
Transforming Property Graphs
Angela Bonifati

Lyon 1 Univ., Liris CNRS & IUF
angela.bonifati@univ-lyon1.fr

Filip Murlak
Univ. of Warsaw

fmurlak@mimuw.edu.pl

Yann Ramusat
Lyon 1 Univ., Liris CNRS
yann.ramusat@liris.cnrs.fr

ABSTRACT
In this paper, we study a declarative framework for specifying
transformations of property graphs. In order to express such trans-
formations, we leverage queries formulated in the Graph Pattern
Calculus (GPC), which is an abstraction of the common core of
recent standard graph query languages, GQL and SQL/PGQ. In
contrast to previous frameworks targeting graph topology only, we
focus on the impact of data values on the transformations—which
is crucial in addressing users’ needs. In particular, we study the
complexity of checking if the transformation rules do not specify
conflicting values for properties, and we show this is closely related
to the satisfiability problem for GPC. We prove that both problems
are PSpace-complete.

We have implemented our framework in openCypher. We show
the flexibility and usability of our framework by leveraging an ex-
isting data integration benchmark, adapting it to our needs. We
also evaluate the incurred overhead of detecting potential incon-
sistencies at run-time, and the impact of several optimization tools
in a Cypher-based graph database, by providing a comprehensive
comparison of different implementation variants. The results of
our experimental study show that our framework exhibits large
practical benefits for transforming property graphs compared to
ad-hoc transformation scripts.

PVLDB Reference Format:
Angela Bonifati, Filip Murlak, and Yann Ramusat. Transforming Property
Graphs. PVLDB, 17(11): 2906 - 2918, 2024.
doi:10.14778/3681954.3681972

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/yannramusat/TPG.

1 INTRODUCTION
Query languages for property graphs—those supported by existing
systems, such as Neo4j’s openCypher [22] or Oracle’s PGQL [33],
and those codified in international standards, such as GQL and
SQL/PGQ [21]—define their semantics in terms of sets of tuples. This
is inadequate for data interoperability tasks such as data migration
or data integration, where outputs of some queries are to be fed
directly to other queries. To support this kