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ABSTRACT

We are witnessing an increasing availability of streaming data that

may contain valuable information on the underlying processes. It

is thus attractive to be able to deploy machine learning models, e.g.,

for classi�cation, on edge devices near sensors such that decisions

can be made instantaneously, rather than �rst having to transmit in-

coming data to servers. To enable deployment on edge devices with

limited storage and computational capabilities, the full-precision

parameters in standard models can be quantized to use fewer bits.

The resulting quantized models are then calibrated using back-

propagation with the full training data to ensure accuracy. This

one-time calibration works for deployments in static environments.

However, model deployment in dynamic edge environments call

for continual calibration to adaptively adjust quantized models to

�t new incoming data, which may have di�erent distributions with

the original training data. The �rst di�culty in enabling continual

calibration on the edge is that the full training data may be too large

and thus cannot be assumed to be always available on edge devices.

The second di�culty is that the use of back-propagation on the

edge for repeated calibration is too expensive. We propose QCore

to enable continual calibration on the edge. First, it compresses the

full training data into a small subset to enable e�ective calibration

of quantized models with di�erent bit-widths. We also propose

means of updating the subset when new streaming data arrives

to re�ect changes in the environment, while not forgetting earlier

training data. Second, we propose a small bit-�ipping network that

works with the subset to update quantized model parameters, thus

enabling e�cient continual calibration without back-propagation.

An experimental study, conducted with real-world data in a contin-

ual learning setting, o�ers insight into the properties of QCore and

shows that it is capable of outperforming strong baseline methods.
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1 INTRODUCTION

Due to developments such as the spread of the Internet of Things

and the ongoing digitalization of societal and industrial processes,

data streams that hold the potential to o�er valuable insight into

their underlying processes are becoming increasingly prevalent. To

maximize value creation from such data, it is important to enable

continual analytics and decision making on the edge devices that

receive the data streams. For example, classi�cation is important

in applications such as health monitoring, autonomous driving,

�nances, and web services [68]. The on-device deployment of such

classi�cation tasks can not only enhance the functionality of edge

devices but can also reduce the dependency on external processing

and yield improved e�ciency and reduced classi�cation latencies.

Increasingly sophisticated classi�cation methods have emerged

over the last decade [56, 72], with state-of-the-art methods often

relying on large deep learning models [27, 35] or even combina-

tions of such models [55], thus posing high computational require-

ments [60]. These large models are typically unsuitable for edge

deployment, where resources are limited. For example, in intelligent

vehicle applications, in-vehicle controllers employ classi�cation

models to classify di�erent driving statuses, but such controllers

often have limited storage and support only low-bit integers, e.g.,

INT4 or INT8. To enable the deployment of these models on edge

devices with limited computational capabilities and storage, it is

necessary to compress large classi�cation models [12, 23] through

techniques such as model-parameter quantization (e.g., using 2, 4,

or 8-bit representations) [12]. However, this process relies on model

calibration to maintain performance, which has two limitations that

prevent its deployment on the edge.

First, the calibration process is typically performed only once

before deployment, using full training data and the full-precision

model [58], as shown in Figure 1(a). In a streaming setting, this

approach falls short because calibration needs to be executed con-

tinuously [54]. Further, edge devices may have insu�cient storage

to �t the full training data. The continuous calibration is necessary

because the classi�cation occurs in dynamic environments rather

than in static ones where one-time calibrations is su�cient.

Speci�cally, in the targeted dynamic environments, distributions

in incoming streaming data may vary considerably from what was

seen in the original training data. For example, this may occur
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(a) Traditional Quantization Paradigm. (b) The QCore Paradigm.

Figure 1: Paradigms for Quantized Classi�cation. (a) In the traditional, one-time calibration paradigm, the full-training data set

is required to perform calibration that uses back-propagation (BP). (b) In the proposed continual calibration paradigm, the full

training data set is compressed into a small set, called QCore, that �ts into edge devices with limited storage; and it is possible to

update the QCore with incoming streaming data. Next, a bit-�ipping network enables continual calibration without BP.

when vehicles are driven in varying climates or under varying

driver behaviors and tra�c conditions [32, 62]. This necessitates

re-calibration [22, 76] that takes into account both past and new

data. For example, a vehicle with a driver-assistance system may

adjust onboard sensor classi�ers when changes in altitude and

temperature occur, conditions that modify barometric pressure

metrics [53], or according to di�erent driver behaviors [47, 78].

Second, existing one-time calibration involves back-propagation

(BP), which is computationally expensive and its accuracy relies

on accurate computation of gradients in full-precision �oat val-

ues [29]. However, once quantized models are deployed on the

edge, full-precision �oat numbers may become unavailable as only

lower-bit numbers, e.g., INT8, are available. Moreover, performing

back-propagation with low-bit parameters remains computation-

ally costly, mainly due to extensive gradient computations [50], and

therefore impractical on edge devices.

We proceed to summarize the limitations of the state-of-the-art

that hinder the continual calibration of quantized models on the

edge and then explain how we address these limitations.

Extensive Data Requirements: Adjusting quantized models

after deployment on edge devices requires substantial amounts of

both initial training data and streaming data. This restricts such

adjustment deployment on edge devices that, due to their limited

storage, bandwidth, and computational capabilities, may be unable

to store the data or may be ine�cient. Therefore, we need means for

reducing the data needed when calibrating quantized models on the

edge, while still considering the original training data and streaming

data to avoid catastrophic forgetting. Further, these means must

enable compliance with device memory size limitations.

Lack of On-Edge Calibration: Existing quantized model pro-

posals do not support calibration once models are deployed. This

limitation is particularly problematic in dynamic environments [49].

Calibrating a quantized model calls for minimizing a loss function

by means of back-propagation, where full-precision computations

are typically needed to estimate changes in the quantized model

parameters. When a quantized model is deployed on the edge, back-

propagation is less accurate due to the reduced precision of the

quantized parameters. In addition, this process is costly due to

the need for computing gradients for all parameters. This results

in ine�ciency and impracticality of conventional calibration on

edge devices. Instead, we need means of enabling continual calibra-

tion without access to full-precision parameters and without using

back-propagation that relies on such parameters.

To eliminate the above limitations, we introduce QCore, a frame-

work to support the preparation, deployment, and on-edge contin-

ual calibration of classi�cation models on resource-limited devices.

AddressingChallenge 1: To eliminate the data requirement limita-

tion, we propose to compress the full training data set to a row-wise

data subset, called QCore, designed to support quantized models

calibration, thereby extending the traditional paradigm —see Fig-

ure 1(b). QCore supports one-time calibration when generating

models with quantized parameters, and it is ready for subsequent

on-edge continual calibrations. Compared to the traditional one-

time model quantization, this process uses less data, enabling faster

and more e�cient deployment. Also, as it �ts in edge devices, it

can be updated as new data arrives, ensuring e�ective continual

calibration that can balance past and new knowledge, as shown

in the calibration step in Figure 1(b). This approach prevents the

forgetting of past knowledge integrated it in a single data structure,

whereas an additional bu�er is typically required to achieve this

goal in classic continual learning methods [66].

Further, QCore is quantization-aware, meaning that it e�ciently

includes examples that support e�ective calibration of models with

di�erent levels of quantization that match the settings in which they

are deployed, e.g., using di�erent bits. This is important because

there may be cases, at particular quantization levels, where models

learn to classify data incorrectly, necessitating regular re-calibration

within their quantization constraints.

Addressing Challenge 2: To support continual calibration of

quantized models after deployment, we propose an auxiliary so-

called bit-�ipping network. This network enables calibration of

quantized parameter values in scenarios without access to full-

precision values, while avoiding costly back-propagation. The bit-

�ipping network is designed to be compact to ensure deployment.

Moreover, the bit-�ipping network is quantized and exclusively con-

ducts inference computations, minimizing the additional burdens

on edge devices. The bit-�ipping network predicts whether a given

quantized parameter value needs to be updated after processing

incoming streaming data. The proposal represents a novel way of

calibrating quantized models when back-propagation is too costly

and full-precision parameter values are unavailable. The reliance on

inferencing substantially reduces the computations necessary for

updating a quantized model compared to using back-propagation.

