𝑠, 𝑡) with 𝑠, 𝑡 ∈ 𝑉 , the shortest
distance [17] between 𝑠 and 𝑡 can be calculated via the 2-hop index

as

𝑄𝑢𝑒𝑟𝑦 (𝑠, 𝑡, 𝐿) = min

𝑣∈𝐿 (𝑠 )∩𝐿 (𝑡 )
𝐿(𝑠) [𝑣] + 𝐿(𝑡) [𝑣] .

(1)

Based on Equation 1, the query time complexity of each query

𝑞(𝑠, 𝑡) is 𝑂 ( |𝐿(𝑠) | + |𝐿(𝑡) |).
Vertex order. The vertex ordering strategy is widely adopted in

many 2-hop index-based works to reduce the index size and ac-

celerate the index construction. A typical ranking function 𝑟 (·)
prioritizes vertices with higher degrees and resorts to the original

ID to break ties [17]. For example, we have 𝑟 (𝑣0) > 𝑟 (𝑣1) since
𝑑𝑒𝑔(𝑣0) > 𝑑𝑒𝑔(𝑣1). The vertex order can also be determined based

on other vertex centralities, e.g., betweenness centrality and close-

ness centrality. Please see [19] as a comprehensive comparison.

Pruned landmark labeling (PLL) [3]. According to a degree-

based vertex ordering strategy, PLL, a classic solution based on the

2-hop index, can build a complete 2-hop index that satisfies the

following two properties.

• Completeness.Given any two vertices 𝑠 and 𝑡 , we have𝑑𝑖𝑠𝑡 (𝑠, 𝑡) =
min𝑣∈𝐿 (𝑠 )∩𝐿 (𝑡 ) 𝐿(𝑠) [𝑣] + 𝐿(𝑡) [𝑣].

• Minimum. For each label entry (𝑢,𝑑𝑖𝑠𝑡 (𝑣,𝑢)) ∈ 𝐿(𝑣) with 𝑣 ∈ 𝑉 ,

we have 𝑑𝑖𝑠𝑡 (𝑣,𝑢) < 𝑑𝑖𝑠𝑡 (𝑣,𝑤) + 𝑑𝑖𝑠𝑡 (𝑤,𝑢) when 𝑟 (𝑤) > 𝑟 (𝑢).
To construct the index, PLL needs to perform the pruned breadth-

first-search (BFS) sourced from each vertex sequentially, whose time

complexity is 𝑂 (𝛿2 ·𝑚) [17]. It is very time-consuming, especially

for large-scale graphs. More importantly, the distributed extension

of PLL exhibits two limitations:

• Serious communication cost. Due to the graph being distributed

across different machines, directly deploying the pruned BFS of

PLL in the distributed environment inevitably leads to massive

message exchanges, thereby producing serious communication

costs.

• Poor scalability. Due to the order dependency, PLL needs to se-

quentially activate each vertex to update label entries. This kind

of serial operation definitely wastes the computing resources

of the cluster. Moreover, the uneven distribution of received

messages can lead to significant differences in computational

overhead among machines.

2.3 State-of-the-art Approaches

Parallel shortest distance labeling (PSL) [17]. The PSL approach

significantly improves upon PLL on indexing time by breaking the

order dependency in the index construction. Specifically, PSL de-

signs a distance dependency-based pruning strategy to update the

label entries in parallel whilst guaranteeing the accuracy of query re-

sults. In addition, PSL applies two optimization strategies to reduce

the memory space of labels. However, the performance bottlenecks

mainly exist in the distributed extension of index construction,

which includes the following two respects.

• Serious communication cost. Just like PLL, all vertices must re-

ceive substantial label entries transmitted from their neighbors

in every iteration. Moreover, PSL frequently duplicates the lat-

est labels of candidate vertices to other machines during the

index construction process. Both these actions lead to signif-

icant communication costs and memory overhead since the

label set of each vertex remains incomplete until the program

concludes.
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• Huge memory cost. Based on the analysis above, it is inevitable

to incur significant space overhead to build the 2-hop index,

especially on large-scale graphs. In the distributed environ-

ment, due to the 2-hop index being distributed across different

machines, the uneven distribution of label entries may cause

the memory overflow of a single machine. In addition, the du-

plication of label entries significantly amplifies memory costs.

Core tree index (CTL) [18]. CTL utilizes tree decomposition tech-

niques to create a core-tree structure, which comprises a core graph

and several sub-trees. For the core component, CTL constructs a

complete 2-hop index using the PSL method. For the sub-tree part,

CTL gathers only the minimal distances from each vertex to all

its corresponding ancestor vertices in the tree. When compared to

PSL, CTL significantly reduces memory consumption at the cost of

a slight decrease in query efficiency. The performance bottlenecks

mainly include the following three aspects:

• Serious indexing cost. During tree decomposition, CTL must

form a series of cliques comprising the neighbors of each can-

didate vertex [18]. Owing to data distribution across different

machines, this step demands frequent inter-machine communi-

cation. Furthermore, the inability to execute tree decomposition

in parallel leads to prolonged indexing duration, incurring sig-

nificant costs.

• Huge memory cost. Even though tree decomposition reduces

the number of vertices in the core graph, the density of this

graph surges due to the addition of cliques, leading to substan-

tial memory requirements. For instance, in the core graph of

SocLiveJ, the edge count exceeds 8 billion, even as the vertex

count dwindles to roughly 300,000. This densely connected

core graph also escalates memory demands during index con-

struction, as vertices need to acquire more label entries from

neighboring vertices.

• Workload imbalance. The core-tree structure is composed of a

single core graph and many sub-tree structures. Specifically,

the core graph is equipped with a complete 2-hop index. By

contrast, a tree-based index is deployed in each sub-tree. Due

to the difference in indexing time complexity on these parts,

keeping workload balance across all machines during index

construction is challenging.

Based on the aforementioned analysis, there is a need for a

more effective distributed method that optimizes query efficiency,

scalability, and memory utilization.

3 DISTRIBUTED HOP-BASED INDEX

In this section, we first describe the index structure of our dis-

tributed hierarchical hop-based index, called DH-Index. Then, we

design an efficient query processing algorithm.

3.1 DH-Index Structure

Observation. Consider a vertex pair (𝑠, 𝑡).
(1) If 𝑚(𝑠) ≠ 𝑚(𝑡), the shortest path between them is defi-

nitely a boundary path traversing through two boundary

vertices 𝑣1 and 𝑣2. This path can be denoted as 𝑠𝑝𝑏𝑑 (𝑠, 𝑡) =
𝑠𝑝 (𝑠, 𝑣1)Z𝑠𝑝 (𝑣1, 𝑣2)Z𝑠𝑝 (𝑣2, 𝑡), and the shortest distance be-
tween 𝑠 and 𝑡 can be formulated as 𝑑𝑖𝑠𝑡 (𝑠, 𝑡) = 𝑑𝑖𝑠𝑡 (𝑠, 𝑣1) +
𝑑𝑖𝑠𝑡 (𝑣1, 𝑣2) + 𝑑𝑖𝑠𝑡 (𝑣2, 𝑡).

(2) Conversely, if𝑚(𝑠) =𝑚(𝑡), a shortest interior path, 𝑠𝑝𝑖𝑛 (𝑠, 𝑡),
might also exist between 𝑠 and 𝑡 . Hence, the shortest dis-

tance is given by the shorter from the boundary and interior

paths: 𝑑𝑖𝑠𝑡 (𝑠, 𝑡) = min{|𝑠𝑝𝑏𝑑 (𝑠, 𝑡) |, |𝑠𝑝𝑖𝑛 (𝑠, 𝑡) |}.

Example 2. Reconsider the graph in Fig. 1, and take vertex pairs
(𝑣0, 𝑣1) and (𝑣5, 𝑣11) as examples. For the query 𝑞(𝑣0, 𝑣1), there are
two shortest paths which are 𝑠𝑝0 = ⟨𝑣0, 𝑣3, 𝑣1⟩ and 𝑠𝑝1 = ⟨𝑣0, 𝑣2, 𝑣1⟩,
respectively, both of which are boundary paths. Therefore, we have
𝑑𝑖𝑠𝑡 (𝑣0, 𝑣1) = 2. For the query 𝑞(𝑣5, 𝑣11), we can find that the shortest
interior and boundary paths are 𝑠𝑝𝑖𝑛 = ⟨𝑣5, 𝑣13, 𝑣14, 𝑣1, 𝑣2, 𝑣11⟩ and
𝑠𝑝𝑏𝑑 = ⟨𝑣5, 𝑣0, 𝑣2, 𝑣11⟩, respectively. Then, we have 𝑑𝑖𝑠𝑡 (𝑣5, 𝑣11) =
min{|𝑠𝑝𝑏𝑑 |, |𝑠𝑝𝑖𝑛 |} = 3.

In light of the observation, we design an index that captures

the shortest distances of both boundary and interior paths. This

is achieved by carefully designed labeling strategies for interior

and boundary vertices. Our strategy aims to reduce the index size

by minimizing the extensive global connections among vertices,

without compromising the accuracy of query results.

A category-aware vertex order. To prioritize vertices that play

a critical role in query tasks, we propose a category-aware vertex

ordering strategy. This approach stems from the observation that

boundary vertices, regardless of whether𝑚(𝑢) equals𝑚(𝑣) or not,
have inherent importance in all query tasks 𝑞(𝑢, 𝑣) and should

be ranked higher. Assuming 𝑟 (𝑣) denotes the ranking function of

vertex 𝑣 , the order 𝑟 (𝑢) > 𝑟 (𝑣) is satisfied if:

• 𝑢 ∈ 𝑉𝐵 and 𝑣 ∈ 𝑉𝐼 or
• 𝑢, 𝑣 ∈ 𝑉𝐵 (or 𝑢, 𝑣 ∈ 𝑉𝐼 ) and 𝑑𝑒𝑔(𝑢) > 𝑑𝑒𝑔(𝑣) or
• 𝑢, 𝑣 ∈ 𝑉𝐵 (or 𝑢, 𝑣 ∈ 𝑉𝐼 ), 𝑑𝑒𝑔(𝑢) = 𝑑𝑒𝑔(𝑣), and 𝐼𝐷 (𝑢) < 𝐼𝐷 (𝑣).

