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ABSTRACT
The availability of massive vehicle trajectory data enables the mod-

eling of road-network constrained movement as travel-cost distri-

butions rather than just single-valued costs, thereby capturing the

inherent uncertainty of movement and enabling improved rout-

ing quality. Thus, stochastic routing has been studied extensively

in the edge-centric model, where such costs are assigned to the

edges in a graph representation of a road network. However, as this

model still disregards important information in trajectories and fails

to capture dependencies among cost distributions, a path-centric

model, where costs are assigned to paths, has been proposed that

captures dependencies better and provides an improved foundation

for routing. Unfortunately, when applied in this model, existing

routing algorithms are inefficient due to two shortcomings that

we eliminate. First, when exploring candidate paths, existing algo-

rithms only consider the costs of candidate paths from the source

to intermediate vertices, while disregarding the costs of travel from

the intermediate vertices to the destination, causing many non-

competitive paths to be explored. We propose two heuristics for

estimating the cost from an intermediate vertex to the destina-

tion, thus improving routing efficiency. Second, the edge-centric

model relies on stochastic dominance-based pruning to improve

efficiency. This pruning assumes that costs are independent and is

therefore inapplicable in the path-centric model that takes depen-

dencies into account. We introduce a notion of virtual path that

effectively enables stochastic dominance-based pruning in the path-

based model, thus further improving efficiency. Empirical studies

using two real-world trajectory sets offer insight into the proper-

ties of the proposed solution, indicating that it enables efficient

stochastic routing in the path-centric model.
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1 INTRODUCTION
Emerging innovations in transportation with disruptive potential,

such as autonomous vehicles, transportation-as-a-service, and co-

ordinated fleet transportation, call for high-resolution routing. For

example, PostNord
1
, a logistics service provider, and FlexDanmark

2
,

a fleet transportation organization, often make deliveries with as-

sociated travel cost budgets, e.g., 2 hours. High-resolution routing

enables them to maximize arrivals within given time budgets when

scheduling trips, thereby improving the quality of their services [7].

Meanwhile, the availability of increasingly massive volumes of

vehicle trajectory data enables opportunities for capturing travel

costs, such as travel time, at an unprecedented level of detail. The

state-of-the-art models capture travel costs as distributions. This

level of detail enables the above services that are not possible when

using only average values. As another example, Table 1 shows the

travel-time distributions of two paths 𝑃𝐴 and 𝑃𝐵 from an office to

an airport, scheduled for an autonomous vehicle. The average travel

times, i.e., weighted sum, of 𝑃𝐴 and 𝑃𝐵 are 49 and 52, respectively.

If a person needs to arrive at the airport in 60 minutes, taking 𝑃𝐴 is

more risky since it incurs a 10% chance of being late, although it has

a smaller average. Given a source and a destination on an uncertain

road network, a departure time, and a travel cost budget, e.g., 60

minutes, we study the classical arriving on time problem [2, 22],

which conducts stochastic routing and aims to find a path that

maximizes the probability of arriving at the destination within the

cost budget.

Table 1: Travel Time Distributions for 𝑃𝐴 and 𝑃𝐵

Travel time (mins) 40 50 60 70 AVG

𝑃𝐴 0.5 0.2 0.2 0.1 49

𝑃𝐵 0 0.8 0.2 0 52

Travel cost distributions of an uncertain road networks are often

built from available vehicle trajectory data. Cost distributions are

used on two model settings: in the classical edge-centric (EDGE)

model [22, 23, 35] and in the recent PAth-CEntric (PACE) model [4,

1
https://www.postnord.dk/

2
https://flexdanmark.dk/

2893

https://doi.org/10.14778/3681954.3681971
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3681954.3681971
https://github.com/decisionintelligence/Route-sota
https://www.acm.org/publications/policies/artifact-review-and-badging-current


33]. In the paper, we study the problem of arriving on time in PACE

uncertain road networks. This is proven to be a more accurate way

to model travel costs in real traffic [4, 33].

Assume that 100 trajectories occurred on path 𝑃 = ⟨𝑒1, 𝑒2⟩, where
80 trajectories spent 10 minutes on 𝑒1 and 𝑒2, respectively; and the

other 20 trajectories spent 15 minutes each on both 𝑒1 and 𝑒2. These

trajectories suggest strong dependency—a driver is either fast or

slow on both edges. A driver is unlikely to be fast on one edge and

slow on the other edge. However, the EDGE model ignores such

dependency and simply splits the trajectories to fit edges 𝑒1 and 𝑒2,

and both edges are assigned the distribution {[10, 0.8], [15, 0.2]},
meaning that traversing 𝑒1 or 𝑒2 takes 10 minutes with probability

0.8 and 15 minutes with probability 0.2.

The PACEmodel solves the problem by maintaining the “correct”

joint distributions for paths directly. Specifically, following the

above example, in addition to the edge distributions, the PACE

model also maintains the joint distribution that captures, e.g., 10

and 10 minutes on 𝑒1 and 𝑒2 with a probability of 0.8, derived from

the original, non-split trajectories (see Table 2(a)), which preserves

cost dependencies.

Based on this joint distribution, the derived cost distribution of

path 𝑃 is consistent with the original trajectories (see Table 2(b)).

However, when using the PACE model, it is unlikely that there will

be sufficient data to maintain distributions for all meaningful paths

in the underlying road network. In particular, the longer a path is,

the fewer trajectories occurred on the path. Thus, the PACE model

resorts to maintaining distributions for short paths with sufficient

amounts of trajectories, e.g., above a threshold. We call such paths

trajectory-paths or T-paths for short.

Table 2: The Path-Centric Model, PACE

(a) Joint Distribution𝑊𝐽 (𝑃 )

⟨𝑒1, 𝑒2⟩ 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦

10, 10 0.80

15, 15 0.20

(b) Cost Distribution 𝐷 (𝑃 )

𝑃 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦

10 + 10 = 20 0.80

15 + 15 = 30 0.20

Computing the cost distribution of a path in PACE is complicated

by the existence of multiple ways of computing the cost from the

distributions of different T-paths and edges. For example, assume

that distributions for edges 𝑒1, 𝑒2, and 𝑒3 and for T-paths ⟨𝑒1, 𝑒2⟩ and
⟨𝑒2, 𝑒3⟩ exist. When computing the distribution of path ⟨𝑒1, 𝑒2, 𝑒3⟩,
we can use the distributions for T-path ⟨𝑒1, 𝑒2⟩ and edge 𝑒3, edge

𝑒1 and T-path ⟨𝑒2, 𝑒3⟩, or T-path ⟨𝑒1, 𝑒2⟩ and T-path ⟨𝑒2, 𝑒3⟩ which
overlap. An existing study [4] proves that the last option provides

the best accuracy as T-path ⟨𝑒1, 𝑒2⟩’s distribution preserves the

dependency between 𝑒1 and 𝑒2 and T-path ⟨𝑒2, 𝑒3⟩’s distribution
preserves the dependency between 𝑒2 and 𝑒3.

Although the PACE model offers better accuracy than the EDGE

model, stochastic routing on the PACE model often takes longer

than the EDGEmodel [1, 33], which is mainly due to two challenges.

Search Heuristics: Stochastic routing often needs to explore many

candidate paths from the source to intermediate vertices. The effi-

ciency depends highly on whether an algorithm is able to explore

more promising paths before less promising ones. To enable this,

the existing solution in the PACE model considers the distributions

of the candidate paths themselves [33]. However, it ignores the cost

from the intermediate vertices to the destination, thus often leading

to the exploration of non-promising paths.

Figure 1: Motivating Example

For example, in Figure 1, assume that we have three candidate

paths 𝑃1, 𝑃2, and 𝑃3 from source 𝑣𝑠 . When only considering the

candidate paths themselves, 𝑃3 is the most promising, i.e., having

the least expected cost and the largest probability that the cost is

below the budget. However, 𝑃3 is a bad choice since 𝑣 𝑗 is far away

from destination 𝑣𝑑 .

If we also consider the cost from the intermediate vertex to the

destination, 𝑃1 and 𝑃2 become more promising because although

𝑃1 and 𝑃2 themselves have higher cost than 𝑃3, intermediate vertex

𝑣𝑖 is closer to the destination. Thus, heuristics that are able to

accurately estimate the cost of travel from any intermediate vertex

to the destination can be very effective, assuming that the heuristics

are admissible to ensure correctness. We propose two types of

admissible heuristics, i.e., binary and budget-specific, for the PACE

model that are able to estimate the maximum probability of arriving

at the destination within the budget from an intermediate vertex.

Effective Pruning: Efficient stochastic routing in the EDGE model

relies on stochastic dominance-based pruning [22, 23]. For example,

consider Figure 1, where candidate paths 𝑃1 and 𝑃2 both go from

the source 𝑣𝑠 to an intermediate vertex 𝑣𝑖 . If the cost distribution

of 𝑃1 stochastically dominates the cost distribution of 𝑃2, we can

safely prune 𝑃2. This is equivalent to the deterministic case where

𝑃1 has a smaller cost value than 𝑃2. More specifically, due to the

independence assumption in the EDGE model, no matter which

edge 𝑒 is extended from 𝑣𝑖 , it is guaranteed that 𝐷 (𝑃1) ⊕ 𝐷 (𝑒)
stochastically dominates 𝐷 (𝑃2) ⊕𝐷 (𝑒) [22, 23], where ⊕ represents

the convolution operator and 𝐷 (·) represents the cost distribution
of a path or an edge. Thus, there is no need to further consider 𝑃2
because there is always a better path that is extended from 𝑃1.

Since the PACE model does consider dependency and does not

use convolution to compute the distribution of a path, such prun-

ing is no longer valid. As a result, massive amounts of candidate

paths must be explored, which adversely affects efficiency. We pro-

pose virtual-path based stochastic routing for PACE as the second

speedup technique. Here, we iteratively combine overlapping T-

paths into so-called virtual paths (V-paths for short), such that time

consuming distribution combination among overlapping T-paths is

pre-computed before routing. Further, as the V-paths preserve the

dependencies in the T-paths, it is possible to use stochastic domi-

nance based pruning with the V-paths, which improves efficiency.