This makes the bit-�ipping network highly attractive for on-edge

calibration.
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The bit-�ipping network is integrated with QCore in order to up-

date QCore as new data arrives. This ensures an e�ective continual

learning process, allowing a model to maintain knowledge from

the past while adapting to its environment. As a result, the model

is capable of remaining competitive with all the data that has been

processed, while address the challenges of working on the edge.

To the best of our knowledge, this is the �rst study of continual

calibration without back-propagation of quantized models with

diverse quantization levels on the edge. We propose a method to ob-

tain a compressed data set, called QCore, for calibrating models with

di�erent levels of quantization and a strategy for calibrating quan-

tized model parameters. QCore is tailored for models with quantized

parameters and work across the di�erent stages of training a classi-

�cation model, thus enabling for the creation of adjustable models

suitable for edge devices. We also propose an innovative approach

to enable calibration of quantized models when regular tools like

back-propagation are infeasible due to limited resources. The paper

makes the following contributions:

• It proposes QCore, a quantization-aware data set that compresses

a full-training data set while identifying data examples that are

important for the e�ective and e�cient calibration of diverse

bit-width quantized models.

• It introduces an auxiliary lightweight network for e�cient on-

device learning of models with quantized parameters. This net-

work eliminates costly back-propagation that requires full-pre-

cision parameters and gradient computations. Additionally, the

network is quantized, making it suitable for use on edge devices.

• It integrates QCore and the auxiliary network to continually ad-

just QCore to incoming data. This avoids the need for a bu�er to

prevent forgetting and instead uses a stable-sized data structure,

which is essential for edge deployment.

• It reports on extensive experiments that o�er insight into the

key design decisions and o�er evidence of the applicability and

e�ectiveness of QCore and the auxiliary network for on-device

model deployment.

The paper is organized as follows. Section 2 covers preliminaries,

Section 3 details the proposed method, and Section 4 reports on ex-

periments. Section 5 reviews related work, and Section 6 concludes.

2 PRELIMINARIES

This section presents concepts that are necessary to introduce the

proposed framework.

2.1 Classi�cation Problem

2.1.1 Full Training Data Set. A full training data setD = {(Gğ , ~ğ )}
Ĥ
ğ=1

is a collection of = pairs (Gğ , ~ğ ) de�ned over a 3-dimensional fea-

ture space X ¢ RĚ and a :-class label space Y ¢ Rġ . Each Gğ is

an atomic entity to be classi�ed, such as a time-series or an image

represented as a 3-dimensional vector, while the label ~ğ indicates

the speci�c class that the entity belongs to in the set of : classes.

For instance, in a human activity time-series data set, this set of

labels includes conditions that represent di�erent activity classes,

such as walking, sitting, cycling, and running.

2.1.2 Classification Task. The classi�cation task is to learn a func-

tion, or classi�er, that takes an entity Gğ as input and returns its

corresponding label ~ğ . During training, a classi�er is learned using

a full-training data set D. The accuracy of the classi�er is then

evaluated on a testing data set D′ that is distinct from the full

training data set D.

When training a classi�er with full-precision parameters Θ, the

objective is to learn the probability distribution ?D (Y | X;Θ)

for all the pairs (Gğ , ~ğ ) in full data training set D, minimizing the

cross-entropy loss between that probability and the ground truth

Y captured by argminΘ Lÿā (?
D (Y | X;Θ),Y).

2.1.3 Streaming Batch. A streaming batch is a data set DĪ
=

{(GĪğ , ~
Ī
ğ )}

ģ
ğ=1 with< j = that arrives at timestamp C , where each

pair (GĪğ , ~
Ī
ğ ) ∈ X × Y. The distribution of X may vary in DĪ with

respect to the training set D, which would require to calibrate the

classi�cation model with respect to the known Y in DĪ . For exam-

ple, this may occur when di�erent individuals perform activities

that vary slightly due to factors like ages, health conditions, and

changes in the environment, but still can be labeled by the original

set of labels.

2.1.4 Stream Classification Problem. The classi�cation problem,

under streaming batches, becomes a continuous update of parame-

tersΘ at time C , as captured by argminΘĪ Lÿā (? (~
Ī
ğ | G

Ī
ğ ;Θ

Ī−1), ~Īğ ).

2.2 Quantization

Quantization is a process that reduces the precision of model pa-

rameters, thus reducing model size. For instance, Figure 2 shows

how full-precision parameters, which are 32-bit �oats, can be quan-

tized into 3-bit parameters using uniform quantization [29]. In this

example, the value 17.831 falls into the interval [15, 25) and so maps

to 20, which is assigned to the 3-bit bucket 101.

Figure 2: Quantization Mapping.

2.3 Calibration

For a classi�cation model with quantized parametersΘĠ at a quanti-

zation level 9 , the probability distribution needs to be relearned for

the data setD, which is known as calibration. The step is necessary

because ΘĠ has a loss of precision compared to Θ and the parame-

ters that it represents are interdependent. Learning the parameters

ΘĠ involves computationally costly back-propagation, and the train-

ing data needed can require signi�cant memory space, making it

unsuitable for running on edge devices with limited computational

resources, as summarized in Table 1. Also, the process usually relies

on full-precision parameters to compute the gradients necessary

for back-propagation. This is because the quantization functions

discretize the values, making them not properly di�erentiable [50],

and leading to the zero-gradient problem [46].
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Table 1: Calibration Optimization Comparison.

Computation Memory Use Edge Ready

Training Set + BP High High :

QCore + BP High Low :

QCore + No BP Low Low 6

To optimize the calibration process, we can reduce memory

consumption and runs it faster by utilizing a representative sub-

set, called QCore, Dę ¢ D. However, it still requires the back-

propagation step for learning the parameters ΘĠ , which makes it

unsuitable for edge applications. Therefore, it is essential to remove

the BP process in order to e�ectively prepare the calibration for

execution on edge devices and to facilitate the its further devel-

opment as a continual process. The goal is to �nd a function that

e�ectively substitutes Equation 1 in order to compute ΘĠ using the

QCore Dę .

argmin
ΘĠ

BP (ΘĠ | Dę ) = argmin
ΘĠ

Lÿā (?
Dę (Y | X;ΘĠ ),Y) (1)

3 THE QCORE METHOD

We present the problem setting and then proceed to present the

components of our framework to support calibration for quantized

models on the edge.

3.1 Problem Setting

We consider a setting where a large and already trained classi�-

cation model needs to be deployed on edge devices with limited

hardware capabilities. That is usually accomplished using a com-

pression method, such as quantization, to reduce the model size,

but training data is still necessary for calibrating the resulting quan-

tized models to maintain performance. The full-training data set

may not be available on edge devices; and if it is, it may be too large

to be used for calibration. However, if compressed, the full-training

data set may still be used on resource-limited devices to calibrate

the quantized models.

When quantized models are deployed on edge devices, they will

likely operate in environments that di�er from the ones they were

trained on. As a result, it must be possible to adjust the data used to

calibrate models in di�erent deployments. Such adjustment enables

better model calibration and facilitates the development of the

calibration as a continual process. In Section 3.2, we propose a data

management strategy that aligns with the above scenario, selecting

the most suitable examples for calibrating quantized models. The

strategy involves saving a portion of the available data within a

storage budget, called QCore. This is a subset Dę of D that serves

as a proxy for the full-training data set D. It compresses a large

data set into a subset of rows instead of dimensions or columns [24,

38, 79], allowing a given model or algorithm calibrated on QCore

to produce results that approximate those produced when using

the full-training data set for training.

Additionally, the traditional one-time calibration of quantized

models is limited to the step when the quantized models are gen-

erated. This is because the calibration employs expensive back-

propagation that requires the full-training data set to perform gra-

dient computations. When quantized models are deployed on edge

devices, further adjustments are therefore not considered. To ad-

dress this limitation, we propose a scheme in Section 3.3 that enables

the continual calibration of quantized models. This scheme does

not need access to the original full-precision model, and it avoids

expensive back-propagation.

An overview of the proposal is shown in Figure 3. First, given a

full-precision classi�cation model, QCore is designed to be able to

calibrate quantized models with di�erent quantization levels. This

is essential as di�erent edge devices may have di�erent resource

restrictions, thus requiring quantized models with di�erent bit-

widths. Next, the full-precision model is quantized based on its

speci�c bit-width and a corresponding small bit-�ipping network is

trained for further continual calibration. Upon edge deployment, the

quantized model is updated using the bit-�ipping network, while

QCore is updated with data obtained in the operating environment.

