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ABSTRACT
The arboricity 𝑎(𝐺) of a graph 𝐺 is defined as the minimum

number of edge-disjoint forests that the edge set of 𝐺 can be

partitioned into. It is a fundamental metric and has been widely

used in many graph analysis applications. However, computing

𝑎(𝐺) is typically a challenging task. To address this, an easier-

to-compute alternative called pseudoarboricity was proposed.

Pseudoarboricity has been shown to be closely connected to

many important measures in graphs, including the arboricity

and the densest subgraph density 𝜌 (𝐺). Computing the exact

pseudoarboricity can be achieved by employing a parametric max-

flow algorithm, but it becomes computationally expensive for large

graphs. Existing 2-approximation algorithms, while more efficient,

often lack satisfactory approximation accuracy. To overcome these

limitations, we propose two new approximation algorithms with

theoretical guarantees to approximate the pseudoarboricity. We

show that our approximation algorithms can significantly reduce

the number of times the max-flow algorithm is invoked, greatly

improving its efficiency for exact pseudoarboricity computation. In

addition, we also study the pseudoarboricity maintenance problem

in dynamic graphs. We propose two novel and efficient algorithms

for maintaining the pseudoarboricity when the graph is updated

by edge insertions or deletions. Furthermore, we develop two

incremental pseudoarboricity maintenance algorithms specifically

designed for insertion-only scenarios. We conduct extensive ex-

periments on 195 real-world graphs, and the results demonstrate

the high efficiency and scalability of the proposed algorithms in

computing pseudoarboricity for both static and dynamic graphs.
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1 INTRODUCTION
Arboricity is defined as the minimum number of edge-disjoint

forests into which the edges of a graph can be partitioned [37,

39]. As a classic measure of graph’s sparsity, arboricity has been

widely used to analyze the complexity of numerous graph analysis

algorithms, such as triangle counting [26, 38], 𝑘-clique listing [14,

17, 32], truss decomposition [30, 43], structural graph clustering [11,

44, 45], influential community mining [33, 34], structural diversity

search [12, 27, 47], top-𝑘 ego-betweenness search [46].

Despite its importance in network analysis, computing the

arboricity of a graph is typically a time-consuming task [23].

To address this, Picard and Queyranne introduced an alternative

concept of pseudoarboricity [39], which is relatively easier to

compute. Specifically, pseudoarboricity is defined as the minimum

number of edge-disjoint pseudoforests into which the edges of a

graph can be partitioned [37, 39]. Here a pseudoforest refers to a

graph in which each connected component contains at most one

cycle. Picard and Queyranne proved that the pseudoarboricity is

equal to either the arboricity or arboricity minus one, thus making

it a useful metric for approximating arboricity.

More importantly, pseudoarboricity is a concept that is well

understood and offers several advantages over arboricity in various

application scenarios.We outline several key applications as follows.

(1) In Section 2.2, we show that pseudoarboricity can also be

applied to analyze the time or space complexity of all the above-

mentioned graph analysis algorithms with a tighter bound. (2)

Pseudoarboricity provides a more intuitive measure of graph

sparsity. It is equal to the rounded-up value of the density of the

densest subgraph, which makes it easier to interpret compared to

arboricity. (3) In Section 6.4, we show that the pseudoarboricity

can be effectively leveraged to identify the nearly-densest subgraph

in a graph, thereby emphasizing its practical value in community

detection. This feature makes it particularly useful in fields such as

social network analysis, where community or cluster detection is a

common and fundamental task. Motivated by these observations,

we focus on investigating the problem of efficiently computing the

pseudoarboricity of a graph.

Previous approaches to computing the pseudoarboricity mainly

rely on the connection between pseudoarboricity and optimal

graph orientation. The objective of the optimal graph orientation

is to assign directions to the edges of a graph such that the

maximum indegree of the resulting oriented graph is minimized.

The pseudoarboricity was shown to be equal to the smallest

maximum indegree achievable in any orientation of the graph [8].
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Based on this observation, Bezáková proposed an algorithm that

uses the re-orientation network flow and binary search techniques

to compute the optimal orientation and the pseudoarboricity [8].

The key idea of Bezáková’s algorithm is that it leverages a re-

orientation network flow to test whether a graph can be oriented

to a directed graph such that its maximum indegree is smaller than

a given parameter 𝑘 . If so, the pseudoarboricity of the graph must

be less than 𝑘 , and no less than 𝑘 otherwise. The algorithm then

employs a binary search procedure to find the optimal parameter 𝑘 ,

which represents the pseudoarboricity. The time complexity of this

algorithm is 𝑂 ( |𝐸 |3/2 log𝑝), where 𝑝 denotes the pseudoarboricity.

Building upon Bezáková’s algorithm, Blumenstock [9] developed

several effective pruning strategies to reduce the input graph size

and further proposed an advanced binary search technique to speed

up the computation, which achieves the state-of-the-art (SOTA)

performance for exact pseudoarboricity computation. However,

even with these optimizations, the SOTA algorithm still incurs

significant computational costs when handling large graphs.

In addition to exact computation algorithms, there are also

several more efficient 2-approximation algorithms available for

approximating the pseudoarboricity [5, 8, 9, 20]. These algorithms

aremainly based on the peeling idea, where the algorithm iteratively

removes the vertex with the minimum degree in the graph and

orients all adjacent edges towards it until all vertices are deleted.

After removing all vertices, the maximum indegree of the resulting

orientation provides a 2-approximation of the pseudoarboricity.

The time complexity of these approximation algorithms is linear

with respect to (w.r.t.) the graph size. However, as evidenced by our

experiments, the quality of the approximation provided by these

algorithms is often unsatisfactory, i.e., the approximated pseudoar-

boricity tends to be close to twice of the true pseudoarboricity.

Contributions. To overcome these limitations, we first propose an

improved linear-time 2-approximation algorithm to estimate the

pseudoarboricity. Our algorithm offers a theoretical improvement

over previous approaches. It follows a similar peeling algorithm

as before but introduces an additional step where certain edges

pointing towards vertices with high indegrees are reversed. This

results in an orientation with a reduced maximum indegree. To

further improve the efficiency, we also propose a novel approximate

algorithm with different theoretical guarantees. This approach first

constructs the orientation by considering the indegree of each ver-

tex. Subsequently, it iteratively verifies if each edge points towards

the vertex with smaller indegree. This approximate algorithm yields

such a high-quality approximation that it frequently provides the

exact value of the pseudoarboricity. As a result, it is highly effective

in practical scenarios. The high-quality approximation offered by

our algorithms can even obviate the necessity for a binary search

in the exact algorithms.

Other than computing the pseudoarboricity in static graphs,

we also study the problem of maintaining the pseudoarboricity in

dynamic graphs with edge insertions or deletions. Specifically, we

first present a pseudoarboricity update theorem, with which we

develop two basic maintenance algorithms, called BasicINS and

BasicDEL, to handle edge insertion and deletion respectively. To

improve the efficiency, we propose two novel and more efficient

algorithms, namely INS and DEL. The striking feature of our novel
algorithms is that: inmost cases, they can avoid invoking amax-flow

algorithm and solely perform a Breadth-First Search (BFS) algorithm

to maintain the pseudoarboricity, thus they are much more efficient

than the basic algorithms. Additionally, we also develop two

incremental pseudoarboricity maintenance algorithms, called INC
and INS++, specifically designed for insertion-only scenarios. We

show that both the two incremental algorithms can be much

more efficient than INS. Compared to INC, INS++ maintains an

additional structure 𝐷𝑡𝑜𝑝 which can significantly prune redundant

BFS searches, making it more efficient. Furthermore, we show

that the 𝐷𝑡𝑜𝑝 structure is very close to the densest subgraph. The

difference of the densities between the subgraph induced by 𝐷𝑡𝑜𝑝

and the densest subgraph is no larger than 1, indicating that 𝐷𝑡𝑜𝑝

can also be used to detect the dense community in a graph.

We conduct extensive experiments using 195 real-life graphs to

evaluate the proposed algorithms. The results are summarized as

follows. (1) Most real-world graphs have small pseudoarboricity

except for a few substantially large biological graphs, collaboration

graphs, and hyperlink graphs, which confirm the “small arboricity”

assumption in most real-world graphs made in many previous

studies [14, 26, 34, 36, 47]. (2) Our best approximation algorithm

consistently achieves a significantly higher level of approximation

quality while requiring an order of magnitude less time than

other competitors. The discrepancy between the approximate and

exact pseudoarboricity on all tested datasets is no larger than 4.

Leveraging the superior performance of our best approximation

algorithm, the proposed algorithm for exact pseudoarboricity

computation can achieve a speedup of up to 21 times compared to

the SOTA algorithm. This result demonstrates the high efficiency

and effectiveness of the proposed algorithms for pseudoarboricity

computation on static graphs. (3) To dynamically maintain the

pseudoarboricity, the proposed INS and DEL algorithms are very

efficient, being 2-3 orders of magnitude faster than the basic

algorithmsBasicINS andBasicDEL. (4)When only considering edge

insertions, our incremental maintenance algorithms INC and INS++
are extremely efficient, both of them can handle 10,000 insertions

within less than 0.01 seconds on graphs with billions of edges.

2 PRELIMINARIES
2.1 Notations and problem definition
Let 𝐺 = (𝑉 , 𝐸) be an unweighted and undirected graph, where

𝑉 denotes the set of vertices and 𝐸 denotes the set of edges. An

undirected graph 𝐺 = (𝑉 , 𝐸) can be transformed into a directed

graph ®𝐺 = (𝑉 , ®𝐸) by assigning a direction to each edge in 𝐺 . This

assignment of directions yields an orientation of𝐺 , whichwe refer to

as ®𝐺 . A 𝑘-orientation of𝐺 is an orientation ®𝐺 in which the maximum

indegree in ®𝐺 is 𝑘 . The optimal orientation is the orientation in

which the maximum indegree is minimized, i.e., the minimum 𝑘-

orientation. For example, the orientation in Fig. (1d) is an optimal

orientation of Fig. (1a). Let (𝑢, 𝑣) and ⟨𝑢, 𝑣⟩ denote an undirected

edge and a directed edge, respectively. A graph 𝐺 ′ = (𝑉 ′, 𝐸′) is a
subgraph of𝐺 if𝑉 ′ ⊆ 𝑉 and 𝐸′ ⊆ 𝐸, denoted as𝐺 ′ ⊆ 𝐺 . Let 𝑑𝑢 (𝐺)
be the degree of vertex 𝑢 in 𝐺 (i.e., the number of neighbors of 𝑢

in 𝐺), and 𝑑𝑢 ( ®𝐺) be the indegree of 𝑢 in ®𝐺 (i.e., the number of in-

going neighbors of 𝑢 in ®𝐺). If the context is clear, we will use 𝑑𝑢 to

denote the degree (indegree) of a𝑢 in𝐺 (in ®𝐺). In the directed graph

®𝐺 = (𝑉 , ®𝐸), A path is a sequence of vertices 𝑣1 → 𝑣2 → · · · → 𝑣𝑘 ,

for 𝑖 = 1, . . . , 𝑘 − 1, ⟨𝑣𝑖 , 𝑣𝑖+1⟩ ∈ 𝐸, and the length of this path is

𝑘 − 1. If we reverse a directed edge, the direction of the edge is

changed. If we reverse a path, all edges in the path are reversed. For

convenience, we denote a path from 𝑣1 to 𝑣𝑘 as 𝑣1 ⇝ 𝑣𝑘 .
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(d) ®𝐺 = (𝑉 , ®𝐸 )

Figure 1: Running example.

