
Efficient Parallel D-core Decomposition at Scale
Wensheng Luo

The Chinese University of Hong Kong, Shenzhen

luowensheng@cuhk.edu.cn

Yixiang Fang
∗

The Chinese University of Hong Kong, Shenzhen

fangyixiang@cuhk.edu.cn

Chunxu Lin

The Chinese University of Hong Kong, Shenzhen

chunxulin1@link.cuhk.edu.cn

Yingli Zhou

The Chinese University of Hong Kong, Shenzhen

yinglizhou@link.cuhk.edu.cn

ABSTRACT
Directed graphs are prevalent in social networks, web networks,

and communication networks. A well-known concept of the di-

rected graph is the D-core, or (𝑘 , 𝑙)-core, which is the maximal

subgraph in which each vertex has an in-degree not less than 𝑘 and

an out-degree not less than 𝑙 . Computing the non-empty D-cores for

all possible values of 𝑘 and 𝑙 , a.k.a. D-core decomposition, has found

versatile applications spanning social network analysis, community

search, and graph visualization. However, existing algorithms of

D-core decomposition suffer from efficiency and scalability issues

on large graphs, because serial peeling-based algorithms are limited

by single-core utilization, while skyline coreness-based methods

exhibit notably high time complexity. To tackle these issues, in this

paper, we propose efficient parallel algorithms for D-core decompo-

sition by leveraging the computational prowess of multicore CPUs.

Specifically, we first propose a novel algorithm that computes the

D-cores for each possible 𝑘 value, by exploiting an implicit level-

by-level vertex removal strategy, which not only diminishes depen-

dencies between vertices but also maintains a time complexity akin

to that of sequential algorithms. We further develop an advanced

algorithm by introducing a novel concept of D-shell, which allows

us to curtail redundant computations by reducing the necessary

𝑘 values when computing corresponding D-cores, and deriving

D-cores with larger 𝑘 values from the D-cores currently computed

based on D-shell. Extensive experiments on ten real-world large

graphs show that our algorithms are highly efficient and scalable,

and the advanced algorithm is up to two orders of magnitude faster

than the state-of-the-art parallel decomposition algorithm with 32

threads.

PVLDB Reference Format:
Wensheng Luo, Yixiang Fang, Chunxu Lin, and Yingli Zhou. Efficient

Parallel D-core Decomposition at Scale. PVLDB, 17(10): 2654 - 2667, 2024.

doi:10.14778/3675034.3675054

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at

https://github.com/GearlessL/PDC.

∗
Yixiang Fang is the corresponding author.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 17, No. 10 ISSN 2150-8097.

doi:10.14778/3675034.3675054

1 INTRODUCTION
As a fundamental data structure, directed graphs are able to capture

the complex relationships between entities through directed edges.

Directed graphs are prevalent in social networks, web networks,

and communication networks. For example, in social networks (e.g.,

Facebook, Twitter, and Instagram), the directed graph can showcase

users’ following-follower relationships; in the World Wide Web, it

maps hyperlink connections between web pages as directed edges;

in communication networks, it is able to model the information

transmission between nodes. A well-known concept of the directed

graph is the D-core [22], or (𝑘 , 𝑙)-core, which is the maximal sub-

graph in which each vertex has an in-degree not less than 𝑘 and

an out-degree not less than 𝑙 . This concept was extended from the

classic 𝑘-core on the undirected graph, where the 𝑘-core is defined

as the maximal subgraph in which each vertex has a degree of 𝑘

or more [3, 41, 46]. For instance, in the directed graph depicted

in Figure 1, the subgraph comprising {𝑣3, 𝑣5, 𝑣6, 𝑣8} constitutes a
(3, 3)-core, because every vertex has both an in-degree and an out-

degree of 3 or more. Conversely, the subgraph formed by the subset

{𝑣2, 𝑣3, 𝑣5, 𝑣6, 𝑣7, 𝑣8} creates a (3, 1)-core, where each vertex main-

tains an in-degree of at least 3. However, vertex 𝑣2 in this subgraph

exhibits an out-degree of 1.

v1

v4

v7

(3, 1)-core

(1, 1)-core

v2

v3

v5

v8

v6

(3, 3)-core

Figure 1: Illustrating D-cores on a directed graph.

Given a directed graph, computing the non-empty D-cores for

all possible values of 𝑘 and 𝑙 is referred to as D-core decomposition.

D-core decomposition has found extensive applications, such as

community search [8, 17], graph visualization [1], social network

influence assessment [20], network centrality and authority identifi-

cation [48], evaluation of graph collaboration features [22], to name

a few. In the following, we present three concrete applications:

• Community search. Given a query vertex 𝑞 of a directed

graph, community search aims to find the most likely com-

munity containing 𝑞, which has found many applications

such as friend recommendation, event organization, and

biological network analysis. As shown in [8, 17], D-core is

2654

https://doi.org/10.14778/3675034.3675054
https://github.com/GearlessL/PDC
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3675034.3675054
https://www.acm.org/publications/policies/artifact-review-and-badging-current

effective for modeling communities in the directed graph.

The in-degree and out-degree constraints of D-core allow

us to identify the highly interactive communities, ensuring

that each vertex within the returned community showcases

significant interactions and robust cohesion with other

members, aligning with the expectations of the query users.

• Collaboration analysis for directed graphs. As shown
in [20], D-core decomposition is instrumental in under-

standing collaboration patterns within directed graphs,

where dense in/out-link connectivity signifies collaborative

tendencies. Giatsidis et al. [22] introduced metrics such

as Balanced Collaboration Index (BCI), Optimal Collabora-

tion Index (OCI), and Inherent Collaboration Index (ICI) to

assess collaboration and robustness. Specifically, BCI main-

tains a balanced Hub/Authority trade-off in the graph, OCI

reflects the graph’s degeneracy, and ICI represents the in-

herent Hubs/Authority trade-off. The computation of these

metrics relies on D-core decomposition since they need to

use all the (𝑘, 𝑙) pairs of D-cores in the graph.

• Network influence evaluation.Garcia et al. [20] employed

extensive digital data from 2009 to 2016 to explore the

realms of popularity, reputation, and social influence on

Twitter. By analyzing network information from over 40

million users, they derived new global reputation measures

by leveraging D-core decomposition and the bow-tie struc-

ture of the Twitter follower network. By computing D-cores,

they quantify reputation on a global scale, capturing the re-

cursive nature of reputation as a centrality measure: Users

in (𝑘, 𝑙)-cores with high 𝑘 are followed by users also in

(𝑘, 𝑙)-cores with high 𝑘 , illustrating the propagation of in-

fluence.

To compute all D-cores, Giatsidis et al. [22] introduced a peeling-

based algorithm that iteratively eliminates vertices with in-degrees

less than 𝑘 and out-degrees less than 𝑙 . However, it is very ineffi-

cient for large graphs, since it requires computing the D-core for

all possible values of 𝑘 and 𝑙 across the entire graph. To enhance

efficiency, Fang et al. [17] introduced an improved D-core decompo-

sition algorithm. The approach first calculates the maximum value

of 𝑘 , denoted as 𝑘𝑚𝑎𝑥 , in the graph, and then for each 𝑘 within

the range [0, 𝑘𝑚𝑎𝑥], it computes all D-cores associated with the

given 𝑘 by removing vertices with the smallest out-degrees and

in-degrees less than 𝑘 . Utilizing optimization techniques, such as

bin sort derived from 𝑘-core decomposition [3], the time complexity

for computing all D-cores corresponding to 𝑘 is 𝑂 (𝑚), where𝑚 is

the number of edges in the graph. Considering the upper bound for

𝑘𝑚𝑎𝑥 as 𝑂 (
√
𝑚), the overall time complexity stands at 𝑂 (𝑚

√
𝑚).

While peeling-based algorithms demonstrate favorable time com-

plexity, their efficiency declines as graph sizes increase, due to their

serial nature, which constrains their capacity to leverage the compu-

tational resources of multiple CPU cores. The main challenge stems

from the intrinsic non-parallelizability of peeling-based algorithms,

because the updates of out-degree and in-degree for vertices rely on

previously deleted vertices throughout the entire process, thereby

establishing a significant dependency that permeates the entirety

of the procedure.

To enhance the parallel efficiency of D-core decomposition, Liao

et al. [32] proposed a distributed parallel algorithm for D-core de-

composition, which leverages the local information of each vertex

to compute D-core. Specifically, the authors introduced the con-

cept of coreness for directed graph vertices, referred to as skyline

coreness. In contrast to coreness in undirected graphs, which signi-

fies the maximum value of 𝑘 corresponding to a non-empty 𝑘-core

containing the vertex, skyline coreness comprises a set of integer

pairs, which record the values of 𝑘 and 𝑙 associated with D-cores

encompassing the vertex and not subsumed by other D-cores. Simi-

lar to ℎ-index-based algorithms for 𝑘-core [44], skyline coreness is

updated iteratively through neighbor information for each vertex

until convergence, effectively avoiding information synchroniza-

tion between vertices and thereby improving algorithm parallelism.

However, the computation and update of skyline coreness are time-

consuming, leading to time complexity of𝑂 (𝑑max ·𝑑+max
·𝑚), where

𝑑max and 𝑑
+
max

are the maximum degree and maximum out-degree

among all vertices, respectively. Notice that this complexity is sig-

nificantly higher than that of peeling-based algorithms, posing

challenges in handling large-scale graphs.

Our technical contributions. To improve the efficiency of

D-core decomposition, in this paper, we aim to develop efficient

parallel algorithms under the shared-memory model. Inspired by a

parallel 𝑘-core decomposition algorithm [28], we propose a novel

parallel D-core decomposition algorithm, called ParPeel. To reduce
dependencies arising from updating the degrees of neighbors when

removing vertices, we propose a novel implicit vertex removal

method by removing vertices with equal out-core numbers each

time, which is different from existing methods that often remove

the vertex with the minimum out-degree each time. Specifically,

ParPeel first parallelly computes the maximum value of 𝑘 , denoted

by 𝑘𝑚𝑎𝑥 , of the graph, and then for each 𝑘 in [0, 𝑘𝑚𝑎𝑥], it computes

all (𝑘 , 𝑙)-cores where 𝑙 ranges from 0 to its maximum value. For a

given 𝑘 , we first initiate the level at 0, and then scan the graph for

vertices with an out-degree equal to the current level and parallelly

remove them. Subsequently, we update the degrees of all removed

vertices’ neighbors and rescan the remaining vertices to eliminate

those with an out-degree equal to the current level and an in-degree

less than 𝑘 . This process continues until there are no such vertices

in the graph. Afterward, we increase the level value and repeat the

above steps until all vertices have been processed. Interestingly,

ParPeel not only reduces dependencies between vertices but also

maintains a time complexity close to that of sequential algorithms.

Despite the superior performance of ParPeel compared to ex-

isting algorithms, it faces challenges related to redundant com-

putations. This arises from the fact that a vertex can belong to

multiple (𝑘, 𝑙)-cores, necessitating repetitive scanning of vertices
in the graph by ParPeel. Moreover, there is a potential limitation

in fully utilizing the multi-core computing power when the scale

of the graph being processed gradually decreases, as the value of 𝑘

increases. To further enhance efficiency, we propose an advanced al-

gorithm, called Shell-PDC. We observe that the 𝑘-list with a higher

𝑘 can be obtained from the 𝑘-list with a lower 𝑘 by leveraging the

neighbor information of each vertex. As a result, the entire process

is based on a new notion of (𝑘, 𝑙)-shell or D-shell, which can be

used to identify distinct 𝑘 for 𝑘-lists and reduce the vertices pro-

cessed. By using this new concept, the overall efficiency is improved

dramatically. Specifically, given a specific 𝑙 , the (𝑘′, 𝑙)-shell con-
sists of vertices exclusively in the (𝑘′, 𝑙)-core and absent in other

(𝑘, 𝑙)-cores corresponding to different 𝑘 values. Subsequently, we

demonstrate that instead of computing D-cores for 𝑘max distinct

𝑘 values, it suffices to compute unique D-cores corresponding to

2655

specific 𝑘 values derived from various (𝑘, 𝑙)-shells. Furthermore,

we explore the relationships between (𝑘, 𝑙)-cores with different

𝑘 values, and propose an iterative algorithm to compute larger

(𝑘, 𝑙)-cores based on the smaller ones obtained for the current 𝑘 ,

eliminating the need for redundant graph peeling operations. This

not only reduces computational redundancy to improve algorithm

efficiency but also enhances thread utilization, leading to better

parallel performance.

We have implemented all our algorithms by OpenMP
1
, a popu-

lar shared-memory parallel processing framework. We have also

conducted extensive experiments using ten real-world large di-

rected graphs, five of which consist of more than 100 million edges.

Experimental results show that our advanced parallel algorithm

Shell-PDC outperforms state-of-the-art parallel D-core decompo-

sition algorithms, achieving a remarkable speedup of up to two

orders of magnitude with 32 threads.

Outline.We review related works in Section 2, formally intro-

duce the D-core decomposition problem in Section 3, and present

our proposed ParPeel algorithm in Section 4. Our advanced decom-

position algorithm Shell-PDC is detailed in Section 5. We report

the experimental results in Section 6, and conclude in Section 7.

2 RELATEDWORK
In this section, we mainly review the existing works of decomposi-

tion for cores and other cohesive subgraphs in large graphs.

2.1 Core decomposition
𝑘-core is one of the most representative cohesive subgraph mod-

els [6, 35]. For an undirected graph and a given threshold 𝑘 , the

𝑘-core is a maximal subgraph where each vertex has a degree of

at least 𝑘 . Finding all 𝑘-cores corresponding to all possible values

of 𝑘 in a graph is known as core decomposition. Currently, there

are many efficient algorithms for core decomposition. Batagelj et

al. [3] proposed a core decomposition algorithm based on bin sort

which has a time complexity linear to the number of edges in

the graph. Kabir et al. [28] introduced a shared-memory parallel

core decomposition algorithm that improves efficiency by batch-

deleting vertices with the smallest degrees from the graph. Sariyuce

et al. [44] proposed a parallel core decomposition algorithm based

on the h-index [35], where each vertex updates its h-index using

neighbor information until convergence. Dhulipala et al. [13] in-

troduced a framework centered around work-efficient bucketing

for parallel algorithms, deploying it to implement the parallel 𝑘-

core decomposition algorithm. Following this, Huang et al. [25]

expanded upon the framework to tackle the bi-core decomposition

problem in bipartite graphs. However, these methodologies are

not directly applicable to solving D-core decomposition due to the

distinct structural characteristics of D-core in contrast to 𝑘-core or

bi-core. Additionally, there are distributed [2, 41], streaming [14, 43],

and disk-based [9, 29] core decomposition algorithms.

In directed graphs, as the degree of a vertex is divided into out-

degree and in-degree, the D-core model is proposed [22]. Fang et

al. [17] presented a single-machine D-core decomposition algorithm

with a time complexity of 𝑂 (𝑚
√
𝑚). Liao et al. [32] proposed a dis-

tributed parallel algorithm that calculates the D-core for each vertex

based on the locally computed skyline coreness, which enhances

parallelism and reduces communication overhead. However, the

1
https://www.openmp.org/

time complexity of this method is increased, and its performance

on large graphs needs further improvement.

Furthermore, core models and their decompositions on bipar-

tite graphs [33, 38], uncertain graphs [4], temporal graphs [54],

and heterogeneous information networks [16, 18] have also been

extensively researched.

2.2 Decomposition of other cohesive subgraphs
In addition to 𝑘-core, there are several other typical cohesive sub-

graphs in undirected graphs, such as 𝑘-truss [23, 51], 𝑘-clique [11,

30], nucleus [45, 47], 𝑘-edge connected components [7, 21], and

densest subgraph [19, 37, 55]. Some subgraph models have also

been extended to other types of graphs. For instance, D-truss [34]

and densest subgraph [40] in directed graphs, bi-truss [52] and bi-

clique [39] in bipartite graphs, (𝑘,𝛾)-truss [24, 49], (𝑘, 𝜏)-clique [10,
31] in uncertain graphs. However, due to the differences in these

models, their methods cannot be directly applied to D-core decom-

position.

Several other typical cohesive subgraphs exist in undirected

graphs. For instance, the 𝑘-truss [23] requires that each edge in the

subgraph is contained in at least 𝑘 − 2 triangles. The 𝑘-clique [26,
30, 42] demands that 𝑘 vertices in the subgraph are fully connected,

and the densest subgraph [15, 19] is defined as the subgraph with

the largest density among all subgraphs, where density is the ratio

of the number of edges to the number of vertices. These subgraph

models have also found extensions to directed graphs. For example,

D-truss [34, 50] is the directed version of 𝑘-truss with two types

of triangles, and directed densest subgraph [37, 40] extends undi-

rected density to directed density. Furthermore, cohesive subgraph

models in other types of graphs have been studied. For example,

bi-truss [52], biclique [39, 53], and quasi-biclique [36] in bipartite

graphs, as well as (𝑘,𝛾)-truss [49], (𝑘, 𝜏)-clique [10] in uncertain

graphs. However, due to the differences in these models, their meth-

ods cannot be directly applied to D-core decomposition.

3 PROBLEM STATEMENT
Let 𝐺 = (𝑉 , 𝐸) be a directed, unweighted simple graph, where 𝑉

and 𝐸 are the sets of vertices and edges of 𝐺 , respectively. Any

edge 𝑒 = (𝑢, 𝑣) in 𝐸 is directed, meaning that 𝑒 is an edge from 𝑢

to 𝑣 , and we call 𝑢 the in-neighbor of 𝑣 , and 𝑣 the out-neighbor

of 𝑢. Correspondingly, we denote the sets of out-neighbors and

in-neighbors of vertex 𝑣 in 𝑉 as 𝑁 − (𝑣) and 𝑁 + (𝑣), respectively.
The number of out-neighbors and in-neighbors of vertex 𝑣 is called

its out-degree and in-degree, respectively, and is denoted as 𝑑− (𝑣)
and 𝑑+ (𝑣), i.e., 𝑑− (𝑣) = |𝑁 − (𝑣) |, 𝑑+ (𝑣) = |𝑁 + (𝑣) |. Additionally, we
define the degree of 𝑣 as the sum of its out-degree and in-degree,

that is, 𝑑 (𝑣) = 𝑑− (𝑣) +𝑑+ (𝑣). Accordingly, we denote the maximum

value of out-degree in𝐺 as 𝑑−𝑚𝑎𝑥 , the maximum value of in-degree

as 𝑑+𝑚𝑎𝑥 , and the maximum value of degree as 𝑑𝑚𝑎𝑥 . Table 1 shows

the notations frequently used and their meanings in this paper.

Based on the in-degree and out-degree of vertices, the definition

of D-core is as follows.

Definition 1 (D-core [22]). Given a directed graph 𝐺 = (𝑉 , 𝐸)
and two integers 𝑘 and 𝑙 , a D-core of𝐺 , also known as a (𝑘, 𝑙)-core, is
a maximal subgraph 𝐻 = (𝑉𝐻 , 𝐸𝐻) ⊆ 𝐺 such that the in-degree and
out-degree of vertices in 𝐻 are not less than 𝑘 and 𝑙 , respectively, i.e.,
∀𝑣 ∈ 𝑉𝐻 , 𝑑+ (𝑣) ≥ 𝑘 and 𝑑− (𝑣) ≥ 𝑙 .

2656

Table 1: Notations and meanings.

Notation Meaning
𝐺 = (𝑉 , 𝐸) A directed graph𝐺 with vertex set𝑉 and edge set 𝐸

𝑛,𝑚 The numbers of vertices and edges in𝐺 resp.

𝑁 − (𝑣) , 𝑁 + (𝑣) The out-neighbor set and in-neighbor set of a vertex 𝑣 ∈ 𝐺 resp.

𝑑 (𝑣) The degree of a vertex 𝑣 ∈ 𝐺
𝑑𝑚𝑎𝑥 The maximum degree of all vertices in𝐺

𝑑− (𝑣) , 𝑑+ (𝑣) The out-degree and in-degree of a vertex 𝑣 ∈ 𝐺 resp.

𝑑−𝑚𝑎𝑥 , 𝑑
+
𝑚𝑎𝑥 The maximum out-degree and in-degree of all vertex in𝐺 resp.

𝑘𝑚𝑎𝑥 , 𝑙𝑚𝑎𝑥 The maximum 𝑘 and 𝑙 among all D-cores of𝐺 resp.

𝐾 (𝑣, 𝑙) , 𝐿 (𝑣, 𝑘) The in-core number and out-core number of a vertex 𝑣 ∈ 𝐺
for a given 𝑙 and 𝑘 resp.

We refer to (𝑘, 𝑙) as the d-pair of the D-core, where 𝑘 and 𝑙 are

respectively called the in-core number and out-core number of the

(𝑘, 𝑙)-core. For all D-cores, we record the maximum value that 𝑘 can

obtain as 𝑘𝑚𝑎𝑥 , and the maximum value of 𝑙 is 𝑙𝑚𝑎𝑥 . For a vertex 𝑣

in 𝐺 , when the constraints of the given in-degree/out-degree are

different, the out-core/in-core number is also different. We denote

the out-core/in-core number of 𝑣 for a given 𝑘/𝑙 as 𝐿(𝑣, 𝑘)/𝐾 (𝑣, 𝑙).
Similar to the classic 𝑘-core [3, 46], D-cores possess notable

properties: (1) a D-core is not necessarily connected; (2) for any

d-pair (𝑘, 𝑙), there is at most one (𝑘, 𝑙)-core in𝐺 ; and (3) the D-cores
have a partially nested relationship which is stated as follows.

Property 1. Given a directed graph 𝐺 and two D-cores, say
(𝑘1, 𝑙1)-core and (𝑘2, 𝑙2)-core, if 𝑘1 ≥ 𝑘2 and 𝑙1 ≥ 𝑙2, then the (𝑘1, 𝑙1)-
core is a subgraph of the (𝑘2, 𝑙2)-core.

Problem statement. In this paper, we study the D-core decom-

position problem. Specifically, given a directed graph 𝐺 , D-core

decomposition aims to find all D-cores in 𝐺 , that is, to find the

non-empty (𝑘, 𝑙)-cores corresponding to all possible d-pairs.

Table 2: All non-empty D-cores of the directed graph shown
in Figure 1.

𝑙

𝑘
0 1 2 3

0

𝑣1, 𝑣2, 𝑣3, 𝑣4,

𝑣5, 𝑣6, 𝑣7, 𝑣8

𝑣1, 𝑣2, 𝑣3, 𝑣4,

𝑣5, 𝑣6, 𝑣7, 𝑣8

𝑣1, 𝑣2, 𝑣3, 𝑣4,

𝑣5, 𝑣6, 𝑣7, 𝑣8

𝑣2, 𝑣3, 𝑣5, 𝑣6,

𝑣7, 𝑣8

1

𝑣1, 𝑣2, 𝑣3, 𝑣4,

𝑣5, 𝑣6, 𝑣7, 𝑣8

𝑣1, 𝑣2, 𝑣3, 𝑣4,

𝑣5, 𝑣6, 𝑣7, 𝑣8

𝑣1, 𝑣2, 𝑣3, 𝑣4,

𝑣5, 𝑣6, 𝑣7, 𝑣8

𝑣2, 𝑣3, 𝑣5, 𝑣6,

𝑣7, 𝑣8

2

𝑣1, 𝑣2, 𝑣3, 𝑣4,

𝑣5, 𝑣6, 𝑣7, 𝑣8

𝑣1, 𝑣2, 𝑣3, 𝑣4,

𝑣5, 𝑣6, 𝑣7, 𝑣8

𝑣1, 𝑣2, 𝑣3, 𝑣4,

𝑣5, 𝑣6, 𝑣7, 𝑣8
𝑣3, 𝑣5, 𝑣6, 𝑣8

3 𝑣3, 𝑣5, 𝑣6, 𝑣8 𝑣3, 𝑣5, 𝑣6, 𝑣8 𝑣3, 𝑣5, 𝑣6, 𝑣8 𝑣3, 𝑣5, 𝑣6, 𝑣8

Example 1. Figure 1 shows a directed graph 𝐺 with 8 vertices,
and Table 2 illustrates all the D-cores of 𝐺 . The values of 𝑘𝑚𝑎𝑥 and
𝑙𝑚𝑎𝑥 are both 3, resulting in a total of 9 distinct D-cores with dif-
ferent 𝑘 and 𝑙 values. Each cell in the table represents the vertices
in the corresponding D-core. For example, a subgraph induced by
{𝑣3, 𝑣5, 𝑣6, 𝑣8} represents a (3, 3)-core of 𝐺 , and the subgraph induced
by {𝑣2, 𝑣3, 𝑣5, 𝑣6, 𝑣7, 𝑣8} is a (3, 1)-core of 𝐺 . According to Property 1,
we can observe that (3,3)-core ⊆ (3,2)-core ⊆ (3,1)-core ⊆ (3,0)-core.
Likewise, (3,3)-core ⊆ (2,3)-core ⊆ (1,3)-core ⊆ (0,3)-core. The D-core
decomposition aims to obtain all the D-cores of𝐺 , covering all possible
pairs of 𝑘 and 𝑙 values.

Computation model. In this paper, we employ the work-span

model to analyze the algorithms, which is a widely utilized frame-

work in the analysis of shared-memory algorithms [27]. The opera-

tions of a parallel algorithm form a directed acyclic graph, where

each vertex represents an operation and directed edges denote

dependencies between operations (see Figure 2). The work of an

algorithm corresponds to its total number of operations, reflecting

its time complexity. Conversely, the span (or depth) represents the

longest dependency path in the algorithm. For instance, in Figure 2,

the algorithm’s work is 10, with a span of 4. The theoretical running

time of a parallel algorithm can be expressed as𝑤𝑜𝑟𝑘/𝑝 + 𝑠𝑝𝑎𝑛 [5],

where 𝑝 denotes the number of threads utilized.

span

Figure 2: An example of the work-span computation model.