Figure 3: QCore Framework Overview.
Despite our focus being on classi�cation, the framework is gen-

eral and can be adapted to compress large models for other types of

tasks, such as forecasting [17–20, 63, 77, 82] and outlier detection

models [11, 41, 42].

3.2 Quantization-Aware Subset

3.2.1 Subset Se�ing. To handle the training data e�ciently through-

out the process of constructing quantized models, we propose a

quantization-aware subset, called QCore. QCore serves the purpose

of compressing the original training data considering the most suit-

able examples for calibrating quantized models, thereby reducing

the data size. It has three important properties. First, it is small,

making it easily implementable on edge devices. Second, it sup-

ports model calibration at di�erent quantization levels, such as 2, 4,

and 8 bits. Third, it can be adaptively updated after deployment in

dynamic environments.

Therefore, QCore is an essential component in the development

and adjustment of quantized models for edge deployment. It plays

a role in all stages of model quantization, as illustrated in the Fig-

ure 1(b). Initially, when a full-precision model is trained using the

full-training data set, QCore is computed utilizing the full-precision

model and the full-training data set, which are then available for

the quantization step. Then, according to di�erent hardware restric-

tions, quantized models with di�erent bits are quantized based on

the full-precision model and are calibrated using the QCore, ready

to be deployed on edge devices. As the models are utilized with

data streams, each model can specialize its own QCore consider-

ing the changes introduced by each data stream, such as concept

drifts. Each speci�c QCore can then be employed for calibrating its

corresponding quantized model, allowing it to be tailored to the

environment in which it is deployed.

A simple approach to building a subset is to randomly selecting

a fraction of the full-training data set [61]. However, this may lead

to an unbalanced number of examples in terms of their utility for

calibrating a quantized model. For instance, such a subset may

contain an abundance of redundant and easy examples instead of

more bene�cial ones like boundary cases that are more useful for

model calibration, as deep learning methods may process them

di�erently [1, 40, 74].
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In addition, when a full-precision model is compressed into mod-

els with varying quantization levels, such as 2, 4, or 8 bits, additional

challenges arise. This is because data examples may have di�erent

signi�cance when training models with di�erent quantization lev-

els. For example, certain data examples may be more challenging

to be correctly classi�ed in a 4-bit model than in an 8-bit model.

Therefore, when compressing the full-training data set, it is nec-

essary to assess the signi�cance of each example for di�erent quan-

tized models. To do so, we consider empirical observations of the

di�culty of every example when evaluated at di�erent quantized

levels while training the full-precision model. This is calculated

using a metric that we called quantization misses. Utilizing this

metric, we identify relevant examples in the full-training data set

that can e�ectively compress the data set and enable calibration of

quantized models. The process is explained in further detail below.

3.2.2 �antization Misses. Consider a classi�cation model with

parameters Θ and the objective of learning the probability distri-

bution ? (Y | X;Θ) for all pairs (Gğ , ~ğ ) in the full-training data set

D. The predicted label for example Gğ at training step B is denoted

by ~̂ĩğ = argmaxġ ? (~ğġ | Gğ ;Θ
ĩ ), assuming : classes. The indica-

tor function TPĩğ returns a Boolean value that indicates whether

example Gğ is correctly classi�ed at step B:

TPĩğ :=

{

1 if ~̂ĩğ = ~ğ

0 otherwise
(2)

A quantization miss for an example Gğ occurs when function TPĩğ
changes from 1 to 0 between consecutive training steps B and B + 1

when evaluating a given quantized model. This indicates that Gğ
was classi�ed correctly at step B , but misclassi�ed at step B + 1. By

calculating the quantization misses for all examples during training

of a speci�c quantized model, we can generate a probability mass

function (PMF) for the full-training data set. This function repre-

sents the distribution of the examples within the training set in

terms of quantization misses, providing an indicator of the di�culty

of the training process for that speci�c quantized model. Exten-

sively, when training a model and evaluating di�erent quantized

models, we obtain di�erent distributions.

For instance, the gray bars in Figure 4 represent the distributions

of quantization misses obtained through 10,000 evaluations using

a 4-bit and a 8-bit quantized models. The distributions di�er no-

ticeably between the two models, suggesting that certain examples

pose more challenges for one model than the other, as the case with

three quantization misses illustrates for 8-bit model.

1 2 3 4 5 6 7
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480

Quantization misses

E
x
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(a) 4-bit Quantized Model.
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(b) 8-bit Quantized Model.

Figure 4: Distributions of Quantization Misses for Models

with Di�erent Precision. Subset Size 10%.

3.2.3 Generating QCore. Using the distribution generated by the

quantization misses metric, we create a QCore by randomly select-

ing instances for each number of quantization misses. For example,

in Figure 4 (note the logarithmic scale), we generate two QCores

that are one-tenth the size of the training set. These QCores are

shown as in the blue and red areas. They replicate the distribution

of the full-training data set, but are much smaller, so the QCore

Dę ∼ D ' |Dę | j |D|. In the case of the 4-bit model, the QCore

includes 48 examples with three quantization misses, while the

8-bit model requires 97 examples at the same level.

We further extend the idea of computing the distribution of

quantization misses to allow for �exibility in calibrating di�erent

quantized models. In doing so, we explore the possibility of combin-

ing the distributions of multiple quantized models into a single one.

This enables us to showcase examples that, in general, pose greater

di�culty when the model is quantized at multiple levels. The pro-

cess of generating QCores using quantization misses is integrated

into full-precision model training, as shown in Algorithm 1.

Algorithm 1 Generate QCore.

1: Input: Full training data (D), Full-precision network (FP),

QCore size (Size)

2: Output: QCore (Dę )

3: � ← Quantization levels

4: �antMisses[D × � ] ← ∅

5: for s← 1, . . . , E do ² E epochs

6: �% ← Train FP (D)

7: for Gğ ← G1, . . . , GĊ do ² Every example in D

8: for & Ġ ← Quantize FP at quantization level 9 ∈ � do

9: ~̂ğ Ġ ← & Ġ (Gğ ) ² Inference with quantized model

10: if TPĩğ Ġ changes from 1 to 0 then ² See Eq. 2

11: �antMisses Ġ [Gğ ] ←�antMisses Ġ [Gğ ] + 1

12: ² Count the #
Ġ

ġ
examples with : quantization misses at each 9

13: {(:, #
Ġ

ġ
) ← Distribute(�antMisses Ġ ) : 9 ∈ � } ² As Fig. 4

14: {(:, #ġ )} ←
∑

Ġ #
Ġ

ġ
² Quantization Misses Distribution

15: Dę ← Sample((8I4,D, {(:, #ġ )})

In each training step, the full-precisionmodel is quantized tempo-

rary at di�erent quantization levels to compute quantization misses.

For example, the original model may be quantized at conventional

power-of-two levels such as 2, 4, and 8, or other levels. This process

is done online, meaning that the resulting quantized models are not

adjusted any further. The temporary quantization step serves as a

proxy between the full-precision model and the fully-trained quan-

tized models. It estimates how the quantized models will perform,

enabling calculation of their quantization misses without under-

going training. Moreover, the challenging examples for the proxy

model are likely to also pose di�culties after calibration. This step

also identi�es the simple examples, helping to maintain a balanced

distribution of training data between both categories.

The derived models are utilized to assess the examples for each

batch and to predict their respective labels. Subsequently, each pre-

diction is evaluated based on its outcome in the previous iteration

to determine if it has transitioned from the correct label to an in-

correct one. If an example has such change, a quantization miss for

that example in the corresponding quantization level is noted.
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After completing the training, a probability mass function (PMF)

is generated for each quantization level by summing up all the

examples based on their number of quantization misses. This ar-

rangement provides an outline of the distributions of training di�-

culty, as illustrated in Figure 4. Speci�c QCores can be generated by

sampling the training set using the distribution for each quantiza-

tion level considered. However, a more general and �exible QCore,

capable of supporting multiple quantization levels, considers the

sum of the distributions, as shown in the last step of Algorithm 1.

Information loss: We consider the n-approximation approach [6, 26,

30, 39, 51, 67], with a full data setD and a coresetDę ¢ D to evalu-

ate the information loss of usingDę . The information loss reduction

goal then becomes one of minimizing the di�erence n of a cost func-

tion that evaluates the quantized model on both sets. In our setting,

the cost function is the number of quantization misses, which are

distributed among #ġ data points who have : quantization misses.