To summarize, we make three contributions in the paper. First,

we propose two heuristics that are able to estimate the costs of

travel from intermediate vertices to the destination in the PACE

model. Second, we propose a method that introduces V-paths in the

PACE model, which enables effective pruning. Third, we conduct
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comprehensive experiments using two real-world data sets to gain

detailed insight into the effectiveness of the speedup techniques.

The paper is organized as follows. Section 2 covers the basics

of the PACE model. Section 3 presents the two versions of search

heuristics followed by virtual-path based stochastic routing in Sec-

tion 4. Section 5 offers the experimental studies, Section 6 reviews

related work, and Section 7 concludes. We provide additional infor-

mation elsewhere [8].

2 PRELIMINARIES
We cover the path-centric models and define the problem.

2.1 PAth-CEntric Model (PACE)
The path-centric model (PACE) [4, 33] models a road network as

a directed graph G𝑝 = (V,E, P,W), where V and E still represent
vertices and edges. Next, P is a set of paths that have been traversed

by at least 𝜏 trajectories. We call these trajectory paths (a.k.a., T-

paths).We evaluate the impact of threshold 𝜏 in experiments. Finally,

W is a weight function set. The first weight function𝑊 : E→ D
returns a cost distribution for each edge 𝑒 ∈ E, as in the EDGE

model. For each T-path, we maintain weight functions𝑊𝐽 and𝑊 ,

both with signature P → D. Given a T-path,𝑊𝐽 returns its joint

distribution that models the cost dependency among the edges in

the T-path, e.g., as seen in Table 2(a); and𝑊 returns a distribution

that captures the total cost of the T-path, e.g., as seen in Table 2(b).

Figure 2: Path-Centric Uncertain Road Network, PACE

Figure 2 shows a PACE graph with 5 T-paths in red lines and the

road network in black lines.

Due to the space limitation, Figure 2 only shows the total cost

distributions of T-paths and omits the joint distributions. Next, we

sketch how to compute the distribution of a path 𝑃 = ⟨𝑒1, 𝑒2, . . . , 𝑒𝑛⟩
in PACE. As illustrated in the introduction, this distribution can gen-

erally be assembled from different sets of edge and T-path costs. It

has been shown that the coarsest combination, i.e., the combination

with the longest overlapping T-paths, gives the most accurate uncer-

tain travel time [4]. For example, when computing the distribution

of 𝑃 = ⟨𝑒1, 𝑒4, 𝑒9⟩, the coarsest combination is {𝑝1, 𝑝2}, which is

coarser than combinations {𝑝1, 𝑒9}, {𝑒1, 𝑝2}, and {𝑒1, 𝑒4, 𝑒9}. After
identifying the coarsest T-path sequence𝐶𝑃𝑆 (𝑃) = (𝑝1, 𝑝2, . . . , 𝑝𝑚)
for path 𝑃 , we use a T-path assembly operation ⋄ to compute the

joint distribution of 𝑃 [33]:

𝐷 𝐽 (𝑃) = 𝑝1 ⋄ 𝑝2 ⋄ . . . ⋄ 𝑝𝑚 =
Π𝑚
𝑖=1

𝑊𝐽 (𝑝𝑖 )
Π𝑚−1
𝑖=1

𝑊𝐽 (𝑝𝑖 ∩ 𝑝𝑖+1)
, (1)

where 𝑝𝑖 ∩ 𝑝𝑖+1 denotes the overlap sub-path of the T-paths 𝑝𝑖
and 𝑝𝑖+1. From the joint distribution maintained in PACE, we can

derive the distribution of the cost of the path 𝐷 𝐽 (𝑃) that captures

cost dependencies. Consider the example of 𝑃 = ⟨𝑒1, 𝑒4, 𝑒9⟩. In the

PACE model, we have 𝐷 𝐽 (𝑃) =
𝑊𝐽 (𝑝1 ) ·𝑊𝐽 (𝑝2 )

𝑊𝐽 (⟨𝑒4 ⟩) as 𝑝1 ∩ 𝑝2 = ⟨𝑒4⟩. In
the case of no overlapping between two sequential T-paths, they

are assembled by a convolution operation, as implemented in the

EDGE.

We make a note on the notation in the paper: (1)𝑊𝐽 and𝑊

represent distributions that are maintained in EDGE or PACE; (2)

𝐷 𝐽 and 𝐷 represent distributions that are derived from𝑊𝐽 and𝑊 ;

(3)𝑊𝐽 and 𝐷 𝐽 indicate joint distributions.

Finally, EDGE and PACE each supports time-dependent uncer-

tainty modeling by maintaining different uncertain graphs for dif-

ferent time periods, e.g., peak vs. off-peak hours.

2.2 Problem Definition
Given a source vertex 𝑣𝑠 , a destination vertex 𝑣𝑑 , a departure time

𝑡 , and a travel cost budget 𝐵, we aim at identifying path 𝑃∗ from 𝑣𝑠
to 𝑣𝑑 that has the largest probability of arriving at destination 𝑣𝑑
within the budget 𝐵 when leaving at 𝑡 .

𝑃∗ = arg max

𝑃∈Path
Prob(𝐷 (𝑃) ≤ 𝐵), (2)

where set Path contains all paths from 𝑣𝑠 to 𝑣𝑑 , and 𝐷 (𝑃) refers to
the cost distribution of path 𝑃 leaving at 𝑡 using the PACE model.

For example, given travel time budget 𝐵 = 60 minutes, we aim

at finding the path that has the highest probability of arriving 𝑣𝑑
within 60 minutes, if a driver departs at 8:00 a.m.

Limitations of existing stochastic routing in PACE: The Exist-
ing stochastic routing in PACE [33] (available in [8]) faces the two

challenges. First, it starts exploring candidate paths from source 𝑣𝑠 ,

each time extending a candidate path with its neighboring edges.

A priority queue is used to maintain candidate paths, and each can-

didate path has a priority, e.g., the expected cost of the candidate

path or the probability that the candidate path has cost below the

budget 𝐵. It keeps exploring candidate paths until no path with

higher probability exists. This approach determines the candidate

path exploration priority purely based on the distributions of dif-

ferent candidate paths, while ignoring the costs from intermediate

vertices to the destination. This leads to unnecessary exploration

of non-competitive paths (e.g., 𝑃3 in Figure 1), yielding reduced

efficiency.

Second, stochastic dominance based pruning is inapplicable in

the PACE model. Consider 𝑃1 and 𝑃2 in Figure 1. When extending

both 𝑃1 and 𝑃2 with edge 𝑒 to get two new paths 𝑃 ′
1
and 𝑃 ′

2
, 𝐷 (𝑃1) ⋄

𝑝𝑥 and 𝐷 (𝑃2) ⋄ 𝑝𝑦 are the distributions for 𝑃 ′
1
and 𝑃 ′

2
. Here, 𝑝𝑥

and 𝑝𝑦 are the longest T-paths that cover 𝑒 and some edges in

𝑃1 and 𝑃2, respectively, and 𝑝𝑥 and 𝑝𝑦 are often different. Thus,

although𝐷 (𝑃1) stochastically dominates𝐷 (𝑃2),𝐷 (𝑃1)⋄𝑝𝑥 may not

stochastically dominates 𝐷 (𝑃2) ⋄𝑝𝑦 , as 𝑝𝑥 and 𝑝𝑦 may be different,

rendering stochastic dominance based pruning inapplicable.

3 SEARCH HEURISTICS
3.1 Definition of Heuristics
A routing algorithm explores a search space of candidate paths.

During the exploration, it is beneficial to first explore paths that are

expected to have high probabilities of arriving at the destination

within the budget. Assume that we explore a path 𝑃𝑖 from source
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𝑣𝑠 to an intermediate vertex 𝑣𝑖 . We are able to compute the cost

distribution of 𝑃𝑖 using the PACE model. However, we do not know

the cost distribution of the path from intermediate vertex 𝑣𝑖 to the

destination 𝑣𝑑 because we do not yet know that path—there may

possibly be many paths from 𝑣𝑖 to 𝑣𝑑 .

We target a heuristic function𝑈 (𝑣𝑖 , 𝑣𝑑 , 𝑥) that is able to estimate

the largest possible probability, among possibly multiple paths

from 𝑣𝑖 to 𝑣𝑑 , of having a cost within 𝑥 units. Supported by the

branch-and-bound principle that is often used to solve optimization

problems with admissible heuristics [6], we need to ensure that the

heuristic function is admissible, meaning that the function never

underestimates the probability of being able to travel from 𝑣𝑖 to 𝑣𝑑
within 𝑥 units. In other words, the heuristic function must provide

an upper bound on the probability.

If the upper bound probability of a candidate path is lower than

the probability of a path 𝑃∗ that already reaches the destination,

then the candidate path can be pruned safely because it cannot get

a higher probability than that of 𝑃∗. This guarantees correctness.
Since the destination is fixed for a given query, we often omit

𝑣𝑑 and use𝑈 (𝑣𝑖 , 𝑥) when the query is clear. However, the heuristic

function is destination-specific, meaning that𝑈 (𝑣𝑖 , 𝑥) is different
for different query destinations. Based on the heuristic function,

we are able to estimate the maximum probability of arriving at

destination 𝑣𝑑 within budget 𝐵 when using path 𝑃𝑖 as follows:

maxProb(𝑃𝑖 , 𝐵) =
𝐵∑︂
𝑡=1

𝐷 (𝑃𝑖 ).pdf (𝑡) ·𝑈 (𝑣𝑖 , 𝐵 − 𝑡), (3)

where 𝐷 (𝑃𝑖 ).pdf (𝑡) denotes the probability of the travel taking 𝑡

units when following path 𝑃𝑖 from source 𝑣𝑠 to intermediate vertex

𝑣𝑖 , which is computed using the PACE model. Next, 𝑈 (𝑣𝑖 , 𝐵 − 𝑡)
denotes the largest probability of travel from 𝑣𝑖 to 𝑣𝑑 costing at

most 𝐵 − 𝑡 units, which is returned by the heuristic function.

The maximum probability of arriving at the destination within 𝐵

units when using path 𝑃𝑖 is the sum, over all possible costs 𝑡 , of the

products of the probability that 𝑃𝑖 takes 𝑡 units and the maximum

probability that the remaining path from 𝑣𝑖 to 𝑣𝑑 takes at most 𝐵− 𝑡
units, as illustrated in Figure 3(a). In Figure 3(b), 𝑃𝑖 ’s distribution

is {[8, 0.9], [10, 0.1]}. When budget 𝐵 = 25, we get maxProb(𝑃𝑖 ,
25) = 0.9 ·𝑈 (𝑣1, 17) + 0.1 ·𝑈 (𝑣1, 15).

Figure 3: Search Heuristics

With the heuristic function, we are able to first explore more

promising paths, i.e., paths that have higher maxProb values. In

addition, it enables early stopping. If the path with the largest

maxProb value, say 𝑃∗, already reaches the destination, we can

safely stop exploring other paths. This is because, even when using

admissible heuristics, the other paths can only achieve probabilities

that are no greater than 𝑃∗’s probability. Thus, in the best case, the

other paths cannot have a larger probability than that of 𝑃∗ and it

is safe to stop.

We proceed to introduce two different strategies for instantiating

the admissible heuristic function𝑈 (𝑣𝑖 , 𝑥)—a binary heuristic and a

budget-specific heuristic.

3.2 Binary Heuristic
The binary heuristics simplifies function 𝑈 (𝑣𝑖 , 𝑥) by only distin-

guishing between probability values 0 and 1—whether or not it is

possible to go from 𝑣𝑖 to the destination within 𝑥 units.

To this end, we maintain an auxiliary function 𝑣𝑖 .getMin() for
each vertex 𝑣𝑖 that returns the least travel cost required to travel

from 𝑣𝑖 to destination 𝑣𝑑 . We define the binary heuristics in Eq. 4.

𝑈 (𝑣𝑖 , 𝑥) =
{︄
0 if 𝑥 < 𝑣𝑖 .getMin()
1 if 𝑥 ≥ 𝑣𝑖 .getMin()

(4)

If𝑥 is below 𝑣𝑖 .getMin(), it is impossible to go from 𝑣𝑖 to 𝑣𝑑 within

𝑥 units. As 𝑣𝑖 .getMin() is the smallest travel cost within which it is

possible to reach 𝑣𝑑 , it is impossible to reach 𝑣𝑑 with a travel cost

𝑥 that is smaller than 𝑣𝑖 .getMin(). Thus, the highest probability of

reaching 𝑣𝑑 within 𝑥 units is 0. Otherwise, if 𝑥 ≥ 𝑣𝑖 .getMin(), it is
possible to reach 𝑣𝑑 within 𝑥 units. In this case, we set𝑈 (𝑣𝑖 , 𝑥) = 1,

which is a very optimistic estimate. The resulting binary heuristic

is admissible because the probability of reaching 𝑣𝑑 within 𝑥 units

is at most 1, meaning that the heuristic never underestimates the

probability. In other words, the actual probability of reaching 𝑣𝑑
from 𝑥𝑖 may be less than 1 because it can also take more than 𝑥

units.

Next, we instantiate function 𝑣𝑖 .getMin() for a given destination

𝑣𝑑 . The main idea is to perform a backward search from destination

𝑣𝑑 to all other vertices and then annotate each vertex with the least

travel cost from the vertex to 𝑣𝑑 .

To this end, we first build a reversed graph G𝑝
rev

= (V,E′, P′,W′)
from G𝑝 = (V,E, P,W), where the vertices remain unchanged but

the directions of the edges in E′ and T-paths in P′ are reversed

compared to the counterparts in E and P. Weight function W′

maintains only deterministic costs, thus mapping a reversed edge

or T-path to the minimum cost in its distribution. For example,

Figure 5 includes a reversed edge 𝑒′
1
= (𝑣1, 𝑣𝑠 ) has costW′ (𝑒′

1
) = 8

because of edge 𝑒1 = (𝑣𝑠 , 𝑣1) in G𝑝 (cf. black part of 2 ) that has

cost distribution W(𝑒1) = {[8, 0.9], [10, 0.1]}, in which 8 is the

minimum cost. Similarly, T-path 𝑝1 = ⟨𝑒1, 𝑒4⟩ in Figure 2 yields the

reversed T-path 𝑝′
1
= ⟨𝑒′

4
, 𝑒′
1
⟩ in Figure 5, with𝑊 ′ (𝑝′

1
) = 16.

Figure 4: Computing 𝑣𝑖 .getMin(), Given Destination 𝑣𝑑

Next, we explore the reversed graph G𝑝
rev

starting from 𝑣𝑑 , an-

notating each vertex with the least cost from 𝑣𝑑 to the vertex. If

only considering reversed edges and disregard reversed T-paths [1],
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Figure 5: Reversed Graph G𝑝
rev

Dijkstra’s algorithm could produce a shortest path tree, as exempli-

fied in Figure 4(a). However, the reversed T-paths render Dijkstra’s

algorithm inapplicable.

For example, when only considering reversed edges, the vertex

𝑣5 is annotated with 13 (i.e., the sum of the weights of 𝑒′
8
and

𝑒′
6
). When considering reversed T-paths, reversed T-path 𝑝′

4
has a

weight𝑊 ′ (𝑝′
4
) = 15, which exceeds the sum of the weights of 𝑒′

8

and 𝑒′
6
. According to the theory underlying the PACE model [4, 33],

the T-path weight is more accurate as it preserves the dependency

between the two edges better. Thus, we should annotate 𝑣5 with

the reversed T-path cost𝑊 ′ (𝑝′
4
) = 15. However, if we simply run

Dijkstra’s algorithm, 𝑣5 is annotated with 13 as it is smaller than

15. This exemplifies why we need a new algorithm that is able to

consider reversed T-paths that produce more accurate weights in

PACE.

Algorithm 1 shows a new shortest path tree generation algorithm

that takes into account the weights of the T-paths. We maintain two

costs 𝑐1 and 𝑐2 for each vertex 𝑣𝑖 . Cost 𝑐1 represents the shortest

path weight from 𝑣𝑑 to 𝑣𝑖 , where the shortest path may use both

reversed edges and reversed T-paths. Cost 𝑐2 represents the number

of edges in the reversed T-paths that are used to connect 𝑣𝑑 to

𝑣𝑖 . We prefer low values for 𝑐1 and high values for 𝑐2, meaning

that we prefer shortest paths and reversed T-paths with many

edges. We use a priority queue 𝑄 to maintain the vertices, where

the priority is according to cost 𝑐1. Table 3 shows the first three

iterations when applying Algorithm 1 to G𝑝
rev

from Figure 5. In the

first three iterations, the priority queue peeks vertices 𝑣𝑑 , 𝑣6, and 𝑣3,

respectively, as shown in the top row of Table 3. For each iteration,

we show the vertices in the priority queue 𝑄 , the costs 𝑐1 and 𝑐2
of each vertex, and the reversed edge or T-path that connects the

vertex from its parent in the shortest path tree, denoted by Par .

Starting from 𝑣𝑑 , its neighbor vertices 𝑣6, 𝑣3, 𝑣5, and 𝑣4 are ex-

plored by following reversed edges 𝑒′
8
and 𝑒′

10
and reversed T-paths

𝑝′
4
and 𝑝′

5
, respectively (Line 9), resulting in 𝑐1 values 4, 7, 15, and

30 (Line 10). Since vertices 𝑣5 and 𝑣4 are reached from 𝑣𝑑 via re-

versed T-paths 𝑝′
4
= ⟨𝑒′

8
, 𝑒′
6
⟩ and 𝑝′

5
= ⟨𝑒′

8
, 𝑒′
6
, 𝑒′
3
⟩, their 𝑐2 values

are 2 and 3, indicating that there are 2 and 3 edges in the reversed

T-paths that connect 𝑣𝑑 to 𝑣5 and to 𝑣6, respectively (using func-

tion countEdge(𝑒𝑝) in Line 11). The 𝑐2 values for 𝑣6 and 𝑣3 are zero

because they do not use reversed T-paths.

In the second iteration, as shown in Table 3, the priority queue

peeks 𝑣6, which has three neighbors 𝑣5, 𝑣2, and 𝑣4 by following 𝑒′
6
,

𝑒′
7
, and 𝑝′

3
. When visiting 𝑣5 by the reversed edge 𝑒′

6
, we obtain

𝑐1 = 13 and 𝑐2 = 0 (Lines 10 and 11). Now, we need to consider

whether we should replace the existing 𝑐1 and 𝑐2 values for vertex

𝑣5 in the priority queue with 𝑐1 and 𝑐2.

Algorithm 1: Shortest Path Tree Generation in PACE

Input: GP
rev

= (V,E′, P′,W′ ) , 𝑣𝑑 ;
Output: Shortest path tree𝑇 from 𝑣𝑑 ;

1 Init (V) ; /∗ set 𝑐1 ←∞ and 𝑐2 ← 0 for each vertex ∗/
2 Shortest path tree𝑇 ← ∅;
3 Priority queue𝑄 ← ∅;
4 𝑣𝑑 .𝑐1 ← 0;

5 𝑄.push(𝑣𝑑 ) ;
6 while𝑄 ≠ ∅ do
7 𝑣 ← 𝑄.𝑝𝑒𝑒𝑘 ( ) ;
8 𝑇 .𝑎𝑑𝑑 (𝑣) ;
9 for each vertex 𝑢 that is reachable from 𝑣 by a reversed edge or

T-path 𝑒𝑝 do
10 𝑐1 ← 𝑣.𝑐1 +𝑊 ′ (𝑒𝑝 ) ;
11 𝑐2 ← 𝑣.𝑐2 + countEdges (𝑒𝑝 ) ;
12 switch checkDominance (𝑐1, 𝑐2,𝑢.𝑐1,𝑢.𝑐2 ) do
13 case Non-domination do
14 �̂�

old
← tracePath(𝑣𝑑 ,𝑢 ) ;

15 �̂�new ← tracePath(𝑣𝑑 , 𝑣) + ⟨𝑣,𝑢 ⟩;
16 if (�̂�

old
≠ �̂�new ) && (𝑐1 < 𝑢.𝑐1) then

17 𝑢.𝑐1 ← 𝑐1; 𝑢.𝑐2 ← 𝑐2; 𝑢.parent ← 𝑣;

18 𝑄.add (𝑢 ) ;
19 if (�̂�

old
== �̂�new ) && (𝑐2 > 𝑢.𝑐2) then

20 𝑢.𝑐1 ← 𝑐1; 𝑢.𝑐2 ← 𝑐2; 𝑢.parent ← 𝑣;

21 𝑄.add (𝑢 ) ;

22 case Domination do
23 𝑢.𝑐1 ← 𝑐1; 𝑢.𝑐2 ← 𝑐2; 𝑢.parent ← 𝑣;

24 𝑄.add (𝑢 ) ;

25 return𝑇 ;

Table 3: Shortest Path Tree Generation in PACE

Iteration 1 Iteration 2 Iteration 3

𝑣𝑑 .𝑐1 = 0 𝑣6 .𝑐1 = 4 𝑣3 .𝑐1 = 7

𝑄 𝑐1, 𝑐2 Par 𝑄 𝑐1, 𝑐2 Par 𝑄 𝑐1, 𝑐2 Par

𝑣6 4, 0 𝑒′
8

𝑣3 7, 0 𝑒′
10

𝑣5 15, 3 𝑝′
4

𝑣3 7, 0 𝑒′
10

𝑣5 15, 2 𝑝′
4

𝑣2 12, 0 𝑒′
9

𝑣5 15, 2 𝑝′
4

𝑣2 16, 0 𝑒′
7

𝑣1 20, 2 𝑝′
2

𝑣4 30, 3 𝑝′
5

𝑣4 30, 3 𝑝′
5

𝑣4 30, 3 𝑝′
5

To utilize the accurate cost valuesmaintained in reversed T-paths,

a smaller 𝑐1 but a larger 𝑐2 are preferred, meaning that we aim at (1)

identifying the least cost from 𝑣𝑑 to a vertex and at (2) maximizing

the use of reversed T-paths, especially long ones, during the search.

Following this principle, we need to consider both values when

making a decision on whether to update an existing vertex in the

priority queue based on a new candidate path. More specifically,

vertex 𝑣5 has 𝑐1 = 15 and 𝑐2 = 2 through ⟨𝑝′
4
⟩ in the priority queue.

Now, the new candidate path ⟨𝑒′
8
, 𝑒′
6
⟩ has 𝑐1 = 13 and 𝑐2 = 0. We

apply a checkDominance(·) function (Line 12) to compare the two

values following the concept of pareto-optimality. We define two

relationships—non-domination and domination.

Non-domination (lines 13–21). If the new candidate path is

better in one value but worse in the other than those already in the
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priority queue, we are in the non-domination case. For example,

since 𝑐1 < 𝑣5 .𝑐1 and 𝑐2 < 𝑣5 .𝑐2, this is a non-domination case.

In the non-domination case, we consider the new candidate path

�̂�𝑛𝑒𝑤 and the old path �̂�𝑜𝑙𝑑 that leads to the values in the priority

queue. We check whether they correspond to the same path in the

road network (using function tracePath(·) in lines 14–15). If yes,

following criterion (2), we use the path with more edges covered by

T-paths as the corresponding cost should be more accurate. If no,

we follow criterion (1) and use the path that has a smaller 𝑐1 value

to make sure that we find the minimum cost of candidate paths.

In the above example, paths �̂�𝑛𝑒𝑤 and �̂�𝑜𝑙𝑑 both correspond to

the same path ⟨𝑒′
8
, 𝑒′
6
⟩. We then keep the values in the priority queue

since 𝑣5 .𝑐2 = 2 indicates that two edges are covered by T-paths,

while 𝑐2 = 0 indicates that no edges are covered by T-paths in the

new candidate path �̂�𝑛𝑒𝑤 .

Domination (Lines 22–24). If the candidate path is better in

one value and not worse in the other value than those already in

the priority queue, domination occurs. In the domination case, we

update the priority queue using the candidate path.

For example, at the third iteration, where 𝑣3 is peeked from the

priority queue, 𝑣2 is visited again as 𝑣3’s neighbor via 𝑒
′
9
. We now

have 𝑣2 .𝑐1 = 16 and 𝑣2 .𝑐2 = 0, and 𝑐1 = 12 and 𝑐2 = 0. Since

𝑐1 < 𝑢.𝑐1 and 𝑐2 = 𝑢.𝑐2, we update 𝑣2 .𝑐1 and 𝑣2 .𝑐2 to be 𝑐1 and

𝑐2. If the candidate path is dominated by the values already in the

priority queue, we do nothing.

Figure 4(b) shows the identified shortest path tree using both

reversed edges and T-paths.

The time and space complexity of Algorithm 1 is 𝑂 (( |E′ | +
|P′ |)𝑙𝑔 |V|) and 𝑂 ( |V|2), respectively. Analysis details are provided
elsewhere [8].

3.3 Budget-Specific Heuristic
The binary heuristic often provides overly optimistic probabilities

from an intermediate vertex to the destination, which can lead to

unnecessary exploration of paths that cannot provide high proba-

bilities of arriving at the destination within the budget. To enable

more accurate heuristics, we propose a budget-specific heuristic

that formulates function 𝑈 (𝑣𝑖 , 𝑥) at a finer granularity so that it

can return probabilities in the range [0, 1]. Specifically,

𝑈 (𝑣𝑖 , 𝑥) = max

𝑧∈𝑂𝑁 (𝑣𝑖 )
𝐻 (𝑣𝑖 , 𝑧, 𝑥),

𝐻 (𝑣𝑖 , 𝑧, 𝑥) =
𝑥∑︂

𝑘=1

W(⟨𝑣𝑖 , 𝑧⟩).pdf (𝑘) ·𝑈 (𝑧, 𝑥 − 𝑘),
(5)

and 𝑂𝑁 (𝑣𝑖 ) includes 𝑣𝑖 ’s outgoing neighbor vertices. Recall that

the heuristic function 𝑈 (𝑣𝑖 , 𝑥) returns the largest probability of

reaching 𝑣𝑑 from 𝑣𝑖 within 𝑥 units. Eq. 5 computes this probability

by getting the largest 𝐻 (𝑣𝑖 , 𝑧, 𝑥) over all 𝑣𝑖 ’s outgoing neighbor

vertices 𝑧, where 𝐻 (𝑣𝑖 , 𝑧, 𝑥) represents the probability of arriving

at 𝑣𝑑 within time budget 𝑥 when following ⟨𝑣𝑖 , 𝑧⟩ by first going

from 𝑣𝑖 to vertex 𝑧 and then to 𝑣𝑑 . Note that ⟨𝑣𝑖 , 𝑧⟩ may be an

edge or a T-path. Since the heuristic function never ignores any

possibility leaving from 𝑣𝑖 , the function never underestimates the

probability and thus is admissible. More specifically, we define

𝐻 (𝑣𝑖 , 𝑧, 𝑥) as the sum, over all possible costs 𝑘 ∈ [1, 𝑥], of the
products of the probability that it takes 𝑘 units from 𝑣𝑖 to vertex

𝑧, i.e.,W(⟨𝑣𝑖 , 𝑧⟩).pdf (𝑘), and the probability that it takes at most

𝑥 − 𝑘 units to travel from 𝑧 to destination 𝑣𝑑 , i.e.,𝑈 (𝑧, 𝑥 − 𝑘).

3.3.1 Heuristic Tables. As we aim at providing 𝑈 (𝑣𝑖 , 𝑥) at a fine
granularity, we need to consider different values for 𝑥 . To this end,

we define the finest budget granularity 𝛿 and then consider multiple

budget values 𝛿 , 2 · 𝛿 , . . ., and 𝜂 · 𝛿 for 𝑥 . The largest value 𝜂 · 𝛿
ensures that 𝑈 (𝑣𝑖 , 𝜂 · 𝛿) = 1 for all vertices 𝑣𝑖 given a destination

vertex 𝑣𝑑 . Then, we can represent function 𝑈 (𝑣𝑖 , 𝑥) as a heuristic
table with |V| rows and 𝜂 columns. The cell in the 𝑖-th row and 𝑗-th

column represents value𝑈 (𝑣𝑖 , 𝑗 · 𝛿).
Table 4 shows an example heuristic table for destination vertex

𝑣𝑑 based on the graph shown in Figure 2. Here, 𝛿 is set to 3, and the

largest budget is 36 because no matter at which vertex we start, the

probability that we reach destination 𝑣𝑑 within 36 units is 1. The

blue cell in the row of vertex 𝑣5 and the column of budget 𝑥 = 15

denotes 𝑈 (𝑣5, 15) = 0.5, meaning that the largest probability of

reaching 𝑣𝑑 from 𝑣5 within time budget 15 is 0.5.

Table 4: Heuristic Table of𝑈 (𝑣𝑖 , 𝑥), Destination 𝑣𝑑

x 3 6 9 12 15 18 21 24 27 30 33 36

𝑣𝑠 0 0 0 0 0 0 0 0 0 0.18 0.91 1

𝑣1 0 0 0 0 0 0 0.12 1 1 1 1 1

𝑣2 0 0 0 0 0.6 1 1 1 1 1 1 1

𝑣3 0 0 1 1 1 1 1 1 1 1 1 1

𝑣4 0 0 0 0 0 0 0 0 0 0.6 1 1

𝑣5 0 0 0 0 0.5 1 1 1 1 1 1 1

𝑣6 0 1 1 1 1 1 1 1 1 1 1 1

𝑣𝑑 1 1 1 1 1 1 1 1 1 1 1 1

The binary heuristic can also be represented as a heuristic table.

