
Efficient Index for Temporal CoreQueries over Bipartite Graphs
Anxin Tian

HKUST

atian@connect.ust.hk

Alexander Zhou

HKUST

atzhou@cse.ust.hk

Yue Wang
∗

Shenzhen Institute of Computing

Sciences

yuewang@sics.ac.cn

Xun Jian
∗

HKUST

xjian@connect.ust.hk

Lei Chen

HKUST & HKUST(GZ)

leichen@ust.hk

ABSTRACT
Many real-world binary relations can be modelled as bipartite

graphs, which can be inherently temporal and each edge is as-

sociated with a timestamp. The (𝛼, 𝛽)-core, a popular structure that
requires minimum degrees over two layers of vertices, is useful

for understanding the organisation of bipartite networks. However,

the temporal property has rarely been considered in cohesive sub-

graph mining in bipartite graphs. This gap prevents the finding of

time-sensitive (𝛼, 𝛽)-cores in real-world applications. In this pa-

per, we aim at finding (𝛼, 𝛽)-cores within any time window over

a temporal bipartite graph. To address this problem, we propose a

novel DAG (Directed Acyclic Graph)-like hierarchy with qualified

time windows to describe the temporal containment property of

the (𝛼, 𝛽)-core. Furthermore, we construct the superior-optimized

index which significantly optimizes space complexity and guaran-

tees efficient query performance. We also propose a maintenance

approach that can efficiently update the index by removing stale

information and incorporating newly inserted temporal edges. Ex-

tensive experiments are conducted on eight real-world graphs and

the results show the effectiveness and efficiency of our indexes.

PVLDB Reference Format:
Anxin Tian, Alexander Zhou, Yue Wang, Xun Jian, and Lei Chen. Efficient

Index for Temporal Core Queries over Bipartite Graphs. PVLDB, 17(11):

2813-2825, 2024.

doi:10.14778/3681954.3681965

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at

https://github.com/ExpCodeBase/tabc.

1 INTRODUCTION
In bipartite graphs, vertices are divided into two disjoint sets such

that each edge connects one vertex from each set. Bipartite graphs

always arise when we need to model relationships across two dif-

ferent types of entities. Many real-world bipartite graphs are inher-

ently temporal, where each edge is associated with a timestamp or

an interval representing its occurrence (e.g. user-page networks [5],

∗
Yue Wang and Xun Jian are the corresponding authors.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 17, No. 11 ISSN 2150-8097.

doi:10.14778/3681954.3681965

customer-product networks [33], collaboration networks [6, 25],

affiliation networks [53]). For simplicity and without loss of gen-

erality, we consider the scenario where each edge has a single

timestamp rather than a time interval.

As a popular cohesive subgraph structure, the (𝛼, 𝛽)-core [4, 9,
18, 30, 31, 50, 64] is defined as a maximal subgraph of the given

bipartite graph𝐺 whose vertices in the upper layer have a degree of

at least 𝛼 and vertices in the lower layer have a degree of at least 𝛽 .

The (𝛼, 𝛽)-core has been widely used in community detection and

search. In real-world applications, it is often necessary to focus on a

specific time window when considering interactions between enti-

ties within a temporal bipartite graph. Given a specific time window,

we can obtain a graph snapshot by collecting edges with timestamps

falling within this time window into a subgraph. We show a Flickr

temporal bipartite graph in Figure 1 (a) and its snapshot 𝑆 over the

time period of ⟨3, 21⟩ in Figure 1 (b). The (2, 4)-core of 𝑆 is marked.

The upper-layer vertices represent Flickr users and the lower-layer

vertices represent Flickr groups. Considering the (2, 4)-core in the

time window ⟨3, 21⟩, it is a subgraph where each user is involved in

at least two groups, and each group includes at least four users. In

this context, users in the (2, 4)-core can be considered as potentially

sharing preferences of groups, enabling group recommendations

based on common interests. We call the (𝛼, 𝛽)-core of a snapshot
over a time window as the temporal (𝛼, 𝛽)-core.

Figure 1: A Flickr users-groups temporal bipartite graph and
its snapshot over the time period ⟨3, 21⟩

Addressing the problem of answering temporal (𝛼, 𝛽)-core queries
helps finding time-sensitive results and improving effectiveness

in real-world applications, but existing solutions [9, 26, 30, 50, 64]

2813

https://doi.org/10.14778/3681954.3681965
https://github.com/ExpCodeBase/tabc
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3681954.3681965
https://www.acm.org/publications/policies/artifact-review-and-badging-current

cannot distinguish (𝛼, 𝛽)-cores from different time windows. There-

fore, in this paper, we aim at finding any (𝛼, 𝛽)-core within any

time window over a temporal bipartite graph efficiently.

1.1 Applications
Querying temporal (𝛼, 𝛽)-cores on bipartite graph benefits many

real-world applications [2, 5, 14, 30], we present some of them in

the following examples.

Fraud Detection. In social networks like Twitter, users often share

external URL links in their posts to express their interests. However,

there are also many fraudulent accounts used to promote scam URL

links. In this case, relationships between accounts and URL links

can be modelled as a bipartite graph, in which each edge repre-

sents an account that mentions a URL link in their postings. For

promoting scam links, fraudulent accounts tend to share the same

scam links consistently, thus forming specific patterns [2, 5] (e.g.

the (10, 5000)-core finds a huge amount of accounts that mention

the few same URLs together). In real-world applications, there al-

ways exist suspicious time windows [11], which makes the target

(𝛼, 𝛽)-cores more effective than those non-temporal solutions [30].

Similarly, in a e-commerce network like Taobao [33], fraudsters con-

trol many dummy accounts to promote specific products by adding

them into their shopping carts, which forms the same patterns that

can be handled by the temporal (𝛼, 𝛽)-core.
Temporal-aware Recommendation. Personalized recommenda-

tion is widely used in online shopping, movie or blog websites [3,

7, 62]. In temporal recommendation applications, both long-short-

term recommendations [43, 55] and seasonal/periodic recommen-

dations [13, 22, 24] have been extensively studied. Answering tem-

poral (𝛼, 𝛽)-core queries enables recommendation for long-term

or short-term preferences by setting a proper time window. Addi-

tionally, specific recommendation results can be obtained within a

particular time window [8, 19]. For example, recommending down

jackets every winter [56], suggesting turkey or pumpkin for specific

holidays each year [34], etc. It is shown that the (𝛼, 𝛽)-core of each
user is an effective fault-tolerant subspace cluster [14, 20], by vary-

ing 𝛼 and 𝛽 according to the degree of tolerance for missing values.

In Figure 1 (b), we show the snapshot 𝑆 of the Flickr users-groups

graph. Within the (2, 4)-core, Haven, Edward, John, Alice, David
and Cindy can be considered as potentially sharing preferences of

groups. Except for Edward, who have already joined Pets,Wildlife
and Sighting, one more group can be recommended to all other five

users based on common interests.

1.2 Challenges
Naturally, one might wonder whether existing solutions to similar

problems can directly address the problem of querying temporal

(𝛼, 𝛽)-cores. These analogous problems include the historical k-

core query problem [60], the non-temporal (𝛼, 𝛽)-core query prob-

lem [30] and the persistent (𝛼, 𝛽)-core community search prob-

lem [26]. However, it turns out that the solutions to these similar

problems pose the following significant challenges.

• Challenge 1. The online solution requires the peeling process

for answering each temporal (𝛼, 𝛽)-core query. As for the solution
of the persistent (𝛼, 𝛽)-core community search problem [26], it

utilizes the (𝛼, 𝛽)-core to find the persistent community of the

given query vertex, where the community persistently preserves

the (𝛼, 𝛽)-core structure of the given time interval. Specifically,

this method conducts the graph reduction first according to the

given query vertex, which makes it not feasible for the temporal

(𝛼, 𝛽)-core query problem. Though a naive online approach can

be derived from this method, the peeling process for each query

results in an expensive cost for each query, which is unacceptable

in real-world applications. Its time cost is given in Table 1.

• Challenge 2. The existing static solution is unaffordable for space

and construction cost to solve this temporal problem. Considering

the existing solution Bicore-Index for the non-temporal (𝛼, 𝛽)-core
query [30], the Bicore-Index cannot recognize timestamp infor-

mation. We can derive a temporal version of the Bicore-Index by
constructing the index for each snapshot over any possible time

window. However, the construction of this approach incurs a time

complexity of𝑂 (𝑡2𝑚𝑎𝑥 ·𝛿 ·𝑚) and a space complexity of𝑂 (𝑡2𝑚𝑎𝑥 ·𝑚)
as shown in Table 1, where 𝑡2𝑚𝑎𝑥 is unscalable in practice.

• Challenge 3. In addition to the challenges posed by the extension

of existing methods, the problem itself presents inherently difficult

challenges. Firstly, the (𝛼, 𝛽)-core has two correlated parameters

that need to be simultaneously considered, where𝛼 and 𝛽 represents

the threshold requirement of vertices in two layers. Consequently,

the relationship between (𝛼, 𝛽)-cores needs to be described using a
two-dimensional method rather than a one-dimensional monotonic-

ity, this rules out the feasibility of the historical 𝑘-core solution [60].

Furthermore, considering all time windows, describing the contain-

ment relationship among (𝛼, 𝛽)-cores becomes exceedingly difficult.

With the change of time windows, old edges are continuously ex-

cluded while new edges constantly come into consideration. This

results in (𝛼, 𝛽)-cores undergoing continuous changes, rendering
the simple containment rule that was applicable in static scenarios

no longer suitable.

1.3 Contributions
In this paper, we study the new problem of querying (𝛼, 𝛽)-cores
within a target time window ⟨𝑡𝑠 , 𝑡𝑒 ⟩. We summarize the proposed

indexes in Figure 2. For given temporal bipartite graphs and tem-

poral core queries, we construct the vertex-based index I𝑉 , which
requires checking each sub-index to obtain the query results. To im-

prove query performance, we restructure it into the query-optimized

index I𝑄𝑂 by grouping vertices into the same (𝛼, 𝛽)-core under
qualified time windows. Furthermore, we construct the superior-

optimized index I𝑆𝑂 from I𝑄𝑂 , which significantly optimizes space

complexity. Our main contributions are presented in detail below.

Figure 2: The proposed indexes

Comparisons over cost complexities among three proposed indexes

and competitors are listed in Table 1.

2814

• We study the new problem of answering temporal (𝛼, 𝛽)-core
queries, which helps finding time-sensitive results in applications.

•We propose a novel DAG (Directed Acyclic Graph)-like hierarchy

with qualified time windows to describe the temporal containment

property of the (𝛼, 𝛽)-core. The associated vertex-based index I𝑉
is effective for solving the problem.

•We construct the superior-optimized index I𝑆𝑂 via leveraging the

dominant property between values of 𝛼 and 𝛽 , which significantly

optimizes space complexity from 𝑂 (𝑛 ·𝑚 · 𝜇) to 𝑂 (𝜖 ·𝑚 · 𝜇), while
efficient query performance is guaranteed.

• For handling the dynamic property of real-world temporal graphs,

we propose efficient maintenance algorithms for I𝑆𝑂 by removing

stale information and incorporating newly arrived temporal edges,

where the removal also deletes the relevant outdated queries.

Table 1: Comparison over cost complexities, where Constr.
means construction, 𝑛 denotes the number of distinct ver-
tices,𝑚 denotes the number of edges of the temporal bipartite
graph, 𝛿 denotes the maximum value of existence of (𝛼, 𝛽)-
core such that 𝛼 = 𝛽 = 𝛿 , 𝑡𝑚𝑎𝑥 denotes the number of distinct
timestamps, |𝑅 | denotes the size of the result, 𝜇 is the average
number of qualified time windows, 𝑑𝑚𝑎𝑥 is the maximum de-
gree of all vertices, 𝜖 denotes the number of vertices that are
not compressed (𝜇 ≪ 𝑡𝑚𝑎𝑥 and 𝜖 ≪ 𝑛 in practice), 𝜌 denotes
the average appearance times of all vertices in 𝑅, and 𝑂 (∼)
denotes the construction cost of I𝑉

Index Space Query time Constr. time

Online 𝑁 /𝐴 𝑂 (log(𝑚) + 𝛿 · |𝑆 |) 𝑁 /𝐴
I𝑇𝐵𝐼 [30] 𝑂 (𝑡2𝑚𝑎𝑥 ·𝑚) 𝑂 (|𝑅 | + log 𝑡2𝑚𝑎𝑥) 𝑂 (𝑡2𝑚𝑎𝑥 · 𝛿 ·𝑚)
I𝑉 [§ 4.3] 𝑂 (𝑛 ·𝑚 · 𝜇) 𝑂 (𝑛 · log 𝜇) 𝑂 (𝛿 ·𝑚 + 𝑑𝑚𝑎𝑥 · 𝜇)
I𝑄𝑂 [§ 5.1] 𝑂 (𝑛 ·𝑚 · 𝜇) 𝑂 (|𝑅 | + log 𝜇) 𝑂 (∼ +𝑛 ·𝑚 · 𝜇)
I𝑆𝑂 [§ 6.1] 𝑂 (𝜖 ·𝑚 · 𝜇) 𝑂 (𝜌 · |𝑅 | + log 𝜇) 𝑂 (∼ +𝑛 ·𝑚 · 𝜇)

1.4 Outline
In Section 2, we review the related work on this topic. Section 3

gives definitions of notations, concepts and problems. The DAG-like

hierarchy and the vertex-based I𝑉 are introduced in Section 4. We

present the query-optimized index I𝑄𝑂 and the superior-optimized

index I𝑆𝑂 together with associated algorithms in Sections 5 and 6.