Then, QCore is built maintaining the same distribution of quantiza-

tion misses but with size _ |D|, where _ ∈ (0, 1). Thus, the informa-

tion loss is given by n =

�

�

�

�

∑ć
ġ=1 ġ×Ċġ
|D |

−

∑ć
ġ=1 ġ×+ČĊġ ,

+Č |D | ,

�

�

�

�

f  , where

the di�erence is due to rounding losses caused by non-proportional

numbers of examples. The rounding loss is bounded by including at

most one fewer or one more data point for each possible quantiza-

tion miss. Thus, when summing up, the loss is at most the constant

 , i.e., the maximum level of quantization misses.

Complexity: Algorithm 1 executes � training epochs over # exam-

ples. In each epoch, BP updates the model parametersF with cost

�%ĭ , which gives a training cost of � × # × �%ĭ . Then, for every

example in # , at each quantization level among all quantization

levels � , the quantization misses counting can change at most �

times, since it is computed every epoch. Thus, the counting occurs

at most # × � ×� times. To compute the distribution of quantization

misses after training, we count the number the examples that have

a speci�c number of quantization misses. This takes linear time

w.r.t. # . This gives a cost of � ×# × �%ĭ + � ×# × � +# , where �

is often a small constant. We obtain an asymptotic complexity of

O(� × # × �%ĭ), which is the same as for regular BP training.

3.2.4 Calibrating �antized Models. Upon model training and

QCore generation, the model is ready for being compressed and

deployed. Speci�cally, as QCore is tailored for quantized models,

multiple versions with di�erent bit-width levels can be generated

and calibrated faster using the QCore, as the amount of data is re-

duced compared to the full training data. Any quantization strategy

is applicable, consisting of applying a quantization function over

the full-precision parameters and then using QCore to calibrate

them, aiming to achieve similar performance to the original model.

Once the quantization process is complete, the calibrated models

can be deployed on edge devices to perform inference tasks, while

still having access to the QCore, which is small in size and thus can

be stored on edge devices, for further continual calibration.

3.3 Bit-�ipping Network

3.3.1 Overview. Edge devices often encounter dynamic environ-

ments where the incoming data stream di�ers from the original

training data. As a result, continual calibration at the edge becomes

necessary in order to adapt the model. However, existing methods

are impractical to execute at the edge because they depend on costly

back-propagation. This method requires computing gradients for

all the parameters and is ine�cient due to its low performance

caused by the loss of precision in the parameters. To tackle this

limitation, we introduce the bit-�ipping network (BF), which is a

small auxiliary quantized model with the same bit-width as the

main quantized network. This network makes it possible to avoid

computationally intensive tasks, such as back-propagation, e�ec-

tively substituting it, i.e., Equation 1, when trained in a given data

set Dę to compute the parameters ΘĠ .

To enable it to support calibration, the bit-�ipping network is

trained in parallel with the calibration for the quantized model,

where the loss surface is consistent and stable, to calculate the

expected changes to the parameters during that process. The bit-

�ipping network predicts one step ahead the potential changes

to the parameters based on the current input to the classi�cation

model. The prediction is associated with only the three possible

outcomes {−1, 0, 1}, and once the calibration is �nished, the bit-

�ipping network can be employed during inferencing to forecast

the parameter changes in the quantized model.

The bit-�ipping network is a regression model that is trained

alongside the main quantized model for a speci�c bit-width. This

means that eachmodel deployment has its own bit-�ipping network.

The bit-�ipping network is only used for inference in edge devices.

As a result, the computational cost is low, limiting the cost of when

using the bit-�ipping network on edge devices.

3.3.2 Bit-flipping Network Training. During regular calibration,

the model parameters are updated based on the input and how

it a�ects the loss of the model. This update is performed using

back-propagation. We have observed that there is a relationship

between the input for each parameter and the actual change in

the parameters after back-propagation. The input values for each

parameter impact directly the magnitude of the change in that

particular model parameter.

To study this relationship, as illustrated in the upper part of Fig-

ure 5, we recorded the input and output of each parameter (shown as

blue rectangles) during the �rst calibration of quantized models and

calculated their di�erence as �ė . Then, once the back-propagation

step is computed, we calculate the change in the parameter as �ĭ .

Using di�erences �ė and �ĭ , we train the bit-�ipping network to

estimate the back-propagation results of the main model, conveyed

as the change in parameter �ĭ , considering the e�ect between the

input and the parameter, represented by �ė . The idea is to map the

relationship between these two di�erences. For example, a higher

�w

�a

�a

f(�a) j +�w+

Figure 5: Bit-Flipping Training and On-Device Calibration.
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value in input may lead the optimization process to reduce the

value in the parameter, minimizing the e�ect of the high input

value. Therefore, establishing this relationship allows us to identify

how the model was trained originally when back-propagation was

available and condense this knowledge into a small and e�cient

bit-�ipping network. Furthermore, as the training only considers

the inputs for each parameter, a bit-�ipping network trained on a

given data set can be deployed to work with other data sets, even

ones with di�erent domains than the original model.

Then, because themainmodel is quantized, the potential changes

in the parameters are only allowed to take on discrete values be-

tween -1 and 1, as strategies for changing bits have proven func-

tional in calibrating quantized models [31, 58]. This enables a sim-

pli�ed output from the bit-�ipping network, which is limited to

{−1, 0, 1}. As a result, the bit-�ipping network can estimate whether

a parameter is increasing, stays the same, or is decreasing without

taking into account precise values like the gradients calculated

during back-propagation.

Algorithm 2 shows how the bit-�ipping network is trained con-

sidering a quantized model & as a backbone. We keep the bit-

�ipping network architecture in a reduced size, consisting of a

convolutional layer followed by a fully connected layer, quantized

at the same bit-width level as the main model& . During the genera-

tion and calibration of quantized models using QCore, the di�erence

between the input and output features of each parameterFğ , is com-

puted and stored, as shown in line 9. Their computation depends

on the incoming features from all the previous layers Fġ , where

0 f : < 8 , denoted as 6
(

- ★

∏ğ−1
ġ=0

Fĩ
ġ

)

, with an input - and acti-

vation function 6. Then, after back-propagation, the change in the

parameters is also recorded. The di�erence is maintained through

discrete values that indicate whether the bits maintain their current

values or change by one unit. We have observed that changes in the

parameters are often within 1 bit, so we use a threshold to ensure

that it stays within the range of -1 to 1.

Algorithm 2 Bit-�ipping Training.

1: Input: QCore (Dę ), Quantized Network (Q)

2: Output: Bit-�ipping Network (BF )

3: ��[Q.parameters × E] ← ∅, �% [Q.parameters × E] ← ∅

4: - ← Dę

5: for s← 1, . . . , E do

6: & ← Calibrate & (- ) ² See Section 2.3

7: for each parameterFĩ
ğ in & do

8: �2Cğ ← 6
(

- ★

∏ğ−1
ġ=0

Fĩ
ġ

)

² Input activation

9: ��[Fĩ
ğ , s] ← (F

ĩ
ğ ★�2Cğ ) −�2Cğ

10: Fĩ+1
ğ ← Fĩ

ğ − ∇& (F
ĩ
ğ ) ² BP update

11: �% [Fĩ
ğ , s] ←

⌊

Fĩ+1
ğ −Fĩ

ğ

⌉

² The change is clipped and

12: ² recorded as {-1,0,1}

13: for s← 1, . . . , E do

14: BF ← Train BF (��,�%) ² Train bit-�ipping network

After recording all the changes in inputs and parameters during

the calibration, we train the bit-�ipping network using the input

di�erences �ė as input and the resulting parameter di�erences �ĭ

as their expected output, as shown in line 14. This way, the bit-

�ipping network captures the e�ect on the input and subsequent

parameter changes during the regular model calibration.

Complexity: As for Algorithm 1, the calibration cost is � ×# ×�%ĭ .

Then, its bit-�ipping training takes �×�%ĘĜ , where �%ĘĜ has fewer

parameters than �%ĭ . Thus, the asymptotic complexity remains

the same as that of Algorithm 1: O(� × # × �%ĭ).

