
Automating the Enterprise with Foundation Models

Michael Wornow*
Stanford University

mwornow@stanford.edu

Avanika Narayan*
Stanford University

avanikan@stanford.edu

Krista Opsahl-Ong
Stanford University

kristaoo@stanford.edu

Quinn McIntyre
Stanford University
qam@stanford.edu

Nigam Shah
Stanford University
nigam@stanford.edu

Christopher Ré
Stanford University

chrismre@stanford.edu

ABSTRACT

Automating enterprise workflows could unlock $4 trillion/year in

productivity gains. Despite being of interest to the data manage-

ment community for decades, the ultimate vision of end-to-end

workflow automation has remained elusive. Current solutions rely

on process mining and robotic process automation (RPA), in which

a bot is hard-coded to follow a set of predefined rules for complet-

ing a workflow. Through case studies of a hospital and large B2B

enterprise, we find that the adoption of RPA has been inhibited by

high set-up costs (12-18 months), unreliable execution (60% initial

accuracy), and burdensome maintenance (requiring multiple FTEs).

Multimodal foundation models (FMs) such as GPT-4 offer a promis-

ing new approach for end-to-end workflow automation given their

generalized reasoning and planning abilities. To study these ca-

pabilities we propose ECLAIR, a system to automate enterprise

workflows with minimal human supervision. We conduct initial

experiments showing that multimodal FMs can address the limita-

tions of traditional RPA with (1) near-human-level understanding

of workflows (93% accuracy on a workflow understanding task)

and (2) instant set-up with minimal technical barrier (based solely

on a natural language description of a workflow, ECLAIR achieves

end-to-end completion rates of 40%). We identify human-AI collab-

oration, validation, and self-improvement as open challenges, and

suggest ways they can be solved with data management techniques.
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1 INTRODUCTION

Digital workflows are the core of our modern economy, with 92%

of jobs now requiring digital skills [10]. Many workflows can and

should be automated Ð across industries, workers average 3 hrs/day
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doing repetitive digital workflows tangential to their core jobs [2],

a phenomenon referred to as "death by 1,000 clicks" [67].

For example, consider a large B2B enterprise with tens of thou-

sands of customers (full case study in Section 3.2). A key accounting

workflow is ingesting customer contracts into a centralized data-

base. After receiving a contract via email, an analyst must manually

extract relevant data and enter it into an enterprise resource plan-

ning system (e.g. NetSuite, SAP, etc.) before they can conduct down-

stream analyses. Doing this at enterprise scale requires hundreds

of individuals, each potentially taking 40 minutes per contract.

As illustrated above, most enterprise workflows involve data in-

tegration, ingestion, and transformation, and the market for process

management is projected to reach $65 billion by 2032 [23].Decades

of data management work has gone into understanding and

managing these workflows [15, 27, 34, 37, 66, 88], yet the ulti-

mate vision of end-to-end automation Ð from understanding

to execution to monitoring Ð has remained elusive.

The current best-in-class solution is Robotic Process Automa-

tion (RPA), in which workflows identified via process mining get

manually encoded into a fixed set of rules for a program to follow

[41, 50, 51]. Narrowly scoped RPA deployments can have ROIs of

30-200% and 2x the speed of workflows [18, 42]. However, more

widespread adoption of RPA has been limited by three key failure

modes [65] which surfaced in interviews with technology leaders

at a hospital and B2B enterprise (full case studies in Section 3):

• High set-up costs: The desired workflow must be demon-

strated to the RPA bot. This is costly, as it requires a trained

specialist to map workflows, write automation scripts, and

integrate with IT infrastructure [34, 50, 58]. A leading RPA

vendor estimates that 3-6 months of experience is needed

to become proficient in RPA [72]. In our B2B case study, it

took 12 months to go from project kickoff to deployment.