Example 3. Using the proposed vertex ordering strategy on the
vertices in Fig. 1(a), we observe no ranking conflicts between any pairs.
For clarity, vertices are ordered as 𝑟 (𝑣0) > 𝑟 (𝑣1) > · · · > 𝑟 (𝑣15).

DH-Index structure. DH-Index is composed of the interior index

𝐷𝐻𝐼 =
⋃

𝑣∈𝑉𝐼 𝐿(𝑣) and the boundary index 𝐷𝐻𝐵 =
⋃

𝑣∈𝑉𝐵
𝐿(𝑣).

We utilize different labeling strategies for boundary and interior

vertices to minimize the index size and enhance construction effi-

ciency. Using the ranking function 𝑟 (·), we define 𝐷𝐻𝐼 and 𝐷𝐻𝐵

as follows:

Definition 4 (Interior Index). Given a distributed graph
{𝐺𝑖 }𝑘𝑖=1 ∪ 𝐸𝑐𝑢𝑡 , 𝐷𝐻𝐼 encompasses the 2-hop index of each interior
vertex in its respective subgraph. For any vertex 𝑣 ∈ 𝑉𝐼 ∩𝑉𝑖 and any
label (𝑢,𝑑𝑣𝑢 ) ∈ 𝐿(𝑣), the following conditions hold:

(1) 𝑚(𝑢) =𝑚(𝑣) and 𝑟 (𝑢) ≥ 𝑟 (𝑣),
(2) 𝑑𝑣𝑢 = 𝑑𝑖𝑠𝑡𝐺𝑖

(𝑢, 𝑣),
(3) For all (𝑤,𝑑𝑣𝑤) ∈ 𝐿(𝑣), if 𝑟 (𝑤) > 𝑟 (𝑢) then 𝑑𝑣𝑢 < 𝑑𝑣𝑤 +

𝑑𝑖𝑠𝑡𝐺𝑖
(𝑢,𝑤).

Based on 𝐷𝐻𝐼 , for each interior vertex pair (𝑠, 𝑡) with𝑚(𝑠) =
𝑚(𝑡), we have 𝑑𝑖𝑠𝑡𝐺𝑖

(𝑠, 𝑡) = min𝑣∈𝐿 (𝑠 )∩𝐿 (𝑡 ) 𝐿(𝑠) [𝑣] + 𝐿(𝑡) [𝑣].

Definition 5 (Boundary Index). Given a distributed graph
{𝐺𝑖 }𝑘𝑖=1 ∪ 𝐸𝑐𝑢𝑡 , 𝐷𝐻𝐵 consists of the 2-hop index for each boundary
vertex in 𝑉𝐵 . For any vertex 𝑣 ∈ 𝑉𝐵 and any label (𝑢,𝑑𝑣𝑢 ) ∈ 𝐿(𝑣),
the following conditions are satisfied:

(1) 𝑟 (𝑢) ≥ 𝑟 (𝑣),
(2) 𝑑𝑣𝑢 = 𝑑𝑖𝑠𝑡 (𝑢, 𝑣),
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(3) For every (𝑤,𝑑𝑣𝑤) ∈ 𝐿(𝑣), if 𝑟 (𝑤) > 𝑟 (𝑢) then 𝑑𝑣𝑢 < 𝑑𝑣𝑤 +
𝑑𝑖𝑠𝑡 (𝑢,𝑤).

Based on 𝐷𝐻𝐵 , for each boundary vertex pair (𝑠, 𝑡), we have

𝑑𝑖𝑠𝑡 (𝑠, 𝑡) = min𝑣∈𝐿 (𝑠 )∩𝐿 (𝑡 ) 𝐿(𝑠) [𝑣] + 𝐿(𝑡) [𝑣].
In summary, the interior index 𝐷𝐻𝐼 aims to quickly capture the

shortest distances of all interior paths whilst the purpose of 𝐷𝐻𝐵 is

to get the shortest distance of each boundary vertex pair efficiently.

We will demonstrate that the shortest distance of any two vertices

can be computed jointly using 𝐷𝐻𝐼 and 𝐷𝐻𝐵 in Section 3.2 Then,

the DH-Index is formally defined as follows.

Definition 6 (DH-Index). The DH-Index of a distributed graph
{𝐺𝑖 }𝑘𝑖=1∪𝐸𝑐𝑢𝑡 is composed of the interior index𝐷𝐻𝐼 and the boundary
index 𝐷𝐻𝐵 .

Example 4. Table 2 shows the DH-Index of Fig. 1(a). Specifically,
the label set of each boundary vertex in 𝑉𝐵 = {𝑣0, ..., 𝑣6} records the
2-hop index about the related boundary vertices. Meanwhile, the label
set of each interior vertex in 𝑉𝐼 = {𝑣7, ..., 𝑣15} holds the minimal
interior distances to the vertices placed in the same machine.

Table 2: The label entries of DH-Index of Fig. 1(a)

ID Label Entries

𝑣0 {𝑣0, 0}
𝑣1 {𝑣1, 0}, {𝑣0, 2}
𝑣2 {𝑣2, 0}, {𝑣0, 1}, {𝑣1, 1}
𝑣3 {𝑣3, 0}, {𝑣0, 1}, {𝑣1, 1}
𝑣4 {𝑣4, 0}, {𝑣0, 1}, {𝑣2, 1}, {𝑣1, 2}
𝑣5 {𝑣5, 0}, {𝑣0, 1}
𝑣6 {𝑣6, 0}, {𝑣1, 1}, {𝑣0, 3}
𝑣7 {𝑣7, 0}, {𝑣1, 1}, {𝑣2, 1}
𝑣8 {𝑣8, 0}, {𝑣0, 1}, {𝑣3, 1}, {𝑣6, 3}
𝑣9 {𝑣9, 0}, {𝑣8, 1}, {𝑣0, 2}, {𝑣3, 2}, {𝑣6, 2}
𝑣10 {𝑣10, 0}, {𝑣7, 1}, {𝑣1, 2}, {𝑣2, 2}
𝑣11 {𝑣11, 0}, {𝑣2, 1}, {𝑣10, 1}, {𝑣1, 2}
𝑣12 {𝑣12, 0}, {𝑣6, 1}, {𝑣9, 1}, {𝑣8, 2}, {𝑣0, 3}, {𝑣3, 3}
𝑣13 {𝑣13, 0}, {𝑣5, 1}, {𝑣1, 2}
𝑣14 {𝑣14, 0}, {𝑣1, 1}, {𝑣13, 1}, {𝑣5, 2}
𝑣15 {𝑣15, 0}, {𝑣0, 1}, {𝑣4, 1}

Index size. For a distributed graph {𝐺𝑖 }𝑘𝑖=1 ∪ 𝐸𝑐𝑢𝑡 , the DH-Index
size is 𝑂 (𝛿𝐼 · |𝑉𝐼 | + 𝛿𝐵 · |𝑉𝐵 |), where 𝛿𝐼 and 𝛿𝐵 represent the maxi-

mum number of label entries in interior and boundary vertices

respectively. When compared with 2-hop index, the inequality

𝑂 (𝛿𝐼 · |𝑉𝐼 | + 𝛿𝐵 · |𝑉𝐵 |) ≤ 𝑂 (𝛿 · |𝑉 |) holds since 𝛿 , the maximum

label set size in 2-hop index, surpasses both 𝛿𝑖 and 𝛿𝐵 .

3.2 Query Processing

Given a distributed graph {𝐺𝑖 }𝑘𝑖=1 ∪ 𝐸𝑐𝑢𝑡 , queries 𝑞(𝑠, 𝑡) using DH-

Index for vertex pairs 𝑠 and 𝑡 can be categorized into four cases.

Case 1: Two boundary vertices, i.e, 𝑠, 𝑡 ∈ 𝑉𝐵 .
• Report min𝑣∈𝐿 (𝑠 )∩𝐿 (𝑡 ) 𝐿(𝑠) [𝑣] + 𝐿(𝑡) [𝑣].
Since 𝐷𝐻𝐵 provides the 2-hop index for boundary vertices over

the entire graph, the result for 𝑞(𝑠, 𝑡) can be directly determined

using Equation 1. The time complexity is 𝑂 (𝛿𝐵).
Example 5. Take the boundary vertex pair (𝑣1, 𝑣5) as an example.

According to the recorded label entries in Table 2, we have 𝑞(𝑣1, 𝑣5) =
𝐿(𝑣1) [𝑣0] + 𝐿(𝑣5) [𝑣0] = 3.

Case 2: Only one boundary vertex, i.e, 𝑠 ∈ 𝑉𝐼 ∩𝑉𝑖 and 𝑡 ∈ 𝑉𝐵 .
• Let 𝑉 𝑠

𝐵
= 𝐿(𝑠) ∩𝑉𝐵 .

• Report min𝑣∈𝑉 𝑠
𝐵
𝐿(𝑠) [𝑣] + 𝑑𝑖𝑠𝑡 (𝑣, 𝑡).

Let 𝑣 ∈ 𝑉 𝑠
𝐵
be a boundary vertex on any path 𝑝 (𝑠, 𝑡) between 𝑠

and 𝑡 . According to the location of 𝑠 and 𝑡 , Case 2 can be classified

as the following two situations.

• 𝑚(𝑠)≠𝑚(𝑡). Based on the property of boundary path in Defi-

nition 2, there exists at least one boundary vertex 𝑢 ∈ 𝑉𝐵 ∩𝑉𝑖
that is located in 𝑝 (𝑠, 𝑡), i.e., 𝑝 (𝑠, 𝑡) = 𝑝 (𝑠,𝑢) Z 𝑝 (𝑢, 𝑡). Then,
we have 𝑑𝑖𝑠𝑡 (𝑠, 𝑡) = min𝑢∈𝑉𝐵∩𝑉𝑖 𝑑𝑖𝑠𝑡 (𝑠,𝑢) + 𝑑𝑖𝑠𝑡 (𝑢, 𝑡). Based
on 𝐷𝐻𝐼 , we have 𝑑𝑖𝑠𝑡 (𝑠,𝑢) = 𝑑𝑖𝑠𝑡 (𝑠, 𝑣) + 𝑑𝑖𝑠𝑡 (𝑣,𝑢) with 𝑟 (𝑣) ≥
𝑟 (𝑢). Therefore, we can conclude that

𝑑𝑖𝑠𝑡 (𝑠, 𝑡) = min

𝑢∈𝑉𝐵∩𝑉𝑖
𝑑𝑖𝑠𝑡 (𝑠,𝑢) + 𝑑𝑖𝑠𝑡 (𝑢, 𝑡)

= min

𝑣∈𝑉 𝑠
𝐵
,𝑢∈𝑉𝐵∩𝑉𝑖

𝑑𝑖𝑠𝑡 (𝑠, 𝑣) + 𝑑𝑖𝑠𝑡 (𝑣,𝑢) + 𝑑𝑖𝑠𝑡 (𝑢, 𝑡)

= min

𝑣∈𝑉 𝑠
𝐵

𝐿(𝑠) [𝑣] + 𝑑𝑖𝑠𝑡 (𝑣, 𝑡),
(2)

where 𝑑𝑖𝑠𝑡 (𝑣, 𝑡) can be calculated based on Case 1.