3.3.3 Bit-flipping Based Calibration. Once a classi�cation model

is deployed on an edge device, it can be calibrated using inference

from the bit-�ipping network. The calibration process is outlined

in the lower part of Figure 5 and detailed in Algorithm 3, which

runs together with Algorithm 4. First, the classi�cation model is

used to perform inference on QCore and incoming data, predicting

their corresponding labels. Then, using QCore and the streaming

data, the di�erence between the input and output features of each

parameter in the main model is computed, as shown in line 7. The

result is used by the bit-�ipping network to calculate the change in

parameters, and update them in at most one unit.

Algorithm 3 Bit-�ipping Based Calibration.

1: Input: QCore (Dę ), Stream batch (DĪ ), Quantized model (Q),

Bit-�ipping network (BF )

2: Output: Updated Quantized Network (Q)

3: - ← Dę ∪ DĪ

4: for B ← 1, . . . , E do

5: for each parameterFĩ
ğ in & do

6: �2Cĩğ ← 6
(

- ★

∏ğ−1
ġ=0

Fĩ
ġ

)

² QCore updates in Alg. 4

7: ��ĩğ ← (F
ĩ
ğ ★�2C

ĩ
ğ ) −�2C

ĩ
ğ

8: Fĩ+1
ğ ← Fĩ

ğ + �� (��
ĩ
ğ ) ² Update the parameters

Because changing a parameter leads to modi�cations in the out-

puts of other parameters in the network, the process undergoes

few iterations to ensure model stability. Subsequently, during cali-

bration, di�erent examples may exhibit quantization misses, which

becomes the reason for updating QCore as outlined in Algorithm 4

and explained in the following Section.

Convergence:We adapt established proofs for model optimization us-

ing back-propagation and gradient descent [7, 44] to consider quan-

tized parameters. When using BP to train a quantized model, the up-

date rule for parameterFğ at step B isF
ĩ
ğ = & (Fĩ−1

ğ −[∇5 (Fĩ−1
ğ )),

where & (·) is a quantization function that quantizes full-precision

numbers, e.g., quantizing 32-bit �oats to 4-bit integers, and [ is

the learning rate. Thus, the update rule can be rewritten as Fĩ
ğ =

Fĩ−1
ğ − [∇5 (Fĩ−1

ğ ) + Aĩ−1ğ , where Aĩ−1ğ is the quantization error at

step B − 1. The bit-�ipping network �� approximates the gradient

and the quantization error as �� (·) ≈ [∇5 (Fğ ) − Ağ , so the update

rule becomesFĩ
ğ = Fĩ−1

ğ − �� (·) . The convergence analysis with

back-propagation assumes that the variance of the gradients is

bounded by a constant�2: E| |∇5 (Fğ ) | |
2 f �2. The �� satis�es this

condition since it not only bounds the variance of ∇5 (Fğ ) but the

complete update component [∇5 (Fğ ) − Ağ . This is because the ��

only outputs values in {−1, 0, 1}, so its variance is bounded by one,

as E| |�� (·) | |2 = 1. Then, following the convergence analysis [7, 44],

and given E| |�� (·) | |2 = 1, we obtain the convergence rate over

< iterations as E[5 (Fğ ) − 5 (F
∗
ğ )] f

1
2ģE| |F

0
ğ −F

∗
ğ | |

2 + 1
2 , where
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Fğ =
1
ģ

∑ģFĩ
ğ is the average parameter,F0

ğ is the non-calibrated

parameter, andF∗ğ is the optimal parameter.

Complexity: Algorithm 3 has cost �× |& | ×�� , where |& | is the num-

ber of parameters of the quantized model and �� is the inference

cost of the bit-�ipping network. As the size of the streaming batch

and QCore is at most # , and as the number of parameters of bit-

�ipping network is ��ĭ , �� is # × ��ĭ . Therefore, its asymptotic

complexity is O(� × |& | × # × ��ĭ).

3.4 QCore Update

Once models are deployed on di�erent edge devices, they are ex-

posed to di�erent environments. Each quantized model uses its

own incoming streaming data for calibration using the bit-�ipping

network, as exempli�ed at the bottom of Figure 6, for a 4-bit model

and a stream. However, if only new data is taken into account,

the model may loose its previous knowledge, a condition called

catastrophic forgetting [45].

Thus, as QCore is already available on the edge, we use it to

prevent catastrophic forgetting. Furthermore, we adjust the QCore

to incorporate knowledge from new batches, allowing it to capture

both the previous and new domains. Thus, each batch of incoming

data is combined with the previous QCore to obtain an updated

QCore that is then used for updating the model. Also, since streams

will vary across deployments, the QCorewill be specialized for each

stream and deployment. For instance, the QCore depicted in Figure 6

will be customized for that speci�c stream. This approach can be

compared to classical continual learning [45, 75], where a bu�er

is used to store knowledge from previous batches. However, a key

di�erence between a bu�er and QCore is that QCore integrates the

original data and the bu�er in a single data structure.

+ + +

…

Figure 6: QCore Update, 4-bit Model,) Stream Batches. When

a batch from the data stream arrives, the QCore is updated and

the quantized model is calibrated by the bit-�ipping network

accordingly.

Updates to QCore follows an approach similar to how QCores are

built initially, using a distribution of quantization misses. However,

when updating QCore, the process is speci�c to each model, so

each stream only adjusts its own QCore. The complete process is

detailed in Algorithm 4. As in Algorithm 1, the change in the label

for each example is evaluated in relation to its correct label across

the inference iterations, as can be seen in lines 7–9.

QCore updates occur in parallel with model calibration, which

is covered in the Section 3.3. Therefore, the epochs in Algorithm 2

re�ect the calibration process when, with the incoming examples

and QCore, the distribution of quantization misses is recalculated

to obtain an updated QCore of the same size.

Complexity: Algorithm 4 counts the number of quantization misses

for each epoch � over the examples within the streaming batch and

Algorithm 4 Update QCore.

1: Input: QCore (Dę ), Stream batch (DĪ ), Quantized model (Q)

2: Output: Updated QCore (Dę )

3: �antMisses[Dę ∪ DĪ ] ← ∅

4: D′ę ← Dę ×
|DĪ |
|Dę |

² Scaled up to DĪ size

5: for B ← 1, . . . , E do

6: for Gğ ← G1, . . . , Gģ ∈ D
′
ę ∪ DĪ do

7: ~̂ğ ← & (Gğ ) ² Inference during model calibration

8: if TPĩğ changes from 1 to 0 then ² See Eq. 2

9: �antMisses[Gğ ] ←�antMisses[Gğ ] + 1

10: ² Count the #ġ examples with : quantization misses

11: {(:, #ġ )} ← Distribution(�antMisses)

12: Dę ← Sample((8I4 (Dę ),D
′
ę ∪ DĪ , {(:, #ġ )})

QCore, which are at most # . Therefore, its asymptotic complexity

is O(� × # ).

4 EXPERIMENTS

4.1 Experimental Setup

4.1.1 Data Sets. We assess the framework by evaluating the pro-

posed method using two di�erent time-series data sets, USC [81]

and DSA [2], and one data set of images, Caltech10 [28]. The time-

series data sets consist of sensor readings from human activities.

The labels indicate di�erent conditions such as walking, running,

cycling, and rowing. The image data set consists of images of o�ce

equipment such as computers, headphones, keyboards, and phones.

Table 2 presents the details of the utilized data sets. The infor-

mation included in the table encompasses the number of classes,

the training partition of the data sets, the number of domains and

the input size for each data set.

Table 2: Data Sets.

Data Set Classes Train/Val/Test Domains Input Size

DSA 19 7296/456/1368 8 125 × 45 dim

USC 12 4277/269/807 14 500 × 6 dim

Caltech10 10 2026/126/381 4 256 × 256 × 3 �lter

Each data set can be grouped with another data set as source or

target domains, allowing us to create (source, target) pairs from all

possible combinations of domains. In this way, we can simulate a

continual learning setting where domain shifts happen. For model

training and initial calibration, we use the source domain, while

the target domain, which may have a di�erent data distribution,

is used for testing the continual calibration. This setup resembles

situations where concept drift occurs. For example, in the Caltech10

data set, the four domains are Amazon, Caltech, DSLR, andWebcam.