• Brittle execution: The RPA bot must execute the work-

flow. Since RPA relies on hard-coded rules, bots cannot

adapt to slight variations in input (e.g., a button chang-

ing location on a screen, or a form field being renamed)

[16, 79, 87]. This leads to a łdeath by a thousand cutsž as

the space of possibilities is essentially unbounded. In our

B2B case study, the RPA bot was initially only 60% accurate

and took 6 months of improvement to reach 95%.

• Burdensome maintenance: RPA deployments often re-

quire human oversight to validate outputs and fix edge

cases. In our B2B case study, the bot required continual

monitoring by 2 full-time equivalents (FTEs).
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Figure 1: Differences between ECLAIR and traditional RPA. ECLAIR uses FMs to learn expertise via video demonstrations (left),

navigate GUIs given written documentation (center), and audit completed workflows (right).

The common cause behind these shortcomings is the difficulty of

encoding "tacit" (i.e. difficult to define) human workflow expertise

into a rule-based system like RPA [5, 14, 51]. Automating most

workflows requires planning a sequence of actions and executing

them on a graphical user interface (GUI). This requires (a) visual

understanding, e.g. identifying a button on a screen; (b) real-time

decision making, e.g. knowing to scroll to locate a form field that

has shifted location; and (c) common sense to error correct, e.g.

hitting escape when an irrelevant pop-up appears.

Multimodal foundation models (FMs) such as GPT-4 [53] have

demonstrated visual understanding [7, 76, 90] and generalized rea-

soning abilities [1, 75, 78, 86] for automating simple digital work-

flows [29, 33, 82, 83, 85, 89, 91]. This offers the possibility of sidestep-

ping the failure modes of traditional RPA, just as deep learning

eclipsed rule-based approaches over the past decade in machine

learning. We thus ask the question: Can multimodal foundation

models automate enterprise workflows?

We take a first natural step in studying the opportunities and

challenges of applying multimodal FMs across all three stages of

traditional RPA by proposing ECLAIR ś łEnterprise sCaLe AI for

woRkflowsž. As shown in Figure 1, our system is defined as follows:

(1) Demonstrate: ECLAIR uses multimodal FMs to learn from

human workflow expertise by watching video demonstra-

tions and reading written documentation. This lowers set-up

costs and technical barriers to entry. Initial experiments show

that ECLAIR can identify every step of a workflow based

on screenshots from a demonstration with 93% accuracy.

(2) Execute: ECLAIR observes the state of the GUI and plans ac-

tions by leveraging the reasoning and visual understanding

abilities of FMs [7, 53, 86]. Based solely on written doc-

umentation of a workflow, ECLAIR improves end-to-end

completion rates over an existing GPT-4 baseline from 0%

to 40% on a sample of 30 web navigation tasks [92]. How-

ever, this is still far from the accuracy needed for enterprise

settings, and we identify opportunities to close this gap.

(3) Validate: ECLAIR utilizes FMs to self-monitor and error

correct. This reduces the need for human oversight. When

classifying whether a workflowwas successfully completed,

ECLAIR achieves a precision of 90% and recall of 84%.

Our initial evaluations also identify several patterned failure

modes for future research. In Execute, ECLAIR has difficulty de-

composing higher-level steps into discrete actions (e.g. breaking

"Search XXX" into the sequence of "click", "type XXX", "press enter")

and grounding actions to specific GUI elements (e.g. differentiating

two buttons with the same label). In Validate, ECLAIR’s lack of

heuristics for navigating GUIs make step-level validation challeng-

ing (e.g. checking that a text field is first focused before typing).

While there is still progress to make, we are excited by the poten-

tial of ECLAIR to automate entirely new categories of workflows

requiring real-time decisions, interaction with GUIs, and "tacit"

domain knowledge [5], as outlined in Figure 2. McKinsey estimates

this could double the amount of automatable knowledge work [17].

The rest of the paper is structured as follows. In Section 2, we

discuss related work on process mining, RPA, and applying FMs to

workflow automation. In Section 3, we provide case studies of a

hospital and large B2B enterprise which highlight the limitations

of RPA. In Section 4, we outline how ECLAIR can address these

shortcomings. We conclude in Section 5with a discussion of future

work and opportunities for the data management community.