• 𝑚(𝑠) = 𝑚(𝑡). Apart from the boundary path, the shortest in-

terior path also needs examination. Based on the property of

𝐷𝐻𝐼 and 𝐿(𝑠) ∩ 𝐿(𝑡) ⊆ 𝑉 𝑠
𝐵
, we have

𝑑𝑖𝑠𝑡 (𝑠, 𝑡) = 𝑑𝑖𝑠𝑡𝐺𝑖
(𝑠, 𝑡) = min

𝑣∈𝐿 (𝑠 )∩𝐿 (𝑡 )
𝐿(𝑠) [𝑣] + 𝐿(𝑡) [𝑣]

= min

𝑣∈𝑉 𝑠
𝐵

𝐿(𝑠) [𝑣] + 𝑑𝑖𝑠𝑡 (𝑣, 𝑡) . (3)

Based on the analysis of these two situations, we can conclude

that 𝑑𝑖𝑠𝑡 (𝑠, 𝑡) = min𝑣∈𝑉 𝑠
𝐵
𝐿(𝑠) [𝑣] +𝑑𝑖𝑠𝑡 (𝑣, 𝑡), and the time complex-

ity can be bounded by 𝑂 ( |𝑉𝐵 | · 𝛿𝐵).

Example 6. Given two vertices 𝑠 = 𝑣10 and 𝑡 = 𝑣1, we have
𝑉 𝑠
𝐵

= {𝑣1, 𝑣2} and 𝑑𝑖𝑠𝑡 (𝑣1, 𝑣10) = min𝑣∈𝑉 𝑠
𝐵
𝐿(𝑠) [𝑣] + 𝑑𝑖𝑠𝑡 (𝑣, 𝑡) =

min{𝐿(𝑠) [𝑣1] + 𝑑𝑖𝑠𝑡 (𝑣1, 𝑣1), 𝐿(𝑠) [𝑣2] + 𝑑𝑖𝑠𝑡 (𝑣2, 𝑣1)} = 2.

Case 3: Two interior vertices within different machines, i.e.,

𝑠, 𝑡 ∈ 𝑉𝐼 and𝑚(𝑠) ≠𝑚(𝑡).
• Let 𝑉 𝑠

𝐵
= 𝐿(𝑠) ∩𝑉𝐵 and 𝑉 𝑡

𝐵
= 𝐿(𝑡) ∩𝑉𝐵 .

• Report𝑚𝑖𝑛𝑣∈𝑉 𝑠
𝐵
,𝑢∈𝑉 𝑡

𝐵
𝐿(𝑠) [𝑣] + 𝑑𝑖𝑠𝑡 (𝑣,𝑢) + 𝐿(𝑡) [𝑢].

Let 𝑣 ∈ 𝑉 𝑠
𝐵
be a boundary vertex located in any 𝑝 (𝑠, 𝑡) between

𝑠 and 𝑡 . Based on the analysis of Case 2, we have 𝑑𝑖𝑠𝑡 (𝑠,𝑤) =

min𝑣∈𝑉 𝑠
𝐵
𝐿(𝑠) [𝑣] + 𝑑𝑖𝑠𝑡 (𝑣,𝑤) where 𝑤 ∈ 𝑉𝐵 and 𝑚(𝑤) = 𝑚(𝑡).

Similarly, 𝑑𝑖𝑠𝑡 (𝑤, 𝑡) = min𝑢∈𝑉 𝑡
𝐵
𝐿(𝑡) [𝑢] + 𝑑𝑖𝑠𝑡 (𝑤,𝑢). Then, we can

conclude that

𝑑𝑖𝑠𝑡 (𝑠, 𝑡) = min

𝑤∈𝑝 (𝑠,𝑡 )∩𝑉𝐵

𝑑𝑖𝑠𝑡 (𝑠,𝑤) + 𝑑𝑖𝑠𝑡 (𝑤, 𝑡)

= min

𝑣∈𝑉 𝑠
𝐵

𝐿(𝑠) [𝑣] + 𝑑𝑖𝑠𝑡 (𝑣,𝑤) + min

𝑢∈𝑉 𝑡
𝐵

𝐿(𝑡) [𝑢] + 𝑑𝑖𝑠𝑡 (𝑤,𝑢)

= min

𝑣∈𝑉 𝑠
𝐵
,𝑢∈𝑉 𝑡

𝐵

𝐿(𝑠) [𝑣] + 𝑑𝑖𝑠𝑡 (𝑣,𝑢) + 𝐿(𝑡) [𝑢]

(4)

The time complexity is 𝑂
(
|𝑉 𝑠
𝐵
| · |𝑉 𝑡

𝐵
| · ( |𝐿(𝑣) | + |𝐿(𝑢) |)

)
which

can be bounded by 𝑂 ( |𝑉𝐵 | · 𝛿𝐵).

Example 7. Take the query 𝑞(𝑠, 𝑡) with 𝑠 = 𝑣7 and 𝑡 = 𝑣8 as an
example. We have 𝑉 𝑠

𝐵
= {𝑣1, 𝑣2}, 𝑉 𝑡

𝐵
= {𝑣0, 𝑣3, 𝑣6}, and

𝑑𝑖𝑠𝑡 (𝑠, 𝑡) = min

𝑣∈𝑉 𝑠
𝐵
,𝑢∈𝑉 𝑡

𝐵

𝐿(𝑠) [𝑣] + 𝑑𝑖𝑠𝑡 (𝑣,𝑢) + 𝐿(𝑡) [𝑢] = 3.
(5)
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Case 4: Two interior vertices within the same machine, i.e.,

𝑠, 𝑡 ∈ 𝑉𝐼 and𝑚(𝑠) =𝑚(𝑡).
• Let 𝑑1 be the minimal boundary distance calculated by Equa-

tion 4.

• Let 𝑑2 = min𝑣∈𝐿 (𝑠 )∩𝐿 (𝑡 ) 𝐿(𝑠) [𝑣] + 𝐿(𝑡) [𝑣] be the minimal inte-

rior distance.

• Report min{𝑑1, 𝑑2}.
Similar to the second situation in Case 3, we calculated the

shortest boundary distance 𝑑1 based on Equation 4. Then, the

distance of the shortest interior path can be calculated as 𝑑2 =

min𝑣∈𝐿 (𝑠 )∩𝐿 (𝑡 ) 𝐿(𝑠) [𝑣] + 𝐿(𝑡) [𝑣]. Finally, 𝑑𝑖𝑠𝑡 (𝑠, 𝑡) = min{𝑑1, 𝑑2}
and the time complexity is𝑂 ( |𝑉 𝑠

𝐵
| · |𝑉 𝑡

𝐵
| · ( |𝐿(𝑣) | + |𝐿(𝑢) |) + |𝐿(𝑠) | +

|𝐿(𝑡) |) which is simplified as 𝑂 ( |𝑉𝐵 | · 𝛿𝐵).

Example 8. Take 𝑞(𝑣7, 𝑣10) as an example. Based on Equation 4,
the shortest boundary distance is𝑑1 = 3. Similarly, the shortest interior
distance is𝑑2 = 1. Therefore, we have𝑑𝑖𝑠𝑡 (𝑣7, 𝑣10) = min{𝑑1, 𝑑2} = 1.

Query algorithm. In the distributed environment, the label entries

are placed in different machines. Therefore, it is difficult to adopt

the centralized searching strategy to resolve the above query tasks.

To address this issue, we design a DH-Index-based bidirectional

distributed query algorithm (DHQA) to resolve the query tasks

within limited rounds.

Algorithm 1 presents the pseudo-code of DHQA which outputs

𝑑𝑖𝑠𝑡 (𝑠, 𝑡) based on DH-Index within three supersteps. Here, 𝑑𝑣 (𝑠)
and 𝑑𝑣 (𝑡) are used to record the distances from 𝑣 to 𝑠 and 𝑡 , respec-

tively. The details are shown as follows.

• When 𝑠𝑢𝑝𝑒𝑟𝑠𝑡𝑒𝑝 = 0, the program is activated from the vertices

𝑠 and 𝑡 . Take the vertex 𝑠 as an example. For each label entry

(𝑢,𝑑𝑢𝑠 ) ∈ 𝐿(𝑠) and𝑚(𝑢) = 𝑚(𝑠), the message ⟨𝑠, 𝑑𝑢𝑠 ⟩ is sent
to the vertex 𝑢 (Lines 5-7). Note that this step does not involve

the message exchange among different machines, thereby not

producing the communication cost.

• When 𝑠𝑢𝑝𝑒𝑟𝑠𝑡𝑒𝑝 = 1, the target vertex 𝑣 updates𝑑𝑣 (𝑠) and𝑑𝑣 (𝑡)
based on the received messages (Lines 9-10). Then, the message

⟨𝑤,𝑑𝑤𝑣+𝑑𝑣 (𝑠)⟩ is sent to𝑤 when satisfying (i)𝑑𝑣 (𝑠) < ∞ (Line

11), (ii) (𝑤,𝑑𝑤𝑣) ∈ 𝐿(𝑣) (Line 12), and (iii) 𝑟 (𝑤) > 𝑟∗ (Line 12).
Note that the condition (iii) helps to reduce communication

cost.

• When 𝑠𝑢𝑝𝑒𝑟𝑠𝑡𝑒𝑝 = 2, the minimal distances from 𝑣 to 𝑠 and

𝑡 are further updated based on the received messages (Lines

15-16). Then, DHQA outputs 𝑑𝑖𝑠𝑡 (𝑠, 𝑡) = min𝑣∈𝑉𝑇 𝑑𝑠 (𝑣) +𝑑𝑡 (𝑣)
where 𝑉𝑇 = {𝑣 |𝑑𝑠 (𝑣) + 𝑑𝑡 (𝑣) < ∞}.