Specifically, for vertex 𝑣𝑖 , we identify the smallest budget value in

the table that is larger than or equal to 𝑣𝑖 .getMin(), say 𝑗 · 𝛿 . Then,
in the row for 𝑣𝑖 , the first 𝑗 − 1 cells are 0, and the remaining cells

are 1.

The budget-specific heuristic provides finer-granularity proba-

bilities than the binary heuristic, which estimates the probability of

an intermediate vertex 𝑣𝑖 reaching 𝑣𝑑 within the time budget more

accurately. Thus, budget-specific heuristic helps path exploration

so that more promising candidate paths are explored first.

3.3.2 Instantiating Heuristic Tables. Efficiently instantiating a budget-

specific heuristic table is non-trivial. A naive and computationally

expensive approach is to compute according to Eq. 5 for each of

|V| · 𝜂 cells for each destination, i.e., for each of |V|2 · 𝜂 cells in the

heuristic table.

We make two observations that can speed up the heuristic table

instantiation. First, for each row, 𝑙 is the smallest budget value

whose cell is larger than 0, and 𝑠 is the smallest budget values

whose cell is 1. Thus, all budget values smaller than 𝑙 should have

cells of 0, and all budget values larger than 𝑠 should have cells of 1.

In other words, the cells to the left of 𝑙 ’s cell are 0, and the cells to

the right of 𝑠’s cell are 1. For example, in Table 4, for 𝑣5, we have

𝑙 = 15 and 𝑠 = 18, and cells to the left of 15 are 0 and the cells on the

right of 18 are 1. This observation suggests that for each vertex, we

need to identify the two budget values 𝑙 and 𝑠 and compute values

only for the cells between 𝑙 and 𝑠 .

Second, all cells for destination vertex 𝑣𝑑 are 1, since the probabil-

ity of going from the destination vertex to itself within any budget
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(a) Computing𝑈 (𝑣𝑖 , 𝑥 ) (b) Computing𝑈 (𝑣𝑑 , 𝑥 ) (c) Computing𝑈 (𝑣3, 𝑥 ) (d) Computing𝑈 (𝑣4, 𝑥 )

Figure 6: Computing Budget Specific Heuristic: (a) Provides an Abstraction of the Heuristic Computation for any Vertex 𝑣𝑖 ; (b),
(c) and (d) Show Concrete Heuristic Computations for Vertices 𝑣𝑑 , 𝑣3, and 𝑣4, Respectively

is always 1. Thus𝑈 (𝑣𝑑 , 𝑥) = 1 no matter what 𝑥 is. This motivates

us to compute according to Eq. 5 starting from the destination 𝑣𝑑 .

Based on the above two observations, we propose Algorithm 2 to

instantiate a heuristic table for a given destination 𝑣𝑑 . Algorithm 2

takes as input graph G𝑝 and destination 𝑣𝑑 , as well as 𝛿 and 𝜂 that

specify different budget values. Algorithm 2 returns heuristic table

U, where each row includes the heuristic function values𝑈 (𝑣𝑖 , 𝑥)
for a vertex, as exemplified by Table 4. To enable compact storage,

we only store budget values between 𝑙 and 𝑠 . The search strategy

in Algorithm 2 is shown in Figure 6.

We use a FIFO queue to maintain the vertices. First, we insert

the destination 𝑣𝑑 , and iteratively check each vertex in the queue

until the queue is empty. For each iteration, we remove a vertex

𝑣𝑖 from the queue and perform two tasks—(1) compute 𝑈 (𝑣𝑖 , 𝑥)
using Eq. 5 and the above two observations and (2) insert into the

queue all incoming vertices that are connected to 𝑣𝑖 by an edge or

a T-path and that are not yet computed in the heuristic table (see

Figure 6(a)).

Algorithm 2: BudgetSpecificHeuristics
Input: G𝑝 = (V,E, P,W) , 𝑣𝑑 , 𝛿 , 𝜂, U← ∅;
Output: Heuristic table U;

1 Queue𝑄 ← ∅;
2 𝑄.enqueue (𝑣𝑑 ) ;
3 while𝑄 ≠ ∅ do
4 𝑣∗ ← 𝑄.𝑑𝑒𝑞𝑢𝑒𝑢𝑒 ( ) ;/∗ Perform Task (1) ∗/
5 if 𝑣∗ = 𝑣𝑑 then
6 for each 𝑖 from 1 to 𝜂 do
7 U(𝑣∗, 𝑖 · 𝛿 ) ← 1

8 else
9 𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑂𝑛𝑒𝑅𝑜𝑤𝑈 (G𝑝 , 𝑣∗, 𝛿, 𝜂,U) ;

10 /∗ Perform Task (2) ∗/
11 for each vertex 𝑣, where ⟨𝑣, 𝑣∗ ⟩ ∈ E ∪ P do
12 if The row for vertex 𝑣 in U is still empty then
13 𝑄.enqueue (𝑣) ;

14 return U;

Task (1): Based on the second observation, if 𝑣𝑖 is the destination

vertex 𝑣𝑑 , 𝑈 (𝑣𝑖 , 𝑥) = 1 for all budget value 𝑥 . Otherwise, according

to the first observation, we need to identify the two boundary

budget values 𝑙 and 𝑠 . Here, the 𝑙 value should be the smallest budget

Algorithm 3: ComputeOneRowU

Input: G𝑝 = (V,E, P,W) , 𝑣𝑖 , 𝛿 , 𝜂, U;
1 𝑙 ← the smallest budget that is no less than 𝑣𝑖 .getMin( ) ;
2 𝑠 ← 𝜂 · 𝛿 ;
3 for each each budget 𝑥 that is smaller than 𝑙 do
4 𝑈 (𝑣𝑖 , 𝑥 ) ← 0; /∗ left cells of 𝑙 are all 0 ∗/
5 /∗ Compute𝑈 (𝑣𝑖 , 𝑥 ) using Eq. 5 ∗/
6 for each vertex 𝑧, where ⟨𝑣𝑖 , 𝑧⟩ ∈ E ∪ P, do
7 if The row for vertex 𝑧 in U is still empty then
8 𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑂𝑛𝑒𝑅𝑜𝑤𝑈 (G𝑝 , 𝑧, 𝛿, 𝜂,U) ;
9 𝑥 ← 𝑙 ;

10 while 𝑥 < 𝜂 · 𝛿 do
11 𝐻 (𝑣𝑖 , 𝑧, 𝑥 ) ← 0;

12 for each cost 𝑐 ∈ W(⟨𝑣𝑖 , 𝑧⟩) do
13 𝐻 (𝑣𝑖 , 𝑧, 𝑥 ) ←

𝐻 (𝑣𝑖 , 𝑧, 𝑥 ) +W(⟨𝑣𝑖 , 𝑧⟩) .pdf (𝑐 ) ·𝑈 (𝑧, 𝑥 − 𝑐 ) ;
14 if 𝐻 (𝑣𝑖 , 𝑧, 𝑥 ) < 1 then
15 𝑥 ← 𝑥 + 𝛿 ; /∗ next time budget ∗/
16 else
17 break;

18 𝑠 ← min(𝑠, 𝑥 ) ;
19 for each budget 𝑥 ∈ [𝑙, 𝑠 ] do
20 𝑈 (𝑣𝑖 , 𝑥 ) ← max⟨𝑣𝑖 ,𝑧⟩∈E∪P (𝐻 (𝑣𝑖 , 𝑧, 𝑥 ) ) ;
21 for each budget 𝑥 > 𝑠 do
22 𝑈 (𝑣𝑖 , 𝑥 ) ← 1;

value that is no less than 𝑣𝑖 .getMin() from the binary heuristics.

This is because 𝑣𝑖 .getMin() represents the least travel cost from 𝑣𝑖
to 𝑣𝑑 , and for any budget value that is smaller than 𝑣𝑖 .getMin(),
it is impossible to reach the destination within the budget. Then,

we start computing 𝑈 (𝑣𝑖 , 𝑥), where 𝑥 starts from 𝑙 and each time

increases by 𝛿 . Once we find that𝑈 (𝑣𝑖 , 𝑥) is 1, we set the current 𝑥
to 𝑠 and the budgets that are larger than 𝑠 to 1.

Then, we consider vertex set 𝑂𝑁 that includes 𝑣𝑖 ’s outgoing

neighbor vertices (see Figure 6 (a)) to compute𝑈 (𝑣𝑖 , 𝑥) using Eq. 5:

𝑈 (𝑣𝑖 , 𝑥) = max

𝑧∈𝑂𝑁
𝐻 (𝑣𝑖 , 𝑧, 𝑥)

= max

𝑧∈𝑂𝑁

𝑥∑︂
𝑐=1

𝑊 (⟨𝑣𝑖 , 𝑧⟩).pdf (𝑐) ·𝑈 (𝑧, 𝑥 − 𝑐) .
(6)
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The first term𝑊 (⟨𝑣𝑖 , 𝑧⟩).pdf (𝑐) is available from graph G𝑝 , no
matter ⟨𝑣𝑖 , 𝑧⟩ is an edge or a T-path. We use dynamic programming

to compute the second term 𝑈 (𝑧, 𝑥 − 𝑐). As we start searching

from the destination, vertex 𝑧’s row in the heuristic table often

has already been computed, we may get𝑈 (𝑧, 𝑥 − 𝑐) directly from

the table. Otherwise, we recursively apply the same equation to

compute𝑈 (𝑧, 𝑥 − 𝑐).
Task (2): We perform the second task using 𝐼𝑁 that includes 𝑣𝑖 ’s

incoming neighbor vertices (see Figure 6 (a)). For each vertex 𝑦𝑎 ∈
𝐼𝑁 , we insert the vertex into the queue 𝑄 . In addition, we now can

easily compute𝐻 (𝑦𝑎, 𝑣𝑖 , 𝑥) =
∑︁𝑥
𝑐=1𝑊 (⟨𝑦𝑎, 𝑣𝑖 ⟩).pdf (𝑐) ·𝑈 (𝑣𝑖 , 𝑥 −𝑐)

since the first term is available from graph G𝑝 and since we have

just computed𝑈 (𝑣𝑖 , 𝑥) in the first task.

Figure 6 (b), (c), and (d) illustrate the first three steps of computing

the heuristic table for the graph shown in Figure 2 for destination

𝑣𝑑 . The first step starts from destination 𝑣𝑑 itself. Next, it explores

𝑣𝑑 ’s incoming neighbors 𝑣3 and 𝑣4.

The time complexity of Algorithm 2 and 3 is 𝑂 ( |V| · 𝜂2 · |out |),
where 𝜂 is the number of columns in the heuristic table and |out | is
the largest outdegree of a vertex. The space complexity is𝑂 ( |V|2 ·𝜂).
The analysis details are provided elsewhere [8].

4 VIRTUAL PATH BASED ROUTING
Stochastic dominance based pruning is inapplicable in PACE be-

cause PACE captures cost dependencies and does not assume in-

dependence. More specifically, the cost distribution of a path is

computed using the T-path assembly operation ⋄ (c.f. Eq.1), not the
convolution operation ⊕. To enable stochastic dominance based

pruning, we propose to build V-paths, such that the cost distribution

of a path can be computed by the convolution of cost distributions

of V-paths, T-paths, and edges.

Figure 7: Example of Building V-paths from T-paths

4.1 Building Virtual Paths
We use a concrete example to illustrate the intuition of introducing

V-paths. The example in Figure 7 includes T-paths 𝑝1, 𝑝2, and 𝑝3.

Given a path 𝑃 = ⟨𝑒1, 𝑒2, 𝑒3, 𝑒4, 𝑒5⟩, its joint distribution is computed

by 𝐷 𝐽 (𝑃) = 𝑝1 ⋄ 𝑝2 ⋄ 𝑝3 ⋄ ⟨𝑒5⟩ according to Eq. 1. Then, we derive

the cost distribution𝐷 (𝑃) from the joint distribution using a simple

transformation as shown in Table 2.

As 𝑝3 and ⟨𝑒5⟩ do not overlap, we have

𝐷 𝐽 (𝑃) =
𝑊𝐽 (𝑝1)𝑊𝐽 (𝑝2)𝑊𝐽 (𝑝3)
𝑊 (⟨𝑒2⟩)𝑊𝐽 (⟨𝑒3⟩)

𝑊 (𝑒5) = 𝐷 𝐽 (𝑃 ′)𝑊 (𝑒5), (7)

where 𝑃 ′ = ⟨𝑒1, 𝑒2, 𝑒3, 𝑒4⟩ is a sub-path of 𝑃 . This suggests that 𝑃 ′

and 𝑒5 are independent.

Thus, we could apply the convolution operation to compute

the cost distribution of 𝑃 : 𝐷 (𝑃) = 𝐷 (𝑃 ′) ⊕𝑊 (𝑒5), where the cost
distribution 𝐷 (𝑃 ′) can be derived from the joint distribution of

𝐷 𝐽 (𝑃 ′), i.e., the fraction part in Eq. 7, using T-paths 𝑝1, 𝑝2, and 𝑝3.

We call 𝑃 ′ a V-path. First, a V-path must have fewer than 𝜏

trajectories because, otherwise, it should already have been a T-

path. Second, the distribution of a V-path needs to be computed

from the T-path assembly operation ⋄ (see Eq. 1) using distributions
of multiple T-paths.

This example suggests that if we pre-compute the distribution

of V-path 𝑃 ′, we are able to use only convolution ⊕ to compute the

distribution of 𝑃 . This motivates us to systematically identify all

V-paths and pre-compute their distributions. The intuition is that

we move the time consuming online computation of Eq. 1 offline by

pre-computing the distributions of all V-paths. As Eq. 1 is used both

online and offline, there is no accuracy loss. This enables us to use

only convolution to compute the distributions of candidate paths

during routing, thus making it possible to use stochastic dominance

based pruning in the PACE model.

The idea is to first combine overlapping T-paths into V-paths and

then recursively combine overlapping V-paths into longer V-paths.

Combining Two T-Paths: In the first iteration, we combine over-

lapping T-paths into V-paths. If two T-paths overlap and the path

underlying the two T-paths does not have a corresponding T-path,

we combine the two T-paths into a V-path. For example, consider

T-paths 𝑝1 and 𝑝2 in Figure 7 that overlap on edge 𝑒2. The path

underlying 𝑝1 and 𝑝2 is ⟨𝑒1, 𝑒2, 𝑒3⟩, and no T-path exists that also

corresponds to ⟨𝑒1, 𝑒2, 𝑒3⟩. Thus, we build a V-path 𝑝4 with joint

distribution 𝐷 𝐽 (𝑝4) = 𝑝1 ⋄ 𝑝2. Similarly, we build V-path 𝑝5 with

joint distribution 𝐷 𝐽 (𝑝5) = 𝑝2 ⋄ 𝑝3.
Combining Two V-Paths: In the second iteration, we combine

overlapping V-paths into longer V-paths. For example, in Figure 7,

since the two V-paths 𝑝4 and 𝑝5 overlap, we build V-path 𝑝6. The

joint distribution of the new, longer V-path is also computed based

on the corresponding T-paths. Here, 𝐷 𝐽 (𝑝6) = 𝑝1 ⋄ 𝑝2 ⋄ 𝑝3. When

combining two V-paths, we do not need to check if a T-path exists

that corresponds to the same underlying path. The existence of the

two V-paths implies that there are fewer than 𝜏 trajectories. And

since the V-paths are sub-paths of the combined path, the combined

path also cannot have more than 𝜏 trajectories. Thus, no T-path

can exist for the combined path.

We keep combining overlapping V-paths to obtain longer V-paths

until there are no more overlapping V-paths to combine. Next, we

observe that we need all V-paths rather than only the longest ones.

Table 5 shows that all V-paths 𝑝4, 𝑝5, and 𝑝6 in Figure 7 contribute

to computing the distribution of some path. So although we have a

longer V-path 𝑝6, we still need the two short V-paths 𝑝4 and 𝑝5.

Table 5: Computing Path Distributions using Convolution

Path Distribution

⟨𝑒1, 𝑒2, 𝑒3, 𝑒7⟩ 𝐷 (𝑝4) ⊕𝑊 (𝑒7)
⟨𝑒6, 𝑒2, 𝑒3, 𝑒4⟩ 𝑊 (𝑒6) ⊕ 𝐷 (𝑝5)
⟨𝑒1, 𝑒2, 𝑒3, 𝑒4, 𝑒5⟩ 𝐷 (𝑝6) ⊕𝑊 (𝑒5)
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Given graph GP = (V,E, P,W), the time and space complexity

for building V-paths is𝑂 ( |P| · |V|) and𝑂 ( |P| · |V| · |St |), respectively,
where |St | is the storage used for the longest V-path. Analysis details
are found in [8].

Updated PACE graph: After generating all V-paths, we define an

updated PACE graph G𝑝+ = (V,E, P+,𝑊 +), where P+ is a union of

T-paths, i.e., P ∈ G𝑝 , and the newly generated V-paths, and where

weight function𝑊 + takes as input an edge and a T-path or a V-path

and returns the total cost distribution. With V-paths, there is no

need to maintain the joint distributions for T-paths and V-paths.

By introducing V-paths, Lemma 4.1 shows that the cost distribu-

tion of any path 𝑃 can be computed using convolution only, thus

offering a theoretical foundation for using stochastic dominance

based pruning in PACE. Put differently, by introducing V-paths,

Eq. 1 is no longer needed, and we have turned PACE into EDGE,

where stochastic dominance-based pruning guarantees correctness.

Lemma 4.1. Given any path 𝑃 in the updated PACE graph G𝑝+ ,
the distribution of 𝑃 is computed by using convolution of the weights

of edges, T-paths, and V-paths maintained in G𝑝+ .

Proof. In the original PACE model, the distribution 𝐷 𝐽 (𝑃) of
path 𝑃 is computed using Eq. 1 on the coarsest T-path sequence

CPS(𝑃) = (𝑝1, 𝑝2, . . . , 𝑝𝑚), where each 𝑝𝑖 is an edge or a T-path

that maintains a joint distribution. If adjacent 𝑝𝑖 and 𝑝𝑖+1, where
𝑖 ∈ [1,𝑚 − 1], do not overlap, we split CPS(𝑃) such that 𝑝𝑖 and 𝑝𝑖+1
go to two different sub-sequences. Finally, CPS(𝑃) is split into mul-

tiple sub-sequences (cps
1
, cps

2
, . . . , cps𝑛), where each sub-sequence

cps𝑘 = (𝑝 𝑗 , . . . , 𝑝 𝑗+𝑥 ), with 𝑘 ∈ [1, 𝑛], 𝑗 ∈ [1,𝑚], and 𝑥 ∈ [0,𝑚−1],
does not overlap any others. Here, a sub-sequence cps𝑘 can be

an edge, a T-path, or multiple overlapping T-paths. When 𝑥 > 0,

cps𝑘 includes multiple overlapping T-paths. Since we already built

V-paths for overlapping T-paths, there must be a V-path that corre-

sponds to cps𝑘 . Thus, cps𝑘 is an edge, a T-path, or a V-path.

Since there are no overlaps among different cps𝑘 , Eq. 1 yields

𝐷 𝐽 (𝑃) = Π𝑛
𝑘=1

𝑊𝐽 (cps𝑘 ), meaning that edges, T-paths, and V-paths

are independent of each other. Thus, the cost distribution 𝐷 (𝑃) de-
rived from𝐷 𝐽 (𝑃) in the PACEmodel is equivalent to ⊕𝑛

𝑘=1
𝑊 + (cps𝑘 ),

involving only the convolution of items in the weight function

𝑊 + (·) in the updated PACE graph with V-paths. □

4.2 Routing Algorithm
The V-paths introduced in the updated PACE graph G𝑝+ enable us
to use stochastic dominance to prune non-competitive candidate

paths as in the EDGE model. However, after adding the V-paths, the

degrees of many vertices also increase. This indicates that when

exploring an vertex, more candidate paths may be generated and

examined. For example, consider the left most vertex in Figure 7.

Before introducing the V-paths, its degree is 2 with edge 𝑒1 and T-

path 𝑝1. After introducing the V-paths, its degree becomes 4. Luckily,

with the proposed search heuristics, we are able to choose the most

promising candidate paths among many candidate paths. Thus, the

increased degrees do not adversely affect the query efficiency.

Algorithm 4 shows the final routing algorithm using two pro-

posed speedup techniques—search heuristics and V-paths. Given a

PACE graph G𝑝+ , for each candidate path 𝑃𝑖 that departs at time 𝑡

and connects source 𝑣𝑠 to an intermediate vertex 𝑣𝑖 , we maintain

two attributes. The first, 𝑃𝑖 .path, refers to the underlying path, i.e.,

a sequence of edges. For example, the path attribute of ⟨𝑝4, 𝑒4⟩ in
Figure 7 is ⟨𝑒1, 𝑒2, 𝑒3, 𝑒4⟩ since 𝑝4 is a V-path, which is a sequence

of edges in the road network. We maintain this attribute to avoid

cycles in candidate paths. The second attribute 𝑃𝑖 .maxProb is the

maximum probability of reaching 𝑣𝑑 within cost budget 𝐵 when

following 𝑃𝑖 to 𝑣𝑖 and then proceeding to 𝑣𝑑 . This probability can

be computed using either the proposed binary heuristic or the

budget-specific heuristic.

Algorithm 4: V-PathBasedStochasticRouting

Input: PACE Graph G𝑝+ , source 𝑣𝑠 , destination 𝑣𝑑 , departure time

𝑡 , budget 𝐵;

Output: Path 𝑃∗;
1 Priority queue:𝑄 ← ∅;
2 for each vertex 𝑣𝑖 that is connected from 𝑣𝑠 by an edge, a T-path or a

V-path do
3 𝑃𝑖 .path← tracePath(𝑣𝑠 , 𝑣𝑖 ) ;
4 𝐷 (𝑃𝑖 ) ←𝑊 + (𝑣𝑠 , 𝑣𝑖 ) ;
5 if 𝐷 (𝑃𝑖 ) .min+𝑣𝑖 .getMin( ) ⩽ 𝐵 then
6 𝑃𝑖 .maxProb← maxProb(𝑃𝑖 , 𝐵) ; /∗ Eq. 3 ∗/
7 𝑄.add (𝑃𝑖 ) ;

8 while𝑄 ≠ ∅ do
9 �̂� ← 𝑄.𝑝𝑒𝑒𝑘 ( ) ;

10 𝑣 ← last vertex in �̂� ;

11 if 𝑣 = 𝑣𝑑 then
12 𝑃∗ ← �̂� ;

13 break;

14 for each vertex 𝑢 that is connected from 𝑣 by an edge, a T-path or

a V-path abd 𝑢 has not appeared in 𝑃.path do
15 𝑐 ← 𝐷 (𝑃 ) .min+𝑊 + (𝑣,𝑢 ) .min;

16 if 𝑐 +𝑢.getMin( ) ⩽ 𝐵 then
17 𝑃 ′ .path← 𝑃.path + tracePath(𝑣,𝑢 ) ;
18 𝐷 (𝑃 ′ ) ← 𝐷 (𝑃 ) ⊕𝑊 (𝑣,𝑢 ) ; /∗ Use convolution to

compute a distribution. ∗/
19 𝑃 ′ .maxProb← maxProb(𝑃 ′, 𝐵) ; /∗ Eq. 3 ∗/
20 if Prune (𝑃 ′,𝑄 ) then
21 𝑄.𝑎𝑑𝑑 (𝑃 ′ ) ;

22 return 𝑃∗;

We use a priority queue to maintain all candidate paths, where

the priority is according to themaxProb attribute of each candidate

path. In each iteration, we explore the path 𝑃 with the largest

maxProb attribute, as it is the most promising candidate path (line

10). If this path 𝑃 has already achieved to the destination 𝑣𝑑 , it is the

path with the largest probability of arriving within budget 𝐵. This is

because all the other candidates in the priority queue cannot have

a larger probability as the heuristics are admissible (lines 12–13).

If path 𝑃 has not reached the destination, we extend the path

with an adjacent edge, T-path, or V-path to get a new candidate

path 𝑃 ′. The distribution of 𝑃 ′ is computed using convolution (line

18). Finally, we check stochastic dominance between 𝑃 ′ and each

path �̂� in 𝑄 that also reaches 𝑢. If 𝑃 ′ stochastically dominates �̂� ,

we can safely prune �̂� from 𝑄 . If �̂� stochastically dominates 𝑃 ′, we
can safely prune 𝑃 ′, i.e., not add 𝑃 ′ to 𝑄 . If eventually, no path in
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𝑄 stochastically dominates 𝑃 ′, we add 𝑃 ′ to 𝑄 as a new candidate

path (lines 20–21).

5 EMPIRICAL STUDY
5.1 Experimental Setup
Road Networks and GPS Trajectories: We use two pairs of a

road network and an associated GPS dataset: 𝑁1 and 𝐷1 covering

Aalborg, Denmark, and 𝑁2 and 𝐷2 covering Xi’an, China, where 𝑁1

and𝑁2 are obtained fromOpenStreetMap. The sampling rates of the

GPS records in 𝐷1 and 𝐷2 are 1 Hz and 0.2 Hz, respectively. We use

travel times extracted from the GPS records as travel costs, and we

utilize an existing tool [21] to map match 𝐷1 and 𝐷2 to 𝑁1 and 𝑁2.

The mapped trajectories cover 23% and 4% of the edges in 𝑁1 and

𝑁2. The covered edges, typically main roads, show high uncertainty.

The uncovered edges are typically small roads with low uncertainty.

For these, we use speed limits to derive deterministic travel times.

After detecting and filtering the abnormal data [3, 15, 16], statistics

of the Aalborg and Xi’an data are provided elsewhere [8].

We conduct the empirical analysis using five-fold cross valida-

tion. Stochastic Routing Queries: A stochastic routing query

takes three parameters: a source, a destination, and a travel time

budget. We select source-destination pairs from the testing set to

obtain meaningful source-destination pairs. We categorize the pairs

into groups based on their Euclidean distances (km): (0, 5], (5, 10],

(10, 25], and (25, 35]. We ensure that each category has at least 90

pairs. Note that 35 km is a long distance in a city. Following exist-

ing studies [26], we focus on intra-city routing because cities often

have uncertain traffic and have many alternative paths between a

source and a destination. For inter-city travel, there is often limited

choices, e.g., using vs. not using highways. We leave the support

for country-level, inter-city routing as future work.

Next, we generate meaningful travel time budgets for the source-

destination pairs. This is important because too small budgets result

in many paths having probability 0, while too large budgets result

in all paths having probability 1. For each source-destination pair,

we run Dijkstra’s algorithm based on a road network with expected

travel times as edge weights. This yields a path with the least

expected travel time 𝑡 . Then, we set 5 time budgets that correspond

to 50%, 75%, 100%, 125%, and 150% of 𝑡 , respectively, meaning that

the time required to travel between the source-destination pair will

not stay beyond the range of [50% 𝑡 , 150% 𝑡]. This enables us to

evaluate a range of meaningful time budgets.

Routing Algorithms:We consider a baseline routing algorithm in

the PACEmodel [33] called T-None (cf. Section 2.2) that does not use

any heuristics to estimate the cost from intermediate vertices to the

destination and that does not use any V-paths. Next, we consider

routing algorithms using only T-paths with different heuristics:

• T-B-EU : Binary heuristic using Euclidean distance divided by the

maximum speed limit in the road network to derive 𝑣𝑖 .getMin();
• T-B-E: Binary heuristic using shortest path trees derived from

only edges;

• T-B-P : Binary heuristic with shortest path trees derived from

both edges and T-paths;

• T-BS-𝛿 : Budget-specific heuristics using a specific 𝛿 .

Finally, we consider V-path based routing algorithms: V-None

uses no heuristics, and V-B-P and V-BS-𝛿 use the above heuristics.

Parameters: We vary parameters 𝜏 among 15, 30, 50, and 100, and

𝛿 among 30, 60, 120, and 240, where 𝜏 is the trajectory threshold

used when generating T-paths (cf. Section 2.1) and 𝛿 is the finest

budget value used in the budget-specific heuristics (cf. Section 3.3).

Default values are shown in bold. We conduct sensitivity analyses

on the two parameters to identify the most appropriate values.

Evaluation Metrics and Settings:We evaluate the runtime and

space overhead needed for maintaining the different heuristics.

Comparison with the EDGE model: We do not compare the paths

returned by the PACE models vs. the EDGE model, since a previous

study describes their differences and shows the benefits of the PACE

model over the EDGE model [33]. Thus, we focus on evaluating the

routing algorithm with different heuristics in the PACE model.

Time-dependency: For each network, we build two PACE models

using the trajectories from peak (7:00-8:30 and 16:00-17:30) vs. off-

peak (others) hours. Results are mainly reported for data set 𝐷2 at

peak hours due to the space limitations. Results for data set 𝐷2 at

off-peak hours and for data set 𝐷1 are provided elsewhere [8].

ImplementationDetails:All experiments are conducted in Python

3.7.3, and executed on a server with a 64-core AMD Opteron 2.24

GHZ CPU and 528 GB main memory under Ubuntu 16.

5.2 Instantiating T-Paths and V-Paths
Instantiating T-Paths: If a path is traversed by more than 𝜏 trajec-

tories, we instantiate a T-path for it. Figure 8(a) shows the numbers

of T-Paths on 𝐷1 and 𝐷2, respectively, when varying 𝜏 . We group

T-paths according to their cardinalities, i.e., the numbers of edges

they cover. When the cardinality is 1, a T-path is just one edge.

Intuitively, a larger 𝜏 requires that more trajectories occurred on

the T-paths. Thus a larger 𝜏 yields fewer T-paths. However, large 𝜏

also yields more accurate travel time distributions for the T-paths.

Next, we evaluate the accuracy of estimating the path cost dis-

tributions using the T-paths with different 𝜏 values. To do so, we

traverse each path from the testing set (not used for instantiating

T-paths) to instantiate a travel time distribution, i.e., the ground

truth distribution. We then use the T-path weights obtained in the

training set to estimate the distribution of each path in the testing

set using Eq. 1. We use KL-divergence to quantify the distances

between the ground truth and the estimated distributions. A smaller

KL-divergence value indicates that the estimated distributions are

closer to the ground truth.

Based on the five-fold cross validation, we report the 95% confi-

dence interval for the KL-divergence values for different 𝜏 values

in Figure 8(b). When 𝜏 increases from 15 to 50, the KL-divergence

values decrease, suggesting that a large 𝜏 indeed yields T-paths

with more accurate cost distributions. However, when 𝜏 = 100,

the KL-divergence values start increasing, and the 95% confidence

interval grows. This is because too few T-paths are instantiated,

which in turn affects the accuracy of cost distributions. We choose

𝜏 = 50 as the default value because it provides the most accurate

results with substantial amounts of T-paths.

Instantiating V-Paths: The numbers of V-paths for varying 𝜏

values are shown in Figure 8(c). Smaller 𝜏 values result in more

T-paths, which also lead to more V-paths. The cardinalities of V-

paths are much higher than those of T-paths because V-paths are

obtained by merging T-paths. Next, we report the average and
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(a) Numbers of T-Paths (b) Accuracy (c) Number of V-paths (d) Runtime and Out-Degrees
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Figure 9: Building Offline Heuristics for Peak Hours, 𝐷2

maximum out-degrees of vertices after introducing the V-paths, in

Figure 8(d). The out-degrees are often large because a vertex can

now be connected to edges, T-paths, and V-paths. We show that the

increased out-degrees do not adversely affect the routing efficiency

in Section 5.4, due to the proposed search heuristics. Figure 8(d)

also reports the runtime for generating V-paths. This procedure is

conducted offline. When using the default of 𝜏 = 50, it takes around

8.5 and 55 hours for 𝐷1 and 𝐷2, which is acceptable. Thus, we trade

affordable pre-computation time for interactive response times, i.e.,

at sub 0.1 second level, to be seen next.

5.3 Search Heuristics with Only T-Paths
We study both search heuristics when using only T-paths.

Binary Heuristics: We consider three variations of binary heuris-

tics: T-B-EU, T-B-E, and T-B-P, as described in Section 5.1. We first

study the pre-processing step. Specifically, we study the runtime of

computing the 𝑣 .getMin() function and the storage needed for the

results in data set 𝐷2, as shown in Figure 9(a).

Recall that the binary heuristics are destination-specific. To sup-

port routing queries with arbitrary destinations, we need to main-

tain a 𝑣 .getMin() function for each destination vertex. Figure 9(a)

shows the average runtime of 𝑣 .getMin() and the storage needed for
one destination. T-B-EU is the fastest, as it computes the Euclidean

distance between an intermediate vertex and the destination and

divides by the maximum speed limit. T-B-E and T-B-P take longer

time as they both need to generate shortest path trees. T-B-P takes

the longest time as it also involves dominance checking when tak-

ing into account the accurate costs maintained in T-paths. Note that

T-B-P takes less than 4.0 seconds. We argue that this is reasonable

because it is an offline computation and the 𝑣 .getMin() function
can be computed in parallel for different destinations.

The storage needed for different variations is the same—wemain-

tain a single integer value 𝑣 .getMin(), regardless of the variation.

Maintaining 𝑣 .getMin() for all destinations takes 0.92 GB, which
can easily fit into main memory. More details for building and

maintaining the binary heuristics are available elsewhere [8].

We next investigate the runtime when using binary heuristics vs.

T-None that uses no heuristics in Figure 10(a) and (b). We categorize

the routing queries based on their source-destination distances (cf.

Figure 10(a)) and their time budgets (cf. Figure 10(b)).

The longer the distances, the more time it takes to route. Larger

travel time budgets also incur longer runtime. T-B-EU takes longer,

i.e., sometimes over 0.5 second, than T-B-E and T-B-P at sub 0.1

second, suggesting that the shortest path tree based binary heuris-

tics used by T-B-E and T-B-P are more accurate and are effective

at pruning unpromising candidate paths. Further, T-B-P offers the

best efficiency, indicating that shortest path tree derived from both

edges and T-paths is the most accurate and effective at pruning.

Budget-specific Heuristics: We consider the largest budget of

5, 000 seconds for both data sets and vary 𝛿 among 30, 60, and 120,

and 240. We argue that 5,000 seconds is a very large time budget

when traveling up to 35 km, i.e., the longest distance considered in

the routing queries.

We first consider the offline phase of building the budget-specific

heuristics, i.e., the heuristics tables. These tables are destination-

specific. Figure 9(b) reports the average pre-computation time of

constructing a heuristic table and its average size. The results in-

dicate that smaller 𝛿 values result in larger heuristics tables with

more columns and that longer pre-computation times are needed

to obtain the heuristics tables.

Next, to investigate how the budget-specific heuristics help sto-

chastic routing, we categorize routing queries w.r.t. both distances

and budge values. Figure 10(c) and (d) show that queries with longer

distances and travel time budgets incur longer online runtime.

Smaller 𝛿 values produce heuristic tables at finer granularities,

thus yielding more effective pruning and lower online runtimes.

We notice that, for 𝐷2 at peak hours, the online runtimes for

𝛿 = 30 and 𝛿 = 60 are similar, but they require 289.2 hours and

247.1 hours (without using parallelization) to generate and occupy

4.38 GB and 3.54 GB to store heuristic tables for all destinations,

respectively. Details are available elsewhere [8]. As 𝛿 = 60 requires

less pre-computation time and space, we choose it as the default

value and conclude that it is practical to trade pre-computation

time and storage for interactive response times.

To compare the binary heuristics vs. the budget-specific heuris-

tics (using the default 𝛿 value), we include T-BS-60 in Figure 10(a)
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Figure 10: Stochastic Routing with Binary and Budget-specific Heuristics at Peak Hours, 𝐷2

(a) By distances (b) By budget values

Figure 11: V-Path based Stochastic Routing at Peak Hours,
𝐷2

and (b). We observe that the budget-specific heuristics significantly

improve the runtime compared to the binary heuristics.

5.4 V-Path Based Routing
Figure 11 shows results for V-Path based routing, which in general

are much faster than routing with only T-paths. In this set of ex-

periments, we only use default 𝛿 = 60. V-BS-60 achieves the least

rounting runtime, which further improves over T-BS-60, suggesting

that the V-path based routing offers the best efficiency, because

using long V-paths often makes it possible to go to somewhere close

to the destination very quickly. When combined with stochastic

dominance based pruning, the efficiency is further improved.

6 RELATEDWORK
Modeling Travel Costs in Road Networks: Most studies model

travel costs in the edge-centric model, meaning that weights are

assigned to edges. First, some models assign deterministic weights

to edges. An edge weight can be a single deterministic cost repre-

senting, e.g., average travel-time [17, 36, 42], or it can be several

deterministic costs representing different travel costs such as aver-

age travel-time and fuel consumption [9, 10]. Second, some models

assign uncertain weights to edges. Most such studies assume that

the weights on different edges are independent [24, 32, 35]. Some

studies consider the dependency between two edges, but disre-

gards dependencies among multiple edges [13, 26, 34], including

two recent studies that employ machine learning models to infer

dependencies between two edges where trajectories are unavail-

able [26, 34]. Path representation learning produces effective path

representations to enable accurate travel cost estimation [37–41].

However, such methods are difficult to be integrated with existing

routing algorithms. The path-centric model [4, 33] aims at fully

capture the cost dependencies among multiple edges along paths by

maintaining joint distributions for the paths when sufficient trajec-

tories are available. The path-centric model offers better accuracy

when estimating cost distributions of paths over the edge-centric

model [4, 33]. Thus, we base our work on the path-centric model.

Stochastic Routing: Stochastic routing is to determine the optimal

routes for vehicles in a network under uncertain conditions [18,

19, 25, 28, 31]. Extensive research has been performed on stochas-

tic routing under the edge-centric model [2, 11, 14, 20, 22, 24, 27,

29, 32, 35]. Efficient stochastic routing is often based on stochas-

tic dominance based pruning, based on the assumption that edge

weights are independent [12, 24, 32]. In addition, efficient convolu-

tion computation techniques have been proposed and integrated

into routing algorithms to improve efficiency [5, 22]. Well-known

speed-up techniques for classic shortest path finding, e.g., partition-

based reach, arc-flags, arc-potentials, and contraction hierarchies,

have also been extended to support uncertain weights in the edge-

centric model [27, 30]. However, these speed-up techniques rely

on the independence assumption that does not hold in the path-

centric model, and thus they cannot be applied readily. For the

path-centric model, stochastic routing algorithms suffer from low

efficiency [1, 33], where we propose search heuristics and virtual-

path based routing to improve routing efficiency.

7 CONCLUSION
We study stochastic routing under the path-centric model that

can capture accurate travel cost distributions. Instead of providing

stochastic routing services using edge devices, we target cloud-

based stochastic routing services to enable applications such as

coordinated fleet transportation. In this setting, sufficient storage is

accessible. Thus, we trade increased off-line storage for efficient on-

line routing services. Specifically, we propose binary heuristics and

a budget-specific heuristic, which help us explore more promising

candidate paths. Then, we introduce virtual paths to make it possi-

ble to use stochastic dominance based pruning in the path-centric

model. Experimental results suggest that the proposed methods

enable efficient stochastic routing under the path-centric model.
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