
TC-Match: Fast Time-constrained Continuous Subgraph
Matching

Jianye Yang†
Guangzhou University
PengCheng Laboratory
jyyang@gzhu.edu.cn

Sheng Fang†
Guangzhou University
sheng@e.gzhu.edu.cn

Zhaoquan Gu∗
Harbin Institute of Technology

(Shenzhen)
PengCheng Laboratory
guzhaoquan@hit.edu.cn

Ziyi Ma∗
Hebei University of Technology

zyma@hebut.edu.cn

Xuemin Lin
Shanghai Jiao Tong University

xuemin.lin@gmail.com

Zhihong Tian
Guangzhou University

tianzhihong@gzhu.edu.cn

ABSTRACT

Continuously monitoring structural patterns in streaming graphs
is a critical task in many real-time graph-based applications. In this
paper, we study the problem of time-constrained continuous sub-
graph matching (shorted as TCSM) over streaming graphs. Given
a query graph Q with timing order constraint and a data graph
stream G, TCSM aims to report all incremental matches of Q in G
for each update of G, where a match should obey both structure
constraint (i.e., isomorphism) and timing order constraint of Q .
Although TCSM has a wide range of applications, such as cyber-
attack detection and credit card fraud detection, we note that this
problem has not been well addressed. The state-of-the-art bears
the limitations of high index space cost and intermediate result
maintenance cost. In this paper, we propose TC-Match, an effective
approach to TCSM. First, we design a space and time cost-effective
index CSS, which is essentially a k-partite graph structure where
a node corresponds to an edge in G. By carefully creating links
between nodes, we can encapsulate into CSS the partial embedding
and timing order information between edges inG . We theoretically
show that CSS has polynomial space and construction time com-
plexities. Second, based on the property of CSS, we develop an
efficient incremental matching algorithm with an effective node
merging optimization. Extensive experiments show that TC-Match
can achieve up to 3 orders of magnitude query performance im-
provement over the baseline methods, and meanwhile the memory
consumption is reduced by 48.7%-86.7%.

PVLDB Reference Format:

Jianye Yang, Sheng Fang, Zhaoquan Gu, Ziyi Ma, Xuemin Lin, and Zhihong
Tian. TC-Match: Fast Time-constrained Continuous Subgraph Matching.
PVLDB, 17(11): 2791-2804, 2024.
doi:10.14778/3681954.3681963

† Jianye Yang and Sheng Fang contribute equally to this work.
∗ Zhaoquan Gu and Ziyi Ma are the corresponding authors.
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 17, No. 11 ISSN 2150-8097.
doi:10.14778/3681954.3681963

𝑡! < 𝑡" < 𝑡# < 𝑡$ < 𝑡%

Web Server Botnet Command
and Control Server

Victim

𝑡!:HTTP

𝑡":HTTP

𝑡#:TCP 𝑡$:TCP
𝑡%:Large msg with

exfiltration data

Figure 1: Attack pattern in

network traffic [12].

𝑡! < 𝑡" < 𝑡# < 𝑡$

Criminal
𝑡!:credit pay

Merchant

BankMiddle-man account(s)

v𝑎!v𝑎"

𝑡":real payment
𝑡#:transfer𝑡$:transfer

Figure 2: Credit card fraud in

transactions [37].

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at
https://github.com/Sh-Fang/TCMatch.

1 INTRODUCTION

Graph is a widely used data structure to model complex systems,
such as social networks, internet topologies, financial networks, and
citation networks, etc. In real-world applications, graphs are highly
dynamic due to the addition or deletion of edges. For example, in a
social network, creating or cancelling the friendship between two
users can be regarded as an edge addition or deletion, respectively.
An important task on analysing such dynamic graphs is continuous
subgraph matching (shorted as CSM), which has recently received
significant research interests [12, 14, 15, 21, 22, 24, 26, 36, 46, 47, 54].
Given a pattern graph Q and a streaming graph G, CSM aims
to efficiently report all incremental matches of Q in G for each
update of G. CSM has many applications, such as merchant fraud
detection [37], cyber-attack hunting [12], and rumor detection [51].
Motivation. In the past decade, a string of CSM algorithms have
been proposed [12, 14, 15, 24, 26, 36, 46, 54]. All these algorithms
find matches for the query graph by only considering the structure
constraint, i.e., a result match is an isomorphic embedding of the
query graph. However, in many applications, the timing constraint
is also important. Specifically, there might exist some timing order
constraints in the query graph, specifying that one edge is required
to come before another one in the match. We call this variant prob-
lem as time-constrained continuous subgraph matching (shorted
as TCSM). The problem of TCSM has many applications. In the
following, we introduce a couple of examples.

2791

https://doi.org/10.14778/3681954.3681963
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3681954.3681963
https://github.com/Sh-Fang/TCMatch
https://www.acm.org/publications/policies/artifact-review-and-badging-current

Example 1 (Cyber-attack detection). Figure 1 presents
the pipeline of a typical cyber-attack pattern [12]. A victim browses a
compromised website at time t1, leading to downloading a malicious
script at time t2. After successfully invading the victim device, the
threat actor establishes communication with the malicious C&C server.
The infected victim host registers itselt at the C&C server at time t3
and receives the command from the C&C server at time t4. Once these
commands are executed, further malware is installed, which gives
the thread actor full control over the compromised machine. Finally,
the exfiltrated data is sent back to C&C server at time t5. Clearly, the
time stamps in the above example follow a strict timing order, i.e.,
t1 < t2 < t3 < t4 < t5. Therefore, this cyber-attack pattern can be
modelled as a time-constrained query graph. By applying TCSM, we
can quickly detect such cyber-attacks on network traffic data. As a
matter of fact, subgraph matching semantic based method is drawing
increasing attention to detect complex cyber-attacks, e.g., advanced
persistent threat (APT) [11, 35].

Example 2 (Credit card fraud detection). Figure 2 de-
scribes a typical credit card fraud pattern over a series of transac-
tions [37]. A criminal tries to illegally cash out money from the bank
with the help of a merchant and a middle man. In specific, the crim-
inal conducts a fake purchase with the merchant at time t1. Once
the merchant receives the real payment from the bank at time t2, he
will transfer the money back to the criminal via one or more middle
men, at times t3 or t4, respectively. Obviously, this pattern has a strict
timing order t1 < t2 < t3 < t4. Using TCSM, the system can detect
such transaction cycle in real time. Thus, the bank may reduce the
loss by stopping such fraud in time.

Existing solutions and limitations. To the best of our knowl-
edge, Timing [30, 31] is the state-of-the-art to systematically study
the problem of TCSM. It utilizes an intermediate result materializa-
tion method to report the matching results for each graph update.
In specific, it decomposes the query graph into a set of subqueries,
and maintains partial matches for each subquery. When the graph
is updated, it first updates the partial matches, and obtains the over-
all matches by joining matches of each subquery. Although this
method can speed up the online processing, its overall performance
is not yet satisfactory due to the following two limitations. First,
the space cost of Timing is very high due to the worst-case expo-
nential number of partial matches as well as some intermediate
join results. Second, the large size of intermediate results is also
expensive to maintain for Timing, especially when the streaming
graph has many query relevant edges. A more detailed discussion
about Timing is given in Section 2.2.

Another method to deal with TCSM is first applying a CSM
algorithm to list all embeddings of the query graph, and then veri-
fying them posteriorly by considering the timing order constraints.
However, the verification step is often cost-expensive, especially for
datasets with a lot of false positive embeddings, i.e., a large number
of embeddings do not satisfy the time constraints.

It is worth mentioning that the existing CSM algorithms [26,
36, 46, 54] all adopt a vertex-centric based index structure and
an exploration-based incremental matching method. However, the
timing order constraint in TCSM is defined on edges, whichmakes it
difficult to directly apply the techniques of existingCSM algorithms
to TCSM. In this paper, we aim to develop novel techniques that

not only take advantage of exploration-based method, but can also
naturally handle the temporal relationship between edges.
Our approach and contributions. In this paper, we propose an
efficient approach, called TC-Match, following the commonly used
incremental computation paradigm [30, 36, 46, 47, 54]. To avoid the
limitations of existing solutions, we propose two techniques, includ-
ing a novel index structure and an efficient incremental subgraph
matching algorithm.

First, we propose a space and time cost-effective index structure,
called candidate storage structure (shorted as CSS), to store the par-
tial matchings as intermediate results to reduce the search space of
backtracking. CSS is essentially a k-partite graph structure induced
by the query graph Q and data graph G, where k is the number of
edges in Q . Each group of nodes in CSS are corresponding to an
edge ϵ in Q , containing edges in G matching to ϵ . A link is created
between two nodes if (i) the corresponding edges are adjacent and
satisfy the time constraint, and (ii) their mapping edges in Q are
adjacent. Clearly, a node in CSS denotes a candidate matching edge
for an edge in Q , and a link in CSS maintains the partial matching
relationship between two edges in G regarding both structure and
time constraints.

Second, we develop a CSS-based incremental subgraph match-
ing algorithm, which follows the widely used depth-first para-
digm [13, 42, 50]. We introduce a simple yet efficient candidate
computation method based on the property of CSS. To further im-
prove the computation performance, we propose a node merging
optimization. Observe that nodes in CSS might have exactly the
same neighborhood structure, which implies that we can process
them in the same way. Thus, by merging such nodes together as a
single node, we only need to process them once. After the matching
process, we can restore the matching result by simply replacing
this node with all merged nodes.

Extensive experimental results demonstrate that TC-Match can
achieve up to 3 orders of magnitude query performance improve-
ment over the baseline methods. In the meantime, the memory
consumption of TC-Match is reduced by 48.7%-86.7% compared to
the baseline methods under all experiment settings. Our principle
contributions are summarized as follows.
•We propose a space and time cost-effective index structure CSS

that maintains tight partial matchings by properly encapsulating
the structure and temporal information, which in turn reduces the
search space of backtracking.
•We propose a CSS-based incremental subgraph matching algo-

rithm, which is optimized by effective node merging techniques.
• Extensive experimental results on real graphs demonstrate

that TC-Match significantly outperforms the baseline algorithms
by up to 3 orders of magnitude speedup, and meanwhile consumes
much less amount of memory.
Roadmap. The rest of this paper is organized as follows. In Sec-
tion 2, we introduce the problem definition and existing solution.
In Section 3, we give the overview of our method. We introduce an
novel index structure CSS and an efficient incremental subgraph
matching algorithm in Section 4 and 5, respectively. We conduct
extensive experiments in Section 6. Section 7 reviews the related
work and Section 8 concludes the paper.

2792

Table 1: Frequently used notations.

Notation Meaning

д, Q , and G graph, query graph, and data graph
V (д) and E(д) vertex set and edge set of д

∆G graph update stream
L(v) label of vertex v

L(e), N (e), and d(e) label, neighbors, and degree of edge e
dmax(д) maximum vertex degree in д
≺ partial order between two edges
O timing order of a query graph

G = (V, E) edge-centric index structure CSS
e = (u,v, l, t) an edge in data graph or a node in CSS
V(ϵ) a group of nodes with mapping edge ϵ
P(ϵ) preceding set of edge ϵ

2 PRELIMINARIES

In this section, we introduce the problem definitions and state-of-
the-art algorithm. Table 1 summarizes the mathematical notations
frequently used in this paper.

2.1 Problem Definition

We focus on a directed, connected, and labeled graphд = (V , E, L, Σ).
Here, V is a set of vertices, E ⊆ V ×V is a set of edges, Σ is a set
of labels, and L is a labelling function that assigns each vertex
v ∈ V or edge e ∈ E a label in Σ, denoted as L(v,д) or L(e,д). For
two edges e, e ′ ∈ E(д), we say e and e ′ are adjacent if they share
a common endpoint. For each edge e ∈ E(д), the neighbors of e ,
denoted as N (e,д), are all adjacent edges of e , i.e., N (e,д) = {e ′ ∈
E(д) \ {e}|e ∩ e ′ , ∅}. The degree of e , denoted as d(e,д), is the
number of neighbors of e , i.e., d(e,д) = |N (e,д)|. In the rest of
the paper, we simplify L(v,д), L(e,д), N (e,д), and d(e,д) as L(v),
L(e), N (e), and d(e), respectively, when the context is clear. We also
simply refer a directed, connected, and labeled graph as a graph.

Definition 1 (Subgraph Isomorphism). Given a query graph
Q = (V (Q), E(Q), L, Σ) and a data graphG = (V (G), E(G), L, Σ),Q is
subgraph isomorphic toG if and only if there exists an injective map-
pingm fromV (Q) toV (G) such that∀u ∈ V (Q), L(u,Q) = L(m(u),G)
and∀(u,u ′) ∈ E(Q), (m(u),m(u ′)) ∈ E(G) andL((u,u ′),Q) = L((m(u),
m(u ′)),G).

Note that, although we focus on subgraph isomorphism in this
paper, subgraph homomorphism can be easily obtained by omitting
the injective constraint in Definition 1. We call an injective map-
ping from vertices in Q to vertices in G as a subgraph isomorphic
embedding of Q in G. Given two edges ϵ = (u,u ′) and e = (v,v ′)
in Q and G, respectively, we say ϵ and e are matching edges to
each other, if L(u,u ′) = L(v,v ′), and L(u) = L(v) and L(u ′) = L(v ′)
(or L(u) = L(v ′) and L(u ′) = L(v)), which is simply represented
as L(ϵ) = L(e). we use the term “embedding” to simply refer to
“subgraph isomorphic embedding” when the context is clear, and
we may use embedding and match, interchangeably.

Definition 2 (Streaming Graph). A streaming graph G is
a constantly growing graph consisting of a sequence of incoming edges

B

A D E

C

𝜖!(𝑙")

𝑢!

𝑢"

𝑢# 𝑢$

𝑢%

𝜖#(𝑙!)

𝜖$(𝑙%)

𝜖"(𝑙#)

𝜖%(𝑙$)

𝜖! ≺ 𝜖# ≺ 𝜖%
𝜖" ≺ 𝜖%

(a) Graph structure

(b) Timing order

Figure 3: A time-constrained

query graph Q .

A

B

D

A

E

C

𝑣!
𝑣" 𝑣#

𝑣$ 𝑣% 𝑣&

𝑙!, 𝑡"

B F C
𝑣' 𝑣(𝑣)

𝑙#, 𝑡$

𝑙%, 𝑡%

𝑙!, 𝑡&

𝑙$, 𝑡!

𝑙$, 𝑡#

𝑙#, 𝑡'

𝑙", 𝑡(

∆𝑒$

𝑙", 𝑡)

𝑙#, 𝑡$*

Figure 4: A data graphG with

an edge insertion ∆e1.

⟨e1, e2, ..., en⟩ where e = (u,v, l, t) denotes a directed edge from u to
v with label l arriving at time t .

Given two edges e and e ′, we say e precedes e ′, denoted as e ≺ e ′,
if e .t < e ′.t . For presentation simplicity, in this paper, we focus on
edge insertion only for a streaming graph. Note that, out techniques
can be readily extended to handle edge deletion to conform the
time-based sliding window model [30]. We briefly discuss how to
handle the case of edge deletion in Section 3.

Definition 3 (Timing Order). Given a query graph Q =
(V (Q), E(Q), L, Σ), a timing order of Q , denoted as O(Q), is a strict
partial order relation over edges in E(Q). For two edges ϵ, ϵ ′ ∈ E(Q),
we use ϵ ≺ ϵ ′ to denote the partial order relation, which means that
the matching edges of ϵ and ϵ ′ in the data graph should also obey
this partial order relation regarding the arrival time.

If an edge ϵ ∈ E(Q) is not defined in O, we say ϵ is order-free
(e.g., ϵ4 in Figure 3), which is denoted as ϵ < O. An example time-
constrained query graph is shown in Figure 3, which is described
together by a graph structure and a timing order. For presentation
simplicity, we use Q = (V (Q), E(Q),O) to denote a query graph
with timing order O in the rest of the paper.

Definition 4 (Time-Constrained Match). Given a query
graph Q = (V (Q), E(Q),O) and a subgraph S = (V (S), E(S)) in a
data graph G, S is a time-constrained match of Q if and only if the
following conditions hold:
(1) Structure Constraint (Isomorphism). S is a embedding of Q
in G on structure.
(2) Timing Order Constraint. For any two edges ϵ, ϵ ′ ∈ E(Q):
ϵ ≺ ϵ ′ ⇒ e ≺ e ′ where e ∈ E(S) and e ′ ∈ E(S) are the matching
edges of ϵ and ϵ ′ in S , respectively.

Problemdefinition (Time-constrained Continuous SubgraphMatch-
ing (TCSM)). Given a query graphQ = (V (Q), E(Q),O), a data graph
G , and a graph update stream ∆G , the problem of time-constrained
continuous subgraphmatching is to find all time-constrainedmatches
for Q under each graph update operation in ∆G.

Example 3. Consider the query graph in Figure 3 and the data
graphG with an edge insertion ∆e1 in Figure 4. Originally, there is no
match inG . After inserting ∆e1 = (v8,v9, l3, t10), a new match is gen-
erated, namely {⟨(v8,v9, l3, t10), ϵ5⟩, ⟨(v5,v8, l2, t9), ϵ4⟩, ⟨(v2,v5, l1, t3),
ϵ2⟩, ⟨(v2,v3, l4, t2), ϵ1⟩, ⟨(v3,v5, l5, t5), ϵ3⟩}.

2793

2.2 Existing Solution

The state-of-the-art Timing. The state-of-the-art algorithm for
time-constrained continuous subgraph matching is Timing [30, 31].
In general, Timing utilizes an intermediate result materialization
method to report the matching results for each graph update. Specif-
ically, Timing decomposes the query graphQ into a set of subqueries
{Q1, . . . ,Qk }, and maintains partial matches for each subquery.
When the graph is updated, it first updates the partial matches,
and then obtains the matches of Q by joining matches of each sub-
query. To speed up online processing, it also materializes some
intermediate join results.

More specifically, for each subquery Qi with edges {ϵ1, . . . , ϵn },
Timing maintains a set of expansion lists {L1i , . . . , L

n
i } where each

list Lji corresponds to the first j edges in Qi , denoted as Prec(ϵj) =⋃j
p=1 ϵp , and records a set of partial matches of Pre f (ϵj). When a

new edge e arrives, Timing locates the list Lji assuming e matches
ϵj . If j = 1, e is simply inserted into L1i . Otherwise, it visits all
matches in L

j−1
i to check if e can extend them as new matches for

Pre f (ϵj), which are inserted into Lji . After processing the subquery,
Timing obtains the matches of Q by joining the matches of each Qi
following a precomputed join order. The intermediate join results
are also materialized to speed up the online processing.
Drawbacks of Timing. Although Timing can correctly solve TCSM,
it has the following two drawbacks.
• Drawback 1: Large space cost. First, Timing records all partial

matches for each prefix of the edge sequence of each subquery.
Second, it materializes some intermediate join results between sub-
queries. While a tree data structure is utilized to reduce the space
cost, Timing is still space cost-expensive due to the exponential
number of partial matches in the worst case as well as repeated
matches of prefix edge sequence.
• Drawback 2: Expensive intermediate result updating. The large

size of intermediate results is also expensive to maintain. When
a new edge comes, Timing first needs to go through all matches
in the expansion list of the corresponding prefix sequence. If new
matches of the subquery are generated, it needs to further conduct
join operation for the new matches and the existing matches of
other subqueries. This process is repeated until no new partial
matches are created or the new partial matches are exactly answers
of the entire query Q .

3 AN OVERVIEW OF TC-MATCH
To solve TCSM, we propose a novel and efficient approach, called
TC-Match, following the commonly used incremental computation
paradigm [30, 36, 46, 47, 54]. Algorithm 1 summarizes the overall
query processing, which consists of the following two phases.
• In the offline phase, we build an initial index structure based

on the query graph Q and the data graph G (Line 1), where the
details are presented in Section 4.3.
• In the online pahse, we find the incremental matches and

maintain the index structure for each graph update operation. In
specific, for edge insertion, we add the edge to G and update the
index structure to keep it consistent withG (Lines 4-5), and then find
the positive matches that contain the inserted edge (Line 6), where
the details are discussed in Section 4.4 and Section 5, respectively.

Algorithm 1: TC-Match(Q , G, ∆G)
Input : Q : a query graph

G : a data graph
∆G : a graph update stream

Output : incremental matches for each ∆e ∈ ∆G
/* The offline phase. */

G ← BuildCSS(Q , G);1

/* The online phase. */

for each ∆e = (op, e) ∈ ∆G do2

if op is + then3

G ← G ⊕ e ;4

UpdateCSS-Ins(G, e);5

FindIncrementalMatch(G, Q , e);6

else7

FindIncrementalMatch(G, Q , e);8

G ← G ⊖ e ;9

UpdateCSS-Del(G, e);10

In contrast, for edge deletion, we first find the negative matches
that contain the deleted edge, and then update the index structure
to keep its consistency (Lines 8-10).
Discussion. The online processing is light-weight since both index
updating and incremental matching are conducted in a neighbor-
hood of the updated edge. Besides, it is clear that the operation for
edge insertion and deletion is symmetric, i.e., the logic is exactly the
same, which has also been discussed in [26, 36, 46]. Therefore,we
focus on the edge insertion in the rest of the paper for brevity.

4 AN EDGE-CENTRIC INDEX STRUCTURE

In this section, we introduce a novel index structure to efficiently
maintain the intermediate results of our problem.

4.1 Main Idea of CSS
We introduce a novel edge-centric index structure, called candidate
storage structure (CSS), to store the partial matchings as intermedi-
ate results to reduce the search space of backtracking since a partial
matching is a necessary condition for a matching result.

In general, CSS is a k-partite graph structure induced by Q and
G . Vertices in CSS are divided into |E(Q)| groups, where each group
is corresponding to an edge ϵ ∈ E(Q), containing all edges in G
matching to ϵ . An edge is created between two vertices in CSS if
(i) their corresponding edges in G are adjacent and satisfy the time
constraint, and (ii) their mapping edges in Q are adjacent. Clearly,
CSS maintains the Cartesian product for all matching results. That
is, each group inCSS contributes exactly one edge for an embedding
of the query graph. To further facilitate the matching processing,
we introduce the state of vertices in CSS to indicate if its neighbors
are all well “matched” inG . In the matching phase, we only traverse
on such vertices in CSS to reduce redundant partial matchings.

Note that an edge in G must have at least one matching edge in
Q if it contributes in a matching result. Thus, we simply ignore the
irrelevant edges, i.e., these having no matches inQ . Our subsequent
discussions always assume thatG only contains query related edges.

2794

(𝑣!, 𝑣", 𝑙#, 𝑡!)

(𝑣!, 𝑣$, 𝑙%, 𝑡") (𝑣&, 𝑣$, 𝑙%, 𝑡#)

(𝑣", 𝑣$, 𝑙$, 𝑡$)

(𝑣&, 𝑣", 𝑙#, 𝑡&) (𝑣$, 𝑣', 𝑙!, 𝑡()

(𝑣', 𝑣), 𝑙", 𝑡%)

𝜖!(𝑙%)

𝜖%(𝑙#)

𝜖"(𝑙$) 𝜖$(𝑙")

𝜖#(𝑙!)

(a) Coarse CSS of G

(𝑣!, 𝑣", 𝑙#, 𝑡!)

(𝑣!, 𝑣$, 𝑙%, 𝑡") (𝑣&, 𝑣$, 𝑙%, 𝑡#)

(𝑣", 𝑣$, 𝑙$, 𝑡$)

(𝑣&, 𝑣", 𝑙#, 𝑡&) (𝑣$, 𝑣', 𝑙!, 𝑡()

𝜖!(𝑙%)

𝜖%(𝑙#)

𝜖"(𝑙$)

𝜖#(𝑙!)
001

1

1 1

(b) Refined CSS of G with node state

(𝑣!, 𝑣", 𝑙#, 𝑡!)

(𝑣!, 𝑣$, 𝑙%, 𝑡") (𝑣&, 𝑣$, 𝑙%, 𝑡#)

(𝑣", 𝑣$, 𝑙$, 𝑡$)

(𝑣&, 𝑣", 𝑙#, 𝑡&) (𝑣$, 𝑣', 𝑙!, 𝑡()

(𝑣', 𝑣(, 𝑙", 𝑡%))

𝜖!(𝑙%)

𝜖%(𝑙#)

𝜖"(𝑙$) 𝜖$(𝑙")

𝜖#(𝑙!)

11

1

1

1

01

(c) CSS of G + ∆e1

Figure 5: An example candidate storage structure CSS of the data graph in Figure 4.

4.2 Index Structure

Our index structure CSS is essentially a k-partite graph G = (V, E)
where k is the number of edges in the query graph, i.e., |E(Q)|. For
ease of presentation, we first introduce a coarse version of CSS,
and then develop a variety of pruning techniques to refine it.
Initializing CSS. We begin with the concept of CSS. For presen-
tation simplicity, we assume that edges in Q have different labels,
i.e., L(ϵ) , L(ϵ ′) for any two edges ϵ, ϵ ′ ∈ E(Q), and show how to
extend our techniques for the case where multiple edges have the
same label in Section 4.5. In the following, we refer the vertices and
edges in CSS as nodes and links, respectively, to distinguish from
those in query or data graphs.

Definition 5 (Candidate Storage Structure (CSS)). Given
a query graphQ = (V (Q), E(Q),O) and a data graphG = (V (G), E(G)),
the candidate storage structure G = (V, E) is a k-partite graph in-
duced by Q and G with the following properties.

• Nodes in V are divided into |E(Q)| disjoint groups V1, · · · ,
V |E(Q) | , i.e.,V =

⋃ |E(Q) |
i=1 Vi and Vi ∩Vj = ∅ for i , j , where

each groupVi is corresponding to an edge ϵi ∈ E(Q), containing
all edges in G matching to ϵi , i.e., ∀e ∈ Vi : L(e) = L(ϵi).
• ∀e, e ′ ∈ V belonging to different node groups, (e, e ′) ∈ E if
e and e ′ are adjacent in G and their corresponding mapping
edges in Q are adjacent.

Example 4. Figure 5(a) shows a coarse version of CSS based on
the query graph in Figure 3 and the data graph in Figure 4 before
insertion of edge ∆e1. Take ϵ1 for example. Because there are two
edges (v2,v3) and (v6,v3) matching ϵ1, two nodes are created in CSS,
which are (v2,v3, l4, t2) and (v6,v3, l4, t6). We create other nodes in
a similar way. Note that although (v1,v4) has the same edge label
l2 with ϵ4, it is not a matching edge of ϵ4 because the label of their
endpoint vertices are different. After creating the nodes in CSS, we add
links for these with a common endpoint vertex. For example, there is a
link between (v2,v5, l1, t3) and (v3,v5, l5, t5) since they are incident
onv5. Note that although (v2,v3, l4, t2) and (v6,v3, l4, t6) are incident
on v3, we do not add a link between them. This is because they belong
to the same node group.

Given an edge ϵ ∈ E(Q), we also useV(ϵ) to denote the group of
nodes inV matching to ϵ and call ϵ as the mapping edge of nodes
inV(ϵ). We may simply use the edge e in the data graph to denote
the corresponding node in CSS. Clearly, the index structure CSS
introduced in Definition 5 is sufficient to generate the matching
results since it basically materializes the Cartesian product for the
query graph by only considering the structural information. To

facilitate the matching processing, we aim to make it as succinct as
possible by taking the temporal information into consideration.

Objective 1. To improve the computation efficiency, we have to
refine the nodes and links of CSS as much as possible.

Refining CSS. Next, we introduce effective techniques to realize
Objective 1. We begin with an important concept.

Definition 6 (Preceding Set). Given an edge ϵ in a query
graph Q = (V (Q), E(Q),O), the preceding set of ϵ , denoted as P(ϵ),
is a set of immediate preceding edges of ϵ in O.

Note that the preceding set is defined only based on the timing
order O. For example, the preceding set of ϵ5 is P(ϵ5) = {ϵ2, ϵ3},
while P(ϵ3) = {ϵ1} in the query graph in Figure 3.

Lemma 1. Given an edge e in the data graph G and its matching
edge ϵ in the query graph, we create a node inV(ϵ) for e , if for each
edge ϵ ′ ∈ P(ϵ), there exists at least one node e ′ ∈ V(ϵ ′) with e ′ ≺ e .

All proofs for lemmas and theorems in this paper are omitted
due to space limit. The detailed proofs can be found in the technical
report [53]. Lemma 1 states that a node e can be removed fromCSS if
we cannot find a corresponding node in CSS for all preceding edges
of e . Take (v8,v7, l3, t1) for example. We have that its matching edge
in query graph is ϵ5 and P(ϵ5) = {ϵ2, ϵ3}. Since there does not exist
matching node in CSS for both ϵ2 and ϵ3 at time t1, we can remove
(v8,v7, l3, t1) from CSS safely.

According to Definition 5, a link is added into CSS between two
nodes if they are adjacent in the data graph and their correspond-
ing mapping edges in query graph are adjacent as well. However,
we observe that this rule is still loose, which may lead to many
redundant links. Next, we introduce a much strict link creating rule
without missing any results.

Lemma 2. Given two nodes e and e ′ in CSS, and their mapping
edges ϵ and ϵ ′, respectively, we create a link between them if and only
if the following four conditions hold:
(1) e and e ′ belong to different node groups;
(2) e and e ′ are adjacent;
(3) ϵ and ϵ ′ are adjacent; and
(4) the arrival time of e and e ′ obey the time partial order defined by
ϵ and ϵ ′.

Example 5. Consider nodes (v3,v5, l5, t5) and (v6,v3, l4, t6) in
Figure 5(a), with mapping edges ϵ3 and ϵ1, respectively. Because
(v3,v5, l5, t5) ≺ (v6,v3, l4, t6) while ϵ3 ≻ ϵ1, we therefore do not need
to create a link between (v3,v5, l5, t5) and (v6,v3, l4, t6) although they
are incident on v3. The refined CSS is shown in Figure 5(b).

2795

Algorithm 2: BuildCSS(Q , G)
Input : Q = (V (Q), E(Q), O): a query graph with timing order

G = (V (G), E(G)): a data graph
Output : G = (V, E): the CSS index structure
V ← ∅; E ← ∅;1

for each e ∈ E(G) in ascending order of the arrival time do2

ϵ ← the matching edge of e in Q ;3

if ϵ < O or ∀ϵ ′ ∈ P(ϵ) : V(ϵ ′) , ∅ then4

V(ϵ) ← V(ϵ) ∪ {e };5

for each e′ ∈ N (e ,G) do6

ϵ ′ ← the matching edge of e′ in Q ;7

if ϵ ′ , ϵ and ϵ ′ ∩ ϵ , ∅ and (ϵ ′ ≺ ϵ or ϵ ′ < O or8

ϵ < O) then
Find node e′ in V(ϵ ′);9

E ← E ∪ {(e , e′)};10

for each ϵ ∈ E(Q) do11

for each e ∈ V(ϵ) do12

if ∃e′ ∈ V(ϵ ′) s.t. (e , e′) ∈ E for each ϵ ′ ∈ N (ϵ ,Q) then13

s(e) ← 1;14

else15

s(e) ← 0;16

return G = (V, E);17

Setting node state. To further facilitate the matching processing,
we introduce the state of nodes in CSS based on the connection
situation with other nodes.

Definition 7 (Node State). Given a CSS graph G = (V, E),
for a node e ∈ V(G), the state of e , denoted as s(e), is a binary value
0 or 1, which is determined as follows. s(e) = 1 if there exists a link
between e and at least one node inV(ϵ ′) for each ϵ ′ ∈ N (ϵ,Q) where
ϵ is mapping edge of e and Q is the query graph, s(e) = 0 otherwise.

Example 6. Consider nodes (v2,v3, l4, t2) and (v6,v3, l4, t6) in
the CSS in Figure 5(b), where the mapping edge is ϵ1 and N (ϵ1,Q) =
{ϵ2, ϵ3}. Since for both ϵ2 and ϵ3, (v2,v3, l4, t2) indeed has a link to
the corresponding nodes, i.e., (v2,v5, l1, t3) and (v3,v5, l5, t5) respec-
tively,we have that the state of (v2,v3, l4, t2) is 1. Contrarily, because
there is no link between (v6,v3, l4, t6) and nodes for ϵ3, the state of
(v6,v3, l4, t6) is 0.

Intuitively, for a node e in CSS, s(e) = 1 indicates that all neigh-
bors of e are well “matched”. This implies that we can ignore nodes
with state being 0 during the matching processing since they must
not be part of a matching result due to unfinished neighbors. We
will discuss the matching processing based on CSS in Section 5.

4.3 Index Construction

Algorithm details. Algorithm 2 summarizes the details of con-
structing CSS. We initialize the node setV and link set E of CSS as
∅ (Line 1). Then, we sequentially process the edges of G in ascend-
ing order of the arrival time to constructV and E (Lines 2-9). In
particular, given the matching edge ϵ of e , we check if e is order-free
such as (v5,v8, l2, t9) in Figure 4, or there exists a corresponding
node inV(ϵ ′) for each edge ϵ ′ ∈ P(ϵ) based on Lemma 1 (Line 4).
Note that, the partial order must hold as long asV(ϵ ′) is not empty

Algorithm 3: UpdateCSS-Ins(G, e)
Input : G = (V, E): the CSS index structure

e : the inserted edge
ϵ ← the matching edge of e in Q ;1

if ϵ < O or ∀ϵ ′ ∈ P(ϵ) : V(ϵ ′) , ∅ then2

V(ϵ) ← V(ϵ) ∪ {e };3

for each e′ ∈ N (e ,G) do4

ϵ ′ ← the matching edge of e′ in Q ;5

if ϵ ′ , ϵ and ϵ ′ ∩ ϵ , ∅ and (ϵ ′ ≺ ϵ or ϵ ′ < O or ϵ < O)6

then

Find node e′ in V(ϵ ′);7

E ← E ∪ {(e , e′)};8

if s(e′) = 0 then9

if ∃e′′ ∈ V(ϵ ′′) s.t. (e′, e′′) ∈ E for each10

ϵ ′′ ∈ N (ϵ ′,Q) then
s(e′) ← 1;11

if ∃e′ ∈ V(ϵ ′) s.t. (e , e′) ∈ E for each ϵ ′ ∈ N (ϵ ,Q) then12

s(e) ← 1;13

else14

s(e) ← 0;15

since we process edges in order. If yes, we create a node inV(ϵ)
for e (Line 5). Next, we create links between e and other nodes by
applying Lemma 2 (Lines 6-10). More specifically, we iteratively
consider each edge e ′ ∈ N (e,G) and retrieve its matching edge ϵ ′
(Line 7). If edge relationship and the timing order between ϵ and ϵ ′,
as stated in Lemma 2, are satisfied, we find the corresponding node
inV(ϵ ′) for edge e ′ and create a link between e and e ′ (Lines 8-10).
After constructing the graph structure of CSS, we set the state of
nodes inV according to Definition 7 (Lines 11-15).
Analysis. Below we analyze the space and time complexities of
CSS. We usedmax(д) to denote the maximum vertex degree in graph
д. To simplify the analysis, we assume there is no time constraint
defined, i.e., O = ∅, which does not affect the correctness of our
analysis, since the time constraint always reduces the size of CSS.

Theorem 1. The space complexity of CSS index structure is
bounded by O(dmax(G) × |E(G)|).

Theorem 2. The time complexity of BuildCSS is O((|E(Q)| +
dmax(G)) × |E(G)|).

Remark. Theorem 1 and Theorem 2 show that both the space cost
and construction time cost of CSS are polynomial to the data graph
size in the worst case.

4.4 Index Maintenance

The processing of index update is similar to that of index construc-
tion since we build CSS according to the arrival time of edges. A
nice property of index update is that, when an edge is inserted, we
only need to update nodes in neighbor groups of CSS. With this
property, our index CSS can be updated efficiently.
Algorithm details. Algorithm 3 illustrates the details of index
update when an edge e is inserted. First, we create a node for e
based on Lemma 1 (Lines 1-3), and add links between e and other
nodes by applying Lemma 2 (Lines 4-8). After that, we update the

2796

the node state for the neighbor node e ′ if its state is previously 0
(Lines 9-11). Last, we set the state of e according to Definition 7
(Lines 12-15).

Example 7. Consider the edge insertion event∆e1 = (v8,v9, l3, t10)
in Figure 4. Since the mapping edge of ∆e1 is ϵ5 in Figure 3(a), we then
check the edges in its preceding set P(ϵ5) = {ϵ2, ϵ3}, where the corre-
sponding node groups are both non-empty, as depicted in Figure 5(b).
Thus, we create node (v8,v9, l3, t10) in V(ϵ5), and a link between
it and the neighbor node (v5,v8, l2, t9). We also update the state of
(v5,v8, l2, t9) to 1, because it has at least one link to the neighbor
node groups, i.e.,V(ϵ2),V(ϵ3), andV(ϵ5). Last, we set the state of
(v8,v9, l3, t10) to 1. The updated CSS is shown in Figure 5(c).

Lemma 3. The time complexity of UpdateCSS-Ins is O(d(e) ×
dmax(Q)) where e is the newly inserted edge.

Discussion. In Section 2.2, we mention that Timing is inefficient
because it needs to visit all global matches in the expansion list
to check if the incoming edge can extend them as new matches.
However, in CSS, we only need to visit the neighborhood of the
incoming edge, which is crucial to the performance improvement.

4.5 Extending to Multiple Mapping Edges

Recall that we previously assume that edges in the query graph Q
have different labels. That is, an edge in the data graph G has only
one matching edge in Q . Next, we discuss how to handle the case
where multiple edges in Q have the same label.
Implementation details. We still maintain a node group for each
edge inQ . When a new edge e is arriving, we first collect its match-
ing edges in Q , denoted by Ψ(e). Then, for each matching edge
ϵ ∈ Ψ(e), we create a node for e in the node groupV(ϵ) based on
Lemma 1, and add links between the created node and other nodes
based on Lemma 2. Note that, since a data graph edge might exist in
different groups, we do not add a link between nodes created from
the same data graph edge. However, we do not need to consider this
constraint for subgraph homomorphism. The overall processing is
exactly the same as described in Algorithm 2 or Algorithm 3 except
we now need to process all edges in Ψ(e) rather than a single edge.
Cost analysis. We next analyze the space cost of CSS with the
above extension.

Theorem 3. The space complexity ofCSS is bounded byO(dmax(Q)
× dmax(G) × |E(Q)| × |E(G)|) in general case.

5 CSS-BASED SUBGRAPH MATCHING

In this section, we present the matching algorithm to enumerate
the matching results based on CSS.

5.1 Matching Enumeration Algorithm

General idea. As aforementioned, the CSS basically maintains the
Cartesian product for all matching results, where each node group
in CSS contributes exactly one edge for an embedding of the query
graph. To obtain the matches, we adopt the widely used depth-first
paradigm [13, 42, 50]. In specific, we maintain a partial embedding
and recursively add the nodes in CSS into the partial embedding to
generate full embeddings. To enhance the performance, we only
expand the nodes with state 1 and enforce the connectivity of the
matching order.

Algorithm 4: FindIncrementalMatch(G, Q , e)
Input : G = (V, E): the CSS index structure

Q = (V (Q), E(Q), O): a query graph with timing order
e : the inserted edge

Output : M: the incremental matching results
ϵ ← the matching edge of e in Q ;1

if ϵ is an order-free or closing edge then2

φ ← generate a matching order for edges in E(Q) − {ϵ };3

Enumerate(φ , 1, ⟨e , ϵ ⟩);4

returnM;5

procedure Enumerate(φ , i , M)6

if |M | = |E(Q) | then7

M ← M ∪ {M };8

return;9

ϵ ′ ← φ[i];10

C ← ComputeCandidate(ϵ ′, M);11

for each e′ ∈ C do12

M ← M ⊕ ⟨e′, ϵ ′⟩;13

Enumerate(φ , i + 1, M);14

M ← M ⊖ ⟨e′, ϵ ′⟩;15

procedure ComputeCandidate(ϵ ′, M)16

C ← ∅;17

for each e′ ∈ V(ϵ ′) : s(e′) = 1 and e′ < M do18

λ ← 0;19

for each ⟨e′′, ϵ ′′⟩ ∈ M do20

if ϵ ′ ∩ ϵ ′′ , ∅ and (e′, e′′) < E then21

λ ← 1;22

break;23

if λ = 0 then24

C ← C ∪ {e′ };25

return C ;26

Matching activation. When a new edge arrives, we may not need
to execute the matching process for it, because it cannot generate
any new matching results for sure. Before presenting the details,
we introduce the concept of closing edge. For an edge ϵ ∈ E(Q),
we say ϵ is a closing edge if there does not exist another ϵ ′ ∈ E(Q)
such that ϵ ≺ ϵ ′. Otherwise, ϵ is non-closing.

Lemma 4. Given the newly arriving edge e and its matching edge
ϵ inQ , if ϵ is neither an order-free nor a closing edge, e cannot generate
any matching result.

The algorithm FindIncrementalMatch. We start by checking if
the matching edge of e is order-free or closing (Lines 1-2). If yes, we
generate a matching order for edges in E(Q) except ϵ (Line 3). Based
on that, we enumerate all matching results using the procedure
Enumerate (Line 4).

In the procedure Enumerate, wemaintain amatching offset value
i and a partial matching M , which are initialized as 1 and ⟨e, ϵ⟩,
respectively. During the processing of Enumerate, we first check
if M is a full match, i.e., |M | = |E(Q)|. If yes, we collect a match-
ing result and finish the current branch (Lines 7-9). Otherwise, we
get the next matching edge ϵ ′ and calculate its candidates using

2797

ComputeCandidate (Lines 10-11). After that, we search the sub-
spaces (Lines 12-15). More specifically, we iteratively select edges
in C to form a match pair with ϵ ′. At each step, we update M by
adding a match pair ⟨e ′, ϵ ′⟩ and enter the new search space to con-
sider the next matching edge (Lines 13-14). After finishing the new
search space, we should remove ⟨e ′, ϵ ′⟩ from M before going to
next iteration (Line 15).

In the procedure ComputeCandidate, we compute the candidate
matching edges for ϵ ′, given the partial match M . Based on the
structure of CSS, we have that the candidates must be a subset
of nodes inV(ϵ ′) with node state being 1 and not yet used in M
(Line 18). For each node e ′, we check its connectivity with the
already matched edges inM (Lines 20-23). In specific, if there exists
a match pair ⟨e ′′, ϵ ′′⟩ ∈ M , such that ϵ ′ and ϵ ′′ are adjacent while
there is no link between e ′ and e ′′, it is immediate that e ′ cannot
be a candidate. By removing the condition e ′ < M in Line 18,
Algorithm 4 can enumerate all subgraph homomorphisms of Q .

Example 8. Continuing Example 7, when (v8,v9, l3, t10) is in-
serted, we illustrate the overall running process of FindIncremental-
Match. Since the matching edge ϵ5 is a closing edge, we need to execute
the matching process. Suppose we use the depth-first traverse to gen-
erate the matching order for edges in the query graph. We have that
φ = {ϵ4, ϵ2, ϵ1, ϵ3}. Next, we first calculate the candidate for ϵ4, which
is (v5,v8, l2, t9) inV(ϵ4). Then, we find 2 candidates for ϵ2,including
⟨(v2,v5, l1, t3), ϵ2⟩ and ⟨(v6,v5, l1, t4), ϵ2⟩. By continuing this process-
ing, we can get a full match {⟨(v8,v9, l3, t10), ϵ5⟩, ⟨(v5,v8, l2, t9), ϵ4⟩,
⟨(v2,v5, l1, t3), ϵ2⟩, ⟨(v2,v3, l4, t2), ϵ1⟩, ⟨(v3,v5, l5, t5), ϵ3⟩}.

Cost analysis. It is clear that FindIncrementalMatch enumerates
the matches based on the widely used depth-first paradigm [13, 42,
50], except that it expands the partial matching by an edge at a time
rather than a vertex. Next, we introduce the concept of line graph to
facilitate the cost analysis [10, 19]. Given a graph G, its line graph
G ′ is constructed by converting the edges in G to vertices in G ′,
and connecting two vertices in G ′ if and only if the corresponding
edges in G share a common endpoint. The line graph of the query
graph in Figure 3(a) is shown in Figure 6. In the rest of cost analysis,
whenever discussing a query graph Q , we refer to its line graph.

To enhance the performance, we enforce connectivity of the
matching order. That is, given a spanning tree QT of Q , the match-
ing order, φ = (ϵ1, · · · ϵn), of QT is generated as follows. For each
node ϵi except ϵ1, its parent ϵi .p in QT is always before ϵi in the
matching order. Note that, ϵ1 is always the matching edge of the in-
serted edge e since we enforce the matching starting from e . For ex-
ample, suppose the spanning treeQT of the query graph in Figure 6,
consists of edges (ϵ5, ϵ4), (ϵ4, ϵ2),(ϵ2, ϵ1), and (ϵ4, ϵ3) as depicted by
thick lines, then a possible matching order is (ϵ5, ϵ4, ϵ2, ϵ1, ϵ3)where
ϵ3.p = ϵ4. Here, (ϵ1, ϵ3) and (ϵ2, ϵ3) are two non-tree edges since
they are not included in QT .

Given a specific matching order, we follow the cost model pro-
posed in [42] to analyse the matching cost of FindIncremental-
Match, which is described as follows.

Tiso = B1 + Σni=2Σ
Bi−1
j=1 d

j
i (ri + 1) (1)

Here, Bi is the search breadth at depth i , denoting the number
of possible embeddings in G (i.e., the CSS index structure) for the
subgraph ofQ induced by {ϵ1, . . . , ϵi }, d ji is the number of neighbor

nodes of M j
i−1(ϵi .p) in V(ϵi) with state 1 where M j

i−1 is the j-th
embedding in G for the subgraph induced by {ϵ1, . . . , ϵi−1} and
M

j
i−1(ϵi .p) is the node to which the parent ϵi .p of ϵi in QT maps,

and ri is the number of non-tree edges between ϵi and edges before
ϵi in the matching order. Intuitively, a partial matching M

j
i−1 of

{ϵ1, . . . , ϵi−1} in G is extended by mapping ϵi to each node e ′ in
V(ϵi) that is adjacent toM j

i−1(ϵi .p), and e
′ is a successful mapping

of ϵi if it satisfies all connection requirements specified by the ri
non-tree edges of ϵi .

Example 9. Given the matching order (ϵ5, ϵ4, ϵ2, ϵ1, ϵ3) of Q in
Figure 6, r1 = r2 = r3 = r4 = 0 while r5 = 2 since there are two
non-trees between ϵ3 and edges before it in the matching order, i.e.,
(ϵ1, ϵ3) and (ϵ2, ϵ3). M1

2 = {⟨(v8,v9, l3, t10), ϵ5⟩, ⟨(v5,v8, l2, t9), ϵ4⟩},
then the neighbors ofM1

2 (ϵ2.p) (i.e., (v5,v8, l2, t9)) are (v2,v5, l1, t3)
and (v6,v5, l1, t4) both with state 1, and thus d13 = 2.

Remark. According to above cost analysis, the overall matching
cost is influenced by the matching order. In the literature, differ-
ent matching orders are proposed [7, 8, 17, 42, 44] to improve the
matching performance. However, as suggested in [43], there is no
clear winner. In this paper, we use the least-frequent first matching
order [20, 36]. That is, among all node groups that are connected to
the current partial embedding, we dynamically pick the one with
the least number of nodes with state 1. Note that the matching
order optimization is out of the research scope of this work.

5.2 Node Merging Optimizations

Main idea. According to Equation 1, the matching cost of FindIn-
crementalMatch is also determined by the search breadth Bi , which
is further determined by the candidate size at each matching exten-
sion (Line 11 of Algorithm 4). This is because we need to branch on
each candidate node when extending the embedding. Observe that
nodes in CSS might have the same neighborhood structure, which
implies that we can process them in the same way. Motivated by
this observation, we develop node merging techniques to reduce
the candidate size. The general idea is to merge nodes having the
same neighborhood structure together as a single node. After the
matching process, we can restore the matching results by simply
replacing this node with all merged nodes.

More specifically, we introduce two node merging strategies,
namely index-time merging and search-time merging. The index-
time merging aims to merge nodes during the index building or
updating stage, where the merged nodes in CSS must have exactly
the same neighborhood structure. While the search-time merging
is more flexible, which dynamically merges nodes as long as their
neighborhood structures are the same under a search branch.
Technical details. We begin with the concept of similar node.

Definition 8. Given an edge-centric index structure CSS, a set
N of nodes in CSS are similar if
(1) nodes in N are all with state 1, i.e., ∀e ∈ N , s(e) = 1; and
(2) nodes inN have the same neighborhood structure, i.e., sharing the
same adjacent nodes.

Apparently, if two nodes are similar to each other, they must
belong to the same node group in CSS. Note that the first condition
is necessary since two isolated nodes in different group satisfy the

2798

𝜖!

𝜖"

𝜖#

𝜖$

𝜖%

Figure 6: The line graph of

the graph in Figure3(a).

𝑒!𝜖!(𝑙!)

𝜖"(𝑙")

𝜖#(𝑙#)

𝜖$(𝑙$)

𝑒#

𝑒" 𝑒$

𝑒%

𝑒&

Figure 7: An example index

structure CSS.

second condition as well. According to Definition 8, we have the
following lemma.

Lemma 5. Given two similar nodes e = (u,v, l, t) and e ′(u ′,v ′, l ′, t ′),
and their mapping edge ϵ in the query graph,
(1) if ϵ is an inner edge, i.e., d(ϵ) > 1, then e and e ′ must be the same
edge appearing at different time stamps in the streaming graph, i.e.,
u = u ′, v = v ′, l = l ′, and t , t ′; and
(2) if ϵ is a leaf edge, i.e., d(ϵ) = 1, then e and e ′ must be either the
same edge appearing at different time stamps, or two adjacent edges,
i.e., u = u ′, v , v ′, l = l ′, and t , t ′.

Consider the query graph in Figure 3, where all edges except ϵ5
are inner edges. It is easy to verify that (v8,v9, l3, t10) and (v8,v7, l3, t11)
in Figure 4 are similar nodes if edge (v8,v7) appears again in the
following time stamp t11. Besides, it is also evident that Lemma 5
only gives the necessary conditions for similar nodes, rather than
the sufficient conditions. That is, although an edge appears several
times in the streaming graph introducing multiple instances, they
might not be similar in CSS because we also consider the time
constraint when adding links between nodes. Next, we show that
similar nodes are replaceable in any matching result.

Lemma 6. Given a query graph Q , let ⟨e, ϵ⟩ be a match pair in a
matching resultM of Q . Then,M is still a correct matching result by
replacing e with e ′ if e ′ is a similar node of e .

Based on Lemma 6, for a set of similar nodes, we only need
to consider one of them during the match processing, and obtain
other matching results with simple node replacement. Another
nice property is that the similar relationship between nodes are
permanent. That is, once two nodes are identified as similar nodes,
theywill always be similar as the streaming graph evolves.With this
property, we come up with the following node merging strategy.

Definition 9 (Index-timeMerging). The index-time merg-
ing aims to merge similar nodes in CSS during the index building or
updating stage.

The index-time merging is very efficient because there is no
need to maintain the merged nodes as the streaming graph evolves.
However, the merging condition is very strict since it requires
the similar nodes having exactly the same adjacent nodes, which
might make it less effective in practice. Fortunately, we observe that
although two nodes do not have the same neighborhood structure,
we may still be able to merge them together during the matching
search stage.

Table 2: The detailed information of datasets. |
∑
V | is the

number of distinct vertex labels. |
∑
E | is the number of dis-

tinct edge labels. davд is the average vertex degree.

Datasets |V | |E | |
∑
V | |

∑
E | davд

WikiTalk 1.1 M 7.8 M 1.1 M 1 13.7
CAIDA 0.9 M 29.2 M 0.07 M 2 61.8

LiveJournal 4.9 M 42.9 M 30 1 18.1
LSBench 5.2 M 54 M 101 1 20.6

Definition 10 (Search-time Merging). The search-time
merging aims to merge nodes inCSS during the matching search stage,
which only requires nodes having the same neighborhood structure
under a specific search branch.

Example 10. Consider the CSS in Figure 7. Suppose all nodes are
with state 1 and the matching order is ϵ4, ϵ3, ϵ2, ϵ1. It is clear that
e2 and e4 cannot be merged by index-time merging. However, after
obtaining the partial match (⟨e6, ϵ4⟩, ⟨e5, ϵ3⟩), we find that e2 and e4
have the same neighbor e1 in the rest of CSS. Therefore, we can merge
them together to reduce the candidate size for ϵ2.

Remark. It is worth mentioning that the vertex merging technique
is also used in the neighbor equivalence class (NEC) based matching
algorithm [18]. However, the NEC is defined on the query graph,
which is orthogonal to our node-merging techniques. We remark
that it is non-trivial to apply NEC-based matching algorithm to
our problem as this technique is particularly designed to facilitate
batch subgraph matching.

6 EXPERIMENTAL STUDY

In this section, we empirically evaluate the performance of the our
proposals. All experiments are conducted on PCs with Intel Xeon
2 × 3.0GHz CPU containing 36 cores and 512GB RAM running
Ubuntu 20.04.5 LTS. We run an algorithm against a single core.

6.1 Experiment Setup

Algorithms. In the experiments, we evaluate the following algo-
rithms.
• TC-Match. Our CSS based algorithm.
• TC-Match(PostVerify). TC-Matchwithout incorporating the

temporal information inCSS (i.e., Lemma 1 and Lemma 2), but using
a post-processing step for verifying the timing order constraints.
• Timing. The state-of-the-art for TCSM [30, 31].
• RapidFlow. Adapted algorithm from the state-of-the-art for

CSM [46].
•CaLiG. Adapted algorithm from the state-of-the-art forCSM [54].
It is easy to verify that a match of TCSM must be a match of

CSM. With this property, we can immediately come up with a
baseline method as follows. First, applying the off-the-shelf CSM
algorithms to list all embeddings of the query graph, and then veri-
fying them posteriorly by considering the timing order constraints.
We notice that RapidFlow [46] and CaLiG [54] are two state-of-the-
art algorithms for CSM. For presentation convenience, we use the
name of RapidFlow and CaLiG, respectively, to denote the adapted
algorithms for our problem. We obtain the source codes of Timing,

2799

TC-Match TC-Match(PostVerify) Timing RapidFlow CaLiG

10
-1

10
0

10
1

10
2

10
3

INF

q5S q10S q15S q20S q5D q10D q15D q20D

R
u

n
n

in
g

 T
im

e
 (

s
)

(a) WikiTalk

10
0

10
1

10
2

10
3

INF

q5S q10S q15S q20S q5D q10D q15D q20D

R
u

n
n

in
g

 T
im

e
 (

s
)

(b) CAIDA

10
1

10
2

10
3

INF

q5S q10S q15S q20S q5D q10D q15D q20D

R
u

n
n

in
g

 T
im

e
 (

s
)

(c) LiveJournal

10
0

10
1

10
2

10
3

INF

q5S q10S q15S q20S q5D q10D q15D q20D

R
u

n
n

in
g

 T
im

e
 (

s
)

(d) LSBench

Figure 8: Comparison of competing algorithms on average query time.

TC-Match TC-Match(PostVerify) Timing RapidFlow CaLiG

0

10

20

30

40

50

q5S q10S q15S q20S q5D q10D q15D q20D

#
U

n
s
o

lv
e

d
 Q

u
e

ri
e

s

(a) WikiTalk

0

10

20

30

40

50

q5S q10S q15S q20S q5D q10D q15D q20D

#
U

n
s
o

lv
e

d
 Q

u
e

ri
e

s

(b) CAIDA

0

10

20

30

40

50

q5S q10S q15S q20S q5D q10D q15D q20D
#

U
n

s
o

lv
e

d
 Q

u
e

ri
e

s

(c) LiveJournal

0

10

20

30

40

50

q5S q10S q15S q20S q5D q10D q15D q20D

#
U

n
s
o

lv
e

d
 Q

u
e

ri
e

s

(d) LSBench

Figure 9: Evaluating the number of unsolved queries.

RapidFlow, and CaLiG from the authors of [31], [46], and [54], re-
spectively. All algorithms are implemented in standard C++ with
STL library support and compiled with GNU GCC.
Datasets. We use 4 datasets that are commonly used to evaluate ex-
isting techniques for continuous subgraph matching [36, 46, 47, 54],
which covers all 3 datasets used in [30, 31] to evaluate Timing.
WikiTalk is obtained from the Stanford SNAP library [1], where
a directed edge (u,v, t) denotes that a user u edits user v’s talk
page at time t . We consider the user name as vertex label and net-
work behavior “edit” as the only edge label. CAIDA is obtained
from Anonymized Internet Traces [2], where each network com-
munication record is a six-tuple, including the source IP/port, the
destination IP/port, the protocol in use, and the communication
timestamp. The port and protocol are considered as the vertex label
and edge label, respectively. LiveJournal [46] is randomly sampled
from a static graph to form the update stream, where the vertex
labels are also randomly assigned from a label set. LSBench [27] is a
synthetic dynamic social network, where each record is a five-tuple,
consisting of subject type/id, predicate, object type/id. We use the
subject/object’s type and the predicate as vertex label and edge
label, respectively. Table 2 summarizes the detailed information of
the 4 datasets. Unless otherwise specified, we report the results on
edge insertion for brevity. Additional experiments for edge deletion
can be found in the technical report [53]. We use the first 60% edges
of a dataset as initial graph and the rest 40% as graph update stream.
Query graphs. Following existing works [36, 46, 47], we generate
query graphs as connected subgraphs of the data graph via random
walks, and classify them into 2 categories based on the density,
namely sparse (davд ≤ 3) and dense (davд > 3). For each type,
we generate graphs with 4 different sizes (i.e., number of vertices),
including 5, 10, 15, and 20. We denote the 8 query sets as q5S , q10S ,

q15S , q20S , q5D , q10D , q15D , and q20D , where qiS and qiD denote
query sets with i vertices and types of Sparse and Dense, respec-
tively. For each query graph, we randomly generate a collection
of timing order relations without contradictions. To reduce the
variance, we generate 50 queries for each query graph.
Metrics. For each testing, we run an algorithm for a query set,
containing 50 query graphs. Given a query, we report the elapsed
query time, consisting of time for index update and incremental
match search. We terminate an algorithm if it cannot finish in 1
hour (denoted as INF) for a query graph, which is marked as an
unsolved query. In the experiment, we report the average running
time over 50 query graph. We also report the memory usage.

6.2 Overall Performance Comparison

Average query time. Figure 8 reports the average query time on
each query graph set. Note that the query time is considered as 1
hour if an algorithm cannot finish within 1 hour. It is observed that
TC-Match significantly outperforms the competitors on the major-
ity of query settings and can achieve up to 3 orders of magnitude
speedup, e.g., on q10D , q15D , and q20D on WikiTalk. For example,
on this dataset, TC-Match spends less than 1 second for all query
sets, while it takes the existing methods more than 200 seconds
on 5 query sets, i.e., q15S , q20S , q10D , q15D , and q20D . Among the
three existing methods, there is no clear winner. For example, Tim-
ing outperforms RapidFlow and CaLiG on most query settings on
WikiTalk and CAIDA, while it is beaten by RapidFlow with a large
performance gap on all query settings on LSBench. The reason is
that the number of incremental matches onWikiTalk and CAIDA
is large, which is unfriendly to RapidFlow or CaLiG since the post-
precessing step for verifying the timing order constraints is time
cost-expensive. On LSBench, however, the number of matching re-
sults is small, which favors RapidFlow. We also notice that while

2800

TCMatch TCMatch(PostVerify) Timing RapidFlow CaLiG

q5S q10S q15S q20S q5D q10D q15D q20D
10−4

10−2

100

102

INF

Ru
nn

in
g

tim
e

(s
)

(a) WikiTalk

q5S q10S q15S q20S q5D q10D q15D q20D
100

101

102

103

INF

(b) CAIDA

q5S q10S q15S q20S q5D q10D q15D q20D
100

101

102

103

INF

(c) LiveJournal

q5S q10S q15S q20S q5D q10D q15D q20D
10−2

100

102

INF

(d) LSBench

Figure 10: Comparison of competing algorithms on individual query time. Each dot denotes the query time of a query.

TC-Match TC-Match(PostVerify) Timing RapidFlow CaLiG

0

1

2

3

q5S q10S q15S q20S q5D q10D q15D q20D

M
e

m
o

ry
 U

s
a

g
e

 (
G

B
)

(a) WikiTalk

1

2

3

4

q5S q10S q15S q20S q5D q10D q15D q20D

M
e

m
o

ry
 U

s
a

g
e

 (
G

B
)

(b) CAIDA

0

5

10

15

q5S q10S q15S q20S q5D q10D q15D q20D
M

e
m

o
ry

 U
s
a

g
e

 (
G

B
)

(c) LiveJournal

0

5

10

15

q5S q10S q15S q20S q5D q10D q15D q20D

M
e

m
o

ry
 U

s
a

g
e

 (
G

B
)

(d) LSBench

Figure 11: Evaluating the memory usage.

total time update time search time

0 10 20 30 40
Query ID

10−2

10−1

100

101

102

Ru
nn

in
g

Ti
m

e
(s

)

(a) CAIDA

0 10 20 30 40 50
Query ID

10−3

10−2

10−1

100

101

102

103

(b) LSBench

Figure 12: Query time breakdown of each individual query.

TC-Match(PostVerify) is faster than the existing methods on most
query settings, it is significantly outperformed by TC-Match, which
demonstrates the effectiveness of the temporal information in CSS.
Unsolved queries. We count the number of unsolved queries for
each algorithm in Figure 9. In general, CaLiG has more unsolved
queries than others. It is interesting that CaLiG failed to process
any query on CAIDA. This is because that CAIDA is vertex multiple-
labelled graph, while CaLiG can only handle a single label for a
vertex/edge. To work for CAIDA, it needs to iteratively process
for each label of a vertex, which is time costly. Compared to the
baseline methods, TC-Match significantly reduces the number of
unsolved queries. For example, TC-Match has no unsolved queries
on WikiTalk, and a few (less than 10) ones on CAIDA and LSBench
under the majority of query settings. It is observed that LiveJournal
is relatively hard to process because compared to other datasets,
LiveJournal contains more query relevant edges. This also explains
why Timing failed on all queries on this dataset, since it needs to
materialize the intermediate results (see Section 2.2 for details).

TC-Match TC-Match(NSM) TC-Match(NM)

10
-1

10
0

10
1

10
2

10
3

INF

q5S q10S q15S q20S q5D q10D q15D q20D

R
u
n
n
in

g
 T

im
e
 (

s
)

(a) CAIDA

10
-1

10
0

10
1

10
2

10
3

INF

q5S q10S q15S q20S q5D q10D q15D q20D
R

u
n
n
in

g
 T

im
e
 (

s
)

(b) LSBench

Figure 13: Evaluating node merging optimization.