Correctness analysis. To prove the correctness of DHQA, we

first prove that the DH-Index-based hop number of each shortest

path 𝑠𝑝 (𝑠, 𝑡), denoted as 𝑑ℎ𝑜𝑝 (𝑠𝑝 (𝑠, 𝑡)), is no more than 4. Without

specifying, 𝑑ℎ𝑜𝑝 (𝑠𝑝 (𝑠, 𝑡)) is simplified as 𝑑ℎ𝑜𝑝 (𝑠𝑝).

Lemma 1. Given an interior vertex pair (𝑠, 𝑡) with𝑚(𝑠) =𝑚(𝑡) = 𝑖 ,
we have 𝑑ℎ𝑜𝑝 (𝑠𝑝) ≤ 2 if 𝑑𝑖𝑠𝑡 (𝑠, 𝑡) = 𝑑𝑖𝑠𝑡𝐺𝑖

(𝑠, 𝑡).

Proof. When 𝑑𝑖𝑠𝑡 (𝑠, 𝑡)=𝑑𝑖𝑠𝑡𝐺𝑖
(𝑠, 𝑡), 𝑠𝑝 (𝑠, 𝑡) is proved as an in-

terior path. Based on Definition 4, each interior vertex pair is con-

structed as a 2-hop connection at most, i.e., 𝑑ℎ𝑜𝑝 (𝑠𝑝) ≤ 2. □

Lemma 2. Given a boundary shortest path 𝑠𝑝 (𝑠, 𝑡), it holds that
𝑑ℎ𝑜𝑝 (𝑠𝑝) ≤ 4.

Algorithm 1: DH-Index-based bidirectional Query Algo-

rithm (DHQA)

Input: DH-Index, 𝑞 (𝑠, 𝑡 ) .
Output: 𝑑𝑖𝑠𝑡 (𝑠, 𝑡 ) .

1 Initial 𝑑 (𝑠, 𝑡 ) ← ∞, 𝑟 ∗ ← max{𝑟 (𝑠 ), 𝑟 (𝑡 ) }
2 foreach vertex 𝑣∈𝑉 do

3 if 𝑠𝑢𝑝𝑒𝑟𝑠𝑡𝑒𝑝=0 then

4 Initial 𝑑𝑣 (𝑠 ) ← ∞ and 𝑑𝑣 (𝑡 ) ← ∞
5 if 𝑣 ∈ {𝑠, 𝑡 } then
6 foreach (𝑢,𝑑𝑢𝑣 ) ∈ 𝐿 (𝑣) do
7 Send ⟨𝑣,𝑑𝑢𝑣 ⟩ to 𝑢 with𝑚 (𝑢 )=𝑚 (𝑣)

8 else if 𝑠𝑢𝑝𝑒𝑟𝑠𝑡𝑒𝑝=1 then

9 foreach reveived message ⟨tgt, 𝑑𝑛𝑒𝑤 ⟩ with tgt ∈ {𝑠, 𝑡 } do
10 𝑑𝑣 (tgt) ← min{𝑑𝑣 (tgt), 𝑑𝑛𝑒𝑤 }
11 if 𝑣 ∈ 𝑉𝐵 and 𝑑𝑣 (tgt) ≠ ∞ then

12 foreach (𝑤,𝑑𝑤𝑣 ) ∈ 𝐿 (𝑣) with 𝑟 (𝑤 ) ≥ 𝑟 ∗ do
13 Send ⟨tgt, 𝑑𝑣 (tgt) + 𝑑𝑤𝑣 ⟩ to 𝑤

14 else

15 foreach reveived message ⟨tgt, 𝑑𝑛𝑒𝑤 ⟩ do
16 𝑑𝑣 (tgt) ← min{𝑑𝑣 (tgt), 𝑑𝑛𝑒𝑤 }
17 𝑉𝑇 .𝑖𝑛𝑠𝑒𝑟𝑡 (𝑣) with 𝑑𝑣 (𝑠 ) + 𝑑𝑣 (𝑡 ) < ∞

18 if 𝑉𝑇 ≠ ∅ then 𝑑𝑖𝑠𝑡 (𝑠, 𝑡 ) ← min𝑣∈𝑉𝑇 𝑑𝑣 (𝑠 ) + 𝑑𝑣 (𝑡 ) ;
19 return 𝑑𝑖𝑠𝑡 (𝑠, 𝑡 )

Proof. Based on the analysis of Case 3, for each shortest bound-

ary path 𝑠𝑝𝑏𝑑 (𝑠, 𝑡), we have 𝑠𝑝𝑏𝑑 (𝑠, 𝑡) = 𝑠𝑝𝑖𝑛 (𝑠, 𝑣) Z 𝑠𝑝𝑏𝑑 (𝑣,𝑢) Z
𝑠𝑝𝑖𝑛 (𝑢, 𝑡), where𝑚(𝑣) = 𝑚(𝑠),𝑚(𝑢) = 𝑚(𝑡), and 𝑣,𝑢 ∈ 𝑉𝐵 . Based
on the properties of 𝐷𝐻𝐼 and 𝐷𝐻𝐵 , the hop numbers of three sub-

paths are no more than 2.

We first consider the scenario that 𝑑ℎ𝑜𝑝 (𝑠𝑝𝑖𝑛 (𝑠, 𝑣)) = 2 and

𝑑ℎ𝑜𝑝 (𝑠𝑝𝑖𝑛 (𝑢, 𝑡)) = 2. For 𝑠𝑝𝑖𝑛 (𝑠, 𝑣), we have𝑑𝑖𝑠𝑡𝑖𝑛 (𝑠, 𝑣)=𝐿(𝑠) [𝑤1]+
𝐿(𝑣) [𝑤1], where𝑤1 needs to have a higher rank than 𝑣 , and then

is a boundary vertex. Similarly, there exists a boundary vertex𝑤2

such that 𝑑𝑖𝑠𝑡𝑖𝑛 (𝑢, 𝑡) = 𝐿(𝑢) [𝑤2] +𝐿(𝑡) [𝑤2]. Hence, 𝑠𝑝 (𝑠, 𝑡) can be

reformulated as:

𝑠𝑝 (𝑠, 𝑡) = 𝑠𝑝𝑖𝑛 (𝑠, 𝑣)Z𝑠𝑝𝑏𝑑 (𝑣,𝑢)Z𝑠𝑝𝑖𝑛 (𝑢, 𝑡)

= 𝑠𝑝𝑖𝑛 (𝑠,𝑤1)Z𝑠𝑝𝑖𝑛 (𝑤1, 𝑣)Z𝑠𝑝𝑏𝑑 (𝑣,𝑢)Z𝑠𝑝𝑖𝑛 (𝑢,𝑤2)Z𝑠𝑝𝑖𝑛 (𝑤2, 𝑡)

= 𝑠𝑝𝑖𝑛
1
(𝑠,𝑤1)Z𝑠𝑝𝑏𝑑2 (𝑤1,𝑤2)Z𝑠𝑝𝑖𝑛3 (𝑤2, 𝑡) .

(6)

Based on the property of 𝐷𝐻𝐵 , we have 𝑑ℎ𝑜𝑝 (𝑠𝑝2) ≤ 2, as𝑤1,𝑤2 ∈
𝑉𝐵 . Therefore, we can conclude that 𝑑ℎ𝑜𝑝 (𝑠, 𝑡) = 𝑑ℎ𝑜𝑝 (𝑠𝑝1) +
𝑑ℎ𝑜𝑝 (𝑠𝑝2) + 𝑑ℎ𝑜𝑝 (𝑠𝑝3) ≤ 4.

For other cases, i.e.,𝑑ℎ𝑜𝑝 (𝑠𝑝𝑖𝑛 (𝑠, 𝑣))<2 or/and𝑑ℎ𝑜𝑝 (𝑠𝑝𝑖𝑛 (𝑢, 𝑡)) <
2, 𝑑ℎ𝑜𝑝 (𝑠, 𝑡) can also be bounded by 4. □

Theorem 1 (Correctness). The query result of each task in
DHQA is correct.

Proof. According to Lemma 1 and Lemma 2, for any two con-

nected vertices 𝑠 and 𝑡 , there is at least one shortest path 𝑠𝑝 (𝑠, 𝑡)
that satisfies 𝑑ℎ𝑜𝑝 (𝑠𝑝) ≤ 4. Since DHQA adopts a bidirectional

searching strategy, there is definitely a middle vertex 𝑣 that simul-

taneously receives the messages of ⟨𝑠, 𝑑1⟩ and ⟨𝑡, 𝑑2⟩ in the third

supersteps, where 𝑑𝑖𝑠𝑡 (𝑠, 𝑡) = 𝑑1 + 𝑑2. Otherwise, if 𝑠 and 𝑡 are not
connected, the result of 𝑞(𝑠, 𝑡) is∞. Therefore, the query result of

𝑞(𝑠, 𝑡) in DHQA is correct. □
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4 INDEX CONSTRUCTION

One of the most naive methods to build DH-Index is adopting the

PSL method with new pruning strategies. Specifically, all vertices

are activated to exchange messages and update label entries in par-

allel until finishing DH-Index. The communication cost of building

𝐷𝐻𝐼 can be avoided since the interior vertices of each subgraph

are placed in the same machine. However, this strategy faces the

following two disadvantages when building the boundary index

𝐷𝐻𝐵 .

• Redundant path traversal.When directly building 𝐷𝐻𝐵 in the

whole graph𝐺 , it is inevitable to traverse the interior vertices

which are located on the shortest paths among any two bound-

ary vertices. Take the boundary vertex pair (𝑣1, 𝑣5) on Fig. 1(a)

as an example. it is inevitable to visit the interior shortest path

⟨𝑣1, 𝑣14, 𝑣13, 𝑣5⟩. During the index construction, it is necessary

for these interior vertices to add the label entries originating

from the activated boundary vertices, thus increasing the in-

dexing time and space cost.

• Huge communication cost. Similar to the 2-hop index, it needs

to frequently exchange the label entries of boundary vertices

among different machines for building 𝐷𝐻𝐵 , thus producing

huge communication costs.