Finally, we evaluate our methods with extensive experiments in

Section 7 and conclude this work in Section 8.

2 RELATEDWORK
In this section, we review closely relatedwork to this problem.Many

works are conducted on various cohesive subgraph structures over

bipartite graphs and temporal cohesive subgraph query.

Cohesive Subgraph Structures over Bipartite Graphs. Effective
cohesiveness metric is the keystone of real-world applications of

cohesive subgraph mining. Among many types of structures pro-

posed for different scenarios over bipartite graphs, we can classify

them into several basic structures:

• Clique-like: Clique-like structures aim to capture completeness of

subgraphs. Like the 𝑘-clique [17, 36, 61, 67] in general graphs, the

biclique [33, 35, 57] is the complete subgraph of bipartite graphs,

and the (𝑎, 𝑏)-biclique [37] is a biclique with exact 𝑎 vertices in

upper vertex layer and exact 𝑏 vertices in lower vertex layer. How-

ever, bicliques suffer from the hardness of computing, both the

maximum edge biclique problem and the maximum balanced bi-

clique problem are NP-Hard [37, 51]. For weakening the inherent

hardness of cliques, truss-like structures and core-like structures

are studied, e.g. the (𝛼, 𝛽)-core decomposition can be solved in

polynomial time [30].

• Truss-like: Truss-like structures follow the idea that the number

of triangles each edge involves in [1, 10, 21, 44, 45, 47, 65]. Similarly,

the bitruss [49, 52, 69] is the counterpart structure for bipartite

graphs, in which actually no triangles exist. Thus a butterfly (a (2, 2)-
biclique) [27, 41, 48, 68] works as a triangle-like concept to represent

edge containment.What’smore, the bi-triangle [59] is an alternative

truss-like metric for bipartite graphs instead of defining based on

the butterfly. Compared to these truss-like structures, the (𝛼, 𝛽)-
core is used to describe vertex-centric cohesiveness, while truss-

like structures are used to describe edge-centric cohesiveness. This

difference leads to varying effectiveness in real-world applications.

• Core-like: Core-like structures focus on number of connections

among vertices. The (𝛼, 𝛽)-core [14, 30, 32] is proposed based on

the idea of the 𝑘-core [12, 40, 42, 63]. The (𝛼, 𝛽)-core is much more

efficient to compute compared with clique-like structures and truss-

like structures over bipartite graphs, thus it is widely used as a

powerful structure in many real-world applications.

Temporal Core-like Subgraph Query.Many different types of

temporal core-like subgraph studies have already been explored.

Among them, the (𝑘, ℎ)-core [54] investigates the impact of multi-

edges in temporal graphs, where ℎ denotes the number of different

timestamps between the same two vertices. The (𝑘,Δ)-core [16]
tends to study the coexistence of edges within a given time span Δ.
Much work revolves around the study of core-like structures in per-

sistent communities in temporal graphs, with the (𝜃, 𝜏)-persistent
𝑘-core [28] considering the time-span threshold 𝜃 and the persis-

tence threshold 𝜏 . The (𝜃, 𝜏)-continual 𝑘-core [29] extends on the

(𝜃, 𝜏)-persistent 𝑘-core by researching community search given a

specific query vertex, and the (𝜃, 𝜏)-persistent (𝛼, 𝛽)-core [26] is a
simple extension from the (𝜃, 𝜏)-persistent 𝑘-core [28] to bipartite

graphs. Similar to the problems studied in this paper, there are

also many time-window-based queries, including the historical 𝑘-

core [60], the scalable time-range 𝑘-core [58], and the user-defined

temporal (𝑘,X)-core [66]. Besides, some work explores the peri-

odic [39] and bursting [38] properties of k-core in temporal graphs.

The infeasibility of existing solutions [26, 60] is discussed and others

are far from solving this problem.

3 PRELIMINARIES
In this section, we give the formal definition of concepts and the

problem statement. A table of all notations can be found in Table 2.

3.1 Problem Definition
Our problem is defined over a temporal bipartite graph denoted by

𝐺 (𝑉 = (𝑈 ∪ 𝐿), 𝐸). Here 𝑈 and 𝐿 denote disjoint sets of vertices

from two layers, (i.e. 𝑈 ∩ 𝐿 = ∅). 𝐸 = {𝑒 = (𝑢, 𝑣, 𝑡) | 𝑢 ∈ 𝑈 , 𝑣 ∈ 𝑉 }
denotes the set of edges, where each edge represents the intersection

2815

between vertices𝑢 and 𝑣 at time 𝑡 . deg(𝑢,𝐺) is used to denote degree
of 𝑢 ∈ 𝑉 (𝐺) in graph 𝐺 . We use 𝑛 to denote the number of distinct

vertices in 𝐺 and𝑚 to denote the number of edges of 𝐺 . Without

loss of generality, we consider a single timestamp instead of a time

interval for each temporal edge.

For simplicity, we assume that the time span of the whole tempo-

ral bipartite graph is ⟨1, 𝑡𝑚𝑎𝑥 ⟩. For a time window ⟨𝑡𝑠 , 𝑡𝑒 ⟩, we say
⟨𝑡𝑠 , 𝑡𝑒 ⟩ is a sub-window of ⟨1, 𝑡𝑚𝑎𝑥 ⟩ if (𝑡𝑠 ≥ 1, 𝑡𝑒 < 𝑡𝑚𝑎𝑥) or (𝑡𝑠 >

1, 𝑡𝑒 ≤ 𝑡𝑚𝑎𝑥), denoted by ⟨𝑡𝑠 , 𝑡𝑒 ⟩ ⊆ ⟨1, 𝑡𝑚𝑎𝑥 ⟩. We also say ⟨1, 𝑡𝑚𝑎𝑥 ⟩
is a super-window of ⟨𝑡𝑠 , 𝑡𝑒 ⟩, denoted by ⟨1, 𝑡𝑚𝑎𝑥 ⟩ ⊇ ⟨𝑡𝑠 , 𝑡𝑒 ⟩. In
this paper, all the discussed time windows ⟨𝑡𝑠 , 𝑡𝑒 ⟩ are assumed to be

sub-windows of ⟨1, 𝑡𝑚𝑎𝑥 ⟩ by default. Given such ⟨𝑡𝑠 , 𝑡𝑒 ⟩, we define
the snapshot of 𝐺 formally.

Definition 1. Graph snapshot [23]. Given a temporal bipartite

graph 𝐺 with the time span of ⟨1, 𝑡𝑚𝑎𝑥 ⟩ and a sub-window ⟨𝑡𝑠 , 𝑡𝑒 ⟩
of the time span, the snapshot of 𝐺 is the subgraph 𝑆⟨𝑡𝑠 ,𝑡𝑒 ⟩ whose
𝐸⟨𝑡𝑠 ,𝑡𝑒 ⟩ = {𝑒 = (𝑢, 𝑣) | (𝑢, 𝑣, 𝑡) ∈ 𝐸 (𝐺), 𝑡 ∈ ⟨𝑡𝑠 , 𝑡𝑒 ⟩}. Note that

multiple edges between the same pair of vertices with different

timestamps within the time window are merged into a single edge.

Example 3.1. In Figure 3, the snapshot 𝑆⟨3,20⟩ of the temporal

bipartite graph 𝐺 is the subgraph that excludes 𝑢7, 𝑢8, 𝑣8 and 𝑣9,

where edges not present in time window ⟨3, 20⟩ are removed.

The maximal (𝛼, 𝛽)-core [14] is defined as follows.

Definition 2. Maximal (𝛼, 𝛽)-core [14]. Given a snapshot 𝑆⟨𝑡𝑠 ,𝑡𝑒 ⟩
and two positive integers 𝛼 and 𝛽 , a subgraph C𝛼,𝛽 is called a

maximal (𝛼, 𝛽)-core if: • deg(𝑢, C𝛼,𝛽) ≥ 𝛼 and deg(𝑣, C𝛼,𝛽) ≥ 𝛽 ,

∀𝑢 ∈ 𝑈 (C𝛼,𝛽), ∀𝑣 ∈ 𝐿(C𝛼,𝛽); • C𝛼,𝛽 is maximal (i.e. C𝛼,𝛽 is not

contained in any other (𝛼, 𝛽)-cores of 𝑆⟨𝑡𝑠 ,𝑡𝑒 ⟩).

The pair of values (𝛼, 𝛽) is called coreness pair of the structure.
In this paper, we simply use the (𝛼, 𝛽)-core for short to denote the

maximal (𝛼, 𝛽)-core. Given a vertex 𝑢 ∈ 𝑉 (𝑆⟨𝑡𝑠 ,𝑡𝑒 ⟩), we define the
set of all coreness pairs of 𝑢 as the coreness pair set, denoted
by CP(𝑢, 𝑆⟨𝑡𝑠 ,𝑡𝑒 ⟩). Considering an (𝛼, 𝛽)-core in a bipartite graph,

there may exist several (𝛼, 𝛽)-cores within it such that they are not

connected with each other.

Figure 3: A toy temporal bipartite graph 𝐺

Example 3.2. In Figure 3, considering𝑢2 in 𝑆⟨3,20⟩ , the coreness pair
set CP(𝑢2, 𝑆⟨3,20⟩) is {(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 1), (2, 2),
(2, 3), (3, 1)}. Each coreness pair (𝛼, 𝛽) means that 𝑢2 is contained

in the (𝛼, 𝛽)-core of 𝑆⟨3,20⟩ .
Based on the concepts defined above, we formally present the

problem statement of temporal (𝛼, 𝛽)-core query below.

Problem Statement. Temporal (𝛼, 𝛽)-core Query. Given a bipar-

tite graph𝐺 , a time window ⟨𝑡𝑠 , 𝑡𝑒 ⟩ and two positive integer 𝛼 and

Table 2: Notations

Notation Description

𝐺 = (𝑉 , 𝐸) temporal bipartite graph

𝑆⟨𝑡𝑠 ,𝑡𝑒 ⟩ snapshot over ⟨𝑡𝑠 , 𝑡𝑒 ⟩ of𝐺
𝑉 (·) , 𝐸 (·) set of vertices and edges respectively

𝑈 (·) , 𝐿 (·) set of vertices from the upper layer and the lower

layer respectively

deg(𝑢, 𝑆⟨𝑡𝑠 ,𝑡𝑒 ⟩) the degree of 𝑢 in 𝑆⟨𝑡𝑠 ,𝑡𝑒 ⟩
C𝛼,𝛽 the maximal (𝛼, 𝛽)-core of 𝑆⟨𝑡𝑠 ,𝑡𝑒 ⟩

CP(𝑢, 𝑆⟨𝑡𝑠 ,𝑡𝑒 ⟩) the coreness pair set of 𝑢 in 𝑆⟨𝑡𝑠 ,𝑡𝑒 ⟩
DCP(𝑢, 𝑆⟨𝑡𝑠 ,𝑡𝑒 ⟩) the dominant coreness pair set of 𝑢 in 𝑆⟨𝑡𝑠 ,𝑡𝑒 ⟩
ST(𝑢, (𝛼, 𝛽), 𝑡𝑠) the shortest (𝛼, 𝛽)-core time of 𝑢 for 𝑡𝑠

QTW(𝑢, (𝛼, 𝛽)) all qualified windows of 𝑢 for the (𝛼, 𝛽)-core

𝛽 , the temporal (𝛼, 𝛽)-core query problem is to find the (𝛼, 𝛽)-core
in the snapshot 𝑆⟨𝑡𝑠 ,𝑡𝑒 ⟩ . The query is denoted as 𝑄

𝛼,𝛽
𝑡𝑠 ,𝑡𝑒

.

Example 3.3. Considering the temporal bipartite graph𝐺 in Fig-

ure 3, given the (1, 5)-core over ⟨3, 20⟩ as the query𝑄1,5
3,20

, the result

of this temporal (1, 5)-core query is {𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢6} from the

upper layer, and {𝑣4} from the lower layer.

4 VERTEX-BASED INDEX
In this section, we first introduce the Directed Acyclic Graph (DAG)-

like hierarchy of coreness pairs. Then we present the concept of the

qualified time window for correctly querying temporal (𝛼, 𝛽)-cores.
Finally, we overview our proposed I𝑉 , showing how it is designed

based on the DAG-like hierarchy. The theoretical proofs are in the

technical report [46].

4.1 DAG-like Hierarchy
Before illustrating the DAG-like hierarchy, we study the tempo-

ral containment property of (𝛼, 𝛽)-cores formally. Different from

the 𝑘-core, the temporal containment property of (𝛼, 𝛽)-cores is
associated with two values 𝛼 and 𝛽 . For correctly describe the

containment property of (𝛼, 𝛽)-cores and distinguish it from the

𝑘-core’s, Proposition 4.1 is derived below.

Proposition 4.1. Considering a snapshot 𝑆⟨𝑡𝑠 ,𝑡𝑒 ⟩ of 𝐺 , for the
(𝛼, 𝛽)-core and the (𝛼 ′, 𝛽′)-core, we say the (𝛼, 𝛽)-core contains the
(𝛼 ′, 𝛽′)-core if (𝛼 ′ > 𝛼, 𝛽′ ≥ 𝛽) or (𝛼 ′ ≥ 𝛼, 𝛽′ > 𝛽). We also say the
(𝛼 ′, 𝛽′)-core is contained by the (𝛼, 𝛽)-core.

Based on Proposition 4.1, we construct a DAG-like hierarchy for

(𝛼, 𝛽)-cores in Figure 4 to describe the containment relationships

among all possible (𝛼, 𝛽)-cores, where 𝛼𝑚 denotes the maximum

𝛼 value, 𝛽𝑚 denotes the maximum 𝛽 value and 𝛿 denotes the the

maximum value of existence of (𝛼, 𝛽)-core such that 𝛼 = 𝛽 = 𝛿

and is bounded by

√
𝑚 [30]. Unlike existing work [30, 50], which

only examines the containment property of (𝛼, 𝛽)-cores from a

one-dimensional perspective (i.e. along either 𝛼 value or 𝛽 value),

we unify the description of the containment property among (𝛼, 𝛽)-
cores via a two-dimensional DAG-like perspective.

However, such containment relationships are only guaranteed

within a specific time window. When considering (𝛼, 𝛽)-cores be-
tween different time windows, such containment properties cannot

2816

Figure 4: The DAG-like Hierarchy

be ensured. Therefore, to effectively describe the temporal con-

tainment relationships between (𝛼, 𝛽)-cores across different time

windows in bipartite graphs, we introduce the concept of qualified
time window below.

4.2 Qualified Time Window
To correctly answer temporal (𝛼, 𝛽)-core queries, it is essential

to accurately describe the temporal containment relationships be-

tween (𝛼, 𝛽)-cores across different time windows. Although the

approach in the historical k-core query [60] is insightful, address-

ing the temporal containment property within (𝛼, 𝛽)-cores poses
significant challenges. In this subsection, we introduce the concept

of qualified time window to aid in the appropriate extension of the

DAG-like hierarchy in a temporal scenario.

The key reason why the containment property of (𝛼, 𝛽)-cores
is challenging to guarantee over different time windows is the

uncertainty of the containment relationship of snapshots across

different time windows. We obtain Proposition 4.2 by observing

the containment relationship of snapshots between time windows.

Proposition 4.2. Considering a temporal bipartite graph 𝐺 and
two time windows ⟨𝑡𝑠 , 𝑡𝑒 ⟩ and

⟨︁
𝑡 ′𝑠 , 𝑡
′
𝑒

⟩︁
, the corresponding snapshot

𝑆⟨𝑡𝑠 ,𝑡𝑒 ⟩ is a subgraph of the other snapshot 𝑆⟨𝑡 ′𝑠 ,𝑡 ′𝑒 ⟩ if ⟨𝑡𝑠 , 𝑡𝑒 ⟩ ⊆
⟨︁
𝑡 ′𝑠 , 𝑡
′
𝑒

⟩︁
.

According to Proposition 4.2, we can ensure the containment

property of (𝛼, 𝛽)-cores across different time windows in the men-

tioned case. In order to obtain (𝛼, 𝛽)-cores under different time

windows, compared to the naive index solution that computes for

all possible windows, a more efficient approach is to record the

times at which the CP(·) changes for each vertex. From this per-

spective, we define the concept of shortest (𝛼, 𝛽)-core time below.
Definition 3. Shortest (𝛼, 𝛽)-core time. Given a temporal bipartite

graph 𝐺 , two positive integers 𝛼 and 𝛽 , a start time 𝑡𝑠 and a vertex

𝑢 ∈ 𝑉 (𝐺), the shortest (𝛼, 𝛽)-core time of 𝑢 for 𝑡𝑠 and (𝛼, 𝛽) is the
soonest time 𝑡𝑒 such that 𝑢 is in the (𝛼, 𝛽)-core of 𝑆⟨𝑡𝑠 ,𝑡𝑒 ⟩ , denoted
by ST(𝑢, (𝛼, 𝛽), 𝑡𝑠).

Example 4.1. Considering the vertex 𝑢2 ∈ 𝐺 in Figure 3, let the

start time 𝑡𝑠 be 3, the shortest (3, 1)-core time is 15 because in the

time interval ⟨3, 9⟩, 𝑑𝑒𝑔(𝑢2) = 1; in ⟨3, 14⟩, 𝑑𝑒𝑔(𝑢2) = 2; after the

timestamp 15, 𝑑𝑒𝑔(𝑢2) = 3 and 𝑢2 is contained in the (3, 1)-core.

Lemma 4.1. Given a temporal bipartite graph 𝐺 , a start time 𝑡𝑠 , a
vertex 𝑢 ∈ 𝑉 (𝐺) and its shortest (𝛼, 𝛽)-core time ST(𝑢, (𝛼, 𝛽), 𝑡𝑠), u
is contained in the (𝛼, 𝛽)-core of 𝑆⟨𝑡𝑠 ,𝑡𝑒 ⟩ if ST(𝑢, (𝛼, 𝛽), 𝑡𝑠) ≤ 𝑡𝑒 .

Definition 4. Qualified time window. Given a temporal bipartite

graph 𝐺 , two positive integers 𝛼 and 𝛽 , a start time 𝑡𝑠 , a vertex 𝑢 ∈
𝑉 (𝐺) and its the shortest (𝛼, 𝛽)-core time ST(𝑢, (𝛼, 𝛽), 𝑡𝑠), a time

window

⟨︁
𝑡 ′𝑠 , 𝑡
′
𝑒

⟩︁
is a qualified time window if 𝑡 ′𝑒 = ST(𝑢, (𝛼, 𝛽), 𝑡𝑠)

and 𝑡 ′𝑠 is the smallest time such that ST(𝑢, (𝛼, 𝛽), 𝑡 ′𝑠) = 𝑡 ′𝑒 . We denote

all qualified windows of 𝑢 for the (𝛼, 𝛽)-core by QTW(𝑢, (𝛼, 𝛽)).
Example 4.2. Considering the vertex𝑢2 temporal bipartite graph𝐺

in Figure 3, there are 10 time windows such that 𝑢2 is contained in

the (2, 1)-core, including ⟨1, 10⟩ , ⟨2, 10⟩ , · · · , ⟨5, 15⟩ , · · · , ⟨10, 15⟩.
Only two of them are qualified time windows of the (2, 1)-core for
𝑢2, i.e. QTW(𝑢2, (2, 1)) = {⟨1, 10⟩ , ⟨5, 15⟩}.

4.3 Overview of the Index I𝑉
Based on the containment property between (𝛼, 𝛽)-cores in Propo-

sition 4.1, we need to extend such property from core-based to

vertex-based for the index design. We show the dominant property

among each vertex’s coreness pairs in Proposition 4.3.

Proposition 4.3. Given a snapshot 𝑆⟨𝑡𝑠 ,𝑡𝑒 ⟩ of 𝐺 , suppose a ver-
tex 𝑢 ∈ 𝑉 (𝑆⟨𝑡𝑠 ,𝑡𝑒 ⟩) is contained in both the (𝛼, 𝛽)-core and the
(𝛼 ′, 𝛽′)-core, we say (𝛼 ′, 𝛽′) dominates (𝛼, 𝛽) if (𝛼 ′ > 𝛼, 𝛽′ ≥ 𝛽)
or (𝛼 ′ ≥ 𝛼, 𝛽′ > 𝛽), denoted as (𝛼 ′, 𝛽′) ≻ (𝛼, 𝛽). We also say (𝛼, 𝛽)
is dominated by (𝛼 ′, 𝛽′), denoted as (𝛼, 𝛽) ≺ (𝛼 ′, 𝛽′).

More specifically, in Lemma 4.2, we map such properties ofCP(·)
for each vertex among different time windows.

Lemma 4.2. Considering two snapshots 𝑆⟨𝑡𝑠 ,𝑡𝑒 ⟩ and 𝑆⟨𝑡 ′𝑠 ,𝑡 ′𝑒 ⟩ such
that ⟨𝑡𝑠 , 𝑡𝑒 ⟩ ⊆

⟨︁
𝑡 ′𝑠 , 𝑡
′
𝑒

⟩︁
, for any vertex 𝑢 ∈ 𝑆⟨𝑡𝑠 ,𝑡𝑒 ⟩ , there may exist a

coreness pair in CP(𝑢, 𝑆⟨𝑡 ′𝑠 ,𝑡 ′𝑒 ⟩) that dominates one in CP(𝑢, 𝑆⟨𝑡𝑠 ,𝑡𝑒 ⟩),
but not vice versa.

By combining the DAG-like hierarchy and the qualified time

window, we can construct an index for each vertex to answer the

temporal (𝛼, 𝛽)-core query. We provide the formal definition for

this vertex-based index I𝑉 below.

Definition 5. The vertex-based index I𝑉 . Given a temporal bipar-

tite graph 𝐺 , the vertex-based index I𝑉 consists of all sub-indexes

I𝑉 (𝑢) for all vertices 𝑢 ∈ 𝑉 (𝐺). The sub-index I𝑉 (𝑢) organises
its coreness pairs adhering to the DAG-like hierarchy, where each

coreness pair (𝛼, 𝛽) arranges all 𝑡𝑠 -sorted qualified time windows

QTW(𝑢, (𝛼, 𝛽)).
Example 4.3. Considering the vertex 𝑢2 of the temporal bipartite

graph 𝐺 in Figure 3, the vertex-based index I𝑉 (𝑢2) is given in Fig-

ure 5, where each coreness pair (𝛼, 𝛽) is attached with all qualified

time windows QTW(𝑢2, (𝛼, 𝛽)), the DAG-like hierarchy correctly

forms the temporal containment property of (𝛼, 𝛽)-cores over the
qualified time windows.

The correctness of the vertex-based index is shown in Theo-

rem 4.3 and the space cost is shown in Proposition 4.4.

Theorem 4.3. Given the vertex-based index I𝑉 of 𝐺 and a tem-
poral (𝛼, 𝛽)-core query 𝑄

𝛼,𝛽
𝑡𝑠 ,𝑡𝑒

, let
⟨︁
𝑡 ′𝑠 , 𝑡
′
𝑒

⟩︁
be the last qualified time

window in QTW(𝑢, (𝛼, 𝛽)) such that 𝑡 ′𝑠 ≤ 𝑡𝑠 in the I𝑉 (𝑢). If 𝑡 ′𝑒 ≤ 𝑡𝑒 ,
the vertex 𝑢 is guaranteed to be included in the result of 𝑄𝛼,𝛽

𝑡𝑠 ,𝑡𝑒
.

2817

Figure 5: The vertex-based index I𝑉 (𝑢2) for 𝐺 in Figure 3

Proposition 4.4. Given a vertex-based index I𝑉 of 𝐺 , the index
size is bounded by 𝑂 (𝑛 ·𝑚 · 𝜇), where 𝜇 denotes the average number
of qualified time windows and 𝜇 ≪ 𝑡𝑚𝑎𝑥 in practice.

Query Processing.We denote the query algorithm of the I𝑉 by

Qry𝑉 . Given a correctly built index I𝑉 of 𝐺 and a temporal (𝛼, 𝛽)-
core query𝑄

𝛼,𝛽
𝑡𝑠 ,𝑡𝑒

, the query processing ofQry𝑉 starts by traversing

all vertices in 𝑉 (𝐺). For each I𝑉 (𝑢), each coreness pair is set to be

the query entry. If there does not exist the entry for this query (𝛼, 𝛽),
it turns out it is an invalid query and the correct result should be an

empty set. After the target coreness pair entry being matched with

the query (𝛼, 𝛽), the checking process of qualified time windows

takes 𝑂 (log |QTW(𝑢, (𝛼, 𝛽)) |) by binary search. Thus the overall

time cost is𝑂 (𝑛 · log 𝜇), where 𝜇 is the average number of qualified

time windows traversed.

4.4 Index Construction
For each vertex, we need to obtain qualified time windows for all

possible𝛼 , 𝛽 , the anchored start time and the shortest (𝛼, 𝛽)-core time.
A naive approach is to conduct decomposition for the snapshots

over all possible anchored start time, and the shortest (𝛼, 𝛽)-core
time can be obtained during the decomposition. However, the time

cost of this naive approach still requires 𝑂 (𝑡2𝑚𝑎𝑥 · 𝛿 ·𝑚), making

it as impractical as the naive indexing solution. Therefore, a more

efficient method for index construction is desired.

In real-world applications, temporal graphs inherently possess

the characteristic of dynamically inserting new edges. Therefore,

it is natural to consider techniques for (𝛼, 𝛽)-core maintenance in

dynamic graphs [30, 32]. Considering the containment property of

(𝛼, 𝛽)-cores over temporal bipartite graphs, there are two feasible

ideas to obtain qualified time windows utilizing the maintenance

technique: 1) bottom-up: from the unit time windows (i.e. ⟨1, 2⟩,
⟨2, 3⟩, · · · , ⟨𝑡𝑚𝑎𝑥 − 1, 𝑡𝑚𝑎𝑥 ⟩), it expands these time windows like

maintaining (𝛼, 𝛽)-cores given edge insertions; 2) top-down: from

the largest time window (i.e. ⟨1, 𝑡𝑚𝑎𝑥 ⟩), it shrinks this time win-

dow like maintaining (𝛼, 𝛽)-cores given edge deletions. Although

the worst-case time complexity for both edge deletion and edge

insertion is the same according to the SOTA method of (𝛼, 𝛽)-core
maintenance [32], the boundedness analysis for (𝛼, 𝛽)-core main-

tenance remains unclear. To assist us in choosing a more efficient

approach, we first investigate the boundedness property in (𝛼,
𝛽)-core maintenance.

Boundedness Analysis. For the (𝛼, 𝛽)-core maintenance prob-

lem [32], we denote the set of vertices whose coreness pair set

changes by CNG. An incremental algorithm A is bounded [15] if

its cost is a polynomial function of ∥CNG∥𝑐 , where ∥·∥𝑐 denotes the
size of 𝑐-hop neighbors for a positive integer 𝑐 . It has been demon-

strated that both 𝑘-truss maintenance and 𝑘-core maintenance

exhibit asymmetry concerning edge insertions and deletions [65].

Next, we present the theoretical conclusion in Theorem 4.4 and

provide its proof in the technical report [46].

Theorem 4.4. The (𝛼, 𝛽)-core maintenance is bounded for edge
deletions, but unbounded for edge insertions.

Index Construction. Based on the boundedness analysis, it is

evident that the top-down approach is guaranteed to be bounded

when constructing the I𝑉 . We denote the index construction al-

gorithm of the I𝑉 in Algorithm 1 by Cons𝑉 . In lines 1-2, it first

decomposes the bipartite graph over the largest time window and

initializes the auxiliary structures. In lines 3-4, it initializes the

shortest (𝛼, 𝛽)-core time of each vertex for all possible coreness

pairs at the start time 1 by by deleting the edges at the specific

timestamp and maintaining coreness pairs [30, 32]. Then in lines

6-8, it iteratively increases the start time 𝑡𝑠 and updates the affected

shortest (𝛼, 𝛽)-core time. Finally, it constructs sub-indexes I𝑉 (𝑢)
by correct qualified time windows for each vertex in lines 11-12.

For the time complexity, line 1 costs 𝑂 (𝛿 ·𝑚), line 2 costs 𝑂 (𝑚),
line 3-10 costs 𝑂 (𝑑𝑚𝑎𝑥 · 𝜇). The overall cost is 𝑂 (𝛿 ·𝑚 + 𝑑𝑚𝑎𝑥 · 𝜇).

Algorithm 1: Cons𝑉 : the I𝑉 construction

Input: the temporal bipartite graph𝐺

Output: the I𝑉 of𝐺

1 Call the SOTA decomposition algorithm [30] on 𝑆⟨1,𝑡𝑚𝑎𝑥 ⟩ ;

2 Initialize auxiliary structures for all 𝑢 ∈ 𝑉 (𝐺) ;
3 foreach 𝑡 ∈ ⟨𝑡𝑚𝑎𝑥 , 2⟩ do
4 Delete edges at the timestamp 𝑡 ;

5 Maintain coreness pairs for edges within ⟨1, 𝑡 − 1⟩;
6 foreach the start time 𝑡𝑠 ∈ ⟨2, 𝑡𝑚𝑎𝑥 ⟩ do
7 Delete edges at the timestamp 𝑡𝑠 − 1 and update auxiliary

structures due to the deletion;

8 Update the shortest (𝛼, 𝛽)-core time for vertices only if

necessary;

9 foreach 𝑢 ∈ 𝑉 (𝐺) do
10 I𝑉 (𝑢) ← qualified time windows over coreness pairs;

11 return the I𝑉 of𝐺 ;

5 QUERY-OPTIMIZED INDEX
While the vertex-based index I𝑉 overcomes the challenges posed

by the two-value-associated (𝛼, 𝛽)-core and effectively unifies the

containment property between time windows and cores, success-

fully solving the temporal (𝛼, 𝛽)-core query problem, the query

cost 𝑂 (𝑛 · log 𝜇) of the I𝑉 consists of the term 𝑛, which denotes

the number of vertices in the whole graph and is undesirable for

query performance. Therefore, our goal is to optimize query per-

formance to be only related to each query rather than the graph

2818

size. In this section, we aim to optimize query performance and

reconstruct the I𝑉 to obtain the query-optimized index I𝑄𝑂 with a

query cost of 𝑂 (|𝑅 | + log 𝜇) without changing the space overhead,

where |𝑅 | denotes the size of the result. The theoretical proofs are
in the technical report [46].

5.1 Overview of the index I𝑄𝑂

To optimize the term 𝑛 in the query cost 𝑂 (𝑛 · log 𝜇) of the vertex-
based index I𝑉 , a natural approach is to abandon the vertex-based

structure. Instead, it is more reasonable to organize the coreness

pairs and time windows related to a single query systematically

and correctly place the result under each query entry. Based on this

idea, we can perform a one-to-one mapping transformation on the

vertex-based index I𝑉 to achieve this goal. Formally, we define the

query-optimized index I𝑄𝑂 as follows.

Definition 6. The query-optimized index I𝑄𝑂 . Given a temporal

bipartite graph𝐺 , the query-optimized indexI𝑄𝑂 consists of all sub-

indexes for any coreness pair (𝛼, 𝛽) of the given 𝐺 , where the sub-

index I𝑄𝑂 (𝛼, 𝛽) systematically arranges all 𝑡𝑠 -sorted qualified time

windows adhering to the DAG-like hierarchy. The corresponding

vertex set is attached to each qualified time window.

Example 5.1. Considering the temporal bipartite graph𝐺 in Fig-

ure 3, a part of the query-optimized index I𝑄𝑂 is given in Figure 6

of the technical report [46], where we only present the part such

that anchored start time 𝑡𝑠 = 1 and six coreness pairs due to space

limit. The DAG-like hierarchy correctly forms the containment

property of temporal (𝛼, 𝛽)-cores.

Proposition 5.1. Given a query-optimized index I𝑄𝑂 of 𝐺 , the
index size is bounded by 𝑂 (𝑛 ·𝑚 · 𝜇).

Query Processing. We denote the query algorithm of the I𝑄𝑂

by Qry𝑄𝑂 . Given a correctly built index I𝑄𝑂 of 𝐺 and a temporal

(𝛼, 𝛽)-core query 𝑄𝛼,𝛽
𝑡𝑠 ,𝑡𝑒

, the query processing of Qry𝑄𝑂 starts by

retrieving the sub-indexQry𝑄𝑂 (𝛼, 𝛽) if it exists for the target (𝛼, 𝛽).
If there does not exist such Qry𝑄𝑂 (𝛼, 𝛽), it implies that there is no

valid result for this (𝛼, 𝛽)-core query. Within the Qry𝑄𝑂 (𝛼, 𝛽), it
first checks the last anchored start time 𝑡 ′𝑠 such that 𝑡 ′𝑠 ≤ 𝑡𝑠 , then it

collects vertices in the vertex sets under qualified time windows

until the last qualified time window

⟨︁
𝑡 ′𝑠 , 𝑡
′
𝑒

⟩︁
such that 𝑡 ′𝑒 ≤ 𝑡𝑒 . The

overall time cost is𝑂 (|𝑅 | + log 𝜇), where |𝑅 | is the size of the result.
The Construction of I𝑄𝑂 . We introduce the transformation of

I𝑉 into I𝑄𝑂 through remapping. We denote the index construction

algorithm of the I𝑄𝑂 by Cons𝑄𝑂 . It first initializes structures for

the I𝑄𝑂 . Then it traverses the vertex-based index I𝑉 and conducts

one-one remapping to obtain the sub-indexes I𝑄𝑂 (𝛼, 𝛽). The time

cost of Cons𝑄𝑂 is as same as the size of the I𝑉 , i.e.𝑂 (𝑛 ·𝑚 · 𝜇). The
overall cost of the I𝑄𝑂 construction is𝑂 (𝛿 ·𝑚 +𝑑𝑚𝑎𝑥 · 𝜇 +𝑛 ·𝑚 · 𝜇).

6 SUPERIOR-OPTIMIZED INDEX
While the query-optimized index I𝑄𝑂 achieves the great improve-

ment of query performance from 𝑂 (𝑛 · log 𝜇) to 𝑂 (|𝑅 | + log 𝜇), the
high space complexity of𝑂 (𝑛 ·𝑚 · 𝜇) also presents a challenge. Fur-
thermore, if we can identify and compress redundant information

in the I𝑄𝑂 , it can significantly improve the space efficiency. In this

section, targeting space efficiency, we demonstrate the compress-

ibility of coreness pairs in the DAG-like hierarchy, proposing the

superior-optimized index I𝑆𝑂 , which significantly optimizes space

cost from 𝑂 (𝑛 ·𝑚 · 𝜇) to 𝑂 (𝜖 ·𝑚 · 𝜇) while ensuring an acceptable

query cost𝑂 (𝜌 · |𝑅 | + log 𝜇). Here 𝜖 denotes the number of vertices

that are not compressed (𝜖 ≪ 𝑛 in practice) and 𝜌 denotes the

average appearance times of all vertices in 𝑅.

6.1 Overview of the index I𝑆𝑂
We observe significant redundancy in existing indexes I𝑉 and I𝑄𝑂 ,

primarily stemming from the compressibility of coreness pairs for

each vertex. Next, we introduce the dominant property among

coreness pairs and illustrate how such a property can compress

redundant information in the DAG-like hierarchy. Finally, we con-

struct the superior-optimized index I𝑆𝑂 based on these properties.

We give the definition of the dominant coreness pair formally.

Definition 7. Dominant coreness pair [32]. In a snapshot 𝑆⟨𝑡𝑠 ,𝑡𝑒 ⟩ ,
given an (𝛼, 𝛽)-core and an (𝛼 ′, 𝛽′)-core that both contain 𝑢 ∈
𝑉 (𝑆⟨𝑡𝑠 ,𝑡𝑒 ⟩), if there does not exist any other coreness pairs (𝛼 ′′, 𝛽′′)
containing 𝑢 which dominates (𝛼 ′, 𝛽′), the coreness pair (𝛼 ′, 𝛽′) is
a dominant (𝛼 ′, 𝛽′) coreness pair of 𝑢.

Note that for a single vertex 𝑢 ∈ 𝑉 (𝑆⟨𝑡𝑠 ,𝑡𝑒 ⟩), there may exist

multiple dominant coreness pairs. We define them as dominant
coreness pair set of the vertex 𝑢, denoted by DCP(𝑢, ⟨𝑡𝑠 , 𝑡𝑒 ⟩).

Different from the existing work [32], which utilizes dominant

coreness pairs to reduce the time overhead of dynamic maintenance,

in our work, we leverage this property to design the storage scheme,

thereby achieving efficient space and query efficiency.

Based on the definition of the dominant coreness pair, we elabo-

rate on how it works in the DAG-like hierarchy in Figure 4. The

arrows in the hierarchy denote the dominant relationship between

two (𝛼, 𝛽) coreness pairs, for example, (1, 1) → (1, 2) means that

the coreness pair (1, 1) ≺ (1, 2). It is straightforward that the DAG-

like hierarchy can cover all (𝛼, 𝛽) cores of the given 𝐺 .
Example 6.1. In the snapshot 𝑆⟨3,20⟩ of the temporal graph in

Figure 3, 𝑢2 appears in multiple different (𝛼, 𝛽) cores. Among all

coreness pairs that 𝑢2 belongs to, the coreness pair (1, 5) ≻ {(1, 1),
(1, 2), (1, 3), (1, 4)}, the coreness pair (2, 3) ≻ {(2, 1), (2, 2)}, thus
the dominant coreness pair set DCP(𝑢2, ⟨3, 20⟩) is {(1, 5), (2, 3),
(3, 1)} since each coreness within DCP(𝑢2, ⟨3, 20⟩) cannot domi-

nate each other.