Our contributions are: (1) two case studies highlighting the lim-

itations of process mining / RPA, (2) a framework, ECLAIR, for

achieving end-to-end enterprise workflow automation with multi-

modal FMs, (3) evaluations of ECLAIR on 30 workflows involving
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enterprise web applications, and (4) proposals for applying data

management techniques to workflow automation.

2 BACKGROUND

We survey related work on RPA, process mining, data management

tools for workflow automation, and foundation models (FMs), then

detail the problem setting that ECLAIR seeks to solve.

2.1 Related Work

Significant effort has gone into developing tools for understanding

and automating workflows.

Foundation Models (FMs) are deep learning models trained on

large datasets which can be adapted to a broad range of downstream

tasks [13]. They have demonstrated robust world knowledge [38,

63], reasoning [78, 86], and planning abilities [1, 21, 69, 75], and

have achieved state-of-the-art results on data processing tasks such

as integration and cleaning [39, 52].

Process Mining is the identification and improvement of work-

flows based on observational data [4, 61, 73]. Recent works applied

FMs to process mining tasks such as Petri net generation, workflow

understanding, and process improvement [11, 22, 23, 28, 51, 62, 74],

but were limited to small case studies and unimodal models.

Robotic Process Automation (RPA) is the leading approach

for automating enterprise workflows [19, 36]. In RPA, a human

manually defines a set of rules that a bot then follows to accomplish

a specific workflow [16, 36, 79]. These fixed rulesets make RPA

brittle (e.g. failing if a form changes the ordering of its fields) and

difficult to maintain [24, 50]. FMs offer a compelling alternative

due to their robust reasoning capabilities [1, 86] and ability to

navigate GUIs [33]. Initial FM-based approaches [20, 29, 47] utilized

Large Language Models (LLMs) to act on websites. Since LLMs can

only understand text, these works relied on scraping a webpage’s

HTML as input to the model. This prevented their application to

native desktop and virtualized software. Multimodal FMs address

this limitation by attaching a vision model to the base LLM [90],

which enables them to directly reason over screenshots of a GUI

[7, 26, 33, 35, 68]. Multimodal FMs have already shown promise

in navigating websites [30, 85, 91], mobile apps [83], and desktop

applications [82, 89].We aim to design a system that helps bridge the

gap between these proof-of-concepts and enterprise-level solutions.

Data Management for Workflow Automation has been stud-

ied for nearly two decades, with works ranging from business

process management [15, 27, 60, 66, 88] to workflow automation

and understanding [34, 37]. All of this work, however, pre-dates

multimodal FMs. As a result, the challenges around which these sys-

tems were designed differ substantially from modern systems. Our

work aims to build on these prior efforts from the data management

community by developing a system that integrates FMs.

2.2 Problem Formulation

We aim to achieve end-to-end automation of enterprise workflows

at minimal cost. We have a workflow𝑤 ∈ W which consists of a

sequence of alternating states 𝑠 ∈ S and actions 𝑎 ∈ A, such that

𝑤 = (𝑠, 𝑎, 𝑠′, 𝑎′′, ...). Each workflow𝑤 is done by a set of workers

during the course of business operations. These workers follow a

standard operating procedure ("SOP"), a form of written documen-

tation which outlines all of the steps and actions of the workflow.

Once the workflows are executed, an auditing process validates

(either manually or programmatically) whether each workflow𝑤

was completed successfully. The goal is to automate workflow𝑤

by learning from human demonstrations and written documenta-

tion (e.g. SOPs). We aim to directly operate on the GUI, as many

workflows do not have APIs or must be executed in native desk-

top/virtualized applications that can only be observed visually [33].

This necessitates a vision-based approach [3, 89, 91].