To overcome the above challenges, we introduce a distributed

hierarchical index construction algorithm (called DHCA) to build

DH-Index. The overview of DHCA is shown in Fig. 2, where the

three key steps include the construction of the interior index 𝐷𝐻𝐼 ,

the boundary graph 𝐺𝐵 , and the boundary index 𝐷𝐻𝐵 . The details

are listed as follows.

DH-Index

DHI  DHB

Graph G

Parameter c

Input Index Construction of DH-Index Output

Step 1

Build 

Interior 

Index 

(DHI)

Step 2

Construct 

Boundary 

graph 

(GB)

Step 3

Build 

Boundary 

index 

(DHB)

Figure 2: An overview of the DHCA method

Construction of 𝐷𝐻𝐼 . The interior index 𝐷𝐻𝐼 can be built on all

subgraphs in parallel based on PSL since each vertex only needs

to collect the label entries to vertices within the same subgraph.

Table 3 records the process of building𝐷𝐻𝐼 on two subgraphs. First,

for each vertex 𝑣 , we add the label entry (𝑣, 0) into 𝐿(𝑣), and then

make a 2-hop cover verification for each new label entry (𝑢,𝑑𝑢𝑣)
originating from the neighbors of 𝑣 . For example, the label entry

(𝑣1, 1) is added in the label sets 𝐿(𝑣2), 𝐿(𝑣7), and 𝐿(𝑣14) when 1-

hop labels are processed. Similarly, when processing 2-hop labels,

the label entry (𝑣1, 2) is added in the label sets 𝐿(𝑣10), 𝐿(𝑣11), and
𝐿(𝑣13). This process can be terminated until there are no new label

entries. Finally, we have 𝐷𝐻𝐼 =
⋃

𝑣∈𝑉𝐼 𝐿(𝑣).
Construction of boundary graph 𝐺𝐵 . To build the boundary

index 𝐷𝐻𝐵 efficiently, it’s crucial to bypass redundant path traver-

sals. In light of this, we introduce the boundary graph 𝐺𝐵 . This

graph integrates the boundary vertex set𝑉𝐵 , cutting edges 𝐸𝑐𝑢𝑡 , and

interior-path edges 𝐸𝑖𝑝 that represent the shortest interior paths

between boundary vertices within the same machine. Crucially,

𝐺𝐵 is structured to minimize redundant path traversals during the

𝐷𝐻𝐵 construction.

Table 3: The label entries of all vertices when building 𝐷𝐻𝐼

(a) the 2-hop index on𝐺1

𝐼𝐷 0 1 2 3

𝑣1 𝑣1 − − −
𝑣2 𝑣2 𝑣1 − −
𝑣5 𝑣5 − − 𝑣1
𝑣7 𝑣7 𝑣1, 𝑣2 − −
𝑣10 𝑣10 𝑣7 𝑣1, 𝑣2 −
𝑣11 𝑣11 𝑣2, 𝑣10 𝑣1 −
𝑣13 𝑣13 𝑣5 𝑣1 −
𝑣14 𝑣14 𝑣1, 𝑣13 𝑣5 −

(b) the 2-hop index on𝐺2

𝐼𝐷 0 1 2 3 4

𝑣0 𝑣0 − − − −
𝑣3 𝑣3 𝑣0 − − −
𝑣4 𝑣4 𝑣0 − − −
𝑣6 𝑣6 − − − 𝑣0, 𝑣3
𝑣8 𝑣8 𝑣0, 𝑣3 − 𝑣6 −
𝑣9 𝑣9 𝑣8 𝑣0, 𝑣3, 𝑣6 − −
𝑣12 𝑣12 𝑣6, 𝑣9 𝑣8 𝑣0, 𝑣3 −
𝑣15 𝑣15 𝑣0, 𝑣4 − − −

First, we formally define the interior-path edges 𝐸𝑖𝑝 as follows.

Definition 7 (Interior-path Edges). Let’s consider a set of
subgraphs {𝐺𝑖 }𝑘𝑖=1. The interior-path edge set 𝐸𝑖𝑝 is defined as the
collection of derived edges, formally given by:

𝐸𝑖𝑝 =

𝑘⋃
𝑖=1

⋃
𝑢,𝑣∈𝑉𝑖

𝑒𝑖 (𝑢, 𝑣).

Here, each edge 𝑒𝑖 (𝑢, 𝑣) must meet the following conditions:
1) 𝑢, 𝑣 ∈ 𝑉𝐵 and𝑚(𝑢) =𝑚(𝑣) = 𝑖 ,
2) The weight of 𝑒𝑖 (𝑢, 𝑣) satisfies𝑊𝑢,𝑣 = 𝑑𝑖𝑠𝑡𝐺𝑖

(𝑢, 𝑣) < ∞,
3) ∀𝑤 ∈ 𝑉𝐵∩𝑉𝑖 , we have𝑑𝑖𝑠𝑡𝐺𝑖

(𝑢, 𝑣) < 𝑑𝑖𝑠𝑡𝐺𝑖
(𝑢,𝑤)+𝑑𝑖𝑠𝑡𝐺𝑖

(𝑤, 𝑣).

Conditions 1) and 2) ensure 𝐸𝑖𝑝 contains the shortest interior

distances for boundary vertex pairs within the same machine. To

minimize 𝐸𝑖𝑝 ’s space, Condition 3) introduces a ranking constraint.

Following the three conditions, 𝐸𝑖𝑝 can be efficiently constructed.

During 𝐷𝐻𝐼 construction, each boundary vertex 𝑣 also forms its

2-hop label entries. Thus, for any 𝑢, 𝑣 ∈ 𝑉𝑖 ∩𝑉𝐵 , the distance
𝑑𝑖𝑠𝑡𝐺𝑖

(𝑢, 𝑣) = min

𝑤∈𝐿 (𝑢 )∩𝐿 (𝑣)
𝐿(𝑢) [𝑤] + 𝐿(𝑣) [𝑤],

is computed to identify edges satisfying Conditions 1) and 2). For

Condition 3), each edge 𝑒𝑟 (𝑢, 𝑣) is evaluated to check if it traverses

another boundary vertex𝑤 where 𝑑𝑢𝑤 +𝑑𝑤𝑣 = 𝑑𝑢𝑣 , further refining

𝐸𝑖𝑝 ’s size. We then formally define the boundary graph 𝐺𝐵 :

Definition 8 (Boundary Graph). For a distributed graph
{𝐺𝑖 }𝑘𝑖=1 ∪ 𝐸𝑐𝑢𝑡 , and the corresponding 𝐷𝐻𝐼 , the boundary graph
𝐺𝐵 (𝑉𝐵, 𝐸𝐵) is defined such that 𝑉𝐵 ⊆ 𝑉 and 𝐸𝐵 = 𝐸𝑐𝑢𝑡 ∪ 𝐸𝑖𝑝 .

Lemma 3. Given any two boundary vertices 𝑠 and 𝑡 , we have
𝑑𝑖𝑠𝑡 (𝑠, 𝑡) = 𝑑𝑖𝑠𝑡𝐺𝐵

(𝑠, 𝑡).

Proof. Given a shortest path 𝑠𝑝 (𝑠, 𝑡) = {𝑣𝑖 }𝑖∈[0,𝑙 ] where 𝑣0 =

𝑠, 𝑣𝑙 = 𝑡 , and 𝑒 (𝑣𝑖 , 𝑣𝑖+1) ∈ 𝐸. Let {𝑢 𝑗 } 𝑗∈[0,𝑘 ] denote all boundary
vertices from 𝑠𝑝 (𝑠, 𝑡) that satisfies
• 𝑢0 = 𝑠,𝑢𝑘 = 𝑡 ;

• ∑
𝑗∈[0,𝑘−1] 𝑑𝑖𝑠𝑡 (𝑢 𝑗 , 𝑢 𝑗+1) = 𝑑𝑖𝑠𝑡 (𝑠, 𝑡).

Then, for each 𝑗 ∈ [0, 𝑘 − 1], we have that 𝑑𝑖𝑠𝑡 (𝑢 𝑗 , 𝑢 𝑗+1) is equal to
(1) 1, if𝑚(𝑢 𝑗 ) ≠𝑚(𝑢 𝑗+1);
(2) 𝑑𝑖𝑠𝑡𝐺 𝑗

(𝑢 𝑗 , 𝑢 𝑗+1), if𝑚(𝑢 𝑗 ) =𝑚(𝑢 𝑗+1) = 𝑗 .

Case (2) holds because 𝑑𝑖𝑠𝑡 (𝑢 𝑗 , 𝑢 𝑗+1) equals the distance of the

shortest interior path between 𝑢 𝑗 and 𝑢 𝑗+1 when𝑚(𝑢 𝑗 ) =𝑚(𝑢 𝑗+1).
Based on the definitions of 𝐸𝑖𝑝 and𝐺𝐵 , for any two adjacent bound-

ary vertices 𝑢 𝑗 and 𝑢 𝑗+1, we have
• If𝑚(𝑢 𝑗 ) ≠𝑚(𝑢 𝑗+1), 𝑒 (𝑢 𝑗 , 𝑢 𝑗+1) ∈ 𝐸𝑐𝑢𝑡 ;
• Otherwise, 𝑒 (𝑢 𝑗 , 𝑢 𝑗+1) ∈ 𝐸𝑖𝑝 ;
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Therefore, ∀𝑗 ∈ [0, 𝑘 − 1], 𝑑𝑖𝑠𝑡 (𝑢 𝑗 , 𝑢 𝑗+1) =𝑊𝑢 𝑗𝑢 𝑗+1 holds and

𝑑𝑖𝑠𝑡 (𝑠, 𝑡) =
∑︁

𝑖∈[0,𝑙−1]
𝑑𝑖𝑠𝑡 (𝑣𝑖 , 𝑣𝑖+1) =

∑︁
𝑗∈[0,𝑘−1]

𝑑𝑖𝑠𝑡 (𝑢 𝑗 , 𝑢 𝑗+1)

=
∑︁

𝑗∈[0,𝑘−1]
𝑊𝑢 𝑗𝑢 𝑗+1 = 𝑑𝑖𝑠𝑡𝐺𝐵

(𝑠, 𝑡),
(7)

□

Example 9. Take the shortest path 𝑠𝑝 (𝑣5, 𝑣6) = {𝑣5, 𝑣13, 𝑣14, 𝑣1, 𝑣6}
as an example. This path passes the boundary vertices 𝑣5, 𝑣1, and 𝑣6,
where 𝑑𝑖𝑠𝑡 (𝑣5, 𝑣1)=𝑊𝑣5𝑣1=3 and 𝑑𝑖𝑠𝑡 (𝑣1, 𝑣6)=𝑊𝑣1𝑣6=1. Therefore, we
have 𝑑𝑖𝑠𝑡 (𝑣5, 𝑣6)=𝑑𝑖𝑠𝑡𝐺𝐵

(𝑣5, 𝑣6)=4.