Definition 1. (Arboricity) [37] The arboricity of a graph 𝐺 ,
denoted by 𝑎(𝐺), is defined as the smallest number of edge-disjoint
( i.e., without overlapping edges) forests into which the edge set 𝐸 of
𝐺 can be partitioned, where a forest is a graph without any cycles.

Arboricity is a classic metric in graph theory that was frequently

used to measure the sparsity of a graph [14, 20]. However, arboricity

is often difficult to compute on large graphs [23]. In their work

[39], Picard and Queyranne introduced an alternative metric called

pseudoarboricity, which provides a very tight approximation of the

arboricity while being significantly easier to compute.

Specifically, pseudoarboricity is defined using the concepts of

pseudotrees and pseudoforests [39]. A pseudotree is an undirected

graph that is connected and contains precisely one cycle [39].

Clearly, the number of vertices in a pseudotree is equal to the number

of edges it has. On the other hand, a pseudoforest is a graph where

each connected component is either a tree or a pseudotree. Based
on these concepts, pseudoarboricity can be defined as follows.

Definition 2. (Pseudoarboricity) [39] The pseudoarboricity of
a graph𝐺 , denoted by 𝑝 (𝐺), is the minimum number of edge-disjoint
pseudoforests that the edge set 𝐸 can be partitioned into.

As shown in [39], the pseudoarboricity of a graph 𝐺 is either

equal to the arboricity or only 1 less than the arboricity, i.e., 𝑝 (𝐺) ∈
{𝑎(𝐺), 𝑎(𝐺) − 1}, indicating that pseudoarboricity is a very tight

approximation of arboricity.

Example 1. Consider a graph 𝐺 shown in Fig. (1a). A feasible
forest partition and pseudoforest partition of 𝐺 are shown in Fig. (1b)
and Fig. (1c) respectively, where each color represents a distinct
(pseudo)forest. It is easy to check that the number of partitions is
minimized. Thus, we have 𝑎(𝐺) = 3 and 𝑝 (𝐺) = 2.

Based on Definition 2, the goal of this paper is to efficiently

compute the pseudoarboricity in both large static and dynamic

graphs. More formally, we formulate our problem as follows.

Problem definition. For a static graph 𝐺 , our goal is to

efficiently compute 𝑝 (𝐺). However, in the case of a dynamic graph

𝐺 with potential edge updates, the problem is to maintain 𝑝 (𝐺)
after an edge insertion or deletion.

2.2 Motivation: why pseudoarboricity?
Simpler computation. The state-of-the-art algorithms [22, 23]

for computing arboricity require the matroid partition algorithm,

which is typically more complex than the parametric max-flow

algorithm used to compute the pseudoarboricity [9].

Relationships with other concepts. In comparison to arboricity,

pseudoarboricity exhibits close relationships with other concepts

in graph data mining. (i) Pseudoarboricity is equal to the smallest

maximum indegree among orientations of a graph [8]; (ii) Pseu-

doarboricity is equal to the round-up of the density of the densest

Algorithm 1: DEGREE (𝐺)

Input: A simple graph𝐺 = (𝑉 , 𝐸 ) .
Output: A 2-approximate orientation ®𝐺 .

1 Let ®𝐸 ← ∅, ®𝐺 ← (𝑉 , ®𝐸 ) ;
2 Let 𝑐𝑜𝑟𝑒 [1 . . . |𝑉 | ] be an array and 𝑛𝑜𝑤𝑐𝑜𝑟𝑒 ← 0;

3 while𝑉 is not empty do
4 𝑢 ← argmin𝑢∈𝑉 𝑑𝑢 (𝐺 ) ;
5 𝑛𝑜𝑤𝑐𝑜𝑟𝑒 ← max{𝑛𝑜𝑤𝑐𝑜𝑟𝑒,𝑑𝑢 }; 𝑐𝑜𝑟𝑒 [𝑢 ] ← 𝑛𝑜𝑤𝑐𝑜𝑟𝑒 ;

6 for 𝑒 = (𝑣,𝑢 ) ∈ 𝐸 do
7 ®𝐸 ← ®𝐸 ∪ ⟨𝑣,𝑢 ⟩; 𝐸 ← 𝐸 − (𝑣,𝑢 ) ; 𝑑𝑣 (𝐺 ) ← 𝑑𝑣 (𝐺 ) − 1;

8 𝑉 ← 𝑉 − 𝑢;
9 Let 𝑝0 ← ⌈max𝑑𝑢 ( ®𝐺 )/2⌉ and𝑉 ′ ← all vertices in the 𝑝0-core of𝐺 ;

10 ®𝐺 ← the subgraph of ®𝐺 induced by𝑉 ′ ;

11 return ®𝐺 ;

subgraph of a graph [39]; (iii) Degeneracy is a 2-approximation of

pseudoarboricity [10].

Analyzing the complexity. Chiba and Nishizeki [14] proved an

important inequality:

∑
(𝑢,𝑣) ∈𝐸 min {𝑑𝑢 , 𝑑𝑣} ≤ 2|𝐸 |𝑎(𝐺). With this

inequality, the arboricity is widely used to bound the time or space

complexity of many graph analysis algorithms, such as triangle

listing [14, 26], 𝑘-clique counting [17, 32], truss decomposition

[30, 43], structural graph clustering [11], structural diversity search

[28, 29, 47], and influential communities search [33, 34]. Below, we

show that replacing the arboricity 𝑎(𝐺) with the pseudoarboricity

𝑝 (𝐺) in this inequality can lead to a tighter bound for complexity.

Due to space limitations, we have included the full proof in the

full version of the paper, which can be found at https://github.com/

Flydragonet/Pseudoarboricity-Computation.

Theorem 1. Given an undirected graph𝐺 = (𝑉 , 𝐸), the inequality∑
(𝑢,𝑣) ∈𝐸 min {𝑑𝑢 , 𝑑𝑣} ≤ 2|𝐸 |𝑝 (𝐺) ≤ 2|𝐸 |𝑎(𝐺) holds.

Proof Sketch. For an optimal orientation ®𝐺 = (𝑉 , ®𝐸), we have∑
(𝑢,𝑣) ∈𝐸 min {𝑑𝑢 , 𝑑𝑣} ≤

∑
⟨𝑢,𝑣⟩∈ ®𝐸 𝑑𝑣 (𝐺) ≤

∑
𝑢∈𝑉 𝑑𝑢 (𝐺)𝑑𝑢 ( ®𝐺) ≤∑

𝑢∈𝑉 𝑑𝑢 (𝐺)𝑝 (𝐺) ≤ 2|𝐸 |𝑝 (𝐺) ≤ 2|𝐸 |𝑎(𝐺). □

Based on Theorem 1, we can always use pseudoarboricity, instead

of arboricity, to bound the time (or space) complexity of the above-

mentioned graph analysis algorithms.

3 COMPUTING 𝑝 (𝐺) IN STATIC GRAPHS
3.1 Existing algorithms
Approximate algorithms. The widely-used approximate algo-

rithm for pseudoarboricity computation is outlined in Lines 1-

8 of Algorithm 1 [5, 8, 20]. This algorithm iteratively removes

the vertex with the minimum degree 𝑢 in the graph and orients

all edges linked to 𝑢 toward 𝑢, until all vertices are removed.

After deleting all vertices, all edges are oriented. At this point,

a 2-approximate orientation can be obtained, and the maximum

indegree is a 2-approximation of the pseudoarboricity. Based on this

2-approximation algorithm, Blumenstock [9] introduced a 𝑘-core

based pruning technique for speeding up exact pseudoarboricity

computation. Such a core-pruning method is shown in Lines 9-10

of Algorithm 1.

Lemma 1. [9] Given a graph 𝐺 and an integer 𝑝0 ≤ 𝑝 (𝐺). Denote
by 𝐺 ′ the 𝑝0-core of 𝐺 , then we have 𝑝 (𝐺) = 𝑝 (𝐺 ′).
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Algorithm 2: ReTest ( ®𝐺,𝑘)
Input: An orientation ®𝐺 = (𝑉 , ®𝐸 ) and a test value 𝑘 .

Output: Test whether 𝑝 (𝐺 ) ≤ 𝑘 , and the updated ®𝐺 .

1 𝑉 ′ ← 𝑉 ∪ {𝑠, 𝑡 }, where 𝑠 is a source vertex and 𝑡 is a sink vertex;

2 foreach ⟨𝑣,𝑢 ⟩ ∈ ®𝐸 do
3 Add arc ⟨𝑢, 𝑣⟩ to𝐴 and let 𝑐 (𝑢, 𝑣) ← 1;

4 foreach 𝑢,𝑑𝑢 ( ®𝐺 ) > 𝑘 do
5 Add arc ⟨𝑠,𝑢 ⟩ to𝐴 and let 𝑐 (𝑠,𝑢 ) ← 𝑑𝑢 ( ®𝐺 ) − 𝑘 ;
6 foreach 𝑢,𝑑𝑢 ( ®𝐺 ) < 𝑘 do
7 Add arc ⟨𝑢, 𝑡 ⟩ to𝐴 and let 𝑐 (𝑢, 𝑡 ) ← 𝑘 − 𝑑𝑢 ( ®𝐺 ) ;
8 Compute the maximum flow value 𝑓max of (𝑉 ′, 𝐴, 𝑐 ) ;
9 foreach ⟨𝑣,𝑢 ⟩ ∈ ®𝐸 do

10 if ⟨𝑢, 𝑣⟩ ∈ 𝐴 is saturated then reverse the edge ⟨𝑣,𝑢 ⟩ ∈ ®𝐺 ;

11 if 𝑓max =
∑
⟨𝑠,𝑢⟩∈𝐴 𝑐 (𝑠,𝑢 ) then return (True, ®𝐺 );

12 else return (False, ®𝐺 );

Exact algorithms. The state-of-the-art exact algorithm employs a

parameterized re-orientation network flow technique to calculate

the pseudoarboricity by choosing a test value 𝑘 and checking

whether 𝑝 (𝐺) ≤ 𝑘 [5, 8, 31]. Given an orientation ®𝐺 = (𝑉 , ®𝐸)
and an integer 𝑘 ≥ 0, the re-orientation network is defined as

(𝑉 ∪ {𝑠, 𝑡}, 𝐴, 𝑐), where (i) ⟨𝑢, 𝑣⟩ ∈ 𝐴, 𝑐 (𝑢, 𝑣) = 1, 𝑖 𝑓 ⟨𝑣,𝑢⟩ ∈ 𝐸;

(ii) ⟨𝑠,𝑢⟩ ∈ 𝐴, 𝑐 (𝑠,𝑢) = 𝑑𝑢 ( ®𝐺) − 𝑘, 𝑖 𝑓 𝑑𝑢 ( ®𝐺) > 𝑘 ; and (iii)

⟨𝑢, 𝑡⟩ ∈ 𝐴, 𝑐 (𝑢, 𝑡) = 𝑘 − 𝑑𝑢 ( ®𝐺), 𝑖 𝑓 𝑑𝑢 ( ®𝐺) < 𝑘 . The integer 𝑘

is a test value that checks whether a 𝑘-orientation exists, i.e., it
verifies whether 𝑝 (𝐺) ≤ 𝑘 . The ReTest algorithm is outlined in

Algorithm 2. For any test value 𝑘 , the time complexity of ReTest
is 𝑂 ( |𝐸 |3/2) using the classic Dinic’s max-flow algorithm [9, 21].