3 CASE STUDIES

We conducted interviews with business leaders across a number of

industries who led RPA projects. We select two organizations Ð a

hospital and large B2B enterprise Ð for case studies. Both took over

a year to deploy RPA pilot projects, and both declined to expand RPA

to additional workflows due to its high set-up costs ($100k’s and

months of development), unreliable execution (accuracies started

around 60% and peaked at 95%), and maintenance requirements.

3.1 Hospital Revenue Cycle Management (RCM)

Given the complexity of healthcare reimbursement, most hospitals

have a dedicated Revenue Cycle Management (RCM) department to

ensure that timely payment is collected for services delivered [40].

Example RCM workflows include verifying a patient’s insurance

eligibility, obtaining prior authorization, and processing claims

[40]. It is estimated that RCM processes cost roughly 15% of every

dollar of revenue gained [8]. Additionally, 90% of health systems

face RCM staffing shortages [59]. Despite increased interest in

automating RCM workflows, most remain highly manual: roughly

94% of claims submissions and 76% of eligibility verifications involve

manual labor [31]. In conversations with hospital IT leaders who

considered automating certain RCM workflows, but only managed

a limited deployment, the following weaknesses of RPA surfaced:

(1) High Set-Up Costs. Integration with a hospital’s IT infras-

tructure is costly, as is retraining staff [40]. Hospital leadership

estimated that it took about 18 months and $10k’s to develop and

deploy their RPA bot. Significant back-and-forth with the vendor

occurred as each workflow had to be manually mapped and coded

into a set of well-defined, "always true" actions.

(2) Brittle Execution. It was estimated that ∼0.2 FTEs worth

of effort was saved with the RPA bot, as it could only handle two

narrowly-scoped workflows involving one payer and one depart-

ment. Quarterly updates to the hospital’s electronic health record

and constant changes to payers’ websites would break the bot. Even-

tually, this required the hospital to develop a custom API that the

bot could use to increase its reliability.

(3) Burdensome Maintenance. Given staffing constraints, the

hospital outsourced continued oversight of the bot to the vendor as

a managed service. Despite this outsourcing, RCM managers still

manually reviewed outputs to ensure compliance.

3.2 B2B Enterprise Invoice Processing

Large B2B enterprises must ingest a wide range of complex con-

tracts and process the information into systems of record such as

NetSuite or SAP. These workflows can vary widely depending on
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Figure 2: ECLAIR can automate entirely new categories of workflows, such as those that contain hard-to-describe steps, require

complex decision making, or are knowledge intensive. Listed examples are real-world hospital workflows (see Section 3.1).

the specific product being invoiced, the end purchaser, and the time

the contract was written [64]. Given its importance to enterprise

financial planning, invoice processing has also attracted attention

from RPA vendors. We interviewed the head of revenue operations

at a large B2B enterprise which tried to implement RPA for a single

invoice processing workflow. After a year of development, 5 FTEs

working with the RPA bot were able to successfully accomplish

a workflow that previously took 20 FTEs. Despite this apparent

success, however, the enterprise chose not to expand RPA to other

workflows, as the implementation proved to be too painful:

(1) High Set-Up Costs. Going from initial contract with the RPA

vendor ($150k) to production deployment took over 12 months.

External consultants ($100k) and 3 FTEs were required to integrate

the bot with existing IT systems. Challenges included (a) accurately

defining the workflow; and (b) the steep learning curve for pro-

gramming bots, which required a proprietary development toolkit.

(2) Brittle Execution. The RPA bot was initially only 60% ac-

curate post-deployment and took 6 months of iteration to reach

a final accuracy of 95%. Beyond invoice processing, only ∼50% of

desired workflows seemed feasible to automate with RPA.

(3) BurdensomeMaintenance. The cost of a wrongly processed

invoice is high ($10k’s), so 2 FTEs were allocated to continuously

monitor the bot to debug issues, add new input formats, and inspect

outputs. An outside firm also conducted manual batch reviews.

4 PRELIMINARY EVALUATIONS

In this section, we describe how ECLAIR can leverage multimodal

FMs across all three stages of the traditional RPA pipeline.