Construction of 𝐷𝐻𝐵 . After getting the boundary graph 𝐺𝐵 , we

further build the boundary index on this graph. It’s important to

note that the edges in𝐺𝐵 can have varying weights. For instance, as

illustrated in Fig. 1 (b), the weights of edges 𝑒 (𝑣1, 𝑣5) and 𝑒 (𝑣3, 𝑣6)
are 3 and 4, respectively. Building indices on weighted graphs in-

troduces challenges: PSL [17] can halt prematurely on weighted

graphs, and its extension, WPSL [42], might collect redundant la-

bels not on any shortest path. More importantly, it is inevitable to

waste computing resources when directly applying PSL to build

the boundary index on 𝐺𝐵 .

Algorithm 2: Parallel Vertex-based Construction (PVC)

Input:𝐺 (𝑉 , 𝐸 ) ,𝑉𝑡𝑔𝑡
Output: ∪𝑣∈𝑉 𝐿 (𝑣)

1 𝑑𝑖𝑠 ← 1 and 𝐿 (𝑣𝑡 ) .𝑖𝑛𝑠𝑒𝑟𝑡 ({𝑣𝑡 , 0}) with ∀𝑣𝑡 ∈ 𝑉𝑡𝑔𝑡
2 while True do
3 𝐹𝑙𝑎𝑔← 𝑓 𝑎𝑙𝑠𝑒

4 foreach 𝑢 ∈ 𝑁 (𝑣) in parallel do
5 𝐿∗ (𝑢 ) = { (𝑤,𝑑𝑢𝑤 ) |𝑑𝑢𝑤 > 𝑑𝑖𝑠−𝑊𝑣𝑢 }
6 if 𝐿∗ (𝑢 ) ≠ ∅ then 𝑓 𝑙𝑎𝑔← 𝑡𝑟𝑢𝑒 ;

7 for ∀(𝑤,𝑑𝑖𝑠−𝑊𝑣𝑢 ) ∈ 𝐿 (𝑢 ) with 𝑟 (𝑤 )>𝑟 (𝑣) do
8 if 𝑄𝑢𝑒𝑟𝑦 (𝑤, 𝑣, 𝐿) > 𝑑𝑖𝑠 then

9 𝐿 (𝑣) .𝑖𝑛𝑠𝑒𝑟𝑡 ( (𝑤,𝑑𝑖𝑠 ) )

10 𝑑𝑖𝑠 ← 𝑑𝑖𝑠 + 1
11 if 𝑓 𝑙𝑎𝑔 = 𝑓 𝑎𝑙𝑠𝑒 then break;

12 return

⋃
𝑣∈𝑉 𝐿 (𝑣)

To address the challenges above, we present the parallel vertex-

based construction algorithm (PVC) for building the boundary index

𝐷𝐻𝐵 on𝐺𝐵 in all machines in parallel, which adopts a vertex-based

computing paradigm to iteratively update the label entries of all

vertices.

As shown in Algorithm 2, in the 𝑑𝑖𝑠-th round, each vertex 𝑣

collects the label entries (𝑤,𝑑𝑢𝑤) originating its neighbor 𝑢 with

𝑑𝑢𝑤 = 𝑑𝑖𝑠−𝑊𝑣𝑢 (Lines 7-9), which guarantees that (𝑤,𝑑𝑢𝑤) cannot
be dominated by the subsequent labels. Compared to PSL, PVC

decides whether to terminate after this iteration by checking the

number of candidate labels to be added in future rounds (Lines 5-6).

The index construction process can be terminated when 𝐿∗ (·) = ∅
for all vertices, which helps to guarantee the completeness of 𝐷𝐻𝐵

on the weighted graphs.

In addition, our approach encompasses a task division strategy,

aiming to harness the full computational power of all machines

while minimizing communication overhead. The core idea is that

only the vertices in 𝑉𝑡𝑔𝑡 are activated in the first round (Line 1).

Correspondingly, each vertex 𝑣 ∈ 𝑉𝐵 only collects the label entries

(𝑤,𝑑𝑣𝑤) where𝑤 ∈ 𝑉𝑡𝑔𝑡 based on the 2-hop cover property (Line 8).
Based on this design, the index construction of 𝐷𝐻𝐵 is executed in

all machines in parallel. Note that PVC can also be applied to build

the interior index 𝐷𝐻𝐼 by setting 𝑉𝑡𝑔𝑡 = 𝑉𝑖 in the 𝑖-th machine.

Next, we establish that any two connected boundary vertices 𝑢

and 𝑣 can be reached within 2 hops via 𝐷𝐻𝐵 provided by Algorithm

2. This is achieved by demonstrating that 𝐷𝐻𝐵 is a superset of the

2-hop index generated by PSL.

Lemma 4. Let 𝐿1 = 𝐿(𝑣) and 𝐿2 =
⋃𝑘

𝑖=1 𝐿
𝑖 (𝑣) be the label entries

of 𝑣 built from the boundary graph based on PSL and PVC, respectively.
We have 𝐿1 ⊆ 𝐿2.

Proof. Due to theminimum property of PSL [17] inherited from

PLL [3], each label (𝑤,𝑑𝑤𝑣) ∈ 𝐿1 is not dominated by other label

entries, and we have 𝑑𝑖𝑠𝑡 (𝑣,𝑤) = 𝑑𝑤𝑣 . Based on the verification of

the 2-hop cover in PVC, this label is absolutely added into 𝐿2 in the

machine that 𝑤 is activated. Therefore, it can prove that 𝐿1 ⊆ 𝐿2
with 𝑣 ∈ 𝑉𝐵 . Building upon Lemma 4, we can confidently assert

that 𝑑𝑖𝑠𝑡𝐺𝐵
(𝑢, 𝑣) = 𝑄𝑢𝑒𝑟𝑦 (𝑢, 𝑣, 𝐷𝐻𝐵). □

Table 4: The process of building 𝐷𝐻𝐵 in 𝐺𝐵

𝑑𝑖𝑠 = 0 𝑑𝑖𝑠 = 1 𝑑𝑖𝑠 = 2 𝑑𝑖𝑠 = 3

ID
𝑀1 𝑀2 𝑀1 𝑀2 𝑀1 𝑀2 𝑀1 𝑀2

𝑣0 𝑣0 − − − − − − −
𝑣1 − 𝑣1 − − 𝑣0 − − −
𝑣2 𝑣2 − 𝑣0 𝑣1 − − − −
𝑣3 − 𝑣3 𝑣0 𝑣1 − − − −
𝑣4 𝑣4 − 𝑣0, 𝑣2 − − 𝑣1 − −
𝑣5 − 𝑣5 𝑣0 − − − − 𝑣1
𝑣6 𝑣6 − − 𝑣1 − − 𝑣0 −

Algorithm 3: Distributed hierarchical-based algorithm

(DHCA)

Input:𝐺 (𝑉 , 𝐸 ) , 𝑐
Output: DH-Index of𝐺

1 Get {𝐺𝑖 }𝑘𝑖=1, 𝐸𝑐𝑢𝑡 , 𝑟 (𝑣) based on𝐺 (𝑉 , 𝐸 )
2 foreach subgarph𝐺𝑖 (𝑉𝑖 , 𝐸𝑖 ) with 𝑖 ∈ [1, 𝑘 ] in parallel do
3

⋃
𝑣∈𝑉𝑖 𝐿 (𝑣) ← PVC(𝐺𝑖 ,𝑉𝑖 )

4 𝐷𝐻𝐼 =
⋃

𝑣∈𝑉𝐼 𝐿 (𝑣) and 𝐸𝑖𝑝 ← 𝑃𝑎𝑡ℎ𝐵𝑢𝑖𝑙𝑑 (⋃𝑣∈𝑉𝐵 𝐿 (𝑣) )
5 Clear 𝐿 (𝑣) for all 𝑣 ∈ 𝑉𝐵 and duplicate𝐺𝐵 (𝑉𝐵, 𝐸𝐵 ) in all machines

where 𝐸𝐵 = 𝐸𝑐𝑢𝑡 ∪ 𝐸𝑖𝑝
6 foreach graph𝐺𝐵 in𝑀𝑖 with 𝑖 ∈ [1, 𝑘 ] do
7 foreach 𝐼𝐷 (𝑣)%𝑘 = 𝑖 or 𝐼𝐷 (𝑣) < 𝑐 · |𝑉𝐵 | do𝑉𝑡𝑔𝑡 .𝑝𝑢𝑠ℎ (𝑣) ;
8

⋃
𝑣∈𝑉𝐵 𝐿𝑖 (𝑣) ← PVC(𝐺𝐵,𝑉𝑡𝑔𝑡 )

9 𝐷𝐻𝐵 =
⋃𝑘

𝑖=1

⋃
𝑣∈𝑉𝐵 𝐿𝑖 (𝑣)

10 return DH-Index← 𝐷𝐻𝐼 ∪𝐷𝐻𝐵

11

12 Procedure 𝑃𝑎𝑡ℎ𝐵𝑢𝑖𝑙𝑑 (⋃𝑣∈𝑉𝐵 𝐿 (𝑣) )
13 foreach 𝑣 ∈ 𝑉𝐵 and (𝑢,𝑑𝑢𝑣 ) ∈ 𝐿 (𝑣) with 𝑢 ≠ 𝑣 do

14 if �𝑤 ∈ 𝑉𝐵 with 𝑑𝑣𝑤 + 𝑑𝑢𝑤 = 𝑑𝑢𝑣 then

15 Get 𝑒𝑟 (𝑢, 𝑣) with𝑊𝑢𝑣 = 𝑑𝑢𝑣

16 𝐸𝑖𝑝 .𝑖𝑛𝑠𝑒𝑟𝑡 (𝑒𝑟 (𝑢, 𝑣) )

17 return 𝐸𝑖𝑝
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Table 4 records the process of building 𝐷𝐻𝐵 in 𝐺𝐵 . To reduce

the size of 𝐿2, i.e., 𝐷𝐻𝐵 , we duplicate some high-rank vertices in

𝑉𝑡𝑔𝑡 on all machines to prune the redundant labels, which will be

detailed in the following overall algorithm.