The practical performance of this algorithm is often sensitive to

the input orientation. Generally, the algorithm runs faster when

the maximum indegree of the input orientation is smaller.

Based on such a re-orientation network flow technique, the state-

of-the-art algorithm for pseudoarboricity computation, proposed by

Blumenstock [9], includes three steps: (i) Calculate a 2-approximate

orientation by DEGREE and record its maximum indegree 𝑑max;

(ii) Use the reduction technique in DEGREE to reduce the graph

size; (iii) Perform a binary search on the range [𝑑max/2, 𝑑max] by
iteratively invoking ReTest to obtain the exact pseudoarboricity. It

is easy to derive that the total time complexity of this algorithm

can be bounded by 𝑂 ( |𝐸 |3/2 log𝑝 (𝐺)).
Limitations of the existing algorithm. The efficiency of the

existing algorithm is mainly constrained by the poor approximation

performance of DEGREE. In our experiments, the maximum

indegree of the orientations output by DEGREE often approaches

twice the pseudoarboricity, which is the worst-case scenario

guaranteed by its approximation ratio. Consequently, the use

of DEGREE entails binary search and multiple invocations of

network flow computations, which is time-consuming. Besides,

since DEGREE utilizes ⌈max𝑑𝑢 ( ®𝐺)/2⌉-core for core-pruning, the
parameter ⌈max𝑑𝑢 ( ®𝐺)/2⌉ often fails to accurately approximate 𝑝 ,

resulting in a larger-than-desired core in the output. This makes

the core-pruning method unable to fully leverage its utility.

Algorithm 3: iDEGREE (𝐺)

Input: A simple graph𝐺 = (𝑉 , 𝐸 ) .
Output: Improved 2-approximate orientation ®𝐺 .

1 Let ®𝐸 ← ∅, ®𝐺 ← (𝑉 , ®𝐸 ) , 𝜌∗ ← 0;

2 Let 𝑐𝑜𝑟𝑒 [1 . . . |𝑉 | ] be an array and 𝑛𝑜𝑤𝑐𝑜𝑟𝑒 ← 0;

3 Let 𝑜𝑟𝑑𝑒𝑟 be an empty stack;

4 while𝑉 is not empty do
5 𝑢 ← argmin𝑢∈𝑉 𝑑𝑢 (𝐺 ) ;
6 𝑛𝑜𝑤𝑐𝑜𝑟𝑒 ← max{𝑛𝑜𝑤𝑐𝑜𝑟𝑒,𝑑𝑢 },𝑐𝑜𝑟𝑒 [𝑢 ] ← 𝑛𝑜𝑤𝑐𝑜𝑟𝑒 ;

7 𝑜𝑟𝑑𝑒𝑟 .𝑝𝑢𝑠ℎ (𝑢 ) ;
8 for 𝑒 = (𝑣,𝑢 ) ∈ 𝐸 do
9 ®𝐸 ← ®𝐸 ∪ ⟨𝑣,𝑢 ⟩; 𝐸 ← 𝐸 − (𝑣,𝑢 ) ; 𝑑𝑣 (𝐺 ) ← 𝑑𝑣 (𝐺 ) − 1;

10 𝑉 ← 𝑉 − 𝑢;
11 𝜌∗ ← max{𝜌∗, |𝐸 |/|𝑉 | };
12 Let 𝑝0 ← ⌈𝜌∗ ⌉ and𝑉 ′ ← all vertices in the 𝑝0-core of𝐺 ;

13 ®𝐺 ← the subgraph of ®𝐺 induced by𝑉 ′ ;
14 while true do
15 𝑢 ← 𝑜𝑟𝑑𝑒𝑟 .𝑝𝑜𝑝 ( ) ;
16 if 𝑢 ∉ ®𝐺 then break;
17 While ∃⟨𝑢, 𝑣⟩ ∈ ®𝐸,𝑑𝑣 ≥ 𝑑𝑢 + 2 do reverse ⟨𝑢, 𝑣⟩;
18 return ®𝐺 ;

3.2 An improved 2-approximation algorithm
To address the limitations of DEGREE, we propose an improved

2-approximate algorithm, called iDEGREE, by making two improve-

ments on DEGREE. First, we additionally compute the subgraph

density 𝜌∗ as a 1/2-approximation of pseudoarboricity to achieve

a better reduction performance. Second, we re-orient some edges

toward the later-deleted vertices after the reduction to balance

the indegree distribution, and further obtain an orientation with a

smaller maximum indegree. The detailed descriptions of iDEGREE
are outlined in Algorithm 3.

Below, by Lemma 3, we show that the approximation quality of

the iDEGREE algorithm is guaranteed to be no worse thanDEGREE.
Furthermore, by Lemma 2, we demonstrate that iDEGREE can also

provide more effective pruning performance compared to DEGREE.
In addition, we can also easily derive that both the time and space

complexity of Algorithm 3 are 𝑂 ( |𝐸 | + |𝑉 |), the same as DEGREE.

Lemma 2. 𝜌∗ ≥ max𝑢∈𝑉 𝑑𝑢 ( ®𝐺)/2.

Lemma 3. For a graph 𝐺 = (𝑉 , 𝐸), let ®𝐺1 and ®𝐺2 be the approx-
imate orientations output by DEGREE and iDEGREE, respectively.
Then, we have max𝑢∈𝑉 𝑑𝑢 ( ®𝐺1) ≥ max𝑢∈𝑉 𝑑𝑢 ( ®𝐺2).

Proof Sketch. In the second ‘while’ loop in iDEGREE, the
indegree of nodes with maximum indegree is not increased, so

iDEGREE does not increase the maximum indegree. In the second

‘while’ loop in iDEGREE (Lines 14-17 of Algorithm 3), only the

indegree of vertex 𝑢 increases when 𝑑𝑣 ≥ 𝑑𝑢 + 2. Note that 𝑢 is

not the vertex with the maximum indegree, therefore, the second

‘while’ loop in iDEGREE does not increase the maximum indegree.

□

3.3 A novel approximate algorithm
We propose a novel approximate algorithm INDEGREE, which is

outlined in Algorithm 4. The key idea of INDEGREE is to iteratively
reverse the edges so that each edge is directed toward the endpoint

with a smaller indegree. In particular, INDEGREE first constructs an
orientation ®𝐺 where each edge initially points towards the endpoint
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Algorithm 4: INDEGREE (𝐺)

Input: A simple graph𝐺 = (𝑉 , 𝐸 ) .
Output: An approximate orientation ®𝐺 = (𝑉 , ®𝐸 ) .

1 ®𝐺 ← ∅;
2 Initialize an array 𝑑𝑖 = 0, 𝑖 = 1, . . . , |𝑉 | ;
3 foreach (𝑢, 𝑣) ∈ 𝐺 do
4 if 𝑑𝑢 < 𝑑𝑣 then
5 ®𝐺 ← ®𝐺 ∪ ⟨𝑣,𝑢 ⟩; 𝑑𝑢 ← 𝑑𝑢 + 1;
6 else
7 ®𝐺 ← ®𝐺 ∪ ⟨𝑢, 𝑣⟩; 𝑑𝑣 ← 𝑑𝑣 + 1;

8 repeat
9 foreach 𝑡𝑜 ∈ 𝑉 do

10 foreach ⟨𝑓 𝑟𝑜𝑚, 𝑡𝑜 ⟩ ∈ ®𝐺 do
11 if 𝑑𝑡𝑜 ≥ 𝑑𝑓 𝑟𝑜𝑚 + 2 then
12 reverse ⟨𝑓 𝑟𝑜𝑚, 𝑡𝑜 ⟩;𝑑𝑡𝑜← 𝑑𝑡𝑜 − 1;𝑑𝑓 𝑟𝑜𝑚← 𝑑𝑓 𝑟𝑜𝑚 + 1;

13 until Current iteration does not reduce the maximum indegree of ®𝐺 ;

14 return ®𝐺 ;

with the smaller indegree (Lines 3-7). Then, the algorithm examines

whether each edge points towards the vertex with smaller indegree,

and reverses it if not (Lines 8-13). Note that if 𝑑𝑡𝑜 = 𝑑𝑓 𝑟𝑜𝑚 + 1, the
algorithm does not reverse the edge ⟨𝑓 𝑟𝑜𝑚, 𝑡𝑜⟩ because reversing
it only exchanges the indegree of 𝑓 𝑟𝑜𝑚 and 𝑡𝑜 , which is of no

benefit. Intuitively, INDEGREE is more effective in approximating

the pseudoarboricity for two reasons: (i) unlike DEGREE, which
orients edges based on the degree of vertices, INDEGREE focuses

on reducing the indegree of vertices, which is closer to the objective

of minimizing the maximum indegree; (ii) INDEGREE can perform

multiple iterations of edge reversal to iteratively decrease the

maximum indegree of an orientation, thereby achieving a more and

more precise approximation of the pseudoarboricity.

Stop condition of iterations.As shown in Theorem 2, the iterative

edge reversal process in Algorithm 4 (Lines 8-13) will converge to

a stable orientation.

Theorem 2. For any input graph 𝐺 , INDEGREE converges to a
stable orientation ®𝐺 , where 𝑑𝑡𝑜 ≤ 𝑑𝑓 𝑟𝑜𝑚 + 1 holds for each edge
⟨𝑓 𝑟𝑜𝑚, 𝑡𝑜⟩.

Proof Sketch. Let 𝑈 ( ®𝐺) ≜ ∑
𝑢∈ ®𝐺 𝑑2𝑢 be the uneven index. In

INDEGREE, the reversal of any edge ⟨𝑓 𝑟𝑜𝑚, 𝑡𝑜⟩ will decrease𝑈 ( ®𝐺)
by at least 2. Since𝑈 ( ®𝐺) ≥ 0 cannot decrease infinitely, the number

of reversals is also finite. Therefore, the orientation will converge

to a stable orientation. □

Clearly, the number of iterations for edge reversal is critical to

the efficiency and effectiveness of INDEGREE. In general, fewer

iterations may result in a large 𝑑max of the orientated graph, thus

obtaining a poor approximation of pseudoarboricity; while the

excessive number of iterations increases the time cost. To strike a

balance between the number of iterations and the approximation

quality, we propose to use “the maximum indegree does not

decrease in current iteration” as the stop condition (Line 13), which

is shown to be efficient and effective in our experiments. The

following example illustrates how INDEGREE works.

Example 2. Consider a graph 𝐺 in Fig. (1a). Suppose that the
INDEGREE algorithm constructs the orientation ®𝐺 based on the
order of the adjacency list, i.e., (𝑣1, 𝑣2), (𝑣1, 𝑣3), . . . , (𝑣7, 𝑣8). Fig. (2a)
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Figure 2: Example of running INDEGREE

shows the constructed ®𝐺 , in which the indegree distribution is uneven.
Subsequently, Fig. (2b) and Fig. (2c) respectively illustrate the results
of the first and second iterations. As the orientation in Fig. (2c) is
already optimal, subsequent iterations will not decrease the maximum
indegree, hence the iteration process terminates.

Let 𝜏 be the number of edge-reversal iterations performed by the

INDEGREE algorithm. Then, the time complexity of INDEGREE is

𝑂 (𝜏 |𝐸 | + |𝑉 |) and the space complexity is 𝑂 ( |𝐸 | + |𝑉 |). As shown
in our experiments, 𝜏 is often a small constant, thus INDEGREE
is very efficient in practice. Below, we analyze the approximation

quality of INDEGREE.
Theoretical analysis for general graphs.