We provide preliminary experiments assessing the feasibility of

this approach. For our evaluations, we subsample 30 workflows

from the WebArena benchmark [92]. WebArena provides a set of

interactive websites in which an AI agent must complete complex

workflows specified via natural language. Specifically, we choose

30 workflows from the Gitlab and Adobe Magento environments

which their GPT-4 baseline model failed to complete [29]. We have

human annotators record themselves completing each workflow

and write a step-by-step guide ("SOP") on the steps they took.

4.1 Demonstrate

ECLAIR aims to learn from passively collected human demonstra-

tions, with no updates to the underlying FM’s weights. This limits

the cost of labeling data, simplifies deployment, and avoids known

biases that arise when humans try to articulate their work processes

[44]. Our experiments show that GPT-4 can accurately identify the

steps of a workflow based on visual observation of a human demon-

stration, with step-level precision of 0.94 and recall of 0.95.

4.1.1 Can ECLAIR determine the steps of a workflow by viewing raw

video demonstrations? This would enable ECLAIR to substantially

improve the effectiveness and scalability of process mining.

Hypothesis: Amulitmodal FM can generate accurate SOPs based

on screenshots taken at key frames from a video recording.

Set-Up: We prompt GPT-4 to generate an SOP for a workflow

given a human demonstration. We ablate various ways to provide

the demonstration: just the workflow description (WD); the work-

flow description and screenshots of key frames from a video record-

ing of the demonstration (WD+KF); or the workflow description,

key frames, and a textual action log of each click and keystroke

(WD+KF+ACT). Using a manually-written SOP as reference, a hu-

man annotator calculates GPT-4’s precision ("What percent of steps

in the GPT-4 SOP are in the true SOP?"), recall ("What percent of

steps in the true SOP are in the GPT-4 SOP?"), and correctness ("By

following the GPT-4 SOP, can I complete the workflow?").

Table 1: (Demonstrate) GPT-4 generation of SOPs. Metrics

averaged across all 30 workflows.

Method
# of Steps in SOP Accuracy of SOP

Missing Incorrect Total Precision Recall Correctness

WD 1.57 3.58 13.67 0.75 0.81 0.60
WD+KF 0.67 1.05 10.17 0.89 0.92 0.90

WD+KF+ACT 0.63 0.57 9.63 0.94 0.95 0.93

Ground truth 0 0 8.70 1 1 1

Takeaways: As shown in Table 1, the SOPs generated by GPT-4

using the WD+KF+ACT strategy are judged as sufficiently "cor-

rect" to complete 93% of workflows. Even providing GPT-4 with

screenshots alone (WD+KF) achieves 90% correctness. However,

WD+KF experiences almost twice as many hallucinations (1.05 in-

correct steps per SOP versus only 0.57 when the action trace is

included). Note that we do not do any workflow-specific prompt

engineering or data labeling to achieve these results. Additionally,

we preprocess our video demonstrations into a sequence of key

frames using imperfect heuristics (i.e. alignment with clicks and

keystrokes). Future work may benefit from using a model that can

directly process video (rather than just images).

4.2 Execute

After defining the workflow, ECLAIR must execute a sequence

of steps to accomplish it. We divide each step into two phases:
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(1) action suggestion, i.e. planning what action to take; (2) action

grounding, i.e. turning the plan into actual clicks/keystrokes of GUI

elements. We find that providing domain knowledge to ECLAIR via

SOPs doubles workflow completion rates, while general models (e.g.

GPT-4) lag smaller models fine-tuned on GUIs for action grounding.

4.2.1 Can ECLAIR accurately suggest the next action to take in a

workflow? We investigate whether multimodal FMs can predict the

next action in a workflow based on the current state of the GUI and

action history. We evaluate if providing the FM with an SOP for

the workflow increases overall workflow completion rates.

Hypothesis: Providing high-level natural language guidance to

the model via an SOP improves workflow completion rates.