Therefore, we can train a model using DSLR and test the calibration

using Amazon, indicated with an arrow as DSLR→ Amazon. In the

case of time-series, we use the number of subjects to indicate the

change in domain, e.g., Subj. 1→ Subj. 2.

The continual learning setting is built with the target domain

divided into 10 stream batches. These batches are fed into the model

sequentially as a stream. Upon receiving each batch, QCore is up-

dated and the model is calibrated using the bit-�ipping network.

After calibration, the model is evaluated on the corresponding test
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set for each batch, each one representing one-tenth of the testing

set in the target domain.

4.1.2 Metrics. To evaluate performance, we consider Accuracy,

which is the proportion of testing examples where the class with

the highest probability matches the correct label. For an overall

evaluation of the continual learning, we use the average Accuracy

across all batches. To compare the computational requirements of

the model, we consider Running Time of each calibration and the

size each evaluated data structure, such as QCore, as a proxy for

the memory consumption.

4.1.3 Baselines. To evaluate the construction of QCore, we con-

sider models at various levels of quantization and compare them

to a random subset. We are unable to assess other strategies for

building other types of subsets as they do not support quantized

models in a continual learning setting, as explained in Section 5.

Then, the overall QCore model is compared with six state-of-the-

art continual learning methods. These methods primarily rely on

bu�er strategies to retain knowledge from previous batches and

utilize back-propagation for making model adjustments. To ensure

fair comparison, we keep the sizes of QCore and the bu�ers the

same. We consider the following baselines. (1) Average Gradient

Episodic Memory (A-GEM) [16] employs a small bu�er to sort the

gradients of the model after each batch. (2) Dark Experience Replay

(DER) [8] employs knowledge distillation [36] for rehearsal learning,

keeping track of and matching the outputs of each batch. (3) Dark

Experience Replay++ (DER++) [4, 8] introduces a bu�er into the DER

method to prevent sudden shifts during training. (4) Experience

Replay (ER) [66] it is the original rehearsal method that maintains a

bu�er with old samples that are used together with new examples

to train the model. (5) Experience Replay with Asymmetric Cross-

Entropy (ER-ACE) [9] introduces a training rule into the ERmethods

that enforces the change of new examples to the previous learning.

(6) E�cient Data Management for Stream Learning (Camel) [48]

introduces a training subset for compressing the incoming data

while it keeps a bu�er to prevent forgetting previous knowledge. (7)

Deep Compression (DeepC) [33] employs a three-stage compression

encompassing pruning, quantization, and Hu�man encoding.

4.1.4 Implementation. The proposed method is implemented using

Python 3.8.0 and the framework PyTorch 1.13.0. All models are

tested under Ubuntu 22.04.2 using Titan RTX GPUs with 24GB

VRAM and an Intel Xeon W-2155 with 128GB RAM.

For all methods, a validation set is used to adjust the hyper-

parameters, following the common practice in training machine

learning methods. The framework handles di�erent type of mod-

els and tested using the classi�cation models InceptionTime [25]

and OmniScaleCNN [73] for time-series and ResNet18 [35] and

VGG16 [71] for image data. Reported results are average results

across �ve runs using di�erent random seeds to ensure a fair eval-

uation. When using back-propagation, the models in the streaming

setting are trained for 200 epochs with a learning rate of 0.01, using

the Stochastic Gradient Descent optimizer, and with a batch size

of 64. The QCore size, or the corresponding bu�er, is selected at 30

examples, in order to keep it small while it approximates the size

of an evenly distributed subset where 2-3 examples per class are

included.

4.2 Experimental Results

4.2.1 �antization-Aware QCore. To understand the di�erences

between the possible QCores at various levels of quantization, we

calculated the distribution of quantization misses for three di�er-

ent bit-width con�gurations. We also compute the misses for the

full-precision model, which are solely attributed to training, not

quantization. For instance, when training a 4-bit model, the quan-

tization misses for the training set are shown in the distribution

labeled Core 4. This is illustrated in Figures 7(a) and 7(b) for a sub-

ject in two data sets. We have found similar observations for other

data sets and subjects.
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(a) DSA Subj. 1.
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(b) USC Subj. 6.

Figure 7: Quantization Miss Distributions by Bits.

The comparison of the distributions in both data sets reveals a

considerable di�erence between the full-precision model and the

quantized models. This indicates that the di�culty level of exam-

ples is a�ected by quantization. In the full-precision case, the total

number of quantization misses is relatively low, which suggests that

it may not be a reliable indicator when training quantized models.

This is because it does not include enough examples where quan-

tized models have more di�culty in processing, such as boundary

cases, and therefore, have reduced margin to calibrate properly.

Even when there are similarities between distributions, such as

for Core 4 and 8 for the DSA Subj. 1, the number of quantization

misses is consistently higher for Core 4. This di�erence becomes

more acute as the level of quantization increases, as shown by the

results for Core 2. This highlights the importance of considering

multiple quantization levels when constructing QCore, as this helps

identify the di�culty of examples across di�erent models. Con-

sequently, the QCores can be used to re�ne di�erent models by

including consistently di�cult examples, rather than focusing on

outliers speci�c to a particular level of quantization.

Using the quantization miss distributions for two subjects in

DSA, we constructed di�erent QCores to assess their e�ectiveness

in calibrating quantized models. We examined three quantization

levels (2, 4, and 8 bits) with three types of QCores of size 30 for each

level, as outlined in Table 3. The �rst type, Core j, computes the

examples using the same quantization level 9 as the model, utilizing

only one of the quantized distributions, shown as Weight Ġ in Algo-

rithm 1 and exempli�ed in Figures 7(a) and 7(b). The second type,

Core 32, employs the full-precision network to compute the QCore,

employing only the Core 32 distribution from the �gures. Then,

QCore aggregates the distributions for all three quantization levels,

as described in Algorithm 1, ensuring the identi�cation of consis-

tently di�cult examples across multiple models. For reference, we

also include a Random subset of the same size.
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Table 3: Average Accuracy of Quantized Models by Subset

Type. DSA. Subset Size 30.

Subset 2-bit 4-bit 8-bit Avg. 2-bit 4-bit 8-bit Avg.

Subj. 1→ Subj. 2 Subj. 1→ Subj. 3

Core 2 0.606 0.440 0.510 0.519 0.538 0.385 0.418 0.447

Core 4 0.374 0.713 0.524 0.537 0.319 0.637 0.440 0.465

Core 8 0.418 0.538 0.719 0.558 0.363 0.407 0.717 0.495

Core 32 0.414 0.510 0.584 0.503 0.448 0.467 0.562 0.493

Random 0.414 0.524 0.538 0.492 0.453 0.480 0.524 0.486

QCore 0.604 0.709 0.714 0.676 0.516 0.632 0.703 0.617

The results in Table 3 o�er two important insights: �rst, the

construction of QCore based on the quantization miss distributions

is a good proxy for adjusting quantized models, and it performs

consistently well for di�erent bit-widths and achieve the best aver-

age accuracy; and second, the original distribution is reproduced

closely, even at reduced QCore sizes, such as 30 examples. The re-

sults show that the proposed strategy enables the creation of highly

compressed subsets that can be deployed on edge devices. Addi-

tionally, the Random subset performs the worst in several cases,

close to the non-speci�c Core 32, indicating that it is not a good

strategy for de�ning a quantization-aware subset.

The results indicate that a subset computed with the same bit-

width as the quantized model performs better than the alternatives;

for example, for the 4-bit quantized model, Core 4 performs better

than Random and the non-speci�c subsets. This outcome is expected,

as the subset is each designed speci�cally for a particular model.

However, usability and scalability are limited as these subsets can

only be used for a speci�c model; for example, Core 4 is too speci�c

for use on 8-bit models. This is evident from its lower results and

applies to any case where Core 9 does not correspond to the :-bit

model, i.e., : ≠ 9 . Addressing this issue, QCore o�ers comparatively

good performance and can be applied in all quantized settings, as the

average results shows. This means that only one QCore is needed

to calibrate models with di�erent bit-widths, which is desirable

when deploying models on edge devices with varying constraints.

Additionally, the accuracy achieved using QCore is higher than that

achieved when using the full-precision Core 32. This underscores

the importance of having a QCore that is quantization-aware and

can identify challenging examples for multiple quantized models.