With the dominant property among coreness pairs and the DAG-

like hierarchy, it is natural to organise vertices by grouping them

according to their dominant coreness pairs. This structure forms the

foundation of the superior-optimized index I𝑆𝑂 . Towards answer-
ing temporal (𝛼, 𝛽)-core queries, we need to find all (𝛼, 𝛽)-cores
correctly. Thus we define the dominant coreness hub below and

we guarantee the correctness of its specific linking rules.

Definition 8. Dominant coreness hub. Given a snapshot 𝑆⟨𝑡𝑠 ,𝑡𝑒 ⟩
and two positive integer 𝛼 and 𝛽 , a set of verticesH𝛼,𝛽 is called a

dominant coreness hub if all vertices with dominant (𝛼, 𝛽) coreness
pair are contained in this set. We call it a hub for short in this paper.

Example 6.2. Considering the snapshot 𝑆⟨3,20⟩ of the graph in

Figure 3, we haveH2,2 = {𝑢5, 𝑣6}, which consists of vertices which

have the dominant coreness pair of (2, 2). Though 𝑢1 is also con-

tained in a (2, 2)-core, it is assigned toH2,3 since (2, 3) ≻ (2, 2).

2819

The linking rules among dominant coreness hubs are the key to

organise all (𝛼, 𝛽)-cores correctly, we elaborate on them below uti-

lizing the property of dominance and discontinuity among coreness

pairs in the hierarchy.

Linking Rules. Considering two coreness pairs (𝛼, 𝛽) and (𝛼 ′, 𝛽′),
we say they are continuous if the Manhattan distance between

them is exactly 1. In real-world bipartite graphs, coreness pairs

may not be continuous in the hierarchy, we need to handle the

discontinuity which is essential to guarantee correct linking among

hubs. Generally, given a dominant (𝛼, 𝛽) hub, the linking rules to
another dominant (𝛼 ′, 𝛽′) hub are as follows.

• Rule 1. Direct-link. If (𝛼, 𝛽) shares the same value with

(𝛼 ′, 𝛽′) over 𝛼 (resp. 𝛽), i.e. if 𝛼 = 𝛼 ′ (resp. 𝛽 = 𝛽′), the
other is with a gap 𝑡 = |𝛽′−𝛽 | (resp. 𝑡 = |𝛼 ′−𝛼 |), then (𝛼, 𝛽)
and (𝛼 ′, 𝛽′) can be direct-linked as long as 𝑡 is minimized

among all possible (𝛼 ′, 𝛽′).
• Rule 2. Skip-link. If (𝛼, 𝛽) does not share the same value

with (𝛼 ′, 𝛽′) over 𝛼 or 𝛽 , then they can be skip-linked only

when the Manhattan distance between (𝛼, 𝛽) and (𝛼 ′, 𝛽′)
is minimized among all possible (𝛼 ′, 𝛽′).

(a) One case of Direct-Link. (b) One case of Skip-Link.

Figure 6: The linking rules of dominant coreness hubs

We illustrate Rule 1 in Figure 6 (a). Considering (𝛼, 𝛽), there
are four hubs’ values of which each increases or decreases of the

coreness by exactly 1 over 𝛼 or 𝛽 , then they can be direct-linked to

(𝛼, 𝛽). We use 𝑖𝑛 (resp. 𝑜𝑢𝑡) to denote the relationship that (𝛼, 𝛽)
dominates (resp. is dominated). For large graphs, the hierarchy is

very likely to be compact and Rule 1 can be fulfilled in most cases.

There are cases where Rule 1 cannot be applied due to the discon-
tinuity among coreness pairs. We show one common case that Rule
1 can not be fulfilled in Figure 6 (b), where dashed boxes mean that

both of the (𝛼 − 1, 𝛽) hub and the (𝛼, 𝛽 − 1) hub don’t exist in the

hierarchy. In this case, we can utilize Rule 2 to find the (𝛼 ′, 𝛽′) hub
with the smallest Manhattan distance to (𝛼 − 1, 𝛽 − 1), i.e. the (𝛼, 𝛽)
hub in Figure 6 (b), then (𝛼, 𝛽) can be skip-linked to (𝛼 − 1, 𝛽 − 1).
Correctness. According to Proposition 4.1, if (𝛼 ′, 𝛽′) ≻ (𝛼, 𝛽),
C𝛼 ′,𝛽 ′ is completely contained by C𝛼,𝛽 . Given a snapshot 𝑆⟨𝑡𝑠 ,𝑡𝑒 ⟩ ,
all dominant (𝛼, 𝛽) hubs that are linked by Rule 1 and Rule 2, can
be utilized to find all possible (𝛼, 𝛽)-cores of 𝐺 . We show the cor-

rectness in Theorem 6.1. Its proof can be referred in the report [46].

Theorem 6.1. With all dominant coreness hubsH𝛼,𝛽 of 𝑆⟨𝑡𝑠 ,𝑡𝑒 ⟩
being linked by Rule 1 and Rule 2, it is feasible to find all possible
(𝛼, 𝛽)-cores of 𝑆⟨𝑡𝑠 ,𝑡𝑒 ⟩ correctly.

However, it is not space-advantageous to compute dominant

coreness hubs over all qualified time windows directly, as the space

saved will be offset by introduced linkings. Thus we perform the

hub computation over the same qualified time windows among

sub-indexes in the I𝑄𝑂 to obtain the superior-optimized index I𝑆𝑂 .

Definition 9. The superior-optimized index I𝑆𝑂 . Given a tempo-

ral bipartite graph 𝐺 , the superior-optimized index I𝑆𝑂 systemati-

cally arranges all 𝑡𝑠 -sorted qualified time windows adhering to the

DAG-like hierarchy, where the corresponding vertex set is equal

to the dominant coreness hub under same qualified time windows

among dominant coreness pairs.

Example 6.3. Considering the graph 𝐺 in Figure 3, a part of the

superior-optimized index I𝑆𝑂 is given in Figure 7 due to space limit.

Different from the I𝑄𝑂 in Figure 6 of the technical report [46], for

the marked same time windows among different coreness pairs,

vertices are only stored in the dominant coreness hubs.

Figure 7: The superior-optimized index I𝑆𝑂 for𝐺 in Figure 3

We show the space cost of the superior-optimized index in Propo-

sition 6.1, its proof can be referred in the report [46].

Proposition 6.1. Given a superior-optimized index I𝑆𝑂 of𝐺 , the
index size is bounded by 𝑂 (𝜖 ·𝑚 · 𝜇).

Query Processing.We denote Algorithm 2 by Qry𝑆𝑂 . Given the

index I𝑆𝑂 of𝐺 and a temporal (𝛼, 𝛽)-core query𝑄𝛼,𝛽
𝑡𝑠 ,𝑡𝑒

, in lines 2-5,

the query processing of Qry𝑆𝑂 starts by retrieving the sub-index

Qry𝑆𝑂 (𝛼 ′, 𝛽′) where (𝛼 ′, 𝛽′) equals (𝛼, 𝛽) ifQry𝑆𝑂 (𝛼, 𝛽) exists, or
equals the dominant coreness pair with the smallest Manhattan dis-

tance to (𝛼, 𝛽). In line 6, if there does not exist such Qry𝑆𝑂 (𝛼 ′, 𝛽′),
it implies that there is no valid result for this (𝛼, 𝛽)-core query.

Then in lines 9-13, within the Qry𝑆𝑂 (𝛼 ′, 𝛽′), it first checks the last
anchored start time 𝑡 ′𝑠 such that 𝑡 ′𝑠 ≤ 𝑡𝑠 , then it collects vertices in

the dominant coreness hub under qualified time windows until the

last qualified time window

⟨︁
𝑡 ′𝑠 , 𝑡
′
𝑒

⟩︁
such that 𝑡 ′𝑒 ≤ 𝑡𝑒 . The visited

hubs (𝛼 ′, 𝛽′) are marked. In lines 14-15, we check the linked domi-

nant coreness pairs that dominate (𝛼, 𝛽), and push them into the

queue for BFS. In lines 16-19, we perform the query result check-

ing from all hubs such that no other coreness pair dominates it to

guarantee the correctness. From line 8 to line 19, the processing

is performed recursively until there is no unvisited coreness pair

that dominates (𝛼, 𝛽). The overall time cost is 𝑂 (𝜌 · |𝑅 | + log 𝜇),
where 𝜌 denotes the average appearance times of all vertices in 𝑅,

i.e. 𝜌 = 1

|𝑅 | ·
∑︁
𝑢∈𝑅 |DCP(𝑢) |, such that DCP(𝑢) ≻ (𝛼, 𝛽).

2820

Algorithm 2: Qry𝑆𝑂 : answering 𝑄𝛼,𝛽,𝑡𝑠 ,𝑡𝑒 via the I𝑆𝑂
Input: I𝑆𝑂 ,𝑄

𝛼,𝛽
𝑡𝑠 ,𝑡𝑒

Output: 𝑅
1 𝑅 ← ∅,𝑄𝑢𝑒𝑢𝑒 ← ∅, (𝛼 ′, 𝛽 ′) ← ∅;
2 if Qry𝑆𝑂 (𝛼, 𝛽) exists then
3 (𝛼 ′, 𝛽 ′) ← (𝛼, 𝛽) ;
else

5 (𝛼 ′, 𝛽 ′) ← the dominant coreness pair with the smallest

Manhattan distance to (𝛼, 𝛽) ;
6 if (𝛼 ′, 𝛽 ′) == ∅ then return 𝑅;

7 𝑄𝑢𝑒𝑢𝑒 ← (𝛼 ′, 𝛽 ′) ;
8 while !𝑄𝑢𝑒𝑢𝑒.𝑠𝑖𝑧𝑒 () do
9 (𝛼 ′, 𝛽 ′) ← 𝑄𝑢𝑒𝑢𝑒.𝑡𝑜𝑝 () ,𝑄𝑢𝑒𝑢𝑒.𝑝𝑜𝑝 () ;

10 Mark (𝛼 ′, 𝛽 ′) as visited;
11 Find the last anchored 𝑡 ′𝑠 in Qry𝑆𝑂 (𝛼 ′, 𝛽 ′) such that 𝑡 ′𝑠 ≤ 𝑡𝑠 ;

12 foreach hub under QTW⟨𝑡 ′𝑠 ,𝑡 ′𝑒 ⟩ such that 𝑡 ′𝑒 ≤ 𝑡𝑒 do
13 𝑅 ← all vertices within this hub;

14 foreach coreness pair (𝛼 ′′, 𝛽 ′′) that linked to (𝛼 ′, 𝛽 ′) do
15 𝑄𝑢𝑒𝑢𝑒 ← 𝑄𝑢𝑒𝑢𝑒 ∪ (𝛼 ′′, 𝛽 ′′) ;

16 foreach coreness pair (𝛼, 𝛽) such that no other pair dominates it do
17 if (𝛼, 𝛽) is NOT visited then
18 𝑄𝑢𝑒𝑢𝑒 ← 𝑄𝑢𝑒𝑢𝑒 ∪ (𝛼, 𝛽) ;
19 Repeat lines 8-15 similarly in the bottom-up manner;

20 return 𝑅;

6.2 The Construction of I𝑆𝑂
Addressing the significant redundancy in existing indexes I𝑉 and

I𝑄𝑂 , the two key procedures are the computation and the linking

of dominant coreness hubs. In this subsection, we first illustrate

the construction framework of the I𝑆𝑂 .
We denote the index construction algorithm of the I𝑆𝑂 in Algo-

rithm 3 byCons𝑆𝑂 . In lines 1-3, it first computes dominant coreness

hubs over qualified time windows. Then the construction procedure

of sub-indexes is similar to ConsQO in line 4. Finally, it needs to

link all sub-indexes I𝑆𝑂 (𝛼, 𝛽) according to the DAG-like hierarchy

in line 5. Next, we focus on how to compute and link dominant

coreness hubs correctly.