Individual query time. Because the query time on different queries
varies greatly and the average value may hide the performance of
competing algorithms on each individual query, we therefore also
report the individual query time in Figure 10, where a dot denotes
the query time of a query. In general, TC-Match performs much
more steadily than the competitors. For example, the running time
of CaLiG spans evenly from 0.1 millisecond to a few minutes (or
even INF) on q10S and q5D on CAIDA. This implies that CaLiG is
very sensitive to the specific query because it needs to posteriorly
verify the timing order constraints. Timing and RapidFlow show
similar performance results.
Memory usage. Figure 11 reports the memory usage of the four
algorithms. Note that we do not show the memory usage of an
algorithm if its running time is INF for all queries under an ex-
periment setting. It is observed that TC-Match consumes the least
amount of memory under all experiment settings. More specifically,
the memory consumption of TC-Match is reduced by 48.7%-83.1%,
60%-86.7%, and 52.4%-72.2% compared to Timing, RapidFlow, and

2801

CaLiG, respectively. This is because TC-Match uses a space cost-
effective index structure CSS. Besides, TC-Match also consumes
much less memory than TC-Match(PostVerify), which implies that
the temporal information can substantially refine CSS by pruning
the links not satisfying the timing order constraints.

6.3 Evaluating Individual Techniques

Query time breakdown. Given a graph update, TC-Match first up-
dates the index CSS and then enumerates the incremental matches.
Figure 12 shows the query time breakdown to update time and
search time on individual queries. We present the results on queries
of q10D on CAIDA and LSBench as representatives. Generally, the
update time occupies the majority of time cost on most queries,
especially on LSBench, which implies that our index structure CSS
is very effective on filtering the unpromising edges or substructures.
Nevertheless, there are also a few exceptions on CAIDA, due to a
large number of matching results on these queries, needing more
time to enumerate. It is also observed that the search time fluctu-
ates greatly, especially on CAIDA. This is because the incremental
matches vary on different queries.
Effectiveness of node merging. Last, we evaluate the effective-
ness of node merging techniques proposed in Section 5.2. Fig-
ure 13 reports the experiment results on two representative datasets
CAIDA and LSBench, where TC-Match(NSM) and TC-Match(NM)
stand for TC-Matchwithout search-time merging and without both,
respectively. We observe that, by using node mergings, TC-Match
can achieve more than 1 order of performance improvement, and
even up to 3 orders on q5D on CAIDA. Interestingly, the perfor-
mance gap between TC-Match and TC-Match(NSM) is generally
less significant, especially on q5S , q10S , and q5D on CAIDA, which
means that the benefit brought by search-time merging is limited
under these settings. This is mainly because most similar nodes are
already merged by the index-time merging, and therefore there is
not enough nodes having the same neighborhood structure during
the search stage. However, the search-time merging can still ac-
celerate the query by more than 5x speedup on some queries, e.g.,
q10D and q15D on CAIDA and LSBench, respectively.

7 RELATEDWORK

Batch subgraphmatching. Following the previous studies [43, 46,
47], we classify the representative subgraph matching algorithms
into exploration-based and join-based methods. Since first proposed
by Ullmann [50], the graph exploration-based method has been
extensively studied in the database community. Algorithms under
this category can be further categorized by whether to use index
or auxiliary structures. Ullmann [50], VF2 [13],QuickSI [42], and
RI [9] directly enumerate all matches. GADDI [56], SPath [57], and
SGMatch [38] facilitate the enumeration by constructing and using
indices on sub-structures (e.g., paths). Recent researches, includ-
ing GraphQL [20], TurboIso [18], CFL [8], CECI [7], DP-iso [17],
VEQ [25], and Gup [5], boost the performance by building an auxil-
iary data structure for the query graph in a preprocessing step. The
SOTA Circinus [23] proposes a compression-based backtracking
method to share computation for repeated path in the DFS back-
tracking tree. In contrast to these exploration-based methods, the
join-based methods conduct multi-way joins to find the matches
for the query [3, 6, 33, 45, 49].

Continuous subgraph matching. The first CSM algorithm IncI-
soMatch [14, 15] finds the incremental matches by computing the
difference ofmatches between the original graph and updated graph.
To tackle the inefficiency of IncIsoMatch due to large touched sub-
graph, latest algorithms all adopt the incremental methodology.
SJ-Tree [12] models a CSM query as a multi-way join and find
matches with a left-deep tree. To facilitate the join process, SJ-Tree
builds index to store all partial results of the join, leading to large
memory usage due to the exponential number of partial results.
Graphflow [24] improves efficiency by starting the join from the
updated edge. However, many invalid candidates can involve in
the computation. To alleviate this issue, TurboFlux [26] constructs
a tree-structured index based on the spanning tree of Q , where
each node contains the candidates of a query vertex. The index
is maintained dynamically to keep consistent with each updated
graph, and the incremental matches are enumerated starting from
the updated edge in the index. symbi [36] improves the pruning
power by constructing a graph-based index structure based on a di-
rected acyclic instead of a spanning tree. The SOTA CSM algorithm
RapidFlow [46] proposes dual matching to eliminate redundant
computation caused by automorphisms in Q , and a matching or-
der not necessarily starting from the updated edge. Another SOTA
CSM algorithm CaLiG [54] proposes a cost-effective index struc-
ture, and a kernel-and-shell based incremental matching method.
In addition, there are solutions on optimizing the processing of
multiple queries [32, 52, 55]. In the literature, Hasse [48] is partic-
ularly designed for TCSM. However, this method is less generic
because it is developed on a strict assumption of the query graph.
This assumption is later removed by Timing [30, 31].
Temporal subgraph matching. Recently, several studies have
solved the problem of temporal subgraphmatching [4, 16, 28, 34, 41].
In essence, they aim to find all the time-constrained embeddings
over a static temporal graph, which is orthogonal to our problem
TCSM, because we need to report all incremental matches for each
graph update. In the literature, the problem of durable subgraph
matching on temporal graphs has also been investigated [29, 39, 40].

8 CONCLUSION

In this paper, we study the problem of time-constrained continu-
ous subgraph matching over streaming graphs. To deal with this
problem, we propose TC-Match, a novel and effective approach.
First, we design a space and time cost-effective index structure CSS.
Second, we develop an efficient CSS-based matching algorithm
with node merging optimizations. Extensive experiments show that
TC-Match significantly outperforms the competitors by up to 3
orders of magnitude.

ACKNOWLEDGMENTS

This work was supported in part by the National Key R&D Program
of China (2021YFB3101700), in part by the Guangdong Basic and
Applied Basic Research Foundation (2023A1515011655), in part by
the Guangzhou Research Foundation (2023A03J0115), in part by the
National Natural Science Foundation of China (62372129, 62372137,
U20B2046, and U2241211), in part by the Hebei Natural Science
Foundation (F2024202068), and in part by the Science Research
Project of Hebei Education Department (BJK2024172).

2802

REFERENCES

[1] [n.d.]. http://snap.stanford.edu/data/wiki-talk-temporal.html.
[2] [n.d.]. https://www.caida.org.
[3] Christopher R. Aberger, Andrew Lamb, Susan Tu, Andres Nötzli, Kunle Oluko-

tun, and Christopher Ré. 2016. EmptyHeaded: A Relational Engine for Graph
Processing. Proceedings of the 2016 International Conference on Management of
Data (2016).

[4] Amir Pouya Aghasadeghi, Jan Van den Bussche, and Julia Stoyanovich. 2023.
Temporal graph patterns by timed automata. The VLDB Journal (05 2023), 1–23.

[5] Junya Arai, Yasuhiro Fujiwara, and Makoto Onizuka. 2023. GuP: Fast Subgraph
Matching by Guard-based Pruning. Proceedings of the ACM on Management of
Data 1 (2023), 1 – 26.

[6] Molham Aref, Balder ten Cate, Todd J. Green, Benny Kimelfeld, Dan Olteanu,
Emir Pasalic, Todd L. Veldhuizen, and Geoffrey Washburn. 2015. Design and
Implementation of the LogicBlox System. Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data (2015).

[7] Bibek Bhattarai, Hang Liu, and H. Howie Huang. 2019. CECI: Compact Em-
bedding Cluster Index for Scalable Subgraph Matching. Proceedings of the 2019
International Conference on Management of Data (2019).

[8] Fei Bi, Lijun Chang, Xuemin Lin, Lu Qin, and W. Zhang. 2016. Efficient Subgraph
Matching by Postponing Cartesian Products. Proceedings of the 2016 International
Conference on Management of Data (2016).

[9] Vincenzo Bonnici, Rosalba Giugno, Alfredo Pulvirenti, Dennis Shasha, and Al-
fredo Ferro. 2013. A subgraph isomorphism algorithm and its application to
biochemical data. BMC Bioinformatics 14 (2013), S13 – S13.

[10] Lei Cai, Jundong Li, JieWang, and Shuiwang Ji. 2020. Line GraphNeural Networks
for Link Prediction. IEEE Transactions on Pattern Analysis andMachine Intelligence
44 (2020), 5103–5113.

[11] Zijun Cheng, Rujie Dai, Leiqi Wang, Ziyang Yu, Qiujian Lv, Yan Wang, and
Degang Sun. 2023. GHunter: A Fast Subgraph Matching Method for Threat
Hunting. 2023 26th International Conference on Computer Supported Cooperative
Work in Design (CSCWD) (2023), 1014–1019.

[12] Sutanay Choudhury, Lawrence Holder, George Chin, Khushbu Agarwal, and
John Feo. 2015. A selectivity based approach to continuous pattern detection in
streaming graphs. (2015), 157–168.

[13] Luigi P. Cordella, Pasquale Foggia, Carlo Sansone, and Mario Vento. 2004. A
(sub)graph isomorphism algorithm for matching large graphs. IEEE Transactions
on Pattern Analysis and Machine Intelligence 26 (2004), 1367–1372.

[14] Wenfei Fan, Jianzhong Li, Jizhou Luo, Zijing Tan, and Xin Wang andYinghui
Wu. 2011. Incremental graph pattern matching. In Proceedings of the 2011 ACM
SIGMOD International Conference on Management of Data. 925–936.

[15] Wenfei Fan, Xin Wang, and Yinghui Wu. 2013. Incremental graph pattern match-
ing. ACM Transactions on Database Systems (TODS) 38, 3 (2013), 1–47.

[16] Eric L. Goodman and Dirk Grunwald. 2019. Streaming Temporal Graphs: Sub-
graph Matching. 2019 IEEE International Conference on Big Data (Big Data) (2019),
4977–4986.

[17] Myoungji Han, Hyunjoon Kim, Geonmo Gu, Kunsoo Park, and Wook-Shin Han.
2019. Efficient Subgraph Matching: Harmonizing Dynamic Programming, Adap-
tiveMatching Order, and Failing Set Together. Proceedings of the 2019 International
Conference on Management of Data (2019).