Set-Up: At each step of the workflow, the model takes as input

the ground truth history of actions, full SOP, and current GUI,

and is expected to generate the next action to take. We measure

the accuracy of the model’s suggested next action using a human

annotator to evaluate whether it is semantically equivalent to the

corresponding "ground truth" action for the workflow.

Table 2: (Execute) GPT-4 average accuracy on next action

suggestion with and without SOP guidance.

SOP
Next Action

Suggestion Acc.
Overall Workflow
Completion Acc.

✘ 0.83 0.17
✔ 0.92 0.40

Takeaways: Our results in Table 2 demonstrate that SOPs im-

prove overall workflow completion rates by up to 23 points. While

the SOP boosts the accuracy of each step’s action suggestion to 0.92,

the model struggles to associate these suggested actions with the

appropriate GUI elements, thereby deflating its overall completion

rate (recall that the model must ground its actions to successfully

complete the workflow). For example, when the action is łClick on

the profile button", but the HTML element for the icon is identified

as "svg" rather than "button", the model fails to select this element.

4.2.2 Can ECLAIR accurately "ground" its actions suggestions to GUI

elements? Once ECLAIR suggests an action to take (i.e. łClick on the

"Submit" button"), it must then map the action into mouse/keyboard

commands which specify the pixel location of the GUI element to

interact with [91]. Multimodal FMs are known to have difficulty

with this, so we evaluate several grounding strategies [91].

Hypothesis: Providing bounding boxes for each element in a

GUI improves a multimodal FM’s ability to ground elements.

Set-Up: We sample a total of 120 and 302 webpages from the

WebUI [80] and Mind2Web [20] datasets, respectively. We create a

natural language description for one element on each page, then

prompt a model to generate a bounding box (BB) for that element

given a natural language description of the BB and screenshot of

the webpage. We measure "accuracy" as the percentage of predicted

BBs whose center is within the element’s true BB (i.e. If the model

clicked on the center of its prediction, would it successfully hit the

target element?). We evaluate GPT-4 [53] and CogAgent [33] as

two state-of-the-art closed/open source multimodal FMs for GUI

navigation. While CogAgent directly outputs BBs, GPT-4 does not.

Thus, we use "set-of-marks" prompting for GPT-4, in which we

overlay a unique numeric label on top of every element in the

webpage screenshot provided to GPT-4, and have it output the

number of a labeled element [84]. We generate these labels either

directly from the webpage’s HTML ("HTML") or from a YOLONAS

object detection model ("YOLO") finetuned on 7k WebUI webpages

[80]. The latter simulates the setting where HTML is not available.

Table 3: (Execute) Accuracy on grounding actions to GUI

elements. "S | M | L" is accuracy on small, medium, and large

elements. Note: We found that HTML bounding boxes were not

accurate in Mind2Web, so it is excluded.

Model
Bbox
Source

Mind2Web WebUI
S | M | L Overall S | M | L Overall

GPT-4 ś 0.01 | 0.03 | 0.16 0.07 0.00 | 0.03 | 0.14 0.05
GPT-4 YOLO 0.38 | 0.68 | 0.80 0.62 0.50 | 0.58 | 0.69 0.58
GPT-4 HTML ś ś 0.56 | 0.58 | 0.67 0.60

CogAgent ś 0.55 | 0.71 | 0.87 0.71 0.71 | 0.64 | 0.75 0.70

Takeaways: The 18-billion parameter CogAgent outperforms

GPT-4 on action grounding. This suggests that smaller models

purpose-built for GUI navigation can be more effective than larger,

general purpose multimodal FMs. However, overall accuracy peaks

at 70%, and interacting with smaller-sized elements remains chal-

lenging. For GPT-4, using the bounding boxes generated by the

YOLONAS model performs similarly to the "ground truth" HTML

boxes. This suggests that detecting elements on a GUI with a vision

model is not the bottleneck, but rather choosing which of those

detected elements is the desired element to interact with.

4.3 Validate

There are several levels of validation that ECLAIR must provide. At

the individual step-level, the agent should validate that its action

suggestions are (a) feasible to execute and (b) making progress

towards accomplishing the workflow. At the workflow-level, the

agent should understand (a) whether the workflowwas successfully

completed and (b) whether the steps taken to achieve the workflow

were sensible. We find that GPT-4 struggles with the former lower-

level details but performs well at the latter higher-level reasoning.

4.3.1 Can ECLAIR self-monitor at the individual step-level? Identi-

fying errors in individual actions would allow ECLAIR to perform

error correction in real-time. This would improve the reliability of

the Execution stage by enabling the model to avoid undesirable

states and backtrack where appropriate.

Hypothesis: A multimodal FM can detect if an action will suc-

ceed or fail based on visual observation of changes in screen state.

Set-Up: First, we test the model’s ability to detect if an action

failed (e.g. typing had no effect because no text field was first fo-

cused). We sample (𝑠, 𝑎, 𝑠′) traces from our dataset (positive ex-

amples) and generate tuples where 𝑠′ = 𝑠 (negatives). We prompt

GPT-4 to identify if the action 𝑎 in (𝑠, 𝑎, 𝑠′) was successfully exe-

cuted, given screen shots for 𝑠 and 𝑠′. We sample three negatives for

each positive example. Second, inspired by prior work on data clean-

ing [6, 9], we create a set of "integrity constraints" defining whether

an action is viable at a particular state. For example, an "integrity

constraint" for clicking a button is that the button is visible and

not disabled. We annotate constraints for all actions in our dataset,
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then prompt GPT-4 with (𝑐, 𝑠) pairs where 𝑐 is the constraint for

the action directly after state 𝑠 (positive examples) and (𝑐, 𝑠′) pairs

where 𝑠′ is a random state occurring before 𝑠 (negatives).

Table 4: (Validate) Performance of GPT-4 on self-validation

tasks. Metrics averaged across all 30 workflows.

Eval Type Precision Recall F1

Actuation 0.95 0.85 0.90
Integrity Constraint 0.67 0.36 0.47
Workflow Completion 0.90 0.84 0.87
Workflow Trajectory 0.88 0.83 0.85

Takeaways: The results are shown in rows "Actuation" and

"Integrity Constraint" in Table 4. GPT-4 has a high precision (0.95)

and recall (0.85) when assessing whether an action was successfully

executed. However, the low integrity constraint scores indicate that

it struggles to identify which actions are viable given the state of

the GUI. This could be due to only observing static screenshots,

which makes it difficult to discern animations such as a blinking

cursor. These results suggest that current multimodal FMs cannot

adequately self-monitor for enterprise use cases.

4.3.2 Can multimodal FMs self-monitor at the overall workflow-

level? Understanding whether a workflow was successfully com-

pleted or not can help the agent (a) at runtime to know when to

stop execution, and (b) post-deployment for self-auditing.

Hypothesis: A multimodal FM can determine if a demonstra-

tion correctly achieved a workflow based on visual observation of

changes in screen state.

Set-Up: First, we test if the model can determine if it successfully

completed a workflow. To evaluate this, we sample full traces of

(𝑠1, 𝑎1, ..., 𝑎𝑛−1, 𝑠𝑛) from our dataset (positive examples) and trun-

cate some by a random number of frames to get (𝑠1, 𝑎1, ..., 𝑎𝑘−1, 𝑠𝑘 )

(negatives) where 𝑘 < 𝑛. Given the trace and workflow descrip-

tion, we prompt GPT-4 to provide a binary assessment of whether

the workflow was successfully completed. Second, we investigate

whether the model understands the proper trajectory of actions in a

workflow Ð i.e. it is not sufficient to merely complete the workflow,

but the steps taken to complete it must align with its SOP. We sam-

ple full traces (𝑠1, 𝑎1, ..., 𝑎𝑛−1, 𝑠𝑛) from our dataset (positives) and

either (a) randomly shuffle or (b) randomly delete frames from this

trace (negatives). We provide GPT-4 with the SOP for the workflow,

the workflow description, and the trace, and have it output a binary

assessment of whether the trace exactly followed the SOP.