Overall algorithm. Algorithm 3 shows the whole process of con-

structing DH-Index. Given a graph 𝐺 (𝑉 , 𝐸) with an initial parti-

tioning result {𝑚(𝑣)}𝑣∈𝑉 , we first get the subgraph set {𝐺𝑖 }𝑘𝑖=1, the
cutting edge set 𝐸𝑐𝑢𝑡 , and the ranking value 𝑟 (𝑣) of each vertex

𝑣 ∈ 𝑉 (Line 1). Next, the 2-hop indexes of all subgraphs are built

in parallel, where 𝐷𝐻𝐼 =
⋃

𝑣∈𝑉𝐼 𝐿(𝑣) (Lines 2-4). Meanwhile, the

interior-path edge set 𝐸𝑖𝑝 is constructed based on 𝑃𝑎𝑡ℎ𝐵𝑢𝑖𝑙𝑑 (·) that
helps to build the boundary graph 𝐺𝐵 (𝑉𝐵, 𝐸𝐵) (Line 4).

Furthermore, the activated vertex set 𝑉𝑡𝑔𝑡 of each machine is

confirmed based on𝑉𝐵 and the parameter 𝑐 which is the ratio of du-

plicated vertices (Line 7). Since PVC inevitably generates redundant

label entries which can be dominated by the labels in other ma-

chines, duplicating a part of boundary vertices with higher vertex

orders can reduce the redundant label entries collected. Meanwhile,

the computations originating from the activated vertices in each

machine may be more heavy, thus increasing the indexing time.

The empirical effect of 𝑐 will be reported in Exp-6. By tuning 𝑐 ,

PVC actually achieves a trade-off between indexing time and space

cost, whilst not damaging the accuracy of query results. Finally, the

boundary index 𝐷𝐻𝐵 =
⋃

𝑣∈𝑉𝐵
𝐿(𝑣) is constructed based on PVC

in parallel (Line 8), and DH-Index can be obtained by combining

𝐷𝐻𝐼 and 𝐷𝐻𝐵 (Line 9).

Time complexity. The time complexity of PLL is𝑂 (𝛿2 ·𝑚) where
𝛿 = max𝑣∈𝑉 |𝐿(𝑣) |. Assuming that𝑚∗ is the maximal number of

edges among all subgraphs, the time complexity of DHCA is𝑂 (𝛿2
𝐼
·

𝑚∗ + 𝛿2
𝐵
· |𝐸𝐵 |) where 𝛿𝐼 and 𝛿𝐵 are the maximal numbers of label

entries among interior and boundary vertices, respectively.

5 EXPERIMENTS

In this part, we conduct extensive experiments to evaluate the

performance of our methods. Section 5.1 introduces the setup of

our experiments, followed by the experimental results in Section 5.2.

5.1 Experimental Setup

Datasets. In the experiments, we employ 7 real-life datasets. As

shown in Table 5, SP and LJ are downloaded from Stanford Large

Network data set Collection
1
, and the other datasets are down-

loaded from Network Repository
2
.

Table 5: Statistic of Real-world Graphs

Alias Dataset |𝑉 | |𝐸 | 𝑑𝑎𝑣𝑔 Ratio Type

SP SocPokec 1.6M 30.6M 27 0.71 Social Network

LJ SocLiveJ 4.8M 42.8M 17 0.425 Social Network

ID Indochina 7.4 M 194.1 M 40 0.02 Web Graph

U2 UK2002 18.5M 298.1M 28 0.04 Web Graph

U5 UK2005 39.4M 936.1M 39 0.049 Web Graph

IT IT2004 41.3M 1.15B 49 0.04 Web Graph

SK SK2005 50.6M 1.94B 57 0.174 Web Graph

U6 UK2006 77.7M 2.96B 39 0.025 Web Graph

U7 UK2007 105.9M 3.74B 34 0.024 Web Graph

UN UK0607 133.6M 5.51B 41 0.075 Web Graph

Algorithms. We compare the following algorithms:

1
http://snap.stanford.edu/data/

2
http://networkrepository.com/index.php

• BiBFS. The distributed bidirectional searching method.

• PSL [17]. The parallelized distance labeling technique.

• CTL [18]. The SOTA centralized labeling technique.

• DPSL. The distributed extension of PSL.

• DH-Index. Our method which is introduced in Section 3.

Details of DPSL. To build the complete 2-hop index in the dis-

tributed setting, we adopt a vertex-centric computing approach,

comprising the following three steps:

• Vertex distribution. The vertices are distributed to the corre-

sponding machines based on a given partitioning result.

• Message exchange. During each round, each vertex 𝑣 receives

the label entries (𝑤,𝑑𝑢𝑤) ⊆ 𝐿(𝑢) originating from each neigh-

bor 𝑢 of 𝑣 where 𝑟 (𝑤) > 𝑟 (𝑣). Here, 𝑑𝑢𝑤 denotes the current

shortest distance between 𝑢 and𝑤 . As iterations proceed, this

distance is refined and will eventually represent the accurate

distance 𝑑𝑖𝑠𝑡 (𝑢, 𝑣). Note that, this process will produce the com-

munication cost if the vertices 𝑣 and 𝑢 are placed in different

machines.

• Label update. The update of label entries relies on the 2-hop

cover property. Specifically, for each vertex 𝑣 and each label

(𝑤,𝑑𝑢𝑤) collected from neighbors, the label entry (𝑤,𝑑𝑢𝑤 + 1)
can be added in 𝐿(𝑣) when satisfying 𝑄𝑢𝑒𝑟𝑦 (𝑣,𝑤, 𝐿) > 𝑑𝑢𝑤 +
1. To minimize communication costs, label entries for each

vertex are cached across all machines during the whole index

construction phase.

Distributed query process. Consider that the performance of

distributed queries is inferior to that of centralized querying. This

is because distributed querying inevitably exchanges messages

among different computing nodes whilst the centralized query only

involves the computations in a same memory space. To keep fair-

ness, the query process of all methods is executed in the distributed

setting.

For a given query 𝑞(𝑠, 𝑡) in BiBFS, the procedure is first acti-

vated from the vertices 𝑠 and 𝑡 , and then forwardly transmitted the

key/value pairs to their neighbors, respectively. This procedure is

terminated when there is at least one vertex that simultaneously

receives the messages originating from 𝑠 and 𝑡 .

For DPSL, the labeling entries are distributed to the machines

where the corresponding vertices are placed. Then, we execute the

bidirectional search to get the query result within two supersteps.

Therefore, the index size and query time of PSL and DPSL are the

same.

For CTL, we adopt the same bidirectional search strategy in

Algorithm 1 to get the query results. Compared with DH-Index,

CTL needs to exchange the messages twice since the vertices in the

same tree are possibly distributed into different machines.

Environment. All distributed algorithms are implemented in a

distributed graph computing system Blogel [35] which performs

computational tasks in a superstep fashion. Blogel is deployed in

a local cluster with 10 computing nodes
3
with AMD 2.6 GHz and

128 GB memory. The communication among machines is achieved

by MPI. All algorithms are implemented in C++ and compiled with

O3-level optimization. By contrast, PSL and CTL are deployed in the

machine with 40 cores and 500 GB, and supported by the OpenMP

framework.

3
In this paper, we use the node to represent the machine in a cluster.

2649



Setting. Unless stated otherwise, we adopt the KaHIP [31] method

to generate the initial partitioning result which achieves a trade-off

between good locality and vertex balance. In addition, the parameter

𝑐 is set as 0.02 by default (For “ukunion”, 𝑐 is set as 0.0002). The

experimental result is marked as “N/A” when an algorithm runs out

of memory. For query evaluation, we randomly select 10
6
vertex

pairs (𝑠, 𝑡) from each dataset under consideration.

Statement. The DH-Index method can be easily extended to handle

weighted graphs and directed graphs. In addition, this strategy can

also be extended to resolve the problem of shortest path query.

5.2 Experimental results

Exp-1: Indexing time. In this part, we evaluate the indexing time

of all methods. The experimental results are shown in Fig. 3, where

DH-Index basically outperforms the other methods in terms of

indexing time. On many datasets, DH-Index achieves up to 65.5×,
4.8×, and 5.1× speedup compared to DPSL, PSL, and CTL in terms of

indexing time, respectively. The superior performance of DH-Index

can be attributed to its effective design, which avoids frequent com-

munication costs and fully utilizes the computing resources of the

cluster. Moreover, the construction of the boundary index can be

executed in parallel, thereby accelerating the index construction. By

contrast, DPSL’s lengthy indexing time stems from frequent com-

munication and 2-hop cover verification, necessitating extensive

label message exchanges across machines and label entry duplica-

tion to all nodes, which is constrained by each machine’s memory

capacity, significantly impeding DPSL’s practicality. In addition,

PSL is only executed in a single computing node, thus increasing

the indexing time. More importantly, DPSL and PSL also encounter

out-of-memory issues on many datasets, which are caused by the

huge size of the centralized 2-hop index on all vertices. By contrast,

DH-Index can be finished on all datasets. This is because the 2-hop

index is decomposed into the 4-hop index based on interior and

boundary vertices, and then constructed on different machines,

thus reducing indexing cost.