The Computation of Dominant Coreness Hubs. Utilizing the
decomposition algorithm [30], we can obtain the coreness pair set

CP(𝑢) for each vertex 𝑢 ∈ 𝑉 (𝐺) with time complexity of 𝑂 (𝛿 ·𝑚),
noting that coreness pairs within CP(𝑢) is sorted by 𝛼 first and 𝛽

then. In Algorithm 4, given the sorted CP(𝑢), we need to do two

rounds of filtering for two layers of vertices in 𝐺 respectively. In

line 1, we initialize variables. In lines 2-6, we sieve out coreness

pairs which are not dominant coreness pairs along 𝛼 for vertices in

the upper layer. In line 7, we conduct sieving similarly for vertices

in the lower layer. After two rounds of filtering, we obtain DCP(𝑢)
for each 𝑢 ∈ 𝑉 (𝑆⟨𝑡𝑠 ,𝑡𝑒 ⟩), then we map vertices to hubs reversely

based on obtained DCP(𝑢) from line 12 to 14. The time complexity

of Algorithm 4 is 𝑂 (𝐸 (𝑆⟨𝑡𝑠 ,𝑡𝑒 ⟩)).
The Linking of Dominant Coreness Hubs. To ensure all hubs
are linked correctly with their neighbor hubs, we design pointers

following linking rules Direct-link and Skip-link for each hub. For

Algorithm 3: Cons𝑆𝑂 : the I𝑆𝑂 construction

Input: the I𝑉 of𝐺

Output: the I𝑄𝑂 of𝐺

1 foreach 𝑢 ∈ 𝑉 (𝐺) do
2 foreach 𝑡𝑠 in associated qualified time windows in I𝑉 (𝑢) do
3 Compute dominant coreness hubs by Algorithm 4 with

same QTWs of neighbor coreness pairs;

4 Repeat ConsQO similarly for these dominant coreness pairs;

5 Link all sub-indexes I𝑆𝑂 (𝛼, 𝛽) according to the DAG-like

hierarchy by Algorithm 5;

6 return the I𝑆𝑂 of𝐺 ;

Algorithm 4: Dominant Coreness Hubs Computation

Input:𝐺 , CP(𝑢) for each 𝑢 ∈ 𝑉 (𝑆⟨𝑡𝑠 ,𝑡𝑒 ⟩)
Output: DCP(𝑢) for each 𝑢 ∈ 𝑉 (𝑆⟨𝑡𝑠 ,𝑡𝑒 ⟩)

1 𝛽𝑚 ← 0, 𝛼𝑚 ← 0;

2 foreach 𝑢 ∈ 𝑈 (𝑆⟨𝑡𝑠 ,𝑡𝑒 ⟩) do
3 foreach 𝛼 ∈ CP(𝑢) do
4 foreach 𝛽 ∈ CP(𝑢) (𝛼) do
5 𝛽𝑚 = max(𝛽, 𝛽𝑚) ;
6 DCP(𝑢) ← (𝛼, 𝛽𝑚) ;

7 Perform lines 2-6 similarly for all 𝑣 ∈ 𝐿 (𝑆⟨𝑡𝑠 ,𝑡𝑒 ⟩) ;
8 return DCP(𝑢) for each 𝑢 ∈ 𝑉 (𝑆⟨𝑡𝑠 ,𝑡𝑒 ⟩) ;

Algorithm 5: Dominant Coreness Hubs Linking

1 foreach ℎ𝑢𝑏 ∈ H𝛼,𝛽 do
2 𝑠𝐹𝑙𝑎𝑔𝑜𝑢𝑡 ← 𝑡𝑟𝑢𝑒 ; 𝑠𝐹𝑙𝑎𝑔𝑖𝑛 ← 𝑡𝑟𝑢𝑒 ;

3 (𝛼, 𝛽) ← the coreness of this ℎ𝑢𝑏; 𝛼 ′ ← 𝛼 , 𝛽 ′ ← 𝛽 ;

4 Call DirectLinkout for 𝑙𝑜𝑢𝑡 and 𝑟𝑜𝑢𝑡 ;
5 if !𝑙𝑜𝑢𝑡 and !𝑟𝑜𝑢𝑡 then SkipLinkout (𝑚𝑜𝑢𝑡) ;
6 Call DirectLinkin for 𝑙𝑖𝑛 and 𝑟𝑖𝑛 ;

7 if 𝑠𝐹𝑙𝑎𝑔𝑖𝑛 then SkipLinkin (𝑚𝑖𝑛) ;
Procedure. SkipLinkout (𝑚𝑜𝑢𝑡)
while 𝛽 ′ ≤ 𝛽𝑚 do

𝛽 ′ ← 𝛽 ′ + 1;
while 𝛼 ′ ≤ 𝛼𝑚 do

𝛼 ′ ← 𝛼 ′ + 1;
if H𝛼 ′,𝛽 ′ exists then

ℎ𝑢𝑏.𝑚𝑜𝑢𝑡 ← H𝛼 ′,𝛽 ′ ; H𝛼 ′,𝛽 ′ .𝑚𝑖𝑛 ← ℎ𝑢𝑏;

𝑠𝐹𝑙𝑎𝑔𝑜𝑢𝑡 ← 𝑓 𝑎𝑙𝑠𝑒 ; break;

if !𝑠𝐹𝑙𝑎𝑔𝑜𝑢𝑡 then break;

Procedure. DirectLinkout (·)
Consider SkipLinkout, remove the outer loop for 𝑙𝑜𝑢𝑡 (or the inner

one for 𝑟𝑜𝑢𝑡), and interchange𝑚𝑜𝑢𝑡 ,𝑚𝑖𝑛 with their counterparts;

Direct-link, we design four pointers named as 𝑙𝑜𝑢𝑡 , 𝑟𝑖𝑛 , 𝑟𝑜𝑢𝑡 , 𝑙𝑖𝑛 , cor-

responding with each of the four possible direct-linked neighbors,

where 𝑙 denotes the left-hand-side and 𝑟 denotes the right-hand-side,

subindexes 𝑜𝑢𝑡 and 𝑖𝑛 denote directions in the hierarchy shown in

Figure 6 (a). For Skip-link, we set𝑚𝑖𝑛 and𝑚𝑜𝑢𝑡 similarly. Note that

Skip-link is only applied when there exists no neighbors available

with Direct-link along the same direction of 𝑜𝑢𝑡 or 𝑖𝑛, e.g.𝑚𝑜𝑢𝑡 is

only linked when neither 𝑙𝑜𝑢𝑡 nor 𝑟𝑜𝑢𝑡 is able to be linked correctly.

2821

Algorithm 5 shows how we link all hubs according to the DAG-

like hierarchy. In lines 2-3, we initialize related variables. In lines

4-5, we call DirectLinkout for checking two to-be-directly-linked

pointers of the out-direction and call SkipLinkout if there are no
available 𝑙𝑜𝑢𝑡 and 𝑟𝑜𝑢𝑡 . In lines 6-7, we conduct similarly for the

in-direction. We omit SkipLinkin (𝑚𝑖𝑛) and DirectLinkin (·) due to
the space limit. The time complexity of Algorithm 5 is 𝑂 (𝑚).

6.3 The Maintenance of I𝑆𝑂
Considering the inherent temporal property in the temporal (𝛼, 𝛽)-
core query problem, the size of our proposed index I𝑆𝑂 is not

desired to be bounded by the graph size, especially as the temporal

graph continues to grow larger and larger. Therefore, we focus

on the maintenance over temporal graphs, which aims to elimi-

nate staleness and efficiently merge insertions in the index. In this

section, we propose the maintenance algorithm for the index I𝑆𝑂 .

Algorithm 6: Main𝑆𝑂 : Temporal Maintenance of the I𝑆𝑂
Input: the I𝑆𝑂 over ⟨1, 𝑡𝑚𝑎𝑥 ⟩, the stale time 𝑡𝑠𝑡𝑎 , new edges

𝐸 (𝑆⟨𝑡𝑚𝑎𝑥 +1,𝑡 ′𝑚𝑎𝑥 ⟩)
Output: the I𝑆𝑂 over

⟨︁
𝑡𝑠𝑡𝑎 + 1, 𝑡 ′𝑚𝑎𝑥

⟩︁
1 foreach I𝑆𝑂 (𝛼, 𝛽) do
2 Remove associated qualified time windows s.t. 𝑡𝑠 ∈ ⟨1, 𝑡𝑠𝑡𝑎 ⟩;
3 Keep (𝛼, 𝛽)-cores of the snapshot 𝑆⟨𝑡𝑠𝑡𝑎+1,𝑡𝑚𝑎𝑥 ⟩ from the I𝑆𝑂 ;

4 Obtain (𝛼, 𝛽)-cores of the snapshot 𝑆⟨𝑡𝑠𝑡𝑎+1,𝑡 ′𝑚𝑎𝑥 ⟩ by maintaining

𝑆⟨𝑡𝑠𝑡𝑎+1,𝑡𝑚𝑎𝑥 ⟩ given edge insertions 𝐸 (𝑆⟨𝑡𝑚𝑎𝑥 +1,𝑡 ′𝑚𝑎𝑥 ⟩) ;
5 Repeat lines 2-10 in Algorithm 1 similarly over the time window⟨︁

𝑡𝑠𝑡𝑎 + 1, 𝑡 ′𝑚𝑎𝑥

⟩︁
;

6 Update qualified time windows and hubs only if necessary;

7 return the I𝑆𝑂 over

⟨︁
𝑡𝑠𝑡𝑎 + 1, 𝑡 ′𝑚𝑎𝑥

⟩︁
;

Suppose that it is required to drop the stale edges within ⟨1, 𝑡𝑠𝑡𝑎⟩
and merge the new edges within

⟨︁
𝑡𝑚𝑎𝑥 + 1, 𝑡 ′𝑚𝑎𝑥

⟩︁
, where 𝑡 ′𝑚𝑎𝑥 de-

notes the new latest timestamp. For the I𝑆𝑂 , the deletion of the

staleness information is straightforward and can be performed

by removing qualified time windows whose 𝑡𝑠 ∈ ⟨1, 𝑡𝑠𝑡𝑎⟩. How-
ever, dealing with newly inserted edges within

⟨︁
𝑡𝑚𝑎𝑥 + 1, 𝑡 ′𝑚𝑎𝑥

⟩︁
remains a challenging task. We describe how to address this point

specifically in Algorithm 6, which is denoted byMain𝑆𝑂 . In lines

1-2, it first drops the stale part of the existing index, which costs

𝑂 (max𝑢∈𝑉 (𝑆⟨1,𝑡𝑠𝑡𝑎 ⟩) |CP(𝑢) | · 𝜇⟨1,𝑡𝑠𝑡𝑎 ⟩). In line 3, it keeps all (𝛼, 𝛽)-
cores of the snapshot 𝑆⟨𝑡𝑠𝑡𝑎+1,𝑡𝑚𝑎𝑥 ⟩ from the existing index to avoid

re-decomposition, which costs𝑂 (𝑚). Then in line 4, it obtains the re-
sult of the snapshot 𝑆⟨𝑡𝑠𝑡𝑎+1,𝑡 ′𝑚𝑎𝑥 ⟩ bymaintaining 𝑆⟨𝑡𝑠𝑡𝑎+1,𝑡𝑚𝑎𝑥 ⟩ with
edge insertions 𝐸 (𝑆⟨𝑡𝑚𝑎𝑥+1,𝑡 ′𝑚𝑎𝑥 ⟩) [32], which costs 𝑂 (max𝑢∈𝑉 (𝑆 ′)
deg(𝑢) ·𝑚) in the worst case, where 𝑆 ′ = 𝑆⟨𝑡𝑚𝑎𝑥+1,𝑡 ′𝑚𝑎𝑥 ⟩ . In lines 5-6,
the maintenance procedure is similar to the construction procedure

in Algorithm 1, which costs 𝑂 (𝑡 ′𝑚𝑎𝑥 ·𝑚). Note that qualified time

windows and dominant coreness hubs are updated only if neces-

sary. The overall time complexity of Algorithm 6 is𝑂 ((max𝑢∈𝑉 (𝑆 ′)
deg(𝑢) + 𝑡 ′𝑚𝑎𝑥) ·𝑚), where 𝑆 ′ = 𝑆⟨𝑡𝑚𝑎𝑥+1,𝑡 ′𝑚𝑎𝑥 ⟩ . Though the time

complexity of Algorithm 6 is equal to the re-construction solution

Algorithm 3 in the worst case, Algorithm 6 is always much more

efficient on real world graphs because the visited subgraph during

its process is typically significantly smaller than the entire graph.

We omit the guideline for index selection due to space limit, which

can be found in the technical report [46].

7 EXPERIMENTS
In this section, we evaluate the performance of the query processing,

the index construction and maintenance, and the index size. We

also conduct a case study of the temporal (𝛼, 𝛽)-core query on the

real-world dataset. All algorithms are implemented in C++ and all

experiments are performed on a Linux server with an Intel Xeon

Gold 6240R CPU @ 2.40 GHz and 256 GB main memory.