Theorem 3. Let ®𝐺 be a stable orientation obtained by INDEGREE
and 𝑑max = max

𝑢∈ ®𝐺 𝑑𝑢 . Then, we have
∏𝑑max

𝑘=𝑝
𝑘
𝑝 ≤ |𝑉 |.

Proof Sketch. Let 𝑣 ∈ ®𝐺 be an arbitrary vertex with 𝑑max

indegree.𝑉𝑖 is the set of vertices at a distance no greater than 𝑖 from

𝑣 , and 𝐸𝑖+1 is the set of edges with both endpoints in 𝑉𝑖+1. Because
®𝐺 is a stable orientation, |𝐸𝑖+1 | ≥ (𝑑max − 𝑖) |𝑉𝑖 | holds. Combined

with |𝐸𝑖+1 |/|𝑉𝑖+1 | ≤ 𝜌 (𝐺) ≤ 𝑝 , we have |𝑉𝑖+1 | ≥ 𝑑max−𝑖
𝑝 |𝑉𝑖 |. By

iteratively applying this inequality for 𝑖 = 0, 1, . . . , 𝑑max −𝑝 , we can
derive that |𝑉 | ≥ |𝑉𝑑max−(𝑝−1) | ≥

∏𝑑max

𝑘=𝑝
𝑘
𝑝 . □

With Theorem 3, the maximum indegree 𝑑max provides a reliable

approximation that is typically not significantly larger than 𝑝 (𝐺).
For instance, assume that 𝑝 (𝐺) = 80. In such a case, it is possible to

observe that 𝑑max < 2×𝑝 (𝐺) = 160. If this condition is not met, the

number of vertices |𝑉 | would have to exceed 3.7×1013, which is not
commonly observed in real-world graphs. In practical scenarios, the

approximation quality of INDEGREE is very good. Our experiments

demonstrate that 𝑑max obtained by INDEGREE does not exceed

𝑝 (𝐺) + 4 over all datasets. Below, we provide another theoretical
guarantee for INDEGREE, and this theorem is particularly effective

when the graph 𝐺 is dense (i.e.,
|𝐸 |

|𝑉 | ( |𝑉 |−1)/2 ≈ 1).

Theorem 4. Taking a graph 𝐺 = (𝑉 , 𝐸) as input, the maximum
indegree 𝑑max of the orientation outputted by INDEGREE satisfies
𝑑max ≤

√︁
2/𝑐 · 𝑝 +

√︁
𝑐/2, where 𝑐 = |𝐸 |

|𝑉 | ( |𝑉 |−1)/2 .

Proof Sketch. Let 𝑢 be a 𝑑𝑚𝑎𝑥 -indegree vertex in the output

orientation. It can be deduced that the indegree of𝑢 does not change

in the last iteration. Thus during the last iteration, the number of

⟨𝑓 𝑟𝑜𝑚,𝑢⟩ edges is 𝑑max, and 𝑑𝑓 𝑟𝑜𝑚 ≥ 𝑑max − 1 holds for all these
𝑓 𝑟𝑜𝑚 nodes. Adding up the indegrees of these 𝑓 𝑟𝑜𝑚 nodes and

𝑢, we obtain |𝐸 | ≥ 𝑑max (𝑑max − 1) + 𝑑max = 𝑑2
max
⇒ 𝑑max ≤√︁

|𝐸 |. For 𝐺 , we have

√︁
|𝐸 | =

√︁
𝑐 |𝑉 | ( |𝑉 | − 1)/2 ≤ |𝑉 |

√︁
𝑐/2 and
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𝑝 ≥ |𝐸 |/|𝑉 | = 𝑐 ( |𝑉 | − 1)/2⇒ |𝑉 | ≤ 2𝑝/𝑐 + 1. Therefore, we obtain
𝑑𝑚𝑎𝑥 ≤

√︁
|𝐸 | ≤ |𝑉 |

√︁
𝑐/2 ≤ (2𝑝/𝑐 + 1)

√︁
𝑐/2 =

√︁
2/𝑐 · 𝑝 +

√︁
𝑐/2. □

Theorem 4 indicates that, for a dense graph with 𝑐 ≈ 1 as input,

the INDEGREE algorithm can achieve an approximation factor of

nearly

√
2, which is significantly better than the 2-approximation

factors of the DEGREE and iDEGREE algorithms.

Theoretical analysis for 𝑘-plex. Here we provide theoretical

guarantees for INDEGREE in a specific scenario involving a 𝑘-plex
as the input graph. The 𝑘-plex is a classic cohesive graph model,

and it is defined as an undirected graph in which the degree of each

vertex is no less than |𝑉 | − 𝑘 [16]. Note that when the input is a

complete graph, i.e., a 1-plex or 𝑐 = 1, Theorem 4 and Theorem 5

are equivalent. However, when the input is not a complete graph,

these two theorems may not be equivalent.

Theorem 5. Taking a 𝑘-plex graph 𝐺 as input, the maximum
indegree 𝑑max of the orientation outputted by INDEGREE satisfies
𝑑max ≤

√
2(𝑝 + 𝑘/2).

3.4 Exact pseudoarboricity computation
For both iDEGREE and INDEGREE, we can combine them with

ReTest to devise an exact algorithm for computing the pseu-

doarboricity. Since our approximation algorithms are often very

accurate, we can first invoke ReTest ( ®𝐺,𝑑max ( ®𝐺)) to check whether

𝑝 (𝐺) = 𝑑max ( ®𝐺), where ®𝐺 is the approximate orientation obtained

by iDEGREE or INDEGREE. If so, we can skip the binary search.

Otherwise, we perform the binary search on [𝑑max ( ®𝐺)/2, 𝑑max ( ®𝐺)]
and iteratively apply ReTest on the output orientation of iDEGREE
or INDEGREE to calculate the exact pseudoarboricity.

Note that we can also use the advanced binary search technique

developed in [9] to achieve the same worst-case time complexity of

the state-of-the-art exact algorithm. However, compared to the state-

of-the-art exact algorithm [9], our exact algorithm is equipped with

a more powerful approximation technique, which can efficiently

produce a high-quality approximation than the algorithm developed

in [9], thus it is often substantially faster than the state-of-the-art

exact algorithm as shown in our experiments.

4 MAINTAINING 𝑝 (𝐺) IN DYNAMIC GRAPHS
Real-graphs are typically frequently updated, such as in the social

network, where each interaction between users represents an edge

insertion. In the case of such dynamic graphs, a trivial method to

update pseudoarboricity is to re-invoke static algorithms. However,

this approach becomes excessively time-consuming when updates

are frequent. Therefore, similar to maintenance algorithms for

degeneracy [35] or arboricity [7], there is a need to design efficient

dynamic algorithms tailored for dynamic scenarios. In this section,

our goal is to devise such algorithms. We start by establishing a

pseudoarboricity update theorem.

Theorem 6. (Pseudoarboricity update theorem). After an edge
insertion (resp. deletion) of𝐺 , the pseudoarboricity of𝐺 increases(resp.
decreases) by at most one.

In the following, we first propose a basic algorithm and then we

improve it to a novel and faster algorithm.

Algorithm 5: BasicINS ( ®𝐺, (𝑢, 𝑣), 𝑝)
Input: An orientation ®𝐺 = (𝑉 , ®𝐸 ) , the edge (𝑢, 𝑣) to be inserted, and the

pseudoarboricity 𝑝 before insertion.

Output: The updated orientation ®𝐺 and pseudoarboricity.

1 Suppose 𝑑𝑣 ≤ 𝑑𝑢 , otherwise swap the input edge (𝑢, 𝑣) ;
2 ®𝐺 ← ®𝐺 ∪ ⟨𝑢, 𝑣⟩;
3 if ReTest ( ®𝐺, 𝑝 ) =False then 𝑝++;

4 return ( ®𝐺, 𝑝 ) ;

4.1 A basic maintenance algorithm
The basic algorithm for edge insertion.With Theorem 6, the

basic algorithm for edge insertion, denoted by BasicINS, is shown
in Algorithm 5. Specifically, the BasicINS algorithm first orients the

inserted edge (𝑢, 𝑣) toward its smaller-indegree endpoint. Then,

BasicINS tests whether 𝑝 (𝐺) ≤ 𝑝 using ReTest, where 𝑝 is the

pseudoarboricity before inserting (𝑢, 𝑣). If not, the pseudoarboricity
𝑝 increases by 1 according to Theorem 6, and 𝑝 remains unchanged

otherwise. It is easy to see that the worst-case time complexity of

Algorithm 5 is 𝑂 ( |𝐸 |3/2), as it only invokes ReTest once.
The basic algorithm for edge deletion. Similarly, based on

Theorem 6, we present a basic algorithm for edge deletion, called

BasicDEL. The BasicDEL algorithm first removes the deleted edge

(𝑢, 𝑣) from ®𝐺 , and then invokes ReTest with parameter 𝑘 = 𝑝 − 1
to check whether 𝑝 (𝐺) ≤ (𝑝 − 1) holds. If ReTest outputs TRUE,
BasicDEL sets 𝑝 as 𝑝 − 1, and 𝑝 keeps unchanged otherwise. For

brevity, we omit the pseudo-code of BasicDEL. Similar to BasicINS,
the time complexity of BasicDEL is 𝑂 ( |𝐸 |3/2), since it invokes

ReTest once. Since ReTest ( ®𝐺,𝑘) can test whether 𝑝 (𝐺) ≤ 𝑘 , the

correctness of BasicINS and BasicDEL can be derived directly.

4.2 A novel and faster maintenance algorithm
The basic algorithms involve constructing the re-orientation

network and invoking the max-flow algorithm for every edge

insertion or deletion, which is clearly time-consuming. To improve

the efficiency, we propose novel pseudoarboricity maintenance

algorithms based on a concept of unreversible orientation, which
is a special kind of optimal orientation. The striking feature of

our novel algorithm is that: in most cases, it can avoid using a re-

orientation network and solely perform a Breadth-First Search (BFS)

algorithm to maintain the pseudoarboricity, making it much faster

than the basic algorithm. Below, we first introduce the concept of

unreversible orientation.
For an orientation ®𝐺 , let 𝑑max = max

𝑢∈ ®𝐺 𝑑𝑢 be the maximum

indegree. Define a reversible path as a path 𝑠 ⇝ 𝑡 where 𝑑𝑡 = 𝑑max

and 𝑑𝑠 ≤ 𝑑max − 2. It is important to note that if we reverse such

a reversible path, i.e., reverse the directions of all the edges of the
reversible path, the maximum indegree of the vertices in the path

will decrease by 1. The reason is that after reversing a reversible path
𝑠 ⇝ 𝑡 , the indegree of 𝑠 increases by 1, the indegree of 𝑡 decreases

by 1, and the indegrees of the other vertices remain unchanged.

Since 𝑑𝑡 = 𝑑max and 𝑑𝑠 ≤ 𝑑max − 2, the maximum indegree of the

vertices in the reversible path 𝑠 ⇝ 𝑡 is 𝑑max−1 after reversing 𝑠 ⇝ 𝑡 .

The unreversible orientation is an orientation without any re-
versible path [42]. As shown in [42], the maximum indegree of an

unreversible orientation ®𝐺 is equal to 𝑝 (𝐺). Based on this result,

an immediate question is that can we dynamically maintain the

pseudoarboricity of a graph 𝐺 via maintaining an unreversible
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Algorithm 6: INS ( ®𝐺, (𝑢, 𝑣), 𝑝)
Input: An unreversible orientation ®𝐺 = (𝑉 , ®𝐸 ) , the edge (𝑢, 𝑣) to be

inserted, and the pseudoarboricity 𝑝 before insertion.