For CTL, although the number of core vertices can be largely

reduced, it is also time-consuming to build the 2-hop index for

CTL on the core graph. This is because (1) the core graph is dense,

where the number of edges is only slightly less than the original

graph, and (2) the limited computing resources in a centralized

environment.
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Figure 3: Indexing time (s) on all datasets

Exp-2: Index size. In this part, we evaluate the index size of DH-

Index, PSL, and CTL on all datasets since the label size of DPSL

and PSL is the same. As shown in Fig. 4, DH-Index significantly

outperformed PSL, achieving an average 3.5× reduction, whilst CTL
outperformed DH-Index, achieving an average 1.9× reduction. DH-

Index successfully built indexes on all datasets, while PSL struggled

with memory issues on many datasets. This efficiency is due to

DH-Index’s innovative design, which is mainly composed of two

reasons. First, due to the design of DH-Index, the 2-hop index is

decomposed into the 4-hop index based on interior and boundary

vertices, thus largely reducing the number of label entries in inte-

rior vertices. Second, during the boundary index construction in

DH-Index, redundant label entries are efficiently pruned. This is

achieved by strategically duplicating certain boundary vertices with

higher ranks, across all machines. Therefore, DH-Index can utilize

all memory space of the cluster to evenly store the index, which

helps to avoid encountering out-of-memory issues. Considering

that CTL constructed the tree index for all tree nodes, its index size

is naturally smaller than that of DH-Index since the size of the tree

index is much less than that of the hop-based index.
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Figure 4: Index size (GB) on all datasets

Exp-3: Query time. Fig. 5 shows the average query time of BiBFS,

DPSL, DH-Index, and CTL on two types of query tasks. Specifically,

the query time of DH-Index is comparable to that of DPSL (lower

than that of CTL) on many datasets. Although DH-Index always

takes 3 supersteps to get the query result, which is larger than the

2 supersteps in DPSL, the first step in DH-Index does not involve

the message exchange among different machines, thereby reducing

the query costs. By contrast, CTL can also finish all query tasks

within 3 supersteps, this strategy must exchange messages among

different machines twice since the nodes need to be evenly divided

into the cluster for workload balance. Therefore, it is inevitable for

CTL to take more serious costs, especially for the query tasks with

two tree nodes.

Examining Fig. 5 (a) and Fig. 5 (b), we can find that the im-

provement of DH-Index over BiBFS is more significant with aver-

age speedup of 305.9× when handling the query tasks 𝑞(𝑠, 𝑡) with
𝑑𝑖𝑠𝑡 (𝑠, 𝑡) > 6 compared to the speedup of 20.5× when 𝑑𝑖𝑠𝑡 (𝑠, 𝑡) ≤ 6.

The reason is when 𝑑𝑖𝑠𝑡 (𝑠, 𝑡) ≤ 6, BiBFS only needs 3 supersteps to

get the query result and DH-Index also needs 3 supersteps. However,

when 𝑑𝑖𝑠𝑡 (𝑠, 𝑡) > 6, BiBFS always exhibits terrible performance

because more supersteps are needed and massive redundant paths

are explored, while DH-Index can still report the result within 3

supersteps.

Exp-4: Communication cost. In this part, we evaluate the com-

munication costs of BiBFS, DPSL, CTL, and DH-Index. As shown

in Fig. 6, when solving two kinds of queries, i.e., 𝑑𝑖𝑠𝑡 (𝑠, 𝑡) ≤ 6 and

𝑑𝑖𝑠𝑡 (𝑠, 𝑡) > 6, DH-Index achieves up to 2 and 3 orders of magni-

tude less communication cost compared to BiBFS, respectively. In

addition, the communication cost of DH-Index is lower than that

of CTL on all datasets.

Similar to Exp-3, when handling the query tasks with long

distances, it is inevitable for BiBFS to transmit more messages to

unrelated vertices that are not located in any shortest path, thus

heavily increasing the communication costs. By contrast, consider-

ing that each query task can be answered within 3 supersteps in

DH-Index, and only involves a single round of exchangingmessages,

the communication cost of DH-Index will not fluctuate significantly

when 𝑑𝑖𝑠𝑡 (𝑠, 𝑡) increases. In addition, the communication cost of
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Figure 5: Query time (ms) on all datasets

DH-Index is slightly higher than that of DPSL on some datasets,

since the DPSL-based queries can be answered within 2 supersteps.
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Figure 6: Communication cost (KB) on all datasets

Exp-5: Indexing speedup with multi-cores.We evaluate DH-

Index’s scalability by varying the number of cores and calculating

the indexing speedup. The speedup on 𝑥 cores is determined using

𝑠𝑝𝑒𝑒𝑑𝑢𝑝 = 𝑇1/𝑇𝑥 , where 𝑇1 is the indexing time with a single core

on each machine, and 𝑇𝑥 is the time with 𝑥 cores on each machine.

This assessment helps us understand how well DH-Index takes

advantage of multicore parallelism.

The indexing time speedup of DH-Index is shown in Fig. 7 where

the core number in each machine increases from 1, 5, 10 to 15 on

four graphs, which means that the total number of cores across

different machines increases from 10, 50, 100, to 150. We observe

that a near linear speedup has been achieved for DH-Index along

with the increasing number of cores. The speedup of each approach

is relatively stable over different graphs. Specifically, on 15 cores

of each machine, DH-Index shows an average speedup of 10 and a

maximum speedup of 11.2. This scalability is mainly due to three

reasons. First, the construction of interior index 𝐷𝐻𝐼 can be ac-

celerated by multi-core computing in all machines. Second, the

eliminated redundant edges in the boundary graph help to reduce

the time costs of boundary graph reconstruction and boundary

index construction. Third, the construction of 𝐷𝐻𝐵 can also be

accelerated by multi-core computing in all machines. The above

three steps can effectively improve the utilization of cores.
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Figure 7: Speedup when varying the cores of each machine

Exp-6: Effect of parameter 𝑐.We examine how varying the pa-

rameter 𝑐 (the percent of duplicated boundary vertices) from 0 to

0.05 influences the indexing time and index size of DH-Index. Fig. 8

presents the experimental results in SP, ID, U2, and IT. Similar

trends can also be observed on other datasets, which are omitted

here due to page limit.

The indexing time of DH-Index tends to rise while its index size

generally decreases as 𝑐 increases, as evidenced by the trends in

Fig. 8. Specifically, the indexing time is influenced by two conflicting

factors. On one hand, the inclusion of more duplicated higher-order

vertices increases the computational load in each machine, resulting

in a longer indexing time. On the other hand, these additional

vertices help prune redundant label entries, ultimately streamlining

the process. This is evident on the SP dataset, where the indexing

time decreases initially when 𝑐 increases from 0 to 0.005, due to the

dominant effect of reduced redundant label computations.

In terms of index size, since the duplicated vertices are always

equipped with higher ranking values, the label entries originating

from these vertices can largely reduce the storage of redundant

labels which can be dominated by the duplicated vertices, thus

reducing the index size. As 𝑐 increases, the index size tends to

stabilize since a small number of higher-order vertices are sufficient

to prune most of the redundant labels, diminishing the impact of

additional duplicated vertices.
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Figure 8: Effectiveness of 𝑐 · 103 on performance

Exp-7: Scalability evaluation. In this experiment, we assess DH-

Index’s scalability in terms of indexing time and index size, ad-

justing the machine count from 5 to 25. The results on ID and U2
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datasets are provided, with consistent patterns observed across

other datasets, although these are omitted for brevity. Figs. 9 and 10

display the change in indexing time and index size for 𝐷𝐻𝐼 and

𝐷𝐻𝐵 , respectively.

As the number of machines rises, we observe a general expansion

in the size of boundary vertices, leading to an increased proportion

of both indexing time and index size for 𝐷𝐻𝐵 in the overall costs.

This increment is attributed to each boundary vertex aggregating

more label entries during the boundary graph index construction.
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Figure 10: Index size when varying the machines

Exp-8: Effectiveness of the partitioning strategy. This experi-

ment assesses the impact of partitioning strategies on DH-Index,

focusing on Hash and KaHIP [31], in terms of indexing time and

index size.

Hash-based partitioning, with its poorer locality, results in more

boundary vertices and larger boundary index size than KaHIP,

as shown in Fig. 11. KaHIP outperforms the Hash-based method,

speeding up index construction by up to 17.3× and reducing index

size by up to 9.3×. Hash’s suboptimal partitions also lead to a

significant increase in boundary vertices, causing DH-Index to run

out of memory on several datasets.
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Figure 11: Performance evaluation of partitioning strategies

6 RELATED WORK

Apart from the state-of-the-art methods discussed in Section 2.3,

this section explores other relatedworks on shortest distance queries

to provide a comprehensive understanding of the field.

6.1 Online Searching Strategy

The distance queries are resolved based on online searching meth-

ods, such as Dijkstra, bidirectional searching [7], ALT [12], and

neural-optimized 𝐴∗ [36]. Although there is no extra memory cost,

these methods may traverse the whole graph when two query

vertices are far from each other, thereby taking huge time costs,

especially in large-scale data graphs. In addition, when directly

extending these methods to the distributed environment, it is in-

evitable to produce extra communication costs caused by the mes-

sage exchange across different machines, thus degenerating the

query efficiency. More importantly, these two methods cannot effi-

ciently handle the query tasks where two vertices are not connected

in the data graph.

6.2 Index-based Searching Strategy

Index-based methods [3, 10, 15, 19, 22, 23, 33, 42, 44] have been tai-

lored to accommodate graphs with various properties, significantly

reducing the search space for each query task through the use of

pre-computed distance information.

For the road networks, a contraction hierarchy (CH) method is

proposed in [11] to establish the shortcut structures based on a

predefined vertex order strategy. Based on the shortcut structure,

the query tasks can be efficiently resolved based on a modified

bidirectional Dijkstra algorithm. Inspired by CH, Zhu et al. [45]

designed an arterial hierarchy (AH) approach that accelerates the

construction of shortcuts by exploiting some 2-dimensional spa-

tial properties in the road network. However, the hierarchy-based

solutions require a large search space for long-distance queries.

The hop-based labeling approaches are proposed in [1, 2] based on

the 2-hop index. The work in [22] mitigates short-distance query

inefficiencies in road networks through tree decomposition, intro-

ducing a hierarchical 2-hop index (H2H-Index) that labels vertices

and preserves their hierarchy. The authors in [44] used reinforce-

ment learning to reduce the label size of the index. For small-world

networks such as social networks and web graphs, the state-of-the-

art methods, including PLL [3], PSL [17], and CTL [18], have been

analyzed in Sections 2.2 and 2.3 in detail.

7 CONCLUSION

In this paper, we tackle the shortest-distance query problem in the

distributed environment. We introduce DH-Index, an innovative

index structure ensuring that any pair of connected vertices is at

most four hops away via the index. We then present a practical

method for efficiently constructing DH-Index in the distributed

setting and develop a bidirectional search strategy that leverages

DH-Index for query execution. Our extensive experiments validate

our approach, highlighting significant improvements in indexing

speed, compactness, communication efficiency, and computational

scalability. In future work, we will focus on designing effective

strategies to solve the shortest distance queries on dynamic graphs.
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