7.1 Experimental Setups
Datasets. We use eight real datasets in our experiments which

are Stackoverflow (ST), Linux-kernel (LK), Citeulike (CU), Twitter

(TW), Amazon Ratings (AR), Last.fm (LF), Wiktionary (WN) and

Wikipedia (WP). All datasets can be found from KONECT
1
. The

summary of datasets is shown in Table 3. |𝐸 | denotes the number

of edges, |𝑈 | and |𝐿 | denote the number of vertices in two layers

respectively. 𝑑𝑚𝑎𝑥 is the maximum degree of all vertices. 𝑡𝑚𝑎𝑥

denotes the number of distinct timestamps. 𝛿 denotes the maximum

value of existence of (𝛼, 𝛽)-core such that𝛼 = 𝛽 = 𝛿 . 𝜇 is the average

number of qualified time windows for each coreness pair in our

proposed indexes.

Algorithms. Our empirical studies are conducted based follow-

ing algorithms. We use Qry(·) and Cons(·) to denote the query

algorithm and the construction algorithm of a specific method re-

spectively. We denote the pure online query solution by QryOL and
denote the construction algorithm of temporal Bicore-Index [30]
by ConsTBI. Similar notations are adopted for the I𝑉 , I𝑄𝑂 and I𝑆𝑂 .

We terminate algorithms that cannot be completed within 36 hours,

note that ConsTBI cannot finish on all datasets.

Table 3: Summary of Datasets

𝐺 |𝐸 | |𝑈 | |𝐿 | 𝑑𝑚𝑎𝑥 𝑡𝑚𝑎𝑥 𝛿 𝜇

ST 1.30M 545K 96.6K 6.11K 99.6K 22 16

LK 1.56M 42.0K 337K 31.7K 1.08B 12 43

CU 2.41M 153K 731K 189K 103K 27 87

TW 4.66M 175K 530K 19.8K 99.8M 23 74

AR 5.83M 2.14M 1.23M 12.1K 315M 26 91

LF 19.1M 992 1.08M 55.5K 272M 164 125

WN 44.7M 66.1K 5.82M 3.50M 513M 97 131

WP 129.8M 1.02K 5.91K 818K 509M 212 163

7.2 Query Processing
In this part, we investigate the performance of our proposed query

processing algorithms QryV, QryQO and QrySO together with the

competitor QryOL. For input parameters, we vary the time window

size as 10%, 30%, 50%, 70%, 90% of 𝑡𝑚𝑎𝑥 and 30% by default; we vary

(𝛼, 𝛽) randomly to be dominated by (𝛼𝑚, 𝛽𝑚), these (𝛼, 𝛽)s may

be invalid for evaluating the ability of validity checking. We first

test the algorithms on all eight datasets with 100 queries generated

randomly for each dataset and we take the average to report in

1
http://konect.cc/networks/

2822

each test. Then, we evaluate the performance to process queries

when varying (𝛼 , 𝛽) and time window size.

Performance over all datasets. The performance of query pro-

cessing over all datasets is shown in Figure 8 (a), we can observe

that QryV, QryQO and QrySO perform consistently better than

QryOL. QryQO performs best among all methods, it is 1 ∼ 2 orders

of magnitude faster than QryV and can be several orders better

than QryOL. QrySO is comparable to QryQO but a bit slower than

QryQO because of extra retrieval among dominant coreness pairs

to collect compressed vertices. On the largest dataset WP, the ad-

vantages of QryQO and QrySO are most significant being 167× and

91× faster than QryOL.
Varying (𝛼, 𝛽).We evaluate the query performance by varying the

value of 𝛼 and 𝛽 and we report the results of two representative

datasets TW and WP, the results on other datasets show similar

trends. In Figure 8 (b), (c), both 𝛼 and 𝛽 are the same and varied

together according to the ratio of 𝛿 . When the ratio is small, the

query time of all algorithms are the longest, since the size of the

query result is relatively large. As the ratio is getting larger, the

size of the result and the number of qualified time windows be-

come smaller, thus it takes less time forQryV,QryQO andQrySO to

answer queries.QryOL is not sensitive to the ratio because of the on-
line decomposition from the original graph. We can see thatQryQO
andQrySO have good scalability to the value of (𝛼, 𝛽). Fixing either
𝛼 or 𝛽 has a similar impact on query performance compared to

changing both 𝛼 and 𝛽 simultaneously.

Varying time window size.We evaluate the query performance

by varying the time window size in Figure 8 (d), (e). We can see

a considerable increase for QryQO and QrySO, while QryV is not

sensitive to the size of time windows. Because as the time window

gets larger, the query result also becomes larger, it takes more time

for QryQO and QrySO to collect vertices in the result. QryV checks

every vertex no matter how large the time window is, thus it keeps

stable. As thewindow size gets larger, the difference betweenQrySO
and QryQO becomes slightly larger since larger window size will

invoke more retrieval among coreness pairs of QrySO.

7.3 Index Construction & Maintenance
Construction performance over all datasets. In Figure 8 (f), we

can see that constructing I𝑄𝑂 and I𝑆𝑂 is slower than constructing

I𝑉 , which is reasonable since I𝑄𝑂 needs time for remapping trans-

formation from I𝑉 and I𝑆𝑂 needs more time for the computation

and the linking of dominant coreness hubs. Overall, the construc-

tion time increases with the increase in graph size (𝑚). We can

observe that the construction time on CU is longer than that of TW

and AR, even though they have larger graph sizes. Because 𝑑𝑚𝑎𝑥

of CU is relatively larger, making it denser TW and AR.

Construction performance when varying |𝐺 |.We also report

the scalability of the construction methods in Figure 8 (g), (h). For

each dataset, all edges are sorted in chronological order. We pick the

first 10%, 30%, 50%, 70%, 90% of the edges from the original graph

to perform the algorithms. As the graph gets larger, the cost of all

methods become longer because all methods are dependent to the

graph size and the time span of the dataset. ConsQO and ConsSO
are comparable to ConsV at all portions, which are consistent with

the result in Figure 8 (f).

Maintenance performance when varying |Δ𝐺 |.We report the

scalability ofMainSO in Figure 8 (i), (j). We pick the first 5%, 10%,

15%, 20% of the edges from TW as the stale edges to delete and

keep the last 5%, 10%, 15%, 20% of the edges as the new edges to

insert. Similar settings are applied toWP as 4%, 8%, 12%, 16%. As the

portion of updated edges gets larger, the reconstruction ConsSO
gets shorter because the updated graph size gets smaller. With

more edges being updated,MainSO needs more time to finish the

maintenance of the index. MainSO reaches the efficiency bound at

around 20% for TW and at around 16% for WP.

7.4 Index Size
Performance over all datasets. In Figure 8 (k), we present the

size of the original graph as the baseline. We can see that I𝑄𝑂 and

I𝑉 are the most space-costly indexes, which can be significantly

larger than the original graph for all datasets, especially I𝑄𝑂 is

12× larger than the graph for LF. The size of I𝑄𝑂 and I𝑉 are very

close because I𝑄𝑂 is reformatted from I𝑉 . I𝑆𝑂 is space-efficient

and around one order of magnitude smaller than I𝑄𝑂 and I𝑉 , and
it is comparable to the graph size.

Scalability evaluation when varying |𝐺 |.We also conduct the

scalability evaluation on TW and WP regarding the index size and

peakmemory usage of all indexes in Figure 8 (l), (m), (n), and (o). For

each dataset, all edges are generated exactly same as (g) and (h). As

the graph gets larger, the space cost of both index size and memory

usage becomes larger near-linearly since they are dependent to the

graph size and the time span of the dataset. For index size, we can

observe that the data of I𝑉 and I𝑄𝑂 are very close to each other,

while I𝑆𝑂 exhibits a significantly better space efficiency by around

an order of magnitude. For peak memory usage, though I𝑆𝑂 has

slightly higher memory consumption compared to I𝑉 and I𝑄𝑂 , the

peak memory usage is around 10
5
MB for the largest dataset WP,

which is acceptable in practice.

7.5 Case Study
To show the effectiveness of temporal (𝛼, 𝛽)-core queries in fault-

tolerant recommendation, we conduct the case study on the DBLP

graph of Jiawei Han. In the DBLP bipartite graph, one layer of

vertices represents the co-authors of Jiawei Han, while the other

layer of vertices represents the publications. For clarity, we have

merged the publications into their venue. Jiawei Han is connected

to every venue in the graph, and we have omitted those edges. As

for other authors, we have only depicted their connections to the

top four venues based on the number of papers.

We present the static (50, 2)-core of Jiawei Han’s graph in Fig-

ure 9, starting from 1985 when he published his first paper, where

all co-authors have published at least 50 papers with Jiawei Han.

We can observe that Jiawei Han has a wide range of research in-

terests, with a focus on data mining (KDD, WWW, CIKM, ICDM).

Additionally, he has made significant contributions in the field of

databases (TKDE, SIGMOD, VLDB, ICDE) and natural language

processing (ACL, EMNLP).

Next, we consider the time window from 2017 to now, the tem-

poral (50, 2)-core based on this snapshot excludes the authors high-

lighted in orange in Figure 9. We indicate below each author the

2823

(a) Query time over all datasets (b) TW, 𝛼, 𝛽 = 𝑐 · 𝛿 (c) WP, 𝛼, 𝛽 = 𝑐 · 𝛿 (d) TW, varying 𝑡𝑠 , 𝑡𝑒 (e) WP, varying 𝑡𝑠 , 𝑡𝑒

(f) Construction time over all datasets (g) TW, varying |𝐺 | (h) WP, varying |𝐺 | (i) TW, varying |Δ𝐺 | (j) WP, varying |Δ𝐺 |

(k) Index size over all datasets (l) Index size on TW (m) Memory cost on TW (n) Index size on WP (o) Memory cost on WP

Figure 8: Performance evaluation

Figure 9: Case study

number of publications they have starting from 1985, with the num-

ber of publications starting from 2017 shown in parentheses. We

can observe that, except for Chao Zhang, the other four authors ex-

cluded from the temporal (50, 2)-core are predominantly involved

in the field of databases prior to 2017. However, their collabora-

tion with Jiawei Han has significantly declined after 2017, while

the collaboration between other authors and Jiawei Han remains

relatively unchanged. This indicates that Jiawei Han has shifted

his research focus to data mining and natural language processing

after 2017, gradually moving away from the database field. Such

distinctions cannot be observed from the static (𝛼, 𝛽)-core.

8 CONCLUSION
In this paper, we study the problem of answering temporal (𝛼, 𝛽)-
core queries. We propose a novel DAG-like hierarchy and qualified

time windows to accurately describe the temporal containment

property of (𝛼, 𝛽)-cores and construct an vertex-based index that

successfully solves the problem. For enhancing its query perfor-

mance and space efficiency, we propose the query-optimized index

and the superior-optimized index. We also propose a maintenance

approach that can efficiently update the the superior-optimized

index. Extensive experimental results show the efficiency and ef-

fectiveness of our proposed indexes.

ACKNOWLEDGMENTS
Lei Chen’s work is partially supported by National Key Research

and Development Program of China Grant No. 2023YFF0725100,

National Science Foundation of China (NSFC) under Grant No.

U22B2060, the Hong Kong RGC GRF Project 16213620, RIF Project

R6020-19, AOE Project AoE/E-603/18, Theme-based project TRS

T41-603/20R, CRF Project C2004-21G, Guangdong Province Sci-

ence and Technology Plan Project 2023A0505030011, Hong Kong

ITC ITF grants MHX/078/21 and PRP/004/22FX, Zhujiang scholar

program 2021JC02X170, Microsoft Research Asia Collaborative Re-

search Grant, HKUST-Webank joint research lab and HKUST(GZ)-

Chuanglin Graph Data Joint Lab. Yue Wang is partially supported

by China NSFC (No.62002235).

REFERENCES
[1] E. Akbas and P. Zhao. Truss-based community search: a truss-equivalence based

indexing approach. PVLDB, 10(11):1298–1309, 2017.

2824

[2] M. Allahbakhsh, A. Ignjatovic, B. Benatallah, S. Beheshti, E. Bertino, and N. Foo.

Collusion detection in online rating systems. APWeb, 7808:196–207, 2013.
[3] S. Amer-Yahia, S. B. Roy, A. Chawla, G. Das, and C. Yu. Group recommendation:

Semantics and efficiency. PVLDB, 2(1):754–765, 2009.
[4] W. Bai, Y. Chen, D. Wu, Z. Huang, Y. Zhou, and C. Xu. Generalized core main-

tenance of dynamic bipartite graphs. Data Min. Knowl. Discov., pages 1–31,
2022.

[5] A. Beutel, W. Xu, V. Guruswami, C. Palow, and C. Faloutsos. Copycatch: stopping

group attacks by spotting lockstep behavior in social networks. WWW, pages

119–130, 2013.

[6] X. Cai, X. Ke, K. Wang, L. Chen, T. Zhang, Q. Liu, and Y. Gao. Efficient temporal

butterfly counting and enumeration on temporal bipartite graphs. PVLDB, 2023.
[7] L. A. M. C. Carvalho and H. T. Macedo. Users’ satisfaction in recommendation

systems for groups: an approach based on noncooperative games. WWW, pages

951–958, 2013.

[8] O. Celma. Music recommendation. In Music recommendation and discovery: The
long tail, long fail, and long play in the digital music space, pages 43–85. Springer,
2010.

[9] M. Cerinsek and V. Batagelj. Generalized two-mode cores. Soc. Networks, 42:80–
87, 2015.

[10] H. Chen, A. Conte, R. Grossi, G. Loukides, S. P. Pissis, and M. Sweering. On

breaking truss-based communities. KDD, pages 117–126, 2021.
[11] D. Cheng, X. Wang, Y. Zhang, and L. Zhang. Graph neural network for fraud

detection via spatial-temporal attention. TKDE, 34(8):3800–3813, 2020.
[12] J. Cheng, Y. Ke, S. Chu, and M. T. Özsu. Efficient core decomposition in massive

networks. ICDE, pages 51–62, 2011.
[13] G. de Souza Pereira Moreira, F. Ferreira, and A. M. da Cunha. News session-based

recommendations using deep neural networks. In DLRS, pages 15–23, 2018.
[14] D. Ding, H. Li, Z. Huang, and N. Mamoulis. Efficient fault-tolerant group recom-

mendation using alpha-beta-core. CIKM, pages 2047–2050, 2017.

[15] W. Fan, C. Hu, and C. Tian. Incremental graph computations: Doable and

undoable. In SIGMOD, pages 155–169, 2017.
[16] E. Galimberti, M. Ciaperoni, A. Barrat, F. Bonchi, C. Cattuto, and F. Gullo. Span-

core decomposition for temporal networks: Algorithms and applications. TKDD,
15(1):1–44, 2020.

[17] E. Gregori, L. Lenzini, and S. Mainardi. Parallel k-clique community detection

on large-scale networks. TPDS, 24(8):1651–1660, 2012.
[18] Y. Guan, R. Lu, Y. Zheng, S. Zhang, J. Shao, and G. Wei. Achieving efficient and

privacy-preserving (𝛼, 𝛽)-core query over bipartite graphs in cloud. IEEE TDSC,
2022.

[19] J. A. Gulla, C. Marco, A. D. Fidjestøl, J. E. Ingvaldsen, and Ö. Özgöbek. The

intricacies of time in news recommendation. In UMAP, 2016.
[20] S. Günnemann, E. Müller, S. Raubach, and T. Seidl. Flexible fault tolerant subspace

clustering for data with missing values. ICDM, pages 231–240, 2011.

[21] X. Huang, H. Cheng, L. Qin, W. Tian, and J. X. Yu. Querying k-truss community

in large and dynamic graphs. SIGMOD, pages 1311–1322, 2014.
[22] K. Keerthika and T. Saravanan. Enhanced product recommendations based on

seasonality and demography in ecommerce. In ICACCCN, pages 721–723, 2020.
[23] U. Khurana and A. Deshpande. Efficient snapshot retrieval over historical graph

data. In ICDE, pages 997–1008. IEEE, 2013.
[24] T. Kramár and M. Bieliková. Context of seasonality in web search. In ECIR 2014,

pages 644–649. Springer, 2014.

[25] M. Ley. The DBLP computer science bibliography: Evolution, research issues,

perspectives. SPIRE, 2476:1–10, 2002.
[26] M. Li, Z. Xie, and L. Ding. Persistent community search over temporal bipartite

graphs. In ADMA, pages 324–339. Springer, 2023.
[27] R. Li, P. Wang, P. Jia, X. Zhang, J. Zhao, J. Tao, Y. Yuan, and X. Guan. Approxi-

mately counting butterflies in large bipartite graph streams. TKDE, 2021.
[28] R.-H. Li, J. Su, L. Qin, J. X. Yu, andQ. Dai. Persistent community search in temporal

networks. In 2018 IEEE 34th International Conference on Data Engineering (ICDE),
pages 797–808. IEEE, 2018.

[29] Y. Li, J. Liu, H. Zhao, J. Sun, Y. Zhao, and G. Wang. Efficient continual cohesive

subgraph search in large temporal graphs. WWW, 24:1483–1509, 2021.

[30] B. Liu, L. Yuan, X. Lin, L. Qin, W. Zhang, and J. Zhou. Efficient (𝛼 , 𝛽)-core

computation: An index-based approach. WWW, pages 1130–1141, 2019.

[31] Q. Liu, X. Liao, X. Huang, J. Xu, and Y. Gao. Distributed (𝛼 , 𝛽)-core decomposition

over bipartite graphs. In ICDE, pages 909–921. IEEE, 2023.
[32] W. Luo, Q. Yang, Y. Fang, and X. Zhou. Efficient core maintenance in large

bipartite graphs. SIGMOD, 1(3):1–26, 2023.
[33] B. Lyu, L. Qin, X. Lin, Y. Zhang, Z. Qian, and J. Zhou. Maximum biclique search

at billion scale. PVLDB, 13(9):1359–1372, 2020.
[34] L. Ma, J. H. Cho, S. Kumar, and K. Achan. Seasonality-adjusted conceptual-

relevancy-aware recommender system in online groceries. In ICBD, pages 4435–
4443. IEEE, 2019.

[35] Z. Ma, Y. Liu, Y. Hu, J. Yang, C. Liu, and H. Dai. Efficient maintenance for maximal

bicliques in bipartite graph streams. WWW, pages 1–21, 2021.

[36] G. Palla, I. Derényi, I. Farkas, and T. Vicsek. Uncovering the overlapping commu-

nity structure of complex networks in nature and society. Nature, 435(7043):814–
818, 2005.

[37] R. Peeters. The maximum edge biclique problem is np-complete. Discrete. Appl.
Math., 131(3):651–654, 2003.

[38] H. Qin, R.-H. Li, Y. Yuan, G. Wang, L. Qin, and Z. Zhang. Mining bursting core

in large temporal graphs. PVLDB, 2022.
[39] H. Qin, R.-H. Li, Y. Yuan, G. Wang, W. Yang, and L. Qin. Periodic communities

mining in temporal networks: Concepts and algorithms. TKDE, 34(8):3927–3945,
2020.

[40] A. E. Sarıyüce, B. Gedik, G. Jacques-Silva, K.-L. Wu, and Ü. V. Çatalyürek. Incre-

mental k-core decomposition: algorithms and evaluation. VLDBJ, 25(3):425–447,
2016.

[41] J. Shi and J. Shun. Parallel algorithms for butterfly computations. SIAM, pages

16–30, 2020.

[42] B. Sun, T.-H. H. Chan, and M. Sozio. Fully dynamic approximate k-core decom-

position in hypergraphs. TKDD, 14(4):1–21, 2020.
[43] K. Sun, T. Qian, T. Chen, Y. Liang, Q. V. H. Nguyen, and H. Yin. Where to

go next: Modeling long-and short-term user preferences for point-of-interest

recommendation. In AAAI, volume 34, pages 214–221, 2020.

[44] Z. Sun, X. Huang, J. Xu, and F. Bonchi. Efficient probabilistic truss indexing on

uncertain graphs. WWW, pages 354–366, 2021.

[45] A. Tian, A. Zhou, Y. Wang, and L. Chen. Maximal d-truss search in dynamic

directed graphs. PVLDB, 16(9):2199–2211, 2023.
[46] A. Tian, A. Zhou, Y. Wang, X. Jian, and L. Chen. Efficient in-

dex for temporal core queries over bipartite graphs [technical report].

https://github.com/ExpCodeBase/tabc/blob/main/full.pdf [Online]. Accessed:

2024-07-09.

[47] J. Wang and J. Cheng. Truss decomposition in massive networks. PVLDB,
5(9):812–823, 2012.

[48] J. Wang, A. W.-C. Fu, and J. Cheng. Rectangle counting in large bipartite graphs.

Int. Congr. Big Data, pages 17–24, 2014.
[49] K. Wang, X. Lin, L. Qin, W. Zhang, and Y. Zhang. Efficient bitruss decomposition

for large-scale bipartite graphs. ICDE, pages 661–672, 2020.
[50] K. Wang, W. Zhang, X. Lin, Y. Zhang, L. Qin, and Y. Zhang. Efficient and effective

community search on large-scale bipartite graphs. ICDE, pages 85–96, 2021.
[51] Y. Wang, S. Cai, and M. Yin. New heuristic approaches for maximum balanced

biclique problem. Information Sciences, 432:362–375, 2018.
[52] Y. Wang, R. Xu, X. Jian, A. Zhou, and L. Chen. Towards distributed bitruss

decomposition on bipartite graphs. PVLDB, 15(9):1889–1901, 2022.
[53] S. Wasserman and K. Faust. Social network analysis - methods and applications,

volume 8 of Structural analysis in the social sciences. Cambridge University Press,

2007.

[54] H. Wu, J. Cheng, Y. Lu, Y. Ke, Y. Huang, D. Yan, and H. Wu. Core decomposition

in large temporal graphs. In ICBD, pages 649–658. IEEE, 2015.
[55] R. Xie, Y. Wang, R. Wang, Y. Lu, Y. Zou, F. Xia, and L. Lin. Long short-term

temporal meta-learning in online recommendation. In WSDM, pages 1168–1176,

2022.

[56] H. Yang, P. Gupta, R. Fernández Galán, D. Bu, and D. Jia. Seasonal relevance in

e-commerce search. In CIKM, pages 4293–4301, 2021.

[57] J. Yang, Y. Peng, and W. Zhang. (p, q)-biclique counting and enumeration for

large sparse bipartite graphs. PVLDB, 15(2):141–153, 2021.
[58] J. Yang, M. Zhong, Y. Zhu, T. Qian, M. Liu, and J. X. Yu. Scalable time-range

k-core query on temporal graphs. PVLDB, 16(5):1168–1180, 2023.
[59] Y. Yang, Y. Fang, M. E. Orlowska, W. Zhang, and X. Lin. Efficient bi-triangle

counting for large bipartite networks. PVLDB, 14(6):984–996, 2021.
[60] M. Yu, D. Wen, L. Qin, Y. Zhang, W. Zhang, and X. Lin. On querying historical

k-cores. PVLDB, 2021.
[61] L. Yuan, L. Qin, X. Lin, L. Chang, and W. Zhang. Diversified top-k clique search.

VLDBJ, 25(2):171–196, 2016.
[62] Q. Yuan, G. Cong, and C. Lin. COM: a generative model for group recommenda-

tion. SIGKDD, pages 163–172, 2014.
[63] Y. Zhang and S. Parthasarathy. Extracting analyzing and visualizing triangle

k-core motifs within networks. ICDE, pages 1049–1060, 2012.
[64] Y. Zhang, K. Wang, W. Zhang, X. Lin, and Y. Zhang. Pareto-optimal community

search on large bipartite graphs. CIKM, pages 2647–2656, 2021.

[65] Y. Zhang and J. X. Yu. Unboundedness and efficiency of truss maintenance in

evolving graphs. SIGMOD, pages 1024–1041, 2019.
[66] M. Zhong, J. Yang, Y. Zhu, T. Qian, M. Liu, and J. X. Yu. A unified and scalable

algorithm framework of user-defined temporal (𝑘, X)-core query. TKDE, 2024.
[67] A. Zhou, Y. Wang, and L. Chen. Finding large diverse communities on networks:

the edge maximum k*-partite clique. PVLDB, 13(12):2576–2589, 2020.
[68] A. Zhou, Y. Wang, and L. Chen. Butterfly counting on uncertain bipartite graphs.

PVLDB, 15(2):211–223, 2021.
[69] Z. Zou. Bitruss decomposition of bipartite graphs. DASFAA, pages 218–233,

2016.

2825

https://github.com/ExpCodeBase/tabc/blob/main/full.pdf
https://github.com/ExpCodeBase/tabc/blob/main/full.pdf

	Abstract
	1 Introduction
	1.1 Applications
	1.2 Challenges
	1.3 Contributions
	1.4 Outline

	2 Related Work
	3 Preliminaries
	3.1 Problem Definition

	4 Vertex-based Index
	4.1 DAG-like Hierarchy
	4.2 Qualified Time Window
	4.3 Overview of the Index IV
	4.4 Index Construction

	5 Query-Optimized Index
	5.1 Overview of the index IQO

	6 Superior-Optimized Index
	6.1 Overview of the index ISO
	6.2 The Construction of ISO
	6.3 The Maintenance of ISO

	7 Experiments
	7.1 Experimental Setups
	7.2 Query Processing
	7.3 Index Construction & Maintenance
	7.4 Index Size
	7.5 Case Study

	8 Conclusion
	Acknowledgments
	References