Output: The updated unreversible orientation ®𝐺 and pseudoarboricity.

1 Suppose 𝑑𝑣 ≤ 𝑑𝑢 , otherwise swap the input edge (𝑢, 𝑣) ;
2 ®𝐺 ← ®𝐺 ∪ ⟨𝑢, 𝑣⟩;
3 if 𝑑𝑣 = max

𝑖∈ ®𝐺 𝑑𝑖 ( i.e., 𝑑𝑣 = 𝑝 + 1 or 𝑝) and there is a reversible path ending
at 𝑣 then

4 reverse the path;

5 if max
𝑖∈ ®𝐺 𝑑𝑖 > 𝑝 then 𝑝++;

6 return ( ®𝐺, 𝑝 ) ;

Algorithm 7: DEL ( ®𝐺, (𝑢, 𝑣), 𝑝)
Input: An unreversible orientation ®𝐺 = (𝑉 , ®𝐸 ) , the edge (𝑢, 𝑣) to be

deleted, and the pseudoarboricity 𝑝 before deletion.

Output: The updated unreversible orientation ®𝐺 and pseudoarboricity.

1 ®𝐺 ← ®𝐺 − ⟨𝑢, 𝑣⟩; // suppose (𝑢, 𝑣) is oriented as ⟨𝑢, 𝑣⟩
2 if 𝑑𝑣 ≥ max

𝑖∈ ®𝐺 𝑑𝑖 − 2 and there is a reversible path starting from 𝑣 then
3 reverse the path;

4 if max
𝑖∈ ®𝐺 𝑑𝑖 < 𝑝 then

5 𝑝– –; ReTest ( ®𝐺, 𝑝 − 1);

6 return ( ®𝐺, 𝑝 ) ;

orientation of𝐺 . In the following, we develop an efficient algorithm

to achieve this goal.

Novel algorithm for edge insertion. For edge insertion, we have
the following important lemma.

Lemma 4. Given an unreversible orientation ®𝐺 and an edge ⟨𝑢, 𝑣⟩
for insertion, ®𝐺 ∪ ⟨𝑢, 𝑣⟩ is an unreversible orientation if there is no
reversible path ending at 𝑣 in ®𝐺 ∪ ⟨𝑢, 𝑣⟩.

Equipped with Lemma 4, we present a novel algorithm, called

INS, to handle the edge insertion by maintaining an unreversible

orientation. The pseudo-code of INS is depicted in Algorithm 6.

When inserting ⟨𝑢, 𝑣⟩, the INS algorithm tries to find a reversible

path starting from 𝑣 and reverse it to obtain an unreversible

orientation if 𝑑𝑣 = max
𝑖∈ ®𝐺 𝑑𝑖 (Lines 3-4), otherwise there is no

reversible path after edge insertion. Note that to find the reversible

path ending at 𝑣 , we can perform a BFS from 𝑣 and traverse along

the opposite direction of each edge until finding a vertex with

the indegree of ≤ 𝑝 − 2 or the BFS-search queue is empty. INS
can determine the pseudoarboricity by verifying max

𝑖∈ ®𝐺 𝑑𝑖 > 𝑝

directly (Line 5). Finally, INS outputs the maximum indegree of

®𝐺 as the updated pseudoarboricity and also returns the updated

unreversible orientation. Note that INS at most needs to reverse 1

reversible path to obtain the unreversible orientation. Below, we

prove the correctness of INS in Theorem 7.

Theorem 7. The INS algorithm correctly maintains the unre-
versible orientation and pseudoarboricity.

Below, we analyze the time complexity of the INS algorithm. INS
performs BFS from 𝑣 to find a reversible path which costs 𝑂 ( |𝐸 |)
time. Besides, the algorithm can check max

𝑖∈ ®𝐺 𝑑𝑖 > 𝑝 within 𝑂 (1)
time because the maximum indegree is either 𝑝 or 𝑑𝑣 . Therefore,

the time complexity of INS is 𝑂 ( |𝐸 |).
Novel algorithm for edge deletion. Algorithm 7 outlines the

pseudo-code of our new algorithm, called DEL, for handling edge

deletion. Similar to INS, DEL maintains the pseudoarboricity and

an unreversible orientation by finding a reversible path starting

from 𝑣 and reversing it when 𝑑𝑣 ≥ max
𝑖∈ ®𝐺 𝑑𝑖 − 2 (Lines 2-3); on the

other hand, 𝑑𝑣 < max
𝑖∈ ®𝐺 𝑑𝑖 − 2 indicates that there is no reversible

path starting from 𝑣 since the input orientation is unreversible.DEL
updates the pseudoarboricity according to whether max

𝑖∈ ®𝐺 𝑑𝑖 < 𝑝

holds (Line 4). Unlike INS, for the edge deletion case, a single BFS

invoking is not sufficient to maintain the unreversible orientation

when the pseudoarboricity decreases. The reason is as follows. Let

𝑝0 be the pseudoarboricity before deleting an edge. Since the input

orientation is unreversible, it can guarantee that there is no path

𝑠 ⇝ 𝑡 where 𝑑𝑠 = 𝑝0 and 𝑑𝑡 ≤ 𝑝0 − 2, but it cannot guarantee there
is no path 𝑠 ⇝ 𝑡 where 𝑑𝑠 = 𝑝0 − 1 and 𝑑𝑡 ≤ 𝑝0 − 3. When the

pseudoarboricity decreases by one, the condition for the orientation

to be reversible becomes there being no path 𝑠 ⇝ 𝑡 where𝑑𝑠 = 𝑝0−1
and 𝑑𝑡 ≤ 𝑝0 − 3. However, there may exist many such paths in the

input orientation. The BFS algorithm can only reverse one path at

a time and is not suitable for situations where multiple paths need

to be reversed. Therefore, based on the results shown in Lemma 5,

DEL invokes the ReTest algorithm to reverse these paths, making

the orientation unreversible again (Line 5).

Lemma 5. Given a graph 𝐺 , let ®𝐺 be an optimal orientation
of 𝐺 , then after invoking ReTest ( ®𝐺, 𝑝 (𝐺) − 1), ®𝐺 will become an
unreversible orientation.

Theorem 8. DEL can correctly maintain the unreversible orienta-
tion and pseudoarboricity.

Below,we analyze the time complexity of DEL. Like INS,DEL can
find the reversible path using BFS and traverse along the directed

edges within 𝑂 ( |𝐸 |) time (Lines 2-3). However, unlike INS, DEL
may invoke ReTest (Line 5), which takes𝑂 ( |𝐸 |3/2) time. As a result,

the worst-case time complexity of DEL is 𝑂 ( |𝐸 |3/2).
Discussions. Recall that in the worst case, the time complexity of

INS (𝑂 ( |𝐸 |)) is much better than BasicINS (𝑂 ( |𝐸 |3/2)), and both

DEL and BasicDEL have the same worst-case time complexity

(𝑂 ( |𝐸 |3/2)). However, compared to the basic algorithms, the prac-

tical performance of both INS and DEL are often substantially

better for the following reasons. First, the BFS algorithm is only

invoked by INS and DEL when 𝑑𝑣 is sufficiently large, thus most

random insertions and deletions can be processed within 𝑂 (1)
time. Second, the worst-case time complexity of𝑂 ( |𝐸 |3/2) for DEL
only occurs when the pseudoarboricity decreases, which is a rare

occurrence in the case of randomly deleting edges. As confirmed in

our experiments, both INS andDEL are several orders of magnitude

faster than BasicINS and BasicDEL respectively.

5 INCREMENTAL UPDATE ALGORITHMS
In the previous section, we propose several efficient algorithms

to maintain 𝑝 (𝐺) when 𝐺 is updated by both edge insertions and

deletions (i.e., the fully-dynamic case). In this section, we consider

the case when the graph is only updated by edge insertion (no

edge deletion occurs). We show that without edge deletion, the

pseudoarboricity maintenance algorithm can be simpler and more

efficient than the proposed INS algorithm (Algorithm 6).
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Algorithm 8: INC ( ®𝐺, (𝑢, 𝑣), 𝑝)
Input: An optimal orientation ®𝐺 = (𝑉 , ®𝐸 ) , the edge (𝑢, 𝑣) to be inserted,

and the pseudoarboricity before insertion 𝑝 .

Output: The updated optimal orientation ®𝐺 and pseudoarboricity.

1 Suppose 𝑑𝑣 ≤ 𝑑𝑢 , otherwise swap the input edge (𝑢, 𝑣) ;
2 ®𝐺 ← ®𝐺 ∪ ⟨𝑢, 𝑣⟩;
3 if 𝑑𝑣 = 𝑝 + 1 then
4 if there is a reversible path ending at 𝑣 then reverse the path;

5 else 𝑝++;

6 return ( ®𝐺, 𝑝 ) ;

5.1 A basic incremental insertion algorithm
Given an optimal orientation ®𝐺 and an edge (𝑢, 𝑣) to be inserted,

suppose ⟨𝑢, 𝑣⟩ is directly inserted into ®𝐺 . (i) If the maximum

indegree of ®𝐺 remains 𝑝 , i.e., 𝑑𝑣 ≤ 𝑝 after the insertion, according

to Theorem 6, the pseudoarboricity remains unchanged; (ii) If 𝑑𝑣

becomes 𝑝 + 1 and no reversible path is found, then ®𝐺 becomes an

unreversible orientation and the pseudoarboricity increases by one;

(iii) If 𝑑𝑣 becomes 𝑝 + 1 and a reversible path is found, by reversing

this path, the maximum indegree remains 𝑝 and the pseudoarboric-

ity remains unchanged. Based on the aforementioned rationale, the

algorithm INC can be designed, as shown in Algorithm 8, and its

correctness can be derived from Theorem 6.

It is easy to derive that the time complexity of INC is 𝑂 ( |𝐸 |).
Although INC has the same time complexity as INS, it is often faster
than INS. This is because INC only needs to consider the case when

𝑑𝑣 = 𝑝 + 1 (Line 3 of Algorithm 8), while INS has to consider the

cases when 𝑑𝑣 = 𝑝 or 𝑑𝑣 = 𝑝 + 1 (Line 3 of Algorithm 6). However,

it is worth mentioning that INC does not maintain the unreversible

orientation, thus it cannot be used in conjunction with DEL to deal

with the fully-dynamic maintenance case.

5.2 An advanced incremental algorithm
To further improve the efficiency of INC, we propose a more effi-

cient incremental insertion algorithm, called INS++, by maintaining

the unreversible orientation. INS++ is similar to INS, except that
INS++ additionally maintains a carefully-defined structure 𝐷𝑡𝑜𝑝 .

The motivation of why INS++ maintains such a 𝐷𝑡𝑜𝑝 structure is

as follows. Recall that if 𝑑𝑣 = 𝑝 , INS needs to invoke BFS to search

for a reversible path ending at 𝑣 . If such a path does not exist, it

will consume 𝑂 ( |𝐸 |) time. If we can maintain a set of vertices that

can reach a vertex with indegree equaling 𝑝 , i.e., the 𝐷𝑡𝑜𝑝 structure,

then we can easily determine whether there exists a reversible path

ending at 𝑣 using 𝑂 (1) time, significantly reducing the number of

BFS calls. Formally, the definition of 𝐷𝑡𝑜𝑝 is given as follows.