4.2.2 Continual Calibration Evaluation. When comparing our pro-

posal with other continual learning methods, we consider the av-

erage accuracy for ten batches across three quantization levels: 2,

4, and 8 bits. As mentioned, the models are trained in one domain

and calibrated in another, indicated by arrows. We conducted ex-

periments for all possible combinations of domains, totaling 56

scenarios for DSA, 182 for USC, and 12 for Caltech10. Due to space

limitation, we only show an excerpt of the results. This excerpt

consists of four randomly chosen training domains coupled with

their next two calibration domains—see Table 4, and the overall

average results. For Caltech10, the average results are shown in

Table 5. The best results are highlighted in bold.

When compared with the continual learning baselines for time-

series data in Table 4, QCore achieves the best results by a signi�cant

margin. For all methods, the accuracy increases as the bit-width

increases, which is expected because the models have fewer con-

straints on their parameters. Then, DSA has two cases: Subj. 1→

Subj. 3 and Subj. 4 → Subj. 6 both under 4-bit, where the perfor-

mance of QCore is not the best. When examining these scenarios

in detail, it seems that in both cases, one particular batch a�ect

signi�cantly the performance of QCore, thereby decreasing the

overall average result. This condition is infrequent, as shown by

all the other results. In addition, the performance of the baselines

on both DSA and USC is relatively similar, except for A-GEM that

consistently performs the worst in almost all cases.

For the Caltech10 image data set, Table 5 demonstrates a similar

outcome to the results on time-series data. The performance of

QCore outperforms the baselines in every evaluated scenario. This

evaluation also highlights the applicability of the framework in a

relatively uncommon streaming setting with images, supporting

its usability across substantially di�erent settings.

4.2.3 Ablation Study. To assess the importance of the components

of QCore, we examine the e�ects of removing them during model

calibration in a continual learning setting with multiple batches. We

consider two scenarios: removing the QCore update (Algorithm 4

in Section 3.4) (NoUpda) and removing the bit-�ipping (Section 3.3)

(NoBF), comparing them to the complete method (QCore).

The evaluation considers ten batches, to show how the method

evolves when processing the complete streaming domain set. After

processing these batches, their average is computed. Table 6 reports

the accuracy for the two pairs of domains shown in Table 4 for

InceptionTime in both data sets using a quantized model of 4 bits.

Similar results are observed for other bit-widths and settings.

The results show that, on average, QCore achieves the highest

accuracy. This implies that the method can quickly adjust when

a new batch is introduced, thanks to its bit-�ipping mechanism.

Additionally, it e�ectively retains past knowledge to prevent cata-

strophic forgetting, as evidenced by the results. When considering

the overall execution time, the relatively small di�erences highlight

the e�ciency of QCore, due the low overhead of its components.

4.2.4 QCore Construction. To evaluate the construction of QCore,

we compare QCore with other sampling strategies and gradient-

based subsets using InceptionTime as a backbone and without

continual calibration to isolate the sets. We evaluate three sampling

strategies [21]. First, maximum entropy that includes the most dis-

similar sample in the subset compared to the ones already selected.

Second, least con�dence that adds the sample with the most uncer-

tain similarity to the subset. Third, a sampling that assumes that

the quantization misses follow a normal distribution. The results,

at the top in Table 7, show that QCore outperforms them.

We also evaluate other coreset construction methods. These

include a variation of k-means [69], which selects the examples

close to the centroids, as well as two gradient-based methods. The

�rst, GradMatch [43], selects examples dynamically to match the

full-gradient at each training step, and the second, CRAIG [57], aims

to �nd the optimal coreset that minimizes the gradient loss using

a set cover approximation. The results, at the bottom in Table 7,

show that QCore performs the best.

4.2.5 Running Time. To evaluate the running time, we executed

the models independently, so that no other processes were running

on the system that could signi�cantly a�ect the performance. The

average end-to-end runtime is shown in Table 8 for the 4-bit model
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Table 4: Average Accuracy of Quantized Models in a Continual Learning Setting. DSA and USC, QCore/Bu�er Size 30.

Model
InceptionTime OmniScaleCNN

2-bit 4-bit 8-bit 2-bit 4-bit 8-bit 2-bit 4-bit 8-bit 2-bit 4-bit 8-bit 2-bit 4-bit 8-bit 2-bit 4-bit 8-bit

Subj. 1→ Subj. 2 Subj. 1→ Subj. 3 Overall Average Subj. 4→ Subj. 5 Subj. 4→ Subj. 6 Overall Average

D
SA

A-GEM 0.232 0.527 0.557 0.194 0.552 0.565 0.281 0.429 0.456 0.199 0.546 0.579 0.263 0.550 0.573 0.371 0.488 0.499

DER 0.509 0.520 0.557 0.446 0.653 0.657 0.441 0.506 0.530 0.463 0.524 0.525 0.546 0.651 0.656 0.506 0.549 0.559

DER++ 0.496 0.537 0.554 0.425 0.658 0.666 0.432 0.497 0.522 0.505 0.573 0.579 0.586 0.639 0.646 0.519 0.555 0.563

ER 0.502 0.521 0.553 0.433 0.657 0.668 0.445 0.511 0.535 0.499 0.538 0.539 0.568 0.649 0.673 0.508 0.562 0.576

ER-ACE 0.471 0.527 0.545 0.401 0.649 0.662 0.446 0.515 0.537 0.490 0.521 0.532 0.554 0.620 0.642 0.503 0.543 0.551

Camel 0.546 0.652 0.662 0.510 0.541 0.592 0.492 0.535 0.558 0.210 0.288 0.341 0.177 0.198 0.243 0.501 0.527 0.596

DeepC 0.455 0.482 0.535 0.373 0.387 0.405 0.479 0.525 0.556 0.160 0.204 0.233 0.269 0.281 0.358 0.301 0.335 0.352

QCore 0.604 0.709 0.714 0.516 0.632 0.703 0.530 0.581 0.609 0.507 0.580 0.598 0.604 0.648 0.675 0.576 0.606 0.717

Subj. 6→ Subj. 7 Subj. 6→ Subj. 8 Overall Average Subj. 10→ Subj. 11 Subj. 10→ Subj. 12 Overall Average

U
SC

A-GEM 0.222 0.497 0.614 0.054 0.464 0.534 0.131 0.369 0.459 0.268 0.443 0.673 0.154 0.407 0.647 0.173 0.397 0.456

DER 0.363 0.489 0.716 0.155 0.350 0.445 0.235 0.421 0.489 0.230 0.561 0.727 0.142 0.573 0.650 0.251 0.440 0.495

DER++ 0.358 0.487 0.737 0.155 0.377 0.458 0.239 0.420 0.489 0.193 0.545 0.711 0.161 0.591 0.626 0.257 0.448 0.492

ER 0.363 0.550 0.716 0.152 0.360 0.448 0.234 0.424 0.490 0.202 0.586 0.736 0.139 0.602 0.670 0.248 0.447 0.497

ER-ACE 0.358 0.539 0.700 0.161 0.377 0.465 0.242 0.423 0.493 0.193 0.543 0.730 0.150 0.595 0.628 0.261 0.452 0.500

Camel 0.646 0.657 0.732 0.383 0.424 0.452 0.333 0.377 0.454 0.243 0.244 0.306 0.198 0.218 0.223 0.483 0.496 0.529

DeepC 0.616 0.652 0.704 0.435 0.491 0.595 0.336 0.407 0.475 0.137 0.181 0.213 0.061 0.080 0.157 0.184 0.194 0.224

QCore 0.783 0.846 0.870 0.609 0.696 0.696 0.463 0.524 0.621 0.448 0.586 0.737 0.448 0.609 0.710 0.501 0.516 0.556

Table 5: Average Accuracy of Quantized Models in a Contin-

ual Learning Setting. Caltech10, QCore/Bu�er Size 30.

Model
ResNet18 VGG16

2-bit 4-bit 8-bit 2-bit 4-bit 8-bit

A-GEM 0.329 0.355 0.364 0.079 0.096 0.114

DER 0.345 0.363 0.368 0.117 0.126 0.132

DER++ 0.341 0.356 0.358 0.108 0.119 0.135

ER 0.353 0.367 0.369 0.122 0.140 0.174

ER-ACE 0.346 0.360 0.362 0.108 0.126 0.140

Camel 0.348 0.363 0.369 0.148 0.162 0.174

DeepC 0.346 0.361 0.367 0.148 0.160 0.182

CoreQ 0.399 0.414 0.431 0.181 0.187 0.202

Table 6: Ablation Study of Quantized Models by Incoming

Batches. Accuracy, 4-bit, Subset Size 30.

NoUpda NoBF QCore NoUpda NoBF QCore

Batch DSA: Subj. 1→ Subj. 2 USC: Subj. 6→ Subj. 7

1 0.659 0.473 0.675 0.435 0.387 0.957

2 0.505 0.429 0.582 0.304 0.419 0.652

3 0.692 0.538 0.765 0.391 0.387 0.965

4 0.604 0.571 0.725 0.522 0.323 0.826

5 0.637 0.571 0.648 0.435 0.387 0.652

6 0.516 0.538 0.747 0.478 0.355 0.952

7 0.571 0.440 0.755 0.391 0.323 0.957

8 0.593 0.527 0.780 0.609 0.290 0.909

9 0.571 0.484 0.670 0.217 0.452 0.846

10 0.363 0.549 0.736 0.478 0.290 0.696

Avg. 0.571 0.512 0.708 0.426 0.361 0.841

Time (s) 5.607 5.523 5.659 4.874 4.456 5.081

in the continual learning setting; results on other quantization

levels show similar execution times since the calibration process is

equivalent. When evaluating all the data sets, QCore consistently

outperforms all the baselines, with a speed-up of up to three to �ve

times for every case.

The high e�ciency of QCore in terms of execution time is ex-

plained by the design of its bit-�ipping network. First, the baselines

use back-propagation to update model parameters, which require

Table 7: AverageAccuracy onCoreset Construction Strategies.

Subset Size 30.

2-bit 4-bit 8-bit 2-bit 4-bit 8-bit

Strategy DSA USC

Maximum Entropy 0.578 0.613 0.635 0.292 0.330 0.414

Least Confidence 0.573 0.603 0.620 0.284 0.321 0.403

Normal Distrib. 0.594 0.599 0.635 0.291 0.335 0.419

k-means 0.590 0.602 0.640 0.285 0.323 0.406

GradMatch 0.592 0.603 0.641 0.292 0.325 0.409

CRAIG 0.587 0.602 0.644 0.293 0.339 0.423

QCore 0.597 0.614 0.648 0.307 0.354 0.436

computing gradients. In contrast, the bit-�ipping network only re-

quires a single inference step to compute an adjustment on model

parameters. This improves performance substantially. Second, the

bit-�ipping network uses much less epochs to converge during a cal-

ibration compared to baselines using back-propagation, as shown

in Figure 8(a). It is observed that in less than ten epochs QCore is

already stable. That is expected because the bit-�ipping network

is designed for inference-only purposes. Therefore, the calibration

steps are minimal, which is consistent with the convergence anal-

ysis in Section 3.3.3. In contrast, all the baselines need to execute

gradient computations, which takes more epochs to converge.

Table 8: Average End-to-End Running Time per Calibration

(seconds), 4-bit, QCore/Bu�er Size 30.

A-GEM DER DER++ ER ER-ACE Camel DeepC QCore

DSA 15.24 11.41 15.98 10.26 11.18 13.32 12.82 3.44

USC 13.86 10.97 15.45 11.68 10.94 14.30 12.58 3.43

Calt10 113.19 100.45 137.01 117.86 101.03 159.17 113.91 31.83

4.2.6 Memory Consumption. To compare the memory consump-

tion between QCore and the evaluated baselines, we computed the

results for the Subj. 1→ Subj. 2 QCore with the 4-bit model in the

DSA data set.We compared these results with those for the baselines

across di�erent bu�er sizes, as shown in Figure 8(b). The results
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Figure 8: Convergence andMemoryConsumption Evaluation.

DSA Subj. 1→ Subj. 2, 4-bit.

show a positive trend, indicating that the models improve as the

bu�er size increases. Even so, most of the baselines show relatively

small variations, indicating that they may not be selecting the most

appropriate examples given the limited space. Camel performs com-

petitively compared to QCore with closer results for some subset

sizes. This illustrates the advantages of keeping a training subset

instead of only bu�ers. Overall, the comparison highlights the e�-

ciency of QCore in terms of memory consumption, as it is able to

identify suitable examples with low memory use.

5 RELATED WORK

We cover the related studies on two relevant aspects: subset building

and continual calibration.

Subset Building: The concept of compressing a data set into

a representative subset has been the subject of study in the past

decade [26, 67], often known as coresets. We review the relevant

studies from two dimensions. First, whether the subset building

is quantization-aware, with the purpose of facilitating e�cient

quantized model calibration. Second, whether the subset can be

updated in a stream setting, where the newly arrived data may

exhibit di�erent distributions. We summarize the relevant studies

into Table 9, which shows that QCore is the only study that is

quantization-aware and support stream updates.

Table 9: Related Work on Subset Building.
Stream Update

6 :

Quantization 6 QCore -

Aware : [5, 48] [6, 10, 13, 14, 34, 37, 39, 52, 61, 80]

Coresets mostly focus on compressing data sets for faster train-

ing full-precision models, usually relying on geometric closeness [6,

10, 14, 34, 80] or statistical properties [52]. However, these coreset

selection methods may not be suitable for calibrating quantized

models, as they only consider a single model, while di�erent data

samples may have di�erent e�ects on quantized models with dif-

ferent bit-widths vs. full precision models. In contrast, QCore uses

“quantization misses” to select a subset that speci�cally targets

at e�ective calibration of quantized models. Next, most existing

coreset selection method do not consider how to update coresets

when receiving new data, except two studies [5, 48]. The empiri-

cal shows that QCore outperforms [48], which is original designed

for full-precision models. We do not compare with [5] as it only

solves least-mean-squares problems, while we focus on classi�ca-

tion. There are other techniques for compressing a data set that

usually focus on selecting a subset of dimensions [24, 38, 79]. How-

ever, these techniques are not applicable in the current setting

because the training load will still be large, resulting in the same

number of examples.

Continual Calibration: In recent years, the idea of continual

learning has been studied, with the aim of developing models that

can adapt to dynamic environments where stream data keeps ar-

riving [9]. We review the relevant studies from two dimensions.

Firstly, we examine whether the continual calibration supports

quantized models. Secondly, we determine whether the model uses

back-propagation that require computing gradients in the calibra-

tion, as this can be a costly process when running on edge devices.

We have summarized the relevant studies in Table 10.

Table 10: Related Work on Continual Calibration.

Parameters Support

Full-precision Quantized

Calibration with BP [3, 4, 8, 9, 15, 16, 48, 57, 66] [49, 64, 65, 70]

Calibration without BP [59, 76] QCore

Most approaches focus on adjusting full-precision parameters

using back-propagation [3, 9, 48, 57, 66]. The primary focus is on

enhancing data retention using gradients [15, 16, 43, 57] or knowl-

edge distillation [4, 8], but continual calibration is often not sup-

ported [33]. Existing continual calibration of quantized models is

based on back-propagation, which is expensive on edge devices.

In addition, existing studies are often speci�c for particular micro-

controllers [49, 64, 65] or particular bit-widths [64], reducing their

generality. Two methods [59, 76] exist that do not use BP, but they

support only full-precision models, and they su�er catastrophic

forgetting. QCore enables continual calibrations of quantized mod-

els, while preventing the use of expensive BP with the bit-�ipping

network, making it a perfect on-device edge-ready approach.

6 CONCLUSION AND FUTUREWORK

This paper proposes QCore, a novel and e�cient method for on-

device training on edge devices with limited resources. QCore em-

ploys a quantization-aware subset that compresses the training

set and streaming data, identifying the most suitable examples

for training a quantized model with a reduced number of bits per

model parameter. It also includes a small network that enables

continual model calibration without requiring back-propagation,

signi�cantly reducing computational costs and enabling implemen-

tation on edge devices. The results of the experimental study o�er

concrete evidence of the e�ectiveness and e�ciency of QCore at

classi�cation tasks. The method also demonstrates improvements

in running time, while it only requires a small fraction of training

and streaming data examples to construct an appropriate subset.

In future work, it is of interest to explore potential guarantees for

the QCore and properties of the bit-�ipping network. This includes

investigating its data independence and the theoretical basis that

can validate the empirical �ndings.
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