Takeaways: The F1 scores of 0.87 and 0.85 in rows "Workflow

Completion" and "Workflow Trajectory" of Table 4 suggest that

GPT-4 can self-monitor higher-level properties of a workflow.

5 DISCUSSION

To be deployed, ECLAIRmust meet aminimum level of performance.

While this is highly workflow-dependent, ECLAIRmust be accurate

enough such that the cost of correcting its errors is outweighed

by the efficiency gains of using it (which might not require 100%

accuracy). In our Section 3.2 case study, for example, an accuracy

of 95% was sufficient for the RPA bot to be deployed. Defining

such success criteria can be done via interviews with stakeholders,

financial modeling, and other enterprise planning methods [41] We

discuss considerations for deploying ECLAIR below.

Error Handling and Monitoring.We envision a multi-tiered

system which combines (1) self-validation, (2) programmatic heuris-

tics, and (3) limited human intervention to provide error correction.

(1) Per our Section 4.3 experiments, a repository of integrity con-

straints Ð which have successfully enhanced the quality of database

schemas [6, 9] Ð could improve the accuracy of FM self-monitoring.

Though FMs can exhibit non-deterministic behavior, their reliabil-

ity can be improved by setting their temperature to 0, repeatedly

querying [70] and ensembling predictions [43], or eliciting confi-

dence scores to surface cases where intervention is necessary [71].

(2) Programmatic heuristics can also be used to detect failures, e.g.

deviation from the average time to execute a workflow. (3) Existing

methods for auditing human workflows can be re-applied, such as

random spot checks or screenshots of confirmation screens. How-

ever, we envision such monitoring to be more limited ś namely, to

close the knowledge gap between ECLAIR and a domain ś as the

outputs from monitoring can be used to improve ECLAIR [54].

Human-ECLAIR Collaboration. While the long-term vision

for ECLAIR is to require minimal human interaction Ð i.e. only the

Demonstrate phase (Section 4.1) needing human involvement Ð we

acknowledge that human supervision may be necessary for certain

workflows. For example, a physician sign-off before prescribing

medications or tasks involving user authentication. To accomplish

this, the SOP could mark steps where the model transfers control

to a human. Alternatively, a whitelist of sensitive actions can be

compiled to automatically force transfer of control to a humanwhen

triggered, similar to how kernels use interrupts to handle control

flow [49]. Finally, as mentioned in the prior section, generated

human-ECLAIR execution traces can be used to improve ECLAIR

performance via fine-tuning or few-shot prompting [54].

Self-Improvement. As ECLAIR repeatedly executes a workflow,

it can observe the effects of its actions on the environment. By

documenting these observations, ECLAIR can compile a database of

common "skills" that can later be transferred to different workflows

[25, 55, 77, 82, 85]. Applying principles from self-driving databases,

which aim to continuously improve performance by implementing

sequences of "actions" (i.e. changes to their configurations) based on

utilization patterns [48, 56, 57], could provide a principled approach

for such a self-improving workflow automation system.

Multi-Agent Collaboration. Applying multiple agents to the

same task can improve accuracy [43, 45], as seen in recent work on

multi-agent software engineering [32] and chatbot applications[81].

Such an approach could be utilized within the ECLAIR framework

to create specialized agents for distinct subtasks or digital environ-

ments. Prior work on collaborative data processing tools offers a

reference for how ECLAIR can be scaled to multi-agent (and multi-

human) workflows with shared resources. [12, 46].

6 CONCLUSION

We are excited for the potential of multimodal FMs to reimagine

how work gets done. By addressing the three main shortcomings

of traditional process mining and RPA (high set-up costs, brittle ex-

ecution, and burdensome maintenance), the realization of ECLAIR

can help achieve the promise of enterprise workflow automation.
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