Definition 3. Given an unreversible orientation ®𝐺 = (𝑉 , ®𝐸),
𝐷𝑡𝑜𝑝 ≜ {𝑖 ∈ 𝑉 |𝑑𝑖 = 𝑝 (𝐺) or 𝑖 can reach a vertex with indegree
equaling 𝑝 (𝐺)}.

Note that, by the definition of unreversible orientation, the

vertices in 𝐷𝑡𝑜𝑝 must have indegree no less than 𝑝 (𝐺) − 1. The

INS++ algorithm is outlined in Algorithm 9. INS++ can efficiently

handle the insertion of edge ⟨𝑢, 𝑣⟩ by skipping the process of finding
a reversible path if 𝑣 is in 𝐷𝑡𝑜𝑝 and has indegree 𝑝 . In contrast, the

INS algorithm needs to perform a BFS to search for a reversible

path in the same situation, incurring additional time overhead.

Therefore, compared to INS, INS++ is more efficient for maintaining

the pseudoarboricity and the unreversible orientation. Due to the

Algorithm 9: INS++ ( ®𝐺, (𝑢, 𝑣), 𝑝, 𝐷𝑡𝑜𝑝 )

Input: An unreversible orientation ®𝐺 = (𝑉 , ®𝐸 ) , the edge (𝑢, 𝑣) to be

inserted, the pseudoarboricity 𝑝 , and the 𝐷𝑡𝑜𝑝 before insertion.

Output: The updated unreversible orientation ®𝐺 , pseudoarboricity and

𝐷𝑡𝑜𝑝 .

1 Suppose 𝑑𝑣 ≤ 𝑑𝑢 , otherwise swap the input edge (𝑢, 𝑣) ;
2 ®𝐺 ← ®𝐺 ∪ ⟨𝑢, 𝑣⟩;
3 if (𝑣 ∈ 𝐷𝑡𝑜𝑝 and 𝑑𝑣 = 𝑝 + 1) or (𝑣 ∉ 𝐷𝑡𝑜𝑝 and 𝑑𝑣 = 𝑝) then
4 if there is a reversible path ending at 𝑣 then reverse the path;

5 if 𝑣 ∉ 𝐷𝑡𝑜𝑝 and 𝑑𝑣 = 𝑝 then 𝐷𝑡𝑜𝑝 ← 𝐷𝑡𝑜𝑝 ∪ {all vertices that can reach

𝑣} ∪ {𝑣};
6 else if 𝑣 ∈ 𝐷𝑡𝑜𝑝 and 𝑑𝑣 = 𝑝 + 1 then
7 𝑝++; 𝐷𝑡𝑜𝑝 ← {all vertices that can reach 𝑣} ∪ {𝑣};

8 return ( ®𝐺, 𝑝, 𝐷𝑡𝑜𝑝 ) ;

maintenance of 𝐷𝑡𝑜𝑝 , INS++ is not compatible with DEL in the

fully-dynamic case. Besides, it is not straightforward and efficient

to maintain 𝐷𝑡𝑜𝑝 in the deletion case. So when maintaining 𝐷𝑡𝑜𝑝 ,

we only devise an insertion-only algorithm INS++.
INS++ can also be faster than INC benefiting from the lower costs

for finding reversible paths using BFS. Specifically, since all edges

between𝐷𝑡𝑜𝑝 and𝑉 \𝐷𝑡𝑜𝑝 are toward𝑉 \𝐷𝑡𝑜𝑝 , the search space of

the BFS algorithm used in INS++ is limited to 𝐷𝑡𝑜𝑝 , which is often

very small in real-world graphs. However, the search space of the

BFS algorithm used in INC can be very large. Despite the additional

cost involved in maintaining 𝐷𝑡𝑜𝑝 in INS++, it is practically faster

compared to INC, as confirmed in our experiments.

Theorem 9. INS++ can correctly update the unreversible orienta-
tion, pseudoarboricity, and 𝐷𝑡𝑜𝑝 .

Discussion. Since every vertex in 𝐷𝑡𝑜𝑝 has an indegree of at least

𝑝 (𝐺) − 1, the density of the subgraph induced by 𝐷𝑡𝑜𝑝 , denoted by

𝜌 (𝐷𝑡𝑜𝑝 ), satisfies 𝜌 (𝐷𝑡𝑜𝑝 ) ≥ 𝑝 (𝐺) − 1. That is to say, the difference
between 𝜌 (𝐷𝑡𝑜𝑝 ) and 𝜌 (𝐺) (the densest subgraph’s density) will be
no more than 1. As a consequence, the subgraph induced by 𝐷𝑡𝑜𝑝

is a highly-dense subgraph that can be used to detect communities

in real-life networks. A nice feature of the INS++ algorithm is that

it not only identifies such a highly-dense subgraph, but can also

efficiently and incrementally maintain it.

6 EXPERIMENTS
6.1 Experimental setup
In our experiments, we implement four approximate algorithms:

(i) DEGREE (the state-of-the-art approximation algorithm, i.e., Al-
gorithm 1); (i) iDEGREE (Algorithm 3); (iii) INDEGREE (Algorithm

4), which calculate the maximum indegree of orientation as an esti-

mation of pseudoarboricity; (iv) DinicAppr [31], which is a (1 + 𝜖)-
approximate algorithm utilizing the early-stopped Dinic algorithm,

can be employed to approximate arboricity and pseudoarboricity. To

exactly compute the pseudoarboricity, we implement the state-of-

the-art (SOTA) algorithm, namelyDEGREE+ReTest, and our two im-

proved algorithms iDEGREE+ReTest and INDEGREE+ReTest. Since
pseudoarboricity is the round-up value of the densest subgraph

density, we also compare these three exact algorithms with Convex,
which is the SOTA algorithm for computing the densest subgraph

[18]. ForConvex, we use their original C++ implementation [18] for

comparison. For fully-dynamic algorithms, we implement the basic

maintenance algorithms BasicINS (Algorithm 5) and BasicDEL,
as well as the improved maintenance algorithms INS and DEL
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Figure 3: Pseudoarboricity distribution of real-world graphs.

Table 1: Approximation performance of different algorithms.

Dataset 𝑝 DEGREE iDEGREE INDEGREE Iterations DinicAppr
Catster 348 419 380 349 8 348

BerkStan 104 201 129 104 7 104

IT 216 431 234 216 2 216

WikiEO 354 688 410 354 5 354

HuGene2 1,326 1,902 1,525 1,326 7 1,326

Hollywood 1,104 2,208 1,249 1,105 4 1,104

Weibo 166 193 179 170 12 166

Arabic 1,625 3,247 1,840 1,625 4 1,625

ITALL 2,009 3,224 2,327 2,009 7 2,009

SKALL 2,258 4,510 2,641 2,258 7 2,258

(Algorithm 6 and Algorithm 7). For incremental algorithms, we

implement both INC (Algorithm 8) and INS++ (Algorithm 9).

We collect 195 real-life graphs with various types downloaded

from the Network Repository [41] and the Koblenz Network

Collection (http://konect.cc/). The detailed statistics of the datasets

are summarized in Table 2. All algorithms are implemented in C++,

utilizing the gcc compiler with O3 optimization. All experiments

are conducted on a PC with a 2.2GHz AMD 3990X 64-Core CPU

and 256GB memory, running the CentOS Linux operating system.

6.2 Pseudoarboricity of real-world graphs
In this experiment, we systematically evaluated the pseudoarboric-

ity of 195 real-life graphs with various types, and the results are

reported in Table 2. As can be seen, the pseudoarboricities of citation

graphs, online contact graphs, infrastructure graphs, technological

graphs, software graphs, and lexical graphs are often very small.

However, a few other types of large graphs, such as biological

graphs, collaboration graphs, and hyperlink graphs, may have

significantly large pseudoarboricity. For example, the Hollywood
collaboration graph has a pseudoarboricity of 1,104, and the SKALL
hyperlink graph has a pseudoarboricity of 2,258.

Fig. (3) depicts the distributions of pseudoarboricity for different

types of graphs. Clearly, 167 out of the 195 real-world graphs (85%)

have a pseudoarboricity of less than 200 in Fig. (3a), validating

that most real-world graphs have small pseudoarboricities. Fig. (3b)

shows that (i) the pseudoarboricities of all online contact graphs

are less than 100; (ii) over 88 percent of social graphs have small

pseudoarboricities of less than 200; (iii) most hyperlink graphs have

small pseudoarboricity, while a few large hyperlink graphs tend

to have very large pseudoarboricities. These results suggest that

the "small-(pseudo)arboricity" assumption made in many existing

works [14, 26, 34, 36, 47] may be excessively optimistic for large

hyperlink graphs.
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Figure 4: Runtime of different approximation algorithms.

6.3 Performance studies
Comparison of different approximation algorithms. Table 1
shows the maximum indegree of the approximate orientation cal-

culated by DEGREE, iDEGREE, INDEGREE, and DinicAppr respec-
tively. As expected, the approximation performance of DEGREE
is unsatisfactory. The proposed iDEGREE algorithm exhibits an

improvement overDEGREE in terms of the maximum indegree, but

it is not substantial. While our INDEGREE achieves outstanding

approximation performance, with the discrepancy between the

maximum indegree of orientation and the pseudoarboricity not

exceeding 4 on all datasets. For example, on dataset Hollywood
with 𝑝 = 1, 104, the maximum indegree with DEGREE is twice

as the pseudoarboricity, which achieves the worst-case result.

The maximum indegree of orientations yielded by iDEGREE and

INDEGREE are 1, 325 and 1, 105, respectively. In addition, we also

show the iteration numbers of INDEGREE in Table 1. As can be seen,
INDEGREE terminates within a few iterations over all datasets,

which confirms the theoretical analysis in Section 3.3. For the (1+𝜖)-
approximation algorithm DinicAppr, its rationale is employing an

early-stopped Dinic algorithm to approximate the complete Dinic

algorithm. However, in our experiments, the algorithm appears to

struggle to meet the condition for early stopping, even when we set

𝜖 to a considerably high value, such as 10. This renders DinicAppr
practically equivalent to an exact algorithm. Although it computes

an approximate pseudoarboricity that is typically equal to the exact

value, its runtime is extremely long, as elaborated later.

The runtime of DEGREE, iDEGREE, INDEGREE, and DinicAppr
is shown in Fig. (4), where, to ensure a fair comparison, we

add core reduction to DinicAppr for optimizing its runtime and

set 𝜖 = 1. We can clearly see that INDEGREE achieves the

lowest runtime among all approximation algorithms, and the

runtime of iDEGREE is almost the same as that of DEGREE.
In general, the running time of INDEGREE is around 4.8-21.3

times lower than that of DEGREE/iDEGREE on all datasets. In

comparison to INDEGREE, the runtime of DinicAppr is 12.2-

69.8 times slower, and even slower by 4.4-43.4 times than the

exact algorithm INDEGREE+ReTest. Therefore, while DinicAppr
exhibits good approximation performance, its execution speed is

significantly slow, making it replaceable by our proposed exact

algorithm INDEGREE+ReTest. These results demonstrate that the

proposed INDEGREE algorithm substantially outperforms the other

approximation algorithms in terms of rapid running speed and

outstanding approximation quality.

Comparison of exact algorithms. Fig. (5a) and Fig. (5b) depict

the runtime of Convex, DEGREE+ReTest, iDEGREE+ReTest and
INDEGREE+ReTest on 10 real-life datasets. We can see that our

novel solution INDEGREE+ReTest consistently outperforms other

algorithms over all datasets. The Convex algorithm has the longest
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Table 2: Networks statistics and the pseudoarboricity results. (1K=1,000,1M=1,000,000, and 1G=1,000,000,000)

‘𝑝’ represents pseudoarboricity, and ‘Ratio’ is the acceleration ratio of the INDEGREE+ReTest algorithm compared to the DEGREE+ReTest algorithm.