4 A PARALLEL D-CORE DECOMPOSITION
ALGORITHM

In this section, we begin by introducing the state-of-the-art D-

core decomposition algorithms and delving into their limitations.

Following this, we present a novel and efficient parallel D-core

decomposition algorithm.

4.1 State-of-the-art algorithms
The state-of-the-art serial D-core decomposition algorithm, named

Peeling, is introduced by [17]. The algorithm involves comput-

ing (𝑘 ,𝑙)-cores for each 𝑘 , with 𝑘 ranging from 0 to the maximum

in-degree of the graph. Specifically, for each 𝑘 , the procedure op-

erates sequentially, removing disqualified vertices from the graph

through an iterative process that eliminates those with the small-

est out-degrees. Despite its efficiency in obtaining D-cores within

𝑂 (𝑚
√
𝑚) time using techniques like bin sort [3], its parallelization

faces challenges. The iterative process of identifying and remov-

ing vertices with the smallest out-degrees, along with updating

both out-degrees and in-degrees of the remaining vertices until the

graph is empty, makes it inherently non-parallelizable due to the

dependencies in the updating of degrees among vertices. There-

fore, while Peeling is work-efficient, there remains a need for an

efficient parallel D-core decomposition algorithm.

The state-of-the-art parallel approach leverages the partial nested

property of D-core to introduce the concept of skyline coreness [32].

Definition 2 (skyline coreness [32]). Given a directed graph
𝐺 (𝑉 , 𝐸), the skyline coreness of a vertex 𝑣 ∈ 𝑉 is denoted by an integer
pair (𝑘, 𝑙). This indicates that 𝑣 is part of a maximal (𝑘, 𝑙)-core, and
there is no other (𝑘′, 𝑙 ′)-core that contains it, where both 𝑘′ and 𝑙 ′
are greater than 𝑘 and 𝑙 , i.e., (𝑘, 𝑙) is dominated by (𝑘′, 𝑙 ′).

Given a directed graph, each vertex in the graph has one or more

skyline corenesses. For a vertex’s skyline coreness (𝑘, 𝑙), it must

satisfy that it has at least 𝑘 in-neighbors with a skyline coreness

that dominates or is equal to (𝑘, 𝑙), and at least 𝑙 out-neighbors with
a skyline coreness that dominates or is equal to (𝑘, 𝑙).

Based on skyline coreness, Liao et al. [32] proposed an iter-

ative algorithm that relies on vertex neighborhood information.

The pseudocode for the algorithm is presented as Algorithm 1.

2657

Algorithm 1: SC [32]
Input: A directed graph𝐺 = (𝑉 , 𝐸)
Output: The skyline corenesses of all the vertices of𝐺

1 Compute 𝑘𝑚𝑎𝑥 and 𝑙𝑚𝑎𝑥 for all vertices;

2 foreach 𝑣 ∈ 𝑉 do 𝐷𝑣 ← {(𝑘𝑚𝑎𝑥 (𝑣), 𝑙𝑚𝑎𝑥 (𝑣) };
3 𝐹 ← 𝑡𝑟𝑢𝑒 ;

4 while 𝐹 do
5 𝐹 ← 𝑓 𝑎𝑙𝑠𝑒 ;

6 for 𝑣 ∈ 𝑉 in parallel do
7 𝐷 ← ∅, 𝑘𝑚𝑎𝑥 , 𝑙𝑚𝑎𝑥 ← maximum 𝑘 and 𝑙 in 𝐷𝑣 resp.;

8 for 𝑘 ← 𝑘𝑚𝑎𝑥 to 1 do
9 𝑙 ← 𝑙𝑚𝑎𝑥 , 𝑙𝑚𝑖𝑛 ← 0;

10 while 𝑙 > 𝑙𝑚𝑖𝑛 do
11 if (𝑘, 𝑙) meets the skyline coreness constraints then
12 𝐷 ← 𝐷 ∪ { (𝑘, 𝑙) };
13 𝑙𝑚𝑖𝑛 ← 𝑙 ;

14 𝑙 ← 𝑙 − 1;

15 if 𝐷𝑣 ≠ 𝐷 then 𝐹 ← 𝑡𝑟𝑢𝑒 , 𝐷𝑣 ← 𝐷 ;

16 return {𝐷𝑣 |𝑣 ∈ 𝑉 } ;

Specifically, the algorithm starts by computing the maximum val-

ues of 𝑘 and 𝑙 for each vertex 𝑣 , denoted as 𝑘𝑚𝑎𝑥 (𝑣) and 𝑙𝑚𝑎𝑥 (𝑣)
respectively (line 1). Then, the skyline coreness of 𝑣 is initialized as

(𝑘𝑚𝑎𝑥 (𝑣), 𝑙𝑚𝑎𝑥 (𝑣)), where 𝐷𝑣 is the skyline coreness set of 𝑣 (line
2). For each vertex, the algorithm retrieves the maximum values of

𝑘 and 𝑙 from its set of skyline corenesses. It then iterates over all

d-pairs and examines whether the vertex satisfies the constraints of

skyline coreness based on its neighbor information (lines 7-14). The

algorithm updates the original skyline coreness with the obtained

skyline coreness (line 15). This step is repeated until the coreness

values of all vertices no longer change (line 4).

Table 3: The computation process of skyline coreness for
each vertex in Figure 1.

𝑣1 𝑣2 𝑣3 𝑣4

𝐷0 (𝑣) { (2, 2) } { (3, 2) } { (3, 3) } { (2, 2) }
𝐷1 (𝑣) { (2, 2) } { (3, 1), (2, 2) } { (3, 3) } { (2, 2) }
𝐷2 (𝑣) { (2, 2) } { (3, 1), (2, 2) } { (3, 3) } { (2, 2) }

𝑣5 𝑣6 𝑣7 𝑣8

𝐷0 (𝑣) { (3, 3) } { (3, 3) } { (3, 2) } { (3, 3) }
𝐷1 (𝑣) { (3, 3) } { (3, 3) } { (3, 1), (2, 2) } { (3, 3) }
𝐷2 (𝑣) { (3, 3) } { (3, 3) } { (3, 1), (2, 2) } { (3, 3) }

Example 2. Taking the directed graph𝐺 in Figure 1 as an example,
Table 3 illustrates the computation process of skyline coreness for each
vertex. Here, 𝐷𝑖 (𝑣) represents the skyline coreness value of vertex 𝑣
in the 𝑖-th iteration. The initial skyline coreness for each vertex is
determined by finding the maximum values of 𝑘 and 𝑙 that allow the
vertex to be included in a (𝑘, 0)-core and (0, 𝑙)-core, respectively. For
instance, the initial skyline coreness of vertex 𝑣2 is (3, 2), indicating
its inclusion in a (3, 0)-core and a (0, 2)-core. In each iteration, every
vertex updates its skyline coreness value according to the constraints
of skyline coreness until convergence. After two iterations, the skyline
coreness of vertex 𝑣2 converges to {(3, 1), (2, 2)}.

Limitations: Algorithm 1 reduces the interdependence among

vertex computations by leveraging local information, and the order

of updating skyline corenesses for each vertex does not affect the

correctness of the final results. This property enhances parallelism.

However, the algorithm still has limitations. Despite reducing com-

putation dependencies, the work of Algorithm 1 increases. Specifi-

cally, the time complexity is given by𝑂 (𝑅𝑆𝐶 ·𝑑+𝑚𝑎𝑥 ·𝑚), where 𝑅𝑆𝐶
is the number of iterations in the algorithm and 𝑑+𝑚𝑎𝑥 represents

the maximum out-degree among all vertices in the graph𝐺 . In com-

parison, the current state-of-the-art single-machine algorithm has

a time complexity of 𝑂 (𝑘𝑚𝑎𝑥 ·𝑚) [17], where 𝑘𝑚𝑎𝑥 corresponds

to 𝑑+𝑚𝑎𝑥 in the worst case. As a result, the work of Algorithm 1

grows exponentially, making it challenging to handle large-scale

graphs, especially when 𝑘𝑚𝑎𝑥 is large and the number of skyline

corenesses per vertex is substantial.

4.2 Parallel D-core computation
To tackle the aforementioned challenges, we propose an efficient

parallel D-core decomposition algorithm in this subsection. Before

presenting the algorithm, we introduce the concept of a 𝑘-list as

follows.

Definition 3 (k-list [17]). Given a directed graph 𝐺 (𝑉 , 𝐸) and
an integer 𝑘 , a 𝑘-list is a list of all D-cores in 𝐺 , where the in-core
number of each D-core in the 𝑘-list is equal to 𝑘 .

Example 3. Consider the directed graph in Figure 1, the D-core of
each column in Table 2 generates the corresponding 𝑘-list for various
values of 𝑘 . For instance, when 𝑘 = 1, the (1, 0)-core, (1, 1)-core, (1,
2)-core, and (1, 3)-core collectively constitute the 1-list. Besides, due
to the property of partially nesting, decomposing the graph with a
specific 𝑘 value is adequate to derive the out-core number for all
vertices, leading to the determination of the corresponding 𝑘-list.

According to Definition 3, it is evident that all D-cores of 𝐺 are

formed by the 𝑘-lists for 𝑘 in the range [0, 𝑘𝑚𝑎𝑥]. Consequently, de-
composing D-cores necessitates the computation of all 𝑘-lists rather

than individually determining each (𝑘, 𝑙)-core. Fang et al. [17] de-
vised a sequential algorithm based on global peeling to compute all

𝑘-lists. Specifically, it calculates the in-core number of each vertex

for a given 𝑘 by iteratively removing the vertex with the mini-

mum out-degree. Our algorithm adheres to the same computational

approach, as depicted in the workflow of our parallel D-core decom-

position algorithm in Figure 3. Notably, the parallel computation

of the 𝑘-list is a subroutine of the entire D-core decomposition

process. However, parallelizing the 𝑘-list computation presents in-

herent challenges due to sequential dependencies and the necessity

for synchronization steps. To tackle this problem, drawing inspira-

tion from parallel 𝑘-core algorithms [12, 28], we introduce a parallel

𝑘-list algorithm.

G
All non-
empty

D-cores

(0,0)-core

(1,0)-core

(kmax,0)-core

…

Parallel

compute

k-list

0-list

1-list

kmax-list

…

Parallel

compute

(k,0)-cores

Figure 3: The workflow of our parallel D-core decomposition
algorithm.

4.2.1 Parallel 𝑘-list computation. The main idea of the method is

to peel or implicitly remove vertices with equal out-core numbers

in parallel. Specifically, the method employs a level-by-level vertex

processing strategy, where each level addresses vertices with the

2658

minimum out-degree and vertices with in-degrees less than 𝑘 . Then

the algorithm updates the out-degrees and in-degrees of the remain-

ing vertices. This reduces the computation dependencies between

vertices, thereby enhancing parallelism. Algorithm 2 provides the

pseudocode for the algorithm.

Algorithm 2: PKlist(k)
Input: A directed graph𝐺 = (𝑉 , 𝐸) and an integer 𝑘

Output: The 𝑘-list of𝐺
1 𝑙𝑒𝑣𝑒𝑙, 𝑠𝑡𝑎𝑟𝑡, 𝑒𝑛𝑑, 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 ← 0, 𝑏𝑢𝑓 ← ∅;
2 foreach 𝑣 ∈ 𝑉 do 𝑓 𝑙𝑎𝑔[𝑣] ← 𝑡𝑟𝑢𝑒 ;

3 while 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 < 𝑛 do
4 for 𝑣 ∈ 𝑉 ∧ 𝑓 𝑙𝑎𝑔[𝑣] in parallel do
5 if 𝑑− (𝑣) = level then
6 𝑏𝑢𝑓 [𝑒𝑛𝑑] ← 𝑣, end++, 𝑓 𝑙𝑎𝑔[𝑣] ← 𝑓 𝑎𝑙𝑠𝑒 ;

7 else if 𝑑+ (𝑣) < 𝑘 then
8 𝑏𝑢𝑓 [𝑒𝑛𝑑] ← 𝑣, 𝑒𝑛𝑑++, 𝑓 𝑙𝑎𝑔[𝑣] ← 𝑓 𝑎𝑙𝑠𝑒 ;

9 𝑑− (𝑣) ← 𝑙𝑒𝑣𝑒𝑙 ;

10 while 𝑠𝑡𝑎𝑟𝑡 < 𝑒𝑛𝑑 do
11 𝑣 ← 𝑏𝑢𝑓 [𝑠𝑡𝑎𝑟𝑡],𝑠𝑡𝑎𝑟𝑡 + +, 𝑓 𝑙𝑎𝑔[𝑣] ← 𝑓 𝑎𝑙𝑠𝑒 ;

12 for 𝑢 ∈ 𝑁 − (𝑣) ∧ 𝑓 𝑙𝑎𝑔[𝑢] do
13 𝑑 ← atomicSub(𝑑+ (𝑢) ,1);
14 if 𝑑 ≤ 𝑘 then
15 𝑏𝑢𝑓 [𝑒𝑛𝑑] ← 𝑢,𝑒𝑛𝑑 + +, 𝑓 𝑙𝑎𝑔[𝑢] ← 𝑓 𝑎𝑙𝑠𝑒 ;

16 𝑑− (𝑢) ← 𝑙𝑒𝑣𝑒𝑙 ;

17 for 𝑤 ∈ 𝑁 + (𝑣) ∧ 𝑓 𝑙𝑎𝑔[𝑤] do
18 if 𝑑− (𝑤) > 𝑙𝑒𝑣𝑒𝑙 then
19 𝑑 ← atomicSub(𝑑− (𝑤) ,1);
20 if 𝑑 = 𝑙𝑒𝑣𝑒𝑙 + 1 then
21 𝑏𝑢𝑓 [𝑒𝑛𝑑] ← 𝑤,𝑒𝑛𝑑 + +, 𝑓 𝑙𝑎𝑔[𝑤] ← 𝑓 𝑎𝑙𝑠𝑒 ;

22 if 𝑑 ≤ 𝑙𝑒𝑣𝑒𝑙 then
23 atomicAdd(𝑑− (𝑤) ,1), 𝑓 𝑙𝑎𝑔[𝑤] ← 𝑓 𝑎𝑙𝑠𝑒 ;

24 atomicAdd(𝑣𝑖𝑠𝑖𝑡𝑒𝑑 ,𝑒𝑛𝑑);

25 𝑠𝑡𝑎𝑟𝑡, 𝑒𝑛𝑑 ← 0, 𝑙𝑒𝑣𝑒𝑙 ← 𝑙𝑒𝑣𝑒𝑙 + 1;
26 return {𝑑− (𝑣) |𝑣 ∈ 𝑉 } ;

We use the term 𝑙𝑒𝑣𝑒𝑙 to represent the current out-core number,

initialized as 0. Each thread has an array, 𝑏𝑢𝑓 , sized 𝑛/𝑡 (where 𝑛 is

total vertices and 𝑡 is the number of threads) for storing vertices

that need processing. 𝑠𝑡𝑎𝑟𝑡 and 𝑒𝑛𝑑 track the positions of vertices in

𝑏𝑢𝑓 . 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 , initialized at 0, tracks the number of processed vertices

(line 1), while 𝑓 𝑙𝑎𝑔, a boolean array set to 𝑡𝑟𝑢𝑒 for all vertices in 𝑉 ,

indicates unprocessed ones (line 2).

For all vertices in the graph, we first scan for those with out-

degree equal to the current 𝑙𝑒𝑣𝑒𝑙 or in-degree less than 𝑘 (lines 4-9).

These vertices are added to 𝑏𝑢𝑓 , and their flag is set to 𝑓 𝑎𝑙𝑠𝑒 . If a

vertex has an in-degree less than 𝑘 , its out-degree is also set to 𝑙𝑒𝑣𝑒𝑙

(line 9). For each vertex 𝑣 in 𝑏𝑢𝑓 , we traverse its out-neighbors

and in-neighbors (lines 11-23). For 𝑣 ’s out-neighbor 𝑢, if 𝑢 is un-

visited, we decrement its in-degree. If the in-degree falls below

𝑘 , we assign its out-core number as 𝑙𝑒𝑣𝑒𝑙 and add it to 𝑏𝑢𝑓 (lines

12-16). For 𝑣 ’s in-neighbor𝑤 , if its out-degree is greater than 𝑙𝑒𝑣𝑒𝑙 ,

we decrement it (lines 18-19). If the decreased out-degree equals

𝑙𝑒𝑣𝑒𝑙 , we add it to 𝑏𝑢𝑓 (lines 20-21). Note that vertices with an

out-degree less than 𝑙𝑒𝑣𝑒𝑙 still have an out-core number of 𝑙𝑒𝑣𝑒𝑙 , so

we increment their out-degree by 1 to avoid errors (lines 22-23). It

is important to note that despite each thread processing its own set

of vertices within 𝑏𝑢𝑓 , there exists a possibility of multiple threads

concurrently processing the same vertices when dealing with the

neighbors of vertices in 𝑏𝑢𝑓 . Consequently, when modifying the

out-degree and in-degree values of these vertices, it is imperative

to employ atomic operations to ensure the integrity of the results

and prevent any erroneous outcomes from arising. After processing

all vertices at the current level, we count the processed vertices

and increase 𝑙𝑒𝑣𝑒𝑙 (lines 24-25). The algorithm terminates when the

count equals 𝑛 (line 3). The out-degree of all vertices represents the

out-core number corresponding to the given 𝑘 , forming the 𝑘-list.

remove v2

v1 d-(v1): 2
v2 d-(v2): 3
v3 d-(v3): 5
v4 d-(v4): 2
v5 d-(v5): 5
v6 d-(v6): 4
v7 d-(v7): 2
v8 d-(v8): 3

parallel remove
v1, v4, v7

v1 L(1, v1): 2

v2 d-(v2): 0

v3 d-(v3): 4
v4 L(1, v4): 2
v5 d-(v5): 4
v6 d-(v6): 3
v7 L(1, v7): 2
v8 d-(v8): 3

v1 L(1, v1): 2
v2 L(1, v2): 2
v3 d-(v3): 3
v4 L(1, v4): 2
v5 d-(v5): 3
v6 d-(v6): 3
v7 L(1, v7): 2
v8 d-(v8): 3

v1 L(1, v1): 2
v2 L(1, v2): 2
v3 L(1, v3): 3
v4 L(1, v4): 2
v5 L(1, v5): 3
v6 L(1, v6): 3
v7 L(1, v7): 2
v8 L(1, v8): 3

parallel remove
v3, v5, v6 , v8

level = 2 level =3

sublevel 1 sublevel 2

⚫ Processed

⚫ Not Processed

Figure 4: The process of parallel 1-list computation for the
graph in Figure 1.

Example 4. Consider the directed graph 𝐺 as illustrated in Figure
1. Let us perform the computation of the 1-list with a parameter 𝑘 = 1.
The whole process is shown in Figure 4. It is important to note that
all vertices in the graph have an in-degree of at least 1. The process
commences by systematically scanning all vertices having an out-
degree less than or equal to the current 𝑙𝑒𝑣𝑒𝑙 , with the initialization
of 𝑙𝑒𝑣𝑒𝑙 = 0. In case there are no vertices satisfying this criterion, the
𝑙𝑒𝑣𝑒𝑙 value is incremented by 1.

At 𝑙𝑒𝑣𝑒𝑙 = 2, the initial scan involves vertices 𝑣1, 𝑣4, and 𝑣7 since
these three vertices exhibit an out-degree of 2. Subsequently, these
vertices are removed from the graph, and adjustments are made to the
in-degree and out-degree of their respective neighbors. The subsequent
scan involves vertex 𝑣2, which has an out-degree of less than 2. As for
the remaining vertices, each of them possesses an out-degree greater
than 2. Consequently, the 𝑙𝑒𝑣𝑒𝑙 is increased by 1, and the scan proceeds
to cover all vertices with an out-degree less than 3. Ultimately, we
deduce that vertices 𝑣3, 𝑣5, 𝑣6, and 𝑣8 possess an out-core number of
3. This enables the algorithm to process multiple vertices concurrently
without the necessity of individual vertex removal and waiting for
the update of neighboring degrees.

Analysis. In PKlist, a total of 𝑙𝑚𝑎𝑥 scans are performed on the

vertices of the graph, each requiring 𝑂 (𝑛) operations. Thus, the
time complexity of the scan process is 𝑂 (𝑙𝑚𝑎𝑥 · 𝑛). Additionally,
updating the degrees of all vertices takes𝑂 (𝑚) time. Therefore, the

overall work of Algorithm 2 can be expressed as𝑂 (𝑙𝑚𝑎𝑥 · 𝑛 +𝑚) in
the worst-case scenario.

4.2.2 Overall algorithm. Based on Algorithm 2, we can obtain the

parallel D-core decomposition algorithm. The pseudocode of the

parallel peeling-based D-core decomposition algorithm (ParPeel)
is shown in Algorithm 3.

2659

Algorithm 3: ParPeel
Input: A directed graph𝐺 = (𝑉 , 𝐸)
Output: All the 𝑘-lists of𝐺

1 Compute 𝑘𝑚𝑎𝑥 of𝐺 , 𝑅𝑒𝑠 ← ∅;
2 for 𝑘 ∈ [0, 𝑘𝑚𝑎𝑥] do
3 𝑅𝑒𝑠 ← 𝑅𝑒𝑠∪ PKlist(𝑘) ; // Algorithm 2

4 return 𝑅𝑒𝑠 ;

Specifically, we begin by determining the maximum value of 𝑘 ,

denoted as 𝑘max, for all D-cores in the graph 𝐺 . This computation

is performed by setting 𝑙 to 0 and evaluating all (𝑘, 0)-cores in 𝐺 .
Since 𝑙 is 0, the focus is solely on the out-neighbors and in-degrees

of each vertex. Algorithm 2 can be applied to accomplish this, by

swapping 𝑑+ (𝑣) and 𝑁 + (𝑣) with 𝑑− (𝑣) and 𝑁 − (𝑣), respectively,
and vice versa (line 1). Subsequently, Algorithm 2 is utilized to

concurrently compute the 𝑘-list for each 𝑘 ranging from 0 to 𝑘max

(lines 2-3). Based on our prior analysis, the work for generating

the 𝑘-list is bounded by 𝑂 (𝑙𝑚𝑎𝑥 · 𝑛 +𝑚). Consequently, the overall
complexity of Algorithm 3 is 𝑂 (𝑘𝑚𝑎𝑥 (𝑙𝑚𝑎𝑥 · 𝑛 +𝑚)). It should be

noted that, for a given directed graph, both 𝑘max and 𝑙max are upper-

bounded by 𝑂 (
√
𝑚), where𝑚 represents the number of edges [17].

However, in practical scenarios, the values of 𝑘𝑚𝑎𝑥 and 𝑙𝑚𝑎𝑥 tend

to be significantly smaller than𝑂 (
√
𝑚). The span of Algorithm 3 is

𝑂 (𝑘𝑚𝑎𝑥 + 𝑘𝑚𝑎𝑥 · 𝑙𝑚𝑎𝑥) = 𝑂 (𝑘2𝑚𝑎𝑥).

5 A SHELL-BASED PARALLEL D-CORE
DECOMPOSITION ALGORITHM

In this section, we focus on optimizing our parallel D-core decom-

position algorithm to improve its efficiency.

5.1 Shell-based pruning techniques
During the D-core decomposition process, it is necessary to com-

pute all the 𝑘-lists from 0 to 𝑘𝑚𝑎𝑥 . However, in many real-world

graphs, the 𝑘-lists corresponding to different values of 𝑘 are iden-

tical. For example, there are 4 𝑘-lists in the directed graph 𝐺 in

Figure 1. Notably, for 𝑘 = 0 to 2, the 𝑘-lists correspond to the same

D-cores. That is, the first three columns of Table 2 are identical.

Thus, computing each 𝑘-list corresponding to all possible 𝑘 would

result in a significant amount of computational redundancy.

To minimize redundant computations by identifying identical 𝑘-

lists with the same 𝑘 value, we introduce the concept of (𝑘, 𝑙)-shell,
also known as D-shell.

Definition 4 ((k, l)-shell). The (𝑘, 𝑙)-shell of a directed graph𝐺
represents a set of vertices, where each vertex has an in-core number
precisely equal to 𝑘 for a given 𝑙 .

Example 5. Revisiting Example 1, we specifically focus on the sce-
nario where 𝑙 = 0 in graph𝐺 . As a result, we can observe the presence
of two (𝑘, 0)-shells, as shown in Figure 5: the first is the (2, 0)-shell,
represented as {𝑣1, 𝑣4}, and the second is the (3, 0)-shell, denoted as
{𝑣2, 𝑣3, 𝑣5, 𝑣6, 𝑣7, 𝑣8}. The identification of these (𝑘, 0)-shells is based
on their having identical in-core numbers for the given value of 𝑙 .

When 𝑙 = 0, the (𝑘, 0)-shell includes all vertices within the (𝑘, 0)-
core with an in-core number exactly equal to 𝑘 . Based on Definition

4, we can deduce the following lemma.

Lemma 5.1. Given two integers 𝑘𝑖<𝑘 𝑗 , their corresponding 𝑘-lists
differ if: (1) 𝑘𝑖 and 𝑘 𝑗 correspond to two different (𝑘, 0)-shells; or (2)

(2, 0)-shell

(3, 0)-shell

v4 v1

v3 v2

v5v8

v6 v7

Figure 5: The (𝑘, 𝑙)-shells of 𝐺 in Figure 1 (𝑙 = 0).

there exists a vertex 𝑣 in the 𝑘𝑖 -list such that: |{𝑢 ∈ 𝑁 + (𝑣) |𝐿(𝑘𝑖 , 𝑢) ≥
𝐿(𝑘𝑖 , 𝑣)}| < 𝑘 𝑗 .

Proof. For case (1), it directly holds since the 𝑘𝑖 -list contains

vertices that do not belong to the 𝑘 𝑗 -list. For case (2), although 𝑘𝑖
and 𝑘 𝑗 correspond to the same (𝑘, 0)-shell, during the computation

of the corresponding 𝑘-lists, the sequence of vertex removal is

different because the removal order of 𝑣 has changed. □

Based on Lemma 5.1, in D-core decomposition, we compute

distinct 𝑘-lists to prevent redundancy. Besides, we exclude vertices

within (𝑘, 0)-shells with 𝑘 < 𝑘𝑖 from computing 𝑘𝑖 -list to enhance

the process efficiency.

5.2 Improved 𝑘-list computation
The D-shell not only reduces redundant computations between

𝑘-lists but also accelerates the computation of each 𝑘-list.

During 𝑘-list computation, we determine the out-core number

of each vertex for a given value of 𝑘 . Let’s consider a vertex 𝑣 with

an out-degree of 𝑑− (𝑣) and a given 𝑘 . We assume that 𝑣 ’s out-core

number is 𝐿(𝑘, 𝑣). In Algorithm 2, while computing 𝑣 ’s out-core

number, 𝑣 can be scanned at most 𝑑− (𝑣) −𝐿(𝑘, 𝑣) times. Specifically,

during the process from 𝑙𝑒𝑣𝑒𝑙 = 𝐿(𝑘, 𝑣)−1 to 𝑙𝑒𝑣𝑒𝑙 = 𝐿(𝑘, 𝑣), 𝑣 ’s out-
degree can be updated at most𝑑− (𝑣)−𝐿(𝑘, 𝑣) times before obtaining

its out-core number. This is because, in the worst-case scenario, 𝑣 is

one of the last vertices to be processed in the (𝑘, 𝐿(𝑘, 𝑣))-shell, as its
out-degree only matches its out-core number when all its neighbors

are removed. To reduce the number of scans for 𝑣 and accelerate

its out-core number calculation, we now discuss the relationship of

(𝑘, 𝑙)-shell between different 𝑘-lists by the following lemma.

Lemma 5.2. Given two integers 𝑘1, 𝑘2, where 𝑘1 < 𝑘2, then for the
same vertex 𝑣 in the corresponding 𝑘-lists, the out-core number of 𝑣
satisfies 𝐿(𝑘1, 𝑣) ≥ 𝐿(𝑘2, 𝑣).

Proof. Let the in-core number of vertex 𝑣 be denoted as 𝑘 . We

consider three distinct cases:𝑘 < 𝑘1,𝑘2 > 𝑘 ≥ 𝑘1, and𝑘 ≥ 𝑘2. In the
case where 𝑘 < 𝑘1, it follows that in both the 𝑘1-list and 𝑘2-list, the

out-core number of vertex 𝑣 is 0. In the case where 𝑘2 > 𝑘 ≥ 𝑘1, we
observe that in the 𝑘1-list, 𝐿(𝑘1, 𝑣) ≥ 0, while in the 𝑘2-list, the out-

core number 𝑙𝑘2 (𝑣) is 0. In the case where𝑘 ≥ 𝑘2, due to the fact that
𝑘1 < 𝑘2, the (𝑘2, 0)-core is contained in the (𝑘1, 0)-core. This implies

that the (𝑘2, 0)-core is either equal to the (𝑘1, 0)-core or obtained
by removing vertices from the vertex set of the (𝑘1, 0)-core. In the

former scenario, the out-core numbers of vertices in both cores are

equal. In the latter scenario, we establish that 𝐿(𝑘1, 𝑣) ≥ 𝐿(𝑘2, 𝑣),

2660

as the removal of vertices may cause a decrease in 𝑣 ’s out-degree,

thereby reducing its out-core number. □

Based on Lemma 5.2, it can be deduced that the out-core number

of vertices is non-increasing as 𝑘 increases. In other words, for

𝑘1-list and 𝑘2-list where 𝑘1 > 𝑘2, the out-core number of vertices in

the 𝑘2-list is an upper bound for the corresponding vertices in the

𝑘1-list. Building upon this observation, during the computation of

the 𝑘-list, if we have already obtained 𝑘-lists for smaller values of 𝑘 ,

we can utilize the previously derived out-core numbers of vertices

as upper bounds for the current set of vertices, and then refine the

upper bounds to the exact out-core numbers corresponding to the

current value of 𝑘 .

Presently, we introduce an efficient algorithm for computing

out-core numbers of vertices at the current 𝑘 value by leveraging

previously obtained out-core numbers for lower 𝑘 values. We de-

note 𝑘𝑝 as the prior 𝑘 value and 𝑘𝑐 as the current 𝑘 value. Notably,

deriving the out-core numbers for all vertices corresponding to 𝑘𝑐
based on their out-core numbers corresponding to 𝑘𝑝 fundamen-

tally entails a reordering of the out-core numbers of all vertices. As

𝑘 increases, vertices originally within the (𝑘𝑝 , 0)-shell, which had

values less than 𝑘𝑐 , are removed, potentially leading to changes in

the out-core numbers of their neighbors. Therefore, we enhance

vertex out-core numbers by monitoring alterations in neighbor in-

formation, as opposed to repetitively peeling vertices and updating

neighbor degrees, thereby avoiding redundant computations. For

the out-core number of a vertex 𝑣 at the current 𝑘 value, i.e., 𝐿(𝑘, 𝑣),
the following properties hold.

Property 2. For an integer 𝑘 and a vertex 𝑣 , the out-core number
𝐿(𝑘, 𝑣) must satisfy the following conditions:

(1) there must be at least 𝐿(𝑘, 𝑣) out-neighbors of 𝑣 whose out-
core number at 𝑘 is greater than or equal to 𝐿(𝑘, 𝑣);

(2) there must be at least 𝑘 in-neighbors of 𝑣 with an out-core
number at 𝑘 greater than or equal to 𝑘 .

That is,{︄|︁|︁{𝑢 ∈ 𝑁 − (𝑣) |𝐿(𝑘,𝑢) ≥ 𝐿(𝑘, 𝑣)}|︁|︁ ≥ 𝐿(𝑘, 𝑣),|︁|︁{𝑢 ∈ 𝑁 + (𝑣) |𝐿(𝑘,𝑢) ≥ 𝐿(𝑘, 𝑣)}|︁|︁ ≥ 𝑘. (1)

Example 6. Consider the directed graph illustrated in Figure 1
as an example. Assuming we have already computed the 2-list, con-
taining the out-core numbers of all vertices at 𝑘 = 2, with 𝑣1, 𝑣2, 𝑣4,
and 𝑣7 having 𝐿(2, 𝑣) = 2, and 𝑣3, 𝑣5, 𝑣6, and 𝑣8 having 𝐿(2, 𝑣) = 3.
For vertex 𝑣3, the out-core number 𝐿(2, 𝑣3) = 3 implies that 𝑣3 must
have at least 3 out-neighbors with 𝐿(2, 𝑣) greater than or equal to 3,
specifically involving vertices 𝑣5, 𝑣6, and 𝑣8. Meanwhile, 𝑣3 should
also have at least 2 in-neighbors with their 𝐿(2, 𝑣) values greater than
or equal to 2, which include vertices 𝑣1, 𝑣4, 𝑣5, 𝑣6, and 𝑣8.

Following Property 2, when computing the out-core numbers

corresponding to the current 𝑘 , we iteratively revise a vertex’s out-

core number by utilizing its neighbor information until convergence

is attained, signifying that the out-core number remains constant.

Specifically, we initialize the out-core numbers of all vertices at

𝑘𝑐 with the out-core numbers of all vertices at the previous 𝑘𝑝 .

Subsequently, we exclude vertices in the (𝑘𝑝 , 0)-shell and refine the
out-core numbers of the remaining vertices based on Property 2.

The pseudocode is listed in Algorithm 4. We introduce variable 𝐹

to assess the convergence of vertex out-core numbers;𝑉𝑐 represents

all vertices belonging to the (𝑘, 0)-shells with 𝑘 values greater than

or equal to the current 𝑘𝑐 (line 1); the boolean array 𝑐ℎ𝑎𝑛𝑔𝑒 tracks

changes in the out-core numbers of vertices in 𝑉𝑐 , initialized with

all elements set to true. (line 2). For each vertex 𝑣 within 𝑉𝑐 , we

initialize 𝐿(𝑘𝑐 , 𝑣) to the previous out-core number 𝐿(𝑘𝑝 , 𝑣) (lines
3-4). For a vertex 𝑣 within 𝑉𝑐 , when 𝑐ℎ𝑎𝑛𝑔𝑒 [𝑣] is true, we proceed
to find two values, 𝑡1 and 𝑡2, as follows. First, we identify 𝑡1 as

the maximum value from the out-core number set of all 𝑣 ’s out-

neighbors that satisfy case (1) of Property 2, which means 𝑡1 is the

maximum value of 𝑡 for which
|︁|︁𝑢 ∈ 𝑁 − (𝑣) |𝐿(𝑘𝑐 , 𝑢) ≥ 𝑡 |︁|︁ ≥ 𝑡 holds

(line 10). Next, we determine 𝑡2 as the 𝑘𝑐 -th largest element in the

set {𝑢 ∈ 𝑁 + (𝑣) |𝐿(𝑘𝑐 , 𝑢)}, in order to fulfill case (2) of Property 2

(line 11). Subsequently, we compare 𝐿(𝑘𝑐 , 𝑣) with the minimum

value between 𝑡1 and 𝑡2. If 𝐿(𝑘𝑐 , 𝑣) surpasses this minimum, we set

the changing status of its neighbors with out-core numbers larger

than𝑚𝑖𝑛(𝑡1, 𝑡2) and not exceeding 𝐿(𝑘𝑐 , 𝑣) to 𝑡𝑟𝑢𝑒 , as derived from
Property 2. Then we set 𝐹 to true and update 𝐿(𝑘𝑐 , 𝑣) (lines 12-16).
If none of the vertices in 𝑉𝑐 have experienced changes in their

out-core numbers, the process is concluded (line 5). Afterward,

we determine the value of 𝑘𝑛 that may result in a different 𝑘-list

compared to 𝑘𝑐 , based on Lemma 5.1 (line 17).

Algorithm 4: PKL
Input: A directed graph𝐺 = (𝑉 , 𝐸) , 𝑘𝑝 -list of𝐺 , and an integer

𝑘𝑐 > 𝑘𝑝
Output: The 𝑘𝑐 -list of𝐺 and an integer 𝑘𝑛

1 𝐹 ← 𝑡𝑟𝑢𝑒 ,𝑉𝑐 ← vertices in (𝑘, 0)-shells with 𝑘 ≥ 𝑘𝑐 ;

2 initialize 𝑐ℎ𝑎𝑛𝑔𝑒 of size |𝑉𝑐 | with all elements set to 𝑡𝑟𝑢𝑒 ;

3 for 𝑣 ∈ 𝑉𝑐 do
4 𝐿 (𝑘𝑐 , 𝑣) ← 𝐿 (𝑘𝑝 , 𝑣) ;
5 while 𝐹 do
6 𝐹 ← 𝑓 𝑎𝑙𝑠𝑒 ;

7 for 𝑣 ∈ 𝑉𝑐 in parallel do
8 if 𝑐ℎ𝑎𝑛𝑔𝑒 [𝑣] then
9 𝑐ℎ𝑎𝑛𝑔𝑒 [𝑣] ← 𝑓 𝑎𝑙𝑠𝑒 ;

10 𝑡1 ← the maximum value of 𝑡 satisfy|︁|︁{𝑢 ∈ 𝑁 − (𝑣) |𝐿 (𝑘𝑐 ,𝑢) ≥ 𝑡 }|︁|︁ ≥ 𝑡 ;
11 𝑡2 ← the 𝑘𝑐 -th largest element in

{𝑢 ∈ 𝑁 + (𝑣) |𝐿 (𝑘𝑐 ,𝑢) };
12 if 𝐿 (𝑘𝑐 , 𝑣) >𝑚𝑖𝑛 (𝑡1, 𝑡2) then
13 for 𝑢 ∈ 𝑁 (𝑣) do
14 if 𝐿 (𝑘𝑐 , 𝑣) ≥ 𝐿 (𝑘𝑐 ,𝑢) >𝑚𝑖𝑛 (𝑡1, 𝑡2) then
15 𝑐ℎ𝑎𝑛𝑔𝑒 [𝑢] ← 𝑡𝑟𝑢𝑒 , 𝐹 ← 𝑡𝑟𝑢𝑒 ;

16 𝐿 (𝑘𝑐 , 𝑣) ←𝑚𝑖𝑛 (𝑡1, 𝑡2) ;

17 𝑘𝑛 ←𝑚𝑖𝑛𝑣∈𝑉𝑐 (
|︁|︁{𝑢 ∈ 𝑁 + (𝑣) |𝐿 (𝑘𝑐 ,𝑢) ≥ 𝐿 (𝑘𝑐 , 𝑣) }|︁|︁) ;

18 return {𝑣 ∈ 𝑉 |𝐿 (𝑘𝑐 , 𝑣) }, 𝑘𝑛 ;

Time complexity. In Algorithm 4, updating the out-core num-

ber of vertex 𝑣 takes 𝑂 (𝑑 (𝑣)) time. Thus, the time complexity for

refining the out-core numbers of all vertices in 𝑉𝑐 is 𝑂 (𝑚𝑐), where
𝑚𝑐 represents the number of edges in the induced subgraph of

𝑉𝑐 . Consequently, the overall time complexity of the algorithm

is 𝑂 (√𝑚𝑐 ·𝑚𝑐), with 𝑂 (
√
𝑚𝑐) denoting the upper bound for the

iterations of the while-loop in Algorithm 4.

Example 7. In Figure 1, for 𝑘 = 2, the out-core numbers for vertices
𝑣1, 𝑣2, 𝑣4, and 𝑣7 are 2, while for vertices 𝑣3, 𝑣5, 𝑣6, and 𝑣8, the out-core
number is 3. As shown in Figure 6, when 𝑘 = 3, vertices 𝑣1 and 𝑣4
belong to the (2, 0)-shell. Removing these vertices from the current
subgraph may alter the out-core numbers of all remaining vertices. In

2661

Figure 6: Process of computing 3-list of 𝐺 in Figure 1.

the first iteration, only 𝐿(3, 𝑣2) of the vertex 𝑣2 is updated from 2 to
1 since the values of 𝑡1 and 𝑡2 are 1 and 2 respectively. Subsequently,
we only mark the changing status of its neighbor 𝑣7 as true because
𝐿(3, 𝑣5) = 3 > 2 and 2 ≥ 𝐿(3, 𝑣5) = 2 > 1. In the second iteration
we find that 𝑣7 has 𝑡1 = 1 and 𝑡2 = 1, so we update 𝐿(3, 𝑣7) as
1. Subsequently, updating the out-core number of 𝑣7 has no impact
on the out-core numbers of its neighbors. Thus, we deduce the out-
core numbers for all vertices corresponding to 𝑘 = 3. Note that this
computation involves only a subset of the neighbors of a changing
vertex, eliminating the necessity to scan all neighbors and sequentially
remove them level by level.

5.3 Overall algorithm
Algorithm 5 presents the overall algorithm for shell-based paral-

lel D-core decomposition (Shell-PDC). The approach involves an

initial computation of all (𝑘, 0)-shells to determine all possible val-

ues of 𝑘 . It also calculates all (0, 𝑙)-shells to establish the out-core

number of all vertices when 𝑘 = 0, denoted as 𝐿(0, 𝑣), serving as

the initial value for each vertex’s out-core number. The out-core

numbers of all vertices at 𝑘 = 0 are collected into both 𝑡𝑒𝑚𝑝 and

𝑅𝑒𝑠 , with 𝑅𝑒𝑠 serving as a repository for all 𝑘-lists (line 1). Next, K
is computed, containing distinct 𝑘 values associated with various

(𝑘, 0)-shells (line 2). For each 𝑘 in K , Algorithm 4 is invoked, iter-

atively computing the 𝑘-list based on previous out-core numbers

of vertices and appending them to 𝑅𝑒𝑠 (lines 3-5). 𝑘𝑛 + 1 signifies a
potential value with a distinct 𝑘-list compared to the current 𝑘 . If it

is less than the next element inK , it is inserted before that element

for subsequent computation (lines 6-7).

Algorithm 5: Shell-PDC
Input: A directed graph𝐺 = (𝑉 , 𝐸)
Output: All the 𝑘-lists of𝐺

1 𝑡𝑒𝑚𝑝 ← compute the 0-list of𝐺 , 𝑅𝑒𝑠 ← 𝑡𝑒𝑚𝑝 ; // Alogorithm 2

2 K ← the set of 𝑘-values for each distinct (𝑘, 0)-shell;
3 for 𝑘 ∈ K in ascending order do
4 𝑡𝑒𝑚𝑝,𝑘𝑛 ← PKL(𝑘, 𝑡𝑒𝑚𝑝) ; // Alogorithm 4

5 𝑅𝑒𝑠 ← 𝑅𝑒𝑠 ∪ 𝑡𝑒𝑚𝑝 ;
6 if 𝑘𝑛 + 1 < K .𝑛𝑒𝑥𝑡 (𝑘) then
7 insert (𝑘𝑛 + 1) into K before K .𝑛𝑒𝑥𝑡 (𝑘) ;

8 return 𝑅𝑒𝑠 ;

Analysis. Algorithm 2 requires 𝑂 (𝑙𝑚𝑎𝑥 · 𝑛 +𝑚) time to obtain

the 0-list of 𝐺 , and it takes 𝑂 (𝑘𝑚𝑎𝑥 · 𝑛 +𝑚) to compute all the

(𝑘, 0)-shells of 𝐺 . For a given 𝑘𝑖 , Algorithm 4 takes 𝑂 (√𝑚𝑖 ·𝑚𝑖)
time to compute the 𝑘𝑖 -list, where𝑚𝑖 is the number of edges in the

subgraph of𝐺 induced by the (𝑘𝑖 , 0)-core. Consequently, computing

all the 𝑘-lists with 𝑘 > 0 takes𝑂 (∑︁𝑘𝑚𝑎𝑥

𝑖=1

√
𝑚𝑖 ·𝑚𝑖) in the worst-case

scenario. In summary, the overall time complexity of Algorithm

5 is 𝑂 (∑︁𝑘𝑚𝑎𝑥

𝑖=1

√
𝑚𝑖 ·𝑚𝑖 + (𝑘𝑚𝑎𝑥 + 𝑙𝑚𝑎𝑥) · 𝑛 +𝑚). In practice, 𝑘𝑚𝑎𝑥

and 𝑙𝑚𝑎𝑥 are considerably smaller than the maximum out-degree

and maximum in-degree. Additionally, the values of𝑚𝑖 decrease

significantly as 𝑘𝑖 increases. The span of Shell-PDC is 𝑂 (𝑘2𝑚𝑎𝑥).

6 EXPERIMENTS
We now present the experimental results. Section 6.1 discusses the

setup. We report the results in Sections 6.2 and 6.3.

6.1 Setup
Datasets.We use ten real large directed graphs. Specifically, Email-

EuAll is a communication network generated using email data,

Amazon is an e-commerce graph; Pokec, Live Journal, and Slashdot

are social networks; these five graphs are obtained from SNAP
2
.

Hollywood is an actors collaboration graph; Enwiki-2013 is an en-

cyclopedia graph generated from the English part of Wikipedia;

Webbase, IT-2004, and UK-2007 are web graphs; these five graphs

are sourced from LAW
3
. Table 4 reports the statistics of each graph,

where 𝑛 is the number of vertices,𝑚 is the number of edges, 𝑘𝑚𝑎𝑥
and 𝑙𝑚𝑎𝑥 are the maximum in-core and out-core numbers respec-

tively.

Table 4: Directed graphs used in the experiments.

Graphs Abbr. Category 𝑛 𝑚 𝑘𝑚𝑎𝑥 𝑙𝑚𝑎𝑥

Email-EuAll EM Communication 0.27M 0.42M 27 27

Slashdot SD Social 82.17K 0.87M 53 53

Amazon AM Product 0.40M 3.20M 10 10

Pokec PO Social 1.63M 30.62M 32 31

Live Journal LJ Social 4.85M 68.48M 252 252

Enwiki-2013 EW Text 4.21M 0.10B 89 107

Hollywood HW Actors 2.18M 0.23B 1,297 1,297

Webbase WB Hyperlink 0.12B 0.99B 1,218 1,218

IT-2004 IT Web 41.29M 1.14B 3,198 3,198

UK-2007 UK Web 0.98B 3.92B 10,027 10,027

Algorithms. We test the following D-core decomposition algo-

rithms:

• Peeling [17]: the state-of-the-art sequential D-core de-

composition algorithm;

• AC [32]: the distributed anchored coreness-based D-core

decomposition algorithm, and we parallelize it by using

multi-threads;

• SC [32]: the state-of-the-art distributed skyline coreness-

based D-core decomposition algorithm, and we parallelize

it by using multi-threads;

• ParPeel: our proposed parallel D-core decomposition al-

gorithm, which is depicted in Algorithm 3;

• ParPeel-Prune: our proposed parallel D-core decompo-

sition algorithm in Algorithm 3 with pruning strategy in

Lemma 3 of [17];

• Shell-PDC: our proposed parallel D-core decomposition

algorithm, listed in Algorithm 5.

Experimental settings. In the experiments, we implement all

the aforementioned algorithms in C++ and compile them with the

GCC 9.4.0 compiler using the -O3 optimization level. For all parallel

algorithms, we base the implementations on OpenMP, a widely

adopted shared-memory programming interface that supports sym-

metrical multi-processing architectures, such as multi-core CPUs.

The experiments are run on a Linux machine running Ubuntu Linux

20.04.5 LTS. This machine is equipped with dual Intel Xeon(R) Gold

6338 2.0GHz processors (32 cores) and 496GB of RAM. The number

2
https://snap.stanford.edu/data/index.html

3
https://law.di.unimi.it/index.php

2662

of threads 𝑝 varies from 1 to 32, and we set 𝑝=32 by default. We

terminate the algorithm’s execution when the running time exceeds

10
8
ms (10

5
s) and mark it as INF.

6.2 Efficiency evaluation
• Overall efficiency results.We evaluate the runtime of all par-

allel D-core decomposition algorithms across all datasets using 32

threads. As Peeling is challenging to parallelize, we execute it

using a single thread. The results are listed in Figure 7.

Our Shell-PDC algorithm exhibits superior efficiency across all

datasets, particularly excelling on large-scale datasets with over a

billion edges, such as IT and UK. To elaborate, Shell-PDC demon-

strates remarkable speed, being three orders of magnitude faster

than the anchored coreness algorithm AC on smaller datasets like

EM and SD. While the state-of-the-art parallel D-core decomposi-

tion algorithm SC outperforms AC, our approach remains signifi-

cantly faster, achieving up to three orders of magnitude improve-

ment on larger datasets like IT, where the runtime of SC exceeds 105

seconds. For ParPeel and ParPeel-Prune, they showcase superior
performance compared to AC and SC, while our algorithm still out-

performs them by up to two orders of magnitude. The primary

reason behind this is that Shell-PDC strategically avoids scanning

all vertices in the graph during each iteration, effectively reducing

redundant computations and minimizing excessive synchronization

overhead.

ParPeel-Prune is slower than ParPeel. This is primarily due

to two reasons: 1) the pruning effectiveness of Lemma 3 in [17] is

limited in datasets where the values of 𝑘𝑚𝑎𝑥 and the numbers of

(𝑘, 0)-shells remained consistent (e.g., EM); 2) the process of deter-

mining whether the 𝑘-list corresponding to the current 𝑘 needs

computation, as per Lemma 3, incurred additional computational

overhead that is challenging to parallelize. It’s noteworthy that

in extensive datasets like WB, IT, and UK, both SC and ParPeel
encounter out-of-memory (OOM) issues. This is due to the algo-

rithms requiring substantial storage for the out-core numbers of

each vertex, leading to high space occupation, especially when the

vertex degree is large.

While Peeling is a sequential algorithm, its efficiency closely

rivals that of the parallel algorithm SC with 32 threads. This is pri-

marily attributed to optimizations like binsort [3], leading to an

𝑂 (𝑚) time complexity for each computation of the 𝑘-list. Never-

theless, our Shell-PDC algorithm can still achieve a speedup of up

to two orders of magnitude compared to Peeling.
• Effect of the number of threads. In Figure 8, the efficiency

of all parallel D-core decomposition algorithms is depicted as the

number of threads ranges from 1 to 32 across all datasets. With an

increasing number of threads, the runtime of Shell-PDC exhibits a

linear reduction, showcasing strong parallel scalability. Particularly,

employing 32 threads enables our Shell-PDC to achieve a self-

speedup of 24.57 times. However, for ParPeel and ParPeel-Prune,
the self-speedup ratio is limited due to the continual reduction in

the graph’s size during 𝑘-list computations. Although this reduction

decreases the workload for each 𝑘-list computation, the indepen-

dent nature of these computations necessitates frequent thread

activation and termination, resulting in increased overhead and

impacting their parallel performance. While the self-speedup ratio

for AC and SC may surpass that of ParPeel and ParPeel-Prune,
their inherently high time complexity leads to their runtime being

89.90 times slower than that of Shell-PDC.

• Scalability test. For scalability testing, we randomly select

20%, 40%, 60%, 80%, and 100% of edges from each dataset, creating

five subgraphs induced by these respective edge percentages. Due

to limited space, we present results solely for the six graphs with the

largest edge counts, as similar trends prevail across other datasets.

As depicted in Figure 9, the time costs for all algorithms increase

as the dataset size expands. Notably, among the algorithms, our

Shell-PDC demonstrates the least variability in its performance

changes, highlighting its superior scalability. Conversely, AC and
SC exhibit relatively efficient performance with smaller datasets.

However, as the graph size grows, their runtimes notably increase

due to these algorithms’ heightened sensitivity to vertex degrees.

6.3 Additional evaluations
•Comparing the sizes of the graphs processed. Figure 10 shows
the number of (𝑘, 0)-shells and 𝑘 corresponding to distinct 𝑘-lists

across each dataset. Notably, the number of (𝑘, 0)-shells is consid-
erably lower than 𝑘𝑚𝑎𝑥 in most datasets. This occurrence primarily

results from the distribution of degrees in real-world graphs, often

following a power-law distribution. Consequently, these graphs

typically exhibit a dense region, which contains a significant gap be-

tween sparse areas. The number of 𝑘-lists computed by Shell-PDC
closely matches the count of (𝑘, 0)-shells, particularly evident in

the first four datasets.

Figure 11(a) presents the count of vertices within each 𝑘-list

across all datasets. Note that the number of vertices in the subgraph

corresponding to a 𝑘-list between two adjacent (𝑘, 0)-shells is iden-
tical. Evidently, the graph size processed by Shell-PDC notably

decreases as 𝑘 increases. Particularly, when 𝑘 approaches 𝑘𝑚𝑎𝑥 , the

dense region of the graph significantly reduces in size. We also com-

pare the trends in vertex counts of (0, 𝑙)-cores in Figure 11(b). The

results indicate that the trends in vertex counts of (0, 𝑙)-cores across
datasets resemble those of (𝑘, 0)-cores. Therefore, if we calculate
𝑙max initially and subsequently compute D-cores corresponding to

each 𝑙 , the efficiency of the decomposition process mirrors that of

computing D-cores corresponding to each 𝑘 .

• Time cost of different steps in Shell-PDC. The runtime of

Shell-PDC comprises three parts: (1) computing all the (𝑘, 0)-shells
in the graph by setting 𝑙 = 0, essentially computing 𝐺 ’s (𝑘, 0)-core;
(2) setting 𝑘 = 0 and computing the value of 𝐿(0, 𝑣) for each vertex 𝑣 ,
i.e., calculating𝐺 ’s (0, 𝑙)-core; and (3) initiating 𝐿(0, 𝑣) as the initial
out-core number for each vertex and iteratively calculating 𝐿(𝑘, 𝑣)
until all 𝑘-lists are obtained. Figure 12 illustrates the proportion of

time taken for each phase across all datasets. Notably, the durations

of phases (1) and (2) are similar and collectively account for a smaller

portion of the total time compared to the iterative computation of 𝑘-

lists with 𝑘 > 0. However, in the UK dataset, the time spent in phase

(3) is less than that in phases (1) and (2). This is primarily influenced

by the distribution of vertex degrees in the graph. In the dataset,

the initial out-core numbers obtained in phase (2) closely align with

the final values in each 𝑘-list. Consequently, the computation in

phase (3) is relatively fast.

• Convergence evaluation. In this experiment, we assess the

number of iterations required for our Shell-PDC algorithm during

the computation of 𝑘-lists with 𝑘 > 0. Table 5 presents the results

across all datasets. It’s noteworthy that the observed number of

iterations is notably lower than the upper bound, represented by

the maximum degree among all vertices. It’s important to note

that on select datasets, the iteration count grows, influenced by

2663

EM SD AM PO LJ EW HW WB IT UK

10
2

10
5

INF

R
un

ni
ng

ti
m
e
(𝑚
𝑠
)

Peeling AC SC ParPeel ParPeel-Prune Shell-PDC

O
O
M

O
O
M

O
O
M

O
O
M

O
O
M

O
O
M

O
O
M

Figure 7: Efficiency of all D-core decomposition algorithms on all datasets.

AC SC ParPeel ParPeel-Prune Shell-PDC

1 2 4 8 16 32
10

1

10
2

10
3

10
4

10
5

number of threads

R
un

ni
ng

ti
m
e
(𝑚
𝑠)

(a) EM

1 2 4 8 16 32
10

1

10
3

10
5

10
7

number of threads

(b) SD

1 2 4 8 16 32
10

2

10
3

10
4

10
5

number of threads

(c) AM

1 2 4 8 16 32
10

3

10
5

10
7

INF

number of threads

(d) PO

1 2 4 8 16 32
10

3

10
5

10
7

INF

number of threads

(e) LJ

1 2 4 8 16 32
10

3

10
5

10
7

INF

number of threads

R
un

ni
ng

ti
m
e
(𝑚
𝑠)

(f) EW

1 2 4 8 16 32
10

4

10
6

INF

number of threads

(g) HW

1 2 4 8 16 32
10

4

10
6

INF

number of threads

(h) WB

1 2 4 8 16 32
10

5

10
6

10
7

INF

number of threads

(i) IT

1 2 4 8 16 32
10

6

10
7

INF

number of threads

(j) UK

Figure 8: Effect of the number of threads.

Peeling AC SC ParPeel ParPeel-Prune Shell-PDC

20% 40% 60% 80% 100%
10

2

10
4

10
6

INF

R
un

ni
ng

ti
m
e
(𝑚
𝑠)

(a) EW

20% 40% 60% 80% 100%
10

3

10
5

10
7

INF

(b) HW

20% 40% 60% 80% 100%
10

4

10
6

INF

(c) WB

20% 40% 60% 80% 100%
10

4

10
6

INF

(d) IT

20% 40% 60% 80% 100%
10

5

10
6

10
7

INF

(e) UK

Figure 9: Scalability test.

EM SD AM PO LJ EW HW WB IT UK

10
0

10
1

10
2

10
3

of (k,0)-shells # of distinct 𝑘-lists

Figure 10: The numbers of (𝑘, 0)-shells and distinct 𝑘-lists on
all datasets.

vertex degrees and connected to the graph’s topological structure.

Generally, the trend indicates that larger graphs tend to require a

higher iteration count due to an increase in the number of (𝑘, 0)-
shells within these graphs.

• Case studies. In this experiment, we conduct two case studies

focusing on the practical applications of D-core decomposition:

collaboration analysis for directed graphs and community search.

Collaboration analysis for directed graphs. As mentioned in Sec-

tion 1, Giatsidis et al. [22] introduced metrics such as Balanced

Table 5: The number of iterations required for Shell-PDC to
compute all 𝑘-lists with 𝑘 > 0.

datasets EM SD AM PO LJ

iterations 147 384 119 1,476 3,163

𝑑𝑚𝑎𝑥 7,631 2,552 2,747 13,733 20,292

datasets EW HW WB IT UK

iterations 1,895 840 3,607 4,866 10,166

𝑑𝑚𝑎𝑥 431,795 13,107 816,127 1,326,744 1,261,714

Collaboration Index (BCI), Optimal Collaboration Index (OCI), and

Inherent Collaboration Index (ICI) to assess collaboration and ro-

bustness. The computation of these metrics relies on D-core de-

composition since they need to use all the (𝑘, 𝑙) pairs of D-cores in
the graph. In this experiment, we apply D-core decomposition to

two social networks (PO and LJ) and visualize the D-core matrices

in Figure 13. We observed that BCI, OCI, and ICI corresponded

2664

10
0

10
1

10
2

10
3

10
4

10
2

10
5

10
8

𝑘

N
um

be
r
of

ve
rt
ic
es EM SD AM PO LJ

EW HW WB IT UK

(a) (𝑘, 0)-core

10
0

10
1

10
2

10
3

10
4

10
2

10
5

10
8

𝑙

N
um

be
r
of

ve
rt
ic
es EM SD AM PO LJ

EW HW WB IT UK

(b) (0, 𝑙)-core
Figure 11: Trends of vertex counts of (𝑘, 0)-core and (0, 𝑙)-core
on all datasets.

0 10 20 30 40 50 60 70 80 90 100

EM

SD

AM

PO

LJ

EW

HW

WB

IT

UK

Time proportion (%)

D
at
as
et

(𝑘, 0)-core (0, 𝑙)-core 𝑘-list (𝑘>0)

Figure 12: Proportion of time cost of each step in Shell-PDC.

(a) PO (b) LJ

Figure 13: The distribution of (𝑘, 𝑙) values of the D-core de-
composition of PO and LJ.
to specific D-cores within the datasets, which reveal some robust

regions of the graphs.

Community search. As shown in previous works [8, 17], D-core

is an effective model for modeling the communities in directed

graphs. They have used D-core for searching communities in real

applications. Since different query users may use different 𝑘 and 𝑙

values to find the corresponding D-core communities, it is neces-

sary to build an index by pre-computing all D-cores using D-core

decomposition algorithms to support these queries efficiently.

In this experiment, we apply the D-core decomposition to obtain

the index proposed in [17] to support community search queries.

2 4 8 16 32

10
−3

10
−2

𝑘′

C
M
S
va

lu
es

𝑘-core D-core

(a) 𝐶𝑀𝑆 (𝐶)−

2 4 8 16 32

10
−3

10
−2

10
−1

10
0

𝑘′

𝑘-core D-core

(b) 𝐶𝑀𝑆 (𝐶)+

Figure 14: Community comparison of CMS values.
We also compare the communities obtained by D-core with the

𝑘-core-based community [46]. Specifically, we randomly select a

query vertex𝑞 and find a D-core community containing𝑞 with𝑘 = 𝑙 .

For comparison, we ignore the directions of edges and compute

the 𝑘′-core community containing 𝑞 with 𝑘′ = 𝑘 + 𝑙 . We then vary

the value of 𝑘′ from {2, 4, 8, 16, 32} to obtain the communities and

calculate the CMS of the two community models. Finally, we utilize

the community member similarity (CMS) to measure similarities

for the community 𝐶 on directed graphs [17], defined as

𝐶𝑀𝑆 (𝐶)− =
1

|𝐶 |2
∑︂
𝑢∈𝐶

∑︂
𝑣∈𝐶

𝑑− (𝑢) ∩ 𝑑− (𝑣)
𝑑− (𝑢) ∪ 𝑑− (𝑣) ,

𝐶𝑀𝑆 (𝐶)+ = 1

|𝐶 |2
∑︂
𝑢∈𝐶

∑︂
𝑣∈𝐶

𝑑+ (𝑢) ∩ 𝑑+ (𝑣)
𝑑+ (𝑢) ∪ 𝑑+ (𝑣) .

(2)

Figure 14 depicts the experimental results. It’s important to note

that the D-core community exhibits higher CMS compared to the

𝑘-core community across all parameters. This observation suggests

that the D-coremodel can leverage directional information to obtain

more cohesive communities.

7 CONCLUSION
In this paper, we investigate the problem of parallel D-core decom-

position over large directed graphs, by harnessing the computa-

tional power of multicore CPUs. We first develop a parallel D-core

decomposition algorithm that strategically computes D-cores for

each conceivable 𝑘 , employing an implicit level-by-level vertex re-

moval strategy. It not only diminishes computational dependencies

but also maintains a favorable time complexity, comparable to that

of sequential algorithms. We further propose a shell-based parallel

D-core decomposition algorithm, by introducing a novel concept of

D-shell which allows us to reduce redundant computations during

the decomposition process, and derive D-cores with larger 𝑘 from

the calculated D-cores based on D-shell, aiming to improve both

efficiency and parallelism. We have conducted extensive experi-

ments on ten real-world large graphs. The experimental results

show that our algorithms are highly efficient and scalable, and

our shell-based decomposition algorithm outperforms state-of-the-

art parallel algorithms by up to two orders of magnitude with 32

threads.

ACKNOWLEDGMENTS
This work was supported by NSFC under Grants 62202412 and

62102341, Guangdong Talent Program under Grant 2021QN02X826,

and Basic and Applied Basic Research Fund in Guangdong Province

under Grant 2023A1515011280. This paper was also supported by

Shenzhen Stability Science Program and Guangdong Provincial Key

Laboratory of Mathematical Foundations for Artificial Intelligence

(2023B1212010001)

2665

REFERENCES
[1] J Alvarez-Hamelin, Luca Dall’Asta, Alain Barrat, and Alessandro Vespignani.

2005. Large scale networks fingerprinting and visualization using the k-core

decomposition. Advances in neural information processing systems 18 (2005).
[2] Sabeur Aridhi, Martin Brugnara, Alberto Montresor, and Yannis Velegrakis. 2016.

Distributed k-core decomposition and maintenance in large dynamic graphs. In

Proceedings of the 10th ACM international conference on distributed and event-
based systems. 161–168.

[3] Vladimir Batagelj and Matjaz Zaversnik. 2003. An O (m) algorithm for cores

decomposition of networks. arXiv preprint cs/0310049 (2003).
[4] Francesco Bonchi, Francesco Gullo, Andreas Kaltenbrunner, and Yana Volkovich.

2014. Core decomposition of uncertain graphs. In Proceedings of the 20th ACM
SIGKDD international conference on Knowledge discovery and data mining. 1316–
1325.

[5] Richard P Brent. 1974. The parallel evaluation of general arithmetic expressions.

Journal of the ACM (JACM) 21, 2 (1974), 201–206.
[6] Lijun Chang and Lu Qin. 2019. Cohesive Subgraph Computation Over Large

Sparse Graphs. In 35th IEEE International Conference on Data Engineering, ICDE
2019. IEEE, 2068–2071.

[7] Lijun Chang, Jeffrey Xu Yu, Lu Qin, Xuemin Lin, Chengfei Liu, and Weifa Liang.

2013. Efficiently computing k-edge connected components via graph decom-

position. In Proceedings of the 2013 ACM SIGMOD international conference on
management of data. 205–216.

[8] Yankai Chen, Jie Zhang, Yixiang Fang, Xin Cao, and Irwin King. 2021. Effi-

cient community search over large directed graphs: An augmented index-based

approach. In Proceedings of the Twenty-Ninth International Conference on Interna-
tional Joint Conferences on Artificial Intelligence. 3544–3550.

[9] James Cheng, Yiping Ke, Shumo Chu, and M Tamer Özsu. 2011. Efficient core

decomposition in massive networks. In 2011 IEEE 27th International Conference
on Data Engineering. IEEE, 51–62.

[10] Qiangqiang Dai, Rong-Hua Li, Meihao Liao, Hongzhi Chen, and Guoren Wang.

2022. Fast maximal clique enumeration on uncertain graphs: A pivot-based

approach. In Proceedings of the 2022 International Conference on Management of
Data. 2034–2047.

[11] Maximilien Danisch, Oana Balalau, and Mauro Sozio. 2018. Listing k-cliques in

sparse real-world graphs. In Proceedings of the 2018 World Wide Web Conference.
589–598.

[12] Naga Shailaja Dasari, Ranjan Desh, and Mohammad Zubair. 2014. ParK: An

efficient algorithm for k-core decomposition on multicore processors. In 2014
IEEE International Conference on Big Data (Big Data). IEEE, 9–16.

[13] Laxman Dhulipala, Guy Blelloch, and Julian Shun. 2017. Julienne: A framework

for parallel graph algorithms using work-efficient bucketing. In Proceedings of the
29th ACM Symposium on Parallelism in Algorithms and Architectures. 293–304.

[14] Hossein Esfandiari, Silvio Lattanzi, and Vahab Mirrokni. 2018. Parallel and

streaming algorithms for k-core decomposition. In international conference on
machine learning. PMLR, 1397–1406.

[15] Yixiang Fang, Wensheng Luo, and Chenhao Ma. 2022. Densest subgraph discov-

ery on large graphs: Applications, challenges, and techniques. Proceedings of the
VLDB Endowment 15, 12 (2022), 3766–3769.

[16] Yixiang Fang, Kai Wang, Xuemin Lin, and Wenjie Zhang. 2021. Cohesive sub-

graph search over big heterogeneous information networks: Applications, chal-

lenges, and solutions. In Proceedings of the 2021 International Conference on
Management of Data. 2829–2838.

[17] Yixiang Fang, Zhongran Wang, Reynold Cheng, Hongzhi Wang, and Jiafeng Hu.

2018. Effective and efficient community search over large directed graphs. IEEE
Transactions on Knowledge and Data Engineering 31, 11 (2018), 2093–2107.

[18] Yixiang Fang, Yixing Yang, Wenjie Zhang, Xuemin Lin, and Xin Cao. 2020.

Effective and efficient community search over large heterogeneous information

networks. Proceedings of the VLDB Endowment 13, 6 (2020), 854–867.
[19] Yixiang Fang, Kaiqiang Yu, Reynold Cheng, Laks VS Lakshmanan, and Xuemin

Lin. 2019. Efficient algorithms for densest subgraph discovery. Proceedings of
the VLDB Endowment 12, 11 (2019), 1719–1732.

[20] David Garcia, Pavlin Mavrodiev, Daniele Casati, and Frank Schweitzer. 2017.

Understanding popularity, reputation, and social influence in the Twitter society.

Policy & Internet 9, 3 (2017), 343–364.
[21] Loukas Georgiadis, Evangelos Kipouridis, Charis Papadopoulos, and Nikos Parot-

sidis. 2023. Faster computation of 3-edge-connected components in digraphs. In

Proceedings of the 2023 Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA). SIAM, 2489–2531.

[22] Christos Giatsidis, DimitriosMThilikos, andMichalis Vazirgiannis. 2013. D-cores:

measuring collaboration of directed graphs based on degeneracy. Knowledge and
information systems 35, 2 (2013), 311–343.

[23] Xin Huang, Hong Cheng, Lu Qin,Wentao Tian, and Jeffrey Xu Yu. 2014. Querying

k-truss community in large and dynamic graphs. In Proceedings of the 2014 ACM
SIGMOD international conference on Management of data. 1311–1322.

[24] Xin Huang, Wei Lu, and Laks VS Lakshmanan. 2016. Truss decomposition

of probabilistic graphs: Semantics and algorithms. In Proceedings of the 2016
International Conference on Management of Data. 77–90.

[25] Yihao Huang, Claire Wang, Jessica Shi, and Julian Shun. 2023. Efficient Algo-

rithms for Parallel Bi-core Decomposition. In 2023 Symposium on Algorithmic
Principles of Computer Systems (APOCS). SIAM, 17–32.

[26] Shweta Jain and C Seshadhri. 2020. The power of pivoting for exact clique

counting. In Proceedings of the 13th International Conference on Web Search and
Data Mining. 268–276.

[27] Joseph JáJá. 1992. An introduction to parallel algorithms. Addison Wesley Long-

man Publishing Co., Inc.

[28] Humayun Kabir and Kamesh Madduri. 2017. Parallel k-core decomposition on

multicore platforms. In 2017 IEEE International Parallel and Distributed Processing
Symposium Workshops (IPDPSW). IEEE, 1482–1491.

[29] Wissam Khaouid, Marina Barsky, Venkatesh Srinivasan, and Alex Thomo. 2015.

K-core decomposition of large networks on a single PC. Proceedings of the VLDB
Endowment 9, 1 (2015), 13–23.

[30] Ronghua Li, Sen Gao, Lu Qin, Guoren Wang, Weihua Yang, and Jeffrey Xu Yu.

2020. Ordering Heuristics for k-clique Listing. Proc. VLDB Endow. (2020).
[31] Rong-Hua Li, Qiangqiang Dai, GuorenWang, ZhongMing, Lu Qin, and Jeffrey Xu

Yu. 2019. Improved algorithms for maximal clique search in uncertain networks.

In 2019 IEEE 35th International Conference on Data Engineering (ICDE). IEEE,
1178–1189.

[32] Xuankun Liao, Qing Liu, Jiaxin Jiang, Xin Huang, Jianliang Xu, and Byron Choi.

2022. Distributed D-core decomposition over large directed graphs. Proceedings
of the VLDB Endowment 15, 8 (2022), 1546–1558.

[33] Boge Liu, Long Yuan, Xuemin Lin, Lu Qin, Wenjie Zhang, and Jingren Zhou.

2020. Efficient (𝛼 , 𝛽)-core computation in bipartite graphs. The VLDB Journal
29, 5 (2020), 1075–1099.

[34] Qing Liu, Minjun Zhao, Xin Huang, Jianliang Xu, and Yunjun Gao. 2020. Truss-

based community search over large directed graphs. In Proceedings of the 2020
ACM SIGMOD International Conference on Management of Data. 2183–2197.

[35] Linyuan Lü, Tao Zhou, Qian-Ming Zhang, and H Eugene Stanley. 2016. The

H-index of a network node and its relation to degree and coreness. Nature
communications 7, 1 (2016), 10168.

[36] Wensheng Luo, Kenli Li, Xu Zhou, Yunjun Gao, and Keqin Li. 2022. Maximum

Biplex Search over Bipartite Graphs. In 2022 IEEE 38th International Conference
on Data Engineering (ICDE). IEEE, 898–910.

[37] Wensheng Luo, Zhuo Tang, Yixiang Fang, Chenhao Ma, and Xu Zhou. 2023. Scal-

able algorithms for densest subgraph discovery. In 2023 IEEE 39th International
Conference on Data Engineering (ICDE). IEEE, 287–300.

[38] Wensheng Luo, Qiaoyuan Yang, Yixiang Fang, and Xu Zhou. 2023. Efficient Core

Maintenance in Large Bipartite Graphs. Proceedings of the ACM on Management
of Data 1, 3 (2023), 1–26.

[39] Bingqing Lyu, Lu Qin, Xuemin Lin, Ying Zhang, Zhengping Qian, and Jingren

Zhou. 2020. Maximum biclique search at billion scale. Proceedings of the VLDB
Endowment (2020).

[40] ChenhaoMa, Yixiang Fang, Reynold Cheng, Laks VS Lakshmanan,Wenjie Zhang,

and Xuemin Lin. 2020. Efficient algorithms for densest subgraph discovery on

large directed graphs. In Proceedings of the 2020 ACM SIGMOD International
Conference on Management of Data. 1051–1066.

[41] Alberto Montresor, Francesco De Pellegrini, and Daniele Miorandi. 2013. Dis-

tributed k-Core Decomposition. IEEE Transactions on Parallel and Distributed
Systems 2, 24 (2013), 288–300.

[42] Yun Peng, Yitong Xu, Huawei Zhao, Zhizheng Zhou, and Huimin Han. 2020.

Most similar maximal clique query on large graphs. Frontiers of Computer Science
14 (2020), 1–16.

[43] Ahmet Erdem Saríyüce, Buğra Gedik, Gabriela Jacques-Silva, Kun-Lung Wu,

and Ümit V Çatalyürek. 2013. Streaming algorithms for k-core decomposition.

Proceedings of the VLDB Endowment 6, 6 (2013), 433–444.
[44] Ahmet Erdem Sariyuce, C Seshadhri, and Ali Pinar. 2017. Local algorithms for

hierarchical dense subgraph discovery. arXiv preprint arXiv:1704.00386 (2017).
[45] Ahmet Erdem Sariyuce, C Seshadhri, Ali Pinar, and Umit V Catalyurek. 2015.

Finding the hierarchy of dense subgraphs using nucleus decompositions. In

Proceedings of the 24th International Conference on World Wide Web. 927–937.
[46] Stephen B Seidman. 1983. Network structure and minimum degree. Social

networks 5, 3 (1983), 269–287.
[47] Jessica Shi, Laxman Dhulipala, and Julian Shun. 2021. Theoretically and practi-

cally efficient parallel nucleus decomposition. Proceedings of the VLDB Endow-
ment 15, 3 (2021), 583–596.

[48] Henry Soldano, Guillaume Santini, Dominique Bouthinon, and Emmanuel Lazega.

2017. Hub-authority cores and attributed directed network mining. In 2017 IEEE
29th International conference on tools with artificial intelligence (ICTAI). IEEE,
1120–1127.

[49] Zitan Sun, Xin Huang, Jianliang Xu, and Francesco Bonchi. 2021. Efficient proba-

bilistic truss indexing on uncertain graphs. In Proceedings of the Web Conference
2021. 354–366.

[50] Anxin Tian, Alexander Zhou, Yue Wang, and Lei Chen. 2023. Maximal D-truss

search in dynamic directed graphs. Proceedings of the VLDB Endowment 16, 9
(2023), 2199–2211.

[51] Jia Wang and James Cheng. 2012. Truss Decomposition in Massive Networks.

Proceedings of the VLDB Endowment 5, 9 (2012).
[52] Kai Wang, Xuemin Lin, Lu Qin, Wenjie Zhang, and Ying Zhang. 2020. Effi-

cient bitruss decomposition for large-scale bipartite graphs. In 2020 IEEE 36th
International Conference on Data Engineering (ICDE). IEEE, 661–672.

[53] Jianye Yang, Yun Peng, Dian Ouyang, Wenjie Zhang, Xuemin Lin, and Xiang

Zhao. 2023. (p, q)-biclique counting and enumeration for large sparse bipartite

2666

graphs. The VLDB Journal (2023), 1–25.
[54] Michael Yu, Dong Wen, Lu Qin, Ying Zhang, Wenjie Zhang, and Xuemin Lin.

2021. On querying historical k-cores. Proceedings of the VLDB Endowment (2021).

[55] Yingli Zhou, Qingshuo Guo, Yixiang Fang, and Chenhao Ma. 2024. A Counting-

based Approach for Efficient k-Clique Densest Subgraph Discovery. Proceedings
of the ACM on Management of Data 2, 3 (2024), 1–27.

2667

	Abstract
	1 introduction
	2 Related work
	2.1 Core decomposition
	2.2 Decomposition of other cohesive subgraphs

	3 Problem Statement
	4 A Parallel D-core Decomposition Algorithm
	4.1 State-of-the-art algorithms
	4.2 Parallel D-core computation

	5 A Shell-based Parallel D-core Decomposition Algorithm
	5.1 Shell-based pruning techniques
	5.2 Improved k-list computation
	5.3 Overall algorithm

	6 Experiments
	6.1 Setup
	6.2 Efficiency evaluation
	6.3 Additional evaluations

	7 Conclusion
	Acknowledgments
	References