[18] Wook-Shin Han, Jinsoo Lee, and Jeong-Hoon Lee. 2013. Turboiso: towards
ultrafast and robust subgraph isomorphism search in large graph databases. In
Proceedings of the 2013 International Conference on Management of Data.

[19] FrankHarary and R. Z. Norman. 1960. Some properties of line digraphs. Rendiconti
del Circolo Matematico di Palermo 9 (1960), 161–168.

[20] Huahai He and Ambuj K. Singh. 2008. Graphs-at-a-time: query language and
access methods for graph databases. In Proceedings of the 2008 International
Conference on Management of Data.

[21] Muhammad Idris, Martín Ugarte, and Stijn Vansummeren. 2017. The Dynamic
Yannakakis Algorithm: Compact and Efficient Query Processing Under Updates.
Proceedings of the 2017 ACM International Conference on Management of Data
(2017).

[22] Muhammad Idris, Martín Ugarte, Stijn Vansummeren, Hannes Voigt, and Wolf-
gang Lehner. 2019. General dynamic Yannakakis: conjunctive queries with theta
joins under updates. The VLDB Journal 29 (2019), 619–653.

[23] Tatiana Jin, Boyang Li, Yichao Li, Qihui Zhou, Qianli Ma, Yunjian Zhao, Hongzhi
Chen, and James Cheng. 2023. Circinus: Fast Redundancy-Reduced Subgraph
Matching. Proceedings of the ACM on Management of Data 1 (2023), 1 – 26.

[24] Chathura Kankanamge, Siddhartha Sahu, Amine Mhedbhi, Jeremy Chen, and
Semih Salihoglu. 2017. Graphflow: An active graph database. In Proceedings of
the 2017 ACM International Conference on Management of Data. 1695–1698.

[25] Hyunjoon Kim, Yunyoung Choi, Kunsoo Park, Xuemin Lin, Seok-Hee Hong, and
Wook-Shin Han. 2021. Versatile Equivalences: Speeding up Subgraph Query Pro-
cessing and Subgraph Matching. Proceedings of the 2021 International Conference
on Management of Data (2021).

[26] Kyoungmin Kim, In Seo, Wook-Shin Han, Jeong-Hoon Lee, Sungpack Hong,
Hassan Chafi, Hyungyu Shin, and Geonhwa Jeong. 2018. Turboflux: A fast

continuous subgraph matching system for streaming graph data. In Proceedings
of the 2018 International Conference on Management of Data. 411–426.

[27] Danh Le-Phuoc, Minh Dao-Tran, Minh-Duc Pham, Peter A. Boncz, Thomas Eiter,
and Michael Fink. 2012. Linked Stream Data Processing Engines: Facts and
Figures. In International Workshop on the Semantic Web.

[28] Faming Li and Zhaonian Zou. 2021. Subgraph matching on temporal graphs. Inf.
Sci. 578 (2021), 539–558.

[29] Faming Li, Zhaonian Zou, and Jianzhong Li. 2023. Durable Subgraph Matching
on Temporal Graphs. IEEE Transactions on Knowledge and Data Engineering 35
(2023), 4713–4726.

[30] Youhuan Li, Lei Zou, M. Tamer Özsu, and Dongyan Zhao. 2019. Time Constrained
Continuous Subgraph Search Over Streaming Graphs. In Proceedings of the2019
IEEE 35th International Conference on Data Engineering (ICDE). 1082–1093.

[31] Youhuan Li, Lei Zou, M. Tamer Ozsu, and Dongyan Zhao. 2022. Space-Efficient
Subgraph Search Over Streaming Graph With Timing Order Constraint. IEEE
Transactions on Knowledge and Data Engineering 34 (2022), 4453–4467.

[32] Amine Mhedhbi, Chathura Kankanamge, and Semih Salihoglu. 2021. Optimizing
one-time and continuous subgraph queries using worst-case optimal joins. ACM
Transactions on Database Systems (TODS) 46, 2 (2021), 1–45.

[33] Amine Mhedhbi and Semih Salihoglu. 2019. Optimizing Subgraph Queries by
Combining Binary and Worst-Case Optimal Joins. Proc. VLDB Endow. 12 (2019),
1692–1704.

[34] Giovanni Micale, Giorgio Locicero, Alfredo Pulvirenti, and Alfredo Ferro. 2021.
TemporalRI: subgraph isomorphism in temporal networks with multiple contacts.
Applied Network Science 6 (2021), 1–22.

[35] Sadegh M. Milajerdi, Birhanu Eshete, Rigel Gjomemo, and Venkat Venkatakr-
ishnan. 2019. POIROT: Aligning Attack Behavior with Kernel Audit Records
for Cyber Threat Hunting. Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security (2019).

[36] Seunghwan Min, Sung Gwan Park, Kunsoo Park, Dora Giammarresi, Giuseppe F
Italiano, and Wook-Shin Han. 2021. Symmetric continuous subgraph matching
with bidirectional dynamic programming. Proceedings of the VLDB Endowment
14, 8 (2021), 1298–1310.

[37] Xiafei Qiu, Wubin Cen, Zhengping Qian, You Peng, Ying Zhang, Xuemin Lin, and
Jingren Zhou. 2018. Real-time Constrained Cycle Detection in Large Dynamic
Graphs. Proc. VLDB Endow. 11 (2018), 1876–1888.

[38] Carlos R. Rivero and HasanM. Jamil. 2017. Efficient and scalable labeled subgraph
matching using SGMatch. Knowledge and Information Systems 51 (2017), 61–87.

[39] Konstantinos Semertzidis and Evaggelia Pitoura. 2016. Durable graph pattern
queries on historical graphs. 2016 IEEE 32nd International Conference on Data
Engineering (ICDE) (2016), 541–552.

[40] Konstantinos Semertzidis and Evaggelia Pitoura. 2019. Top-k Durable Graph
Pattern Queries on Temporal Graphs. IEEE Transactions on Knowledge and Data
Engineering 31 (2019), 181–194.

[41] Konstantinos Semertzidis and Evaggelia Pitoura. 2020. A Hybrid Approach to
Temporal Pattern Matching. 2020 IEEE/ACM International Conference on Advances
in Social Networks Analysis and Mining (ASONAM) (2020), 384–388.

[42] Haichuan Shang, Ying Zhang, Xuemin Lin, and Jeffrey Xu Yu. 2008. Taming
verification hardness: an efficient algorithm for testing subgraph isomorphism.
Proc. VLDB Endow. 1 (2008), 364–375.

[43] Shixuan Sun and Qiong Luo. 2020. In-memory subgraph matching: An in-depth
study. In Proceedings of the 2020 ACM SIGMOD International Conference on Man-
agement of Data. 1083–1098.

[44] Shixuan Sun and Qiong Luo. 2022. Subgraph Matching With Effective Matching
Order and Indexing. IEEE Transactions on Knowledge and Data Engineering 34
(2022), 491–505.

[45] Shixuan Sun, Xibo Sun, Yulin Che, Qiong Luo, and Bingsheng He. 2020. Rapid-
Match: A Holistic Approach to Subgraph Query Processing. Proc. VLDB Endow.
14 (2020), 176–188.

[46] Shixuan Sun, Xibo Sun, Bingsheng He, and Qiong Luo. 2022. RapidFlow: An
Efficient Approach to Continuous Subgraph Matching. Proceedings of the VLDB
Endowment (2022).

[47] Xibo Sun, Shixuan Sun, Qiong Luo, and Bingsheng He. 2022. An in-depth study
of continuous subgraph matching. Proceedings of the VLDB Endowment 15, 7
(2022), 1403–1416.

[48] Xiaoli Sun, Yusong Tan, Q. Wu, and Jing Wang. 2017. Hasse diagram based
algorithm for continuous temporal subgraph query in graph stream. 2017 6th
International Conference on Computer Science and Network Technology (ICCSNT)
(2017), 241–246.

[49] Ha Nguyen Tran, Jung jae Kim, and Bingsheng He. 2015. Fast Subgraph Match-
ing on Large Graphs using Graphics Processors. In International Conference on
Database Systems for Advanced Applications.

[50] Julian R. Ullmann. 1976. An Algorithm for Subgraph Isomorphism. Journal of
the ACM (JACM) 23 (1976), 31 – 42.

[51] Shihan Wang and Takao Terano. 2015. Detecting rumor patterns in streaming
social media. 2015 IEEE International Conference on Big Data (Big Data) (2015),
2709–2715.

2803

http://snap.stanford.edu/data/wiki-talk-temporal.html
https://www.caida.org

[52] Xi Wang, Qianzhen Zhang, Deke Guo, and Xiang Zhao. 2022. Continuous multi-
query optimization for subgraph matching over dynamic graphs. Semantic Web
13 (2022), 601–622.

[53] Jianye Yang, Sheng Fang, Zhaoquan Gu, Ziyi Ma, Xuemin Lin, and Zhihong Tian.
2024. TC-Match: Fast Time-constrained Continuous Subgraph Matching. https:
//github.com/Sh-Fang/TCMatch/blob/main/tcmatch_technical_report.pdf

[54] Rongjian Yang, Zhijie Zhang, Weiguo Zheng, and Jeffrey Xu Yu. 2023. Fast Con-
tinuous Subgraph Matching over Streaming Graphs via Backtracking Reduction.

Proceedings of the ACM on Management of Data 1 (2023), 1 – 26.
[55] Lefteris Zervakis, Vinay Setty, Christos Tryfonopoulos, and Katja Hose. 2020.

Efficient continuous multi-query processing over graph streams. (2020), 13–24.
[56] Shijie Zhang, Shirong Li, and Jiong Yang. 2009. GADDI: distance index based sub-

graph matching in biological networks. In International Conference on Extending
Database Technology.

[57] Peixiang Zhao and Jiawei Han. 2010. On graph query optimization in large
networks. Proceedings of the VLDB Endowment 3 (2010), 340 – 351.

2804

https://github.com/Sh-Fang/TCMatch/blob/main/tcmatch_technical_report.pdf
https://github.com/Sh-Fang/TCMatch/blob/main/tcmatch_technical_report.pdf

	Abstract
	1 Introduction
	2 PRELIMINARIES
	2.1 Problem Definition
	2.2 Existing Solution

	3 An Overview of TC-Match
	4 An Edge-centric Index Structure
	4.1 Main Idea of CSS
	4.2 Index Structure
	4.3 Index Construction
	4.4 Index Maintenance
	4.5 Extending to Multiple Mapping Edges

	5 CSS-based Subgraph Matching
	5.1 Matching Enumeration Algorithm
	5.2 Node Merging Optimizations

	6 EXPERIMENTAL STUDY
	6.1 Experiment Setup
	6.2 Overall Performance Comparison
	6.3 Evaluating Individual Techniques

	7 RELATED WORK
	8 CONCLUSION
	Acknowledgments
	References