Networks Name |𝑉 | |𝐸 | 𝑝 Ratio Name |𝑉 | |𝐸 | 𝑝 Ratio Name |𝑉 | |𝐸 | 𝑝 Ratio

Biology

Diseas 0.5K 1.2K 6 6.1 Worm 3.5K 6.5K 8 7.7 CE-GN 2.2K 53.7K 40 2.4

Mangwet 0.1K 1.4K 17 3.3 FisYeast 2.0K 12.6K 27 5.6 DR-CX 3.3K 84.9K 66 2.6

Yeast 1.5K 1.9K 3 5.1 Fruitfly 7.3K 24.9K 10 2.9 HS-CX 4.4K 108.8K 65 2.0

Celegans 0.5K 2.0K 8 4.1 Human 9.4K 31.2K 10 2.7 GYeast 6.0K 156.9K 56 2.0

Foodweb 0.1K 2.1K 18 5.4 SC-GT 1.7K 34.0K 47 3.0 CE-CX 15.2K 246.0K 55 5.6

Florida 0.1K 2.1K 18 3.0 SC-CC 2.2K 34.9K 36 7.3 HuGene2 14.0K 9.0M 1,326 8.1
Plant 1.7K 3.1K 9 12.0 HS-LC 4.2K 39.5K 44 8.0 HuGene1 21.9K 12.3M 1,452 8.5

DM-HT 3.0K 4.7K 6 11.4 CE-PG 1.9K 47.8K 62 5.7 MoGene 43.1K 14.5M 809 6.2

Collaboration

Netscience 1.5K 2.7K 10 7.7 HepPh 11.2K 117.6K 119 5.0 caCoCite 22.9K 2.4M 317 11.2

caErdos 6.9K 11.9K 8 7.1 AstroPh 17.9K 197.0K 33 2.1 caIMDB 896.3K 3.8M 21 3.0

caGrQc 4.2K 13.4K 23 11.6 caCtseer 227.3K 814.1K 43 33.0 caDBLP 540.5K 15.2M 168 27.9

CondMat 21.4K 91.3K 14 2.2 caMath 391.5K 873.8K 12 7.2 Hollywood 1.1M 56.3M 1,104 16.2

Citation
ctDBLP 12.6K 49.6K 11 1.7 ctCtseer 384.1K 1.7M 14 1.8 ctHepPh 28.1K 3.1M 266 2.3

ctCora 23.2K 89.2K 10 1.5 ctHepTh 22.9K 2.4M 317 1.7 ctPatent 3.8M 16.5M 41 34.0

Online contact

emUniv 1.1K 5.5K 8 2.2 WkTkLV 41.4K 50.6K 13 14.2 comMath 24.8K 188.0K 65 4.6

emDNC 0.9K 10.4K 41 3.7 emEU 32.4K 54.4K 19 5.0 comEnron 87.0K 297.5K 44 3.8

comCore 0.9K 10.4K 13 3.7 WkTkEL 40.3K 72.1K 22 11.8 emEuAll 265.0K 364.5K 33 12.2

comUc 1.9K 13.8K 17 2.7 DIGG 30.4K 85.2K 9 2.3 comAsk 157.2K 455.7K 42 13.2

WkTkEO 7.6K 15.6K 18 10.3 EnLarge 33.7K 180.8K 38 4.1 Super 192.4K 714.6K 54 11.9

comPGP 10.7K 24.3K 20 13.0 FBwal 45.8K 183.4K 14 1.8 comWiki 138.6K 715.9K 51 10.7

Infrastructure

Euro 1.2K 1.4K 2 2.5 US1 129.2K 165.4K 2 1.7 Italy 6.7M 7.0M 2 1.1

USAir97 0.3K 2.1K 18 5.5 PA 1.1M 1.5M 2 1.9 Britain 7.7M 8.2M 2 1.4

Power 4.9K 6.6K 4 13.0 BE 1.4M 1.5M 2 1.1 DE 11.5M 12.4M 2 1.2

Openflights 2.9K 15.7K 23 3.8 NL 2.2M 2.4M 2 1.2 Asia 12.0M 12.7M 2 1.0

LU 114.6K 119.7K 2 2.8 CA 2.0M 2.8M 2 1.9 US2 23.9M 28.9M 2 2.0

Social

FbNIPS 2.9K 3.0K 3 6.8 WikiElec 7.1K 100.8K 47 1.7 LiveMch 104.1K 2.2M 84 3.0

HHouse 1.6K 4.0K 11 4.7 GemRO 41.8K 125.8K 6 1.4 Buzznet 101.2K 2.8M 138 2.2

HFriship 1.9K 12.5K 17 3.3 fbMedia 27.9K 206.0K 19 1.4 YTBsnap 1.1M 3.0M 46 6.1

HFriend 3.0K 12.5K 17 3.7 Britkite 58.2K 214.1K 41 9.9 FourSq 639.0K 3.2M 56 8.7

Hamster 2.4K 16.6K 18 3.0 GemHU 47.5K 222.9K 10 2.2 FlickrU 514.0K 3.2M 254 10.5

Tvshow 3.9K 17.2K 31 7.9 Douban 154.9K 327.2K 14 5.5 Lastfm 1.2M 4.5M 62 8.9

TwitList 23.4K 32.8K 8 7.7 Sladot1 77.4K 469.2K 43 5.2 wkTk 2.4M 4.7M 115 10.1

Ciaodvd 4.7K 33.1K 36 6.6 GemHR 54.6K 498.2K 17 0.9 Catster 149.7K 5.4M 348 5.8
Gplus 23.6K 39.2K 11 6.5 Sladot2 82.2K 504.2K 44 5.6 DIGG 770.8K 5.9M 215 5.4

Advogt 5.2K 39.4K 23 2.7 Acade 190.2K 788.3K 17 1.1 Flixster 2.5M 7.9M 51 8.2

fbPoli 5.9K 41.7K 25 6.1 fbArtist 50.5K 819.1K 59 1.2 Dogster 426.8K 8.5M 218 8.4

Anybeat 12.6K 49.1K 29 4.3 TwiFol 465.0K 833.5K 26 6.7 Higgs 456.6K 12.5M 115 1.9

fbCom 14.1K 52.1K 14 8.5 Delicious 426.4K 908.3K 18 10.2 Flickr 1.7M 15.6M 469 11.1

PubFig 11.6K 67.0K 35 3.3 Gowalla 196.6K 950.3K 44 3.6 Pokec 1.6M 22.3M 42 1.5

fbSport 13.9K 86.8K 20 6.3 Themker 69.4K 1.6M 144 3.8 Lvjourn 4.0M 27.9M 131 32.0

Govern 7.1K 89.4K 37 1.8 YTB 496.0K 1.9M 44 3.0 Orkut 3.0M 106.3M 207 5.3

Epinions 26.6K 100.1K 27 2.0 BlogCata 88.8K 2.1M 194 4.8 Weibo 58.7M 261.3M 166 1.9

Hyperlink

Polblogs 0.6K 2.3K 10 4.0 WikiIS 69.4K 907.4K 197 11.1 Wiki 1.9M 4.5M 55 48.6

EPA 4.3K 8.9K 5 3.3 WikiFY 65.6K 921.6K 84 7.1 WikiTH 266.9K 4.6M 215 18.9

Webase 16.1K 25.6K 16 10.8 Notre 325.7K 1.1M 79 18.6 WikiLT 268.2K 5.1M 158 13.8

WkCham 2.3K 31.4K 48 14.3 WikiIA 24.0K 1.2M 280 10.9 BerkStan 685.2K 6.6M 104 13.6
Spam 4.8K 37.4K 28 3.7 WikiAF 72.3K 1.5M 187 10.1 IT 509.3K 7.2M 216 20.8
Idchina 11.4K 47.6K 25 8.9 lkArabic 163.6K 1.7M 51 12.3 WikiEO 413.0K 8.2M 354 15.0
WikiCO 8.3K 119.8K 121 1.0 WikiAST 83.3K 2.0M 75 6.1 WikiCh 1.9M 9.0M 95 5.0

GogInter 15.8K 149.5K 55 13.0 Stanford 281.9K 2.0M 60 11.2 UK 129.6K 11.7M 250 15.1

WikiCroc 11.6K 170.9K 51 13.2 BaiduRe 415.6K 2.4M 183 27.6 Hudong 2.0M 14.4M 157 49.0

WikiSqui 5.2K 198.5K 137 11.2 Italycnr 325.6K 2.7M 58 17.7 Baidu 2.1M 17.0M 73 2.2

SK 121.4K 334.4K 42 15.1 WikiNN 215.9K 2.9M 133 19.4 WikiUK 1.2M 41.9M 459 15.1

WikiYO 41.2K 696.4K 242 6.4 WikiLV 190.0K 2.9M 283 16.5 UKAll 39.5M 783.0M 486 7.4

WikiCKB 60.7K 802.1K 204 12.7 WikiLA 181.2K 3.0M 140 14.0 ITALL 41.3M 1.0G 2,009 16.4
WikiSW 58.8K 877.0K 157 12.4 Google 875.7K 4.3M 29 23.9 SKALL 50.6M 1.8G 2,258 17.3

Technological

Routers 2.1K 6.6K 12 5.4 WHOIS 7.5K 56.9K 63 4.1 RLCaida 190.9K 607.6K 26 13.4

PGP 10.7K 24.3K 20 13.8 Internet 40.2K 85.1K 18 6.0 Skitter 1.7M 11.1M 90 25.9

Caida 26.5K 53.4K 18 10.5 P2P 62.6K 147.9K 5 2.4 IP 2.3M 21.6M 200 3.7

Software Jung 6.1K 50.3K 47 12.2 JDK 6.4K 53.7K 47 11.4 Linux 30.8K 213.2K 21 3.5

Lexical EAT 23.1K 297.1K 31 3.6 Wordnet 146.0K 657.0K 17 1.8 Yahoo 653.3K 2.9M 24 7.5

Miscellaneous

HyperText 0.1K 2.2K 21 5.2 Beaflw 0.5K 45.3K 97 17.8 Amazon2 403.4K 2.4M 10 4.5

Infectious 0.4K 2.8K 11 1.9 Orani 2.5K 87.0K 122 10.2 DBpedia 4.0M 12.6M 16 7.3

Twin 14.3K 20.6K 13 19.2 Amazon1 334.9K 925.9K 5 3.1 Actor 382.2K 15.0M 310 9.5

Beacxc 0.4K 42.6K 93 15.2 misFlickr 105.9K 2.3M 292 7.0 Arabic 22.7M 553.9M 1,625 21.4

running time because it computes the densest subgraph to obtain

pseudoarboricity, which often requires large numbers of iterations.

For DEGREE+ReTest and iDEGREE+ReTest, they are slightly more

complicated to implement compared to INDEGREE+ReTest, slow-
ing down the overall computation process. Besides, the approxima-

tion performance of DEGREE is often unsatisfactory, resulting in

the need to conduct a binary search. Therefore, ReTest needs to be

invoked by around log(𝑝) times, which is also time-consuming.

For example, on the SKALL dataset, the runtime of Convex,
DEGREE+ReTest, iDEGREE+ReTest, and INDEGREE+ReTest are

4,528, 537.84, 536.49, and 31.07 seconds respectively. To further

compare our proposed INDEGREE+ReTest algorithm with the

SOTA algorithmDEGREE+ReTest, we calculate the speedup ratio of
INDEGREE+ReTest overDEGREE+ReTest on all datasets in Table 2.

It can be observed that INDEGREE+ReTest is faster on almost all

datasets, and on 31 out of 42 hyperlink graphs, it achieves a speedup

ratio exceeding one order of magnitude. These results demonstrate

the efficiency of the INDEGREE+ReTest algorithm on the exact

computation of pseudoarboricity.

Fig. (5c) and Fig. (5d) show the memory costs of the four

exact algorithms. As can be seen, the four algorithms exhibit

similar memory overheads, because they all require linear space.

Furthermore, the memory usage of INDEGREE+ReTest is less

than that of DEGREE+ReTest and iDEGREE+ReTest. Compared

to Convex, although INDEGREE+ReTest consumes slightly more

memory space, the runtime of INDEGREE+ReTest is around 13-250
times faster than that of Convex. These results confirm that the

proposed INDEGREE+ReTest algorithm is highly space-efficient.

Runtime of dynamic algorithms. In this experiment, we evaluate

the performance of different maintenance algorithms. In the fully
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Figure 5: Results of exact algorithms for pseudoarboricity
computation.

Table 3: Insertion time on temporal graphs.

Total time for the insertion of a whole graph. (Unit: second)

Dataset |𝑉 | |𝐸 | BasicINS INS INC INS++
WikiElec 8,298 100,753 188.7 10.3 8.7 2.2

Epinions 131,829 711,210 >10,000 1831.5 1156.9 655.9

HepTh 22,909 1,222,399 >10,000 2654.6 2,253.3 1,071.7

dynamic case, we randomly delete and insert 10,000 edges from the

input graph. In the incremental insertion case (no edge deletion),

we insert the same set of 10,000 edges as in the fully dynamic

case. When selecting edges, we adopt a two-step process. First, we

randomly choose a node (with equal weight or weighted by degree).

Second, we randomly select a node from the neighbors of the

chosen node (with equal weight or weighted by degree). The edge

formed by these two nodes is then considered the selected edge. We

employ four different edge selection strategies: Random-Random

(RR), Random-Degree (RD), Degree-Random (DR), Degree-Degree

(DD). The results are shown in Fig. (6) (results for all datasets are

in full version paper). For the fully-dynamic case, the improved

maintenance algorithms (INS and DEL) consistently outperform

the basic ones (BasicINS and BasicDEL). For instance, on the large

graph Hollywood with edge selection strategy of DR, INS and DEL
consumes only 2.025 seconds and 0.022 seconds, respectively, which

are 2-3 orders of magnitude faster than basic algorithms. For the

incremental insertion case, the proposed algorithms INC and INS++
are incredibly fast on most datasets. Both of them take less than

0.01 seconds on datasets BerkStan, ITALL, and SKALL. For Catster
and HuGene2 with edge selection strategy of DR, the runtime of

INS++ is significantly lower than that of INC. Specifically, INS++
takes only 0.183 seconds and 13.366 seconds, whereas INC takes

1.525 seconds and 28.689 seconds. These results demonstrate the

high efficiency of the proposed algorithms in handling dynamic

graphs.

Results on temporal graphs. In this experiment, to evaluate

the performance of our proposed insertion algorithms, we employ

three temporal graphs: the graphsWikiElec and Epinions are social
network graphs, and HepTh is a collaboration network among re-

searchers. These datasets are sourced from the Network Repository

[41], and they include timestamps. We start with an empty graph

Table 4: Density of 𝛿-core, 𝐷𝑡𝑜𝑝 , and the densest subgraph

Dataset 𝜌 (𝛿-core) 𝜌 (𝐷𝑡𝑜𝑝 ) 𝜌 (𝐺 ) Dataset 𝜌 (𝛿-core) 𝜌 (𝐷𝑡𝑜𝑝 ) 𝜌 (𝐺 )
Catster 310.9 347.8 347.8 Hollywood 1,104.0 1,104.0 1,104.0

BerkStan 103.4 103.4 103.4 Weibo 107.6 165.4 165.4

IT 215.5 215.5 215.5 Arabic 1,623.5 1,624.5 1,624.5

WikiEO 344.5 353.2 353.2 ITALL 1,619.5 2,008.2 2,008.2

HuGene2 1,130.9 1,325.2 1,325.2 SKALL 2,256.5 2,257.5 2,257.5

and insert edges one by one in the order of timestamps until all

edges are inserted. The results are shown in Table 3. As shown,

algorithms INS, INC, and INS++ exhibit significantly improved

runtime compared to the basic algorithm BasicINS. Moreover,

INS++ outperforms others across all datasets, with an average

insertion time of only 2.29 milliseconds on the HepTh dataset. The

results demonstrate the high efficiency of our proposed algorithms

in real temporal graphs. Furthermore, we present the evolution

of pseudoarboricity during edge insertion, as depicted in Fig. (7).

For theWikiElec dataset, we observe a steady and gradual increase

in pseudoarboricity over time. Conversely, for the Epinions and
HepTh datasets, pseudoarboricity exhibits fluctuations, alternating

between periods of stagnation and sudden spikes. These findings

demonstrate the significance of pseudoarboricity in capturing the

density dynamics of temporal graphs, offering valuable insights for

comprehensive temporal graph analysis.

6.4 Application for community detection
As discussed in Section 5.2, the density difference between 𝐷𝑡𝑜𝑝

and the densest subgraph is no more than 1. Thus, similar to the

densest subgraph, 𝐷𝑡𝑜𝑝 can be used to detect communities in real-

life graphs. Table 4 reports the densities, accurate to the tenths

place, of 𝛿-core (𝛿 is the degeneracy), the densest subgraph, and

𝐷𝑡𝑜𝑝 on 10 datasets. Clearly, on all datasets, the subgraph induced

by 𝐷𝑡𝑜𝑝 achieves the same density as the densest subgraph when

accurate to the tenth place. Conversely, the density of 𝛿-core is

significantly lower than 𝜌 (𝐺), especially on HuGene2, Weibo, and
ITALL. These results indicate that 𝐷𝑡𝑜𝑝 is indeed very effective in

detecting dense subgraphs in real-world graphs.

We also conduct a case study on two subgraphs extracted from

the collaboration graph DBLP (https://dblp.org/), namely, DB and

IR. DB consists of authors who published at least one paper in

the database and data mining related conferences with 37,177

vertices and 131,715 edges. IR includes authors who published at

least one paper in information retrieval related conferences with

13,445 vertices and 37,428 edges. We compute the 𝐷𝑡𝑜𝑝 of both

graphs, denoted by 𝐷𝑡𝑜𝑝 (DB) and 𝐷𝑡𝑜𝑝 (IR), and depict the results

in Fig. (8) (For clarity, only the names of authors represented by

high-degree nodes are displayed). We also compute the densest

subgraphs on both DB and IR. We find that 𝐷𝑡𝑜𝑝 is exactly the

densest subgraph on DB, and the densest subgraph on IR is 𝐷𝑡𝑜𝑝

after deleting the vertex “Alan Woodley”. As expected, the authors

in 𝐷𝑡𝑜𝑝 (DB) or 𝐷𝑡𝑜𝑝 (IR) have a strong cooperative relationship.

Specifically, all authors in 𝐷𝑡𝑜𝑝 (DB) are researchers who work

in LinkedIn and have co-published two papers about LinkedIn’s

database [6, 40]. As for authors in𝐷𝑡𝑜𝑝 (IR), they can be divided into
two groups: one group of authors are members of the Initiative for

the Evaluation of XML retrieval [2], while another group of authors

has co-published a workshop report [3]. Norbert Fuhr and Mark

Sanderson belong to both groups, thus connecting them. These
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Figure 6: Results of dynamic algorithms for pseudoarboricity maintenance (total time for 10,000 edge updates).
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results further confirm the effectiveness of 𝐷𝑡𝑜𝑝 in identifying

densely-connected communities.

7 RELATED WORK
Arboricity computation. In [39], Picard and Queyranne showed

that arboricity can be computed by Edmonds’ matroid partition-

ing algorithm [19], and propose an improved algorithm with

the time complexity of 𝑂 ( |𝑉 |2 |𝐸 | log2 |𝑉 |). Gabow and Wester-

mann devised an algorithm based on the matroid partition tech-

nique with 𝑂 (𝑎3/2 |𝑉 |
√︁
|𝐸 |) ≥ 𝑂 ( |𝐸 |3/2

√︁
|𝐸 |/|𝑉 |) time complexity

[23]. Subsequently, Gabow improved the time complexity to

𝑂 ( |𝐸 |3/2 log( |𝑉 |2/|𝐸 |)) using graphic polymatroid, which is the

SOTA algorithm in theory [22]. Although this algorithm can

achieve nearly the same time complexity as the pseudoarboricity

computation algorithm, it heavily relies on the matroid-related

computation which is often much more expensive than the re-

orientation flow algorithm in computing the pseudoarboricity.

Minimizing the maximum indegree. The minimizing the maxi-

mum indegree problem aims to find an optimal orientation with

the smallest maximum indegree, which is equal to pseudoarboricity

[8]. The optimal orientation can be utilized to construct a graph

data structure that can efficiently determine whether two vertices

are adjacent [1, 4, 15]. The best-known re-orientation network for

computing the optimal orientation was proposed by Bezáková [8],

which is based on a binary search method with time complexity of

𝑂 ( |𝐸 |3/2 log 𝑝). Then, numerous approximate algorithms are pro-

posed [5, 20, 31]. With these approximate algorithms, Blumenstock

presented an improved algorithm based on Bezáková’s method,

which achieves the SOTA performance for exact pseudoarboricity

computation [9]. In this work, we propose an exact algorithm by

integrating two novel approximation techniques to further improve

the efficiency. In addition, to the best of our knowledge, we are

the first to investigate the problem of maintaining the optimal

orientation (and also the pseudoarboricity) in dynamic graphs.

Densest subgraph mining. Our work is also closely related to

the densest subgraph mining problem. As a fundamental problem

in network analysis, the densest subgraph problem has a wide
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Figure 8: 𝐷𝑡𝑜𝑝 of DB and IR.

range of applications such as community detection [13], network

visualization [48], and fraud detection [25]. To compute the densest

subgraph, several network flow and convex programming algo-

rithms are devised [18, 24]. However, these algorithms are often

time-consuming for very large graphs. In this work, we propose

a novel approximation of the densest subgraph: 𝐷𝑡𝑜𝑝 (Definition

3), whose density is no smaller than the densest subgraph density

minus 1. We believe that the proposed structure of 𝐷𝑡𝑜𝑝 can be of

independent interest for graph analysis applications.

8 CONCLUSION
In this paper, we study the problem of computing pseudoarboricity

in static and dynamic graphs. For static graphs, we propose two

new and efficient approximation algorithms to approximate the

pseudoarboricity. With our approximation algorithms, we can

significantly reduce the search space of the exact pseudoarboricity

computation algorithms. For dynamic graphs, we proposed two

novel pseudoarboricity maintenance algorithms and developed

two new incremental pseudoarboricity maintenance algorithms

specifically for insertion-only scenarios. We conduct extensive

experiments on 195 real-world graphs. The results suggest that most

real-world graphs indeed have a small pseudoarboricity, except for

a few large biological graphs, collaboration graphs, and hyperlink

graphs. The results also demonstrate the high efficiency of the

proposed algorithms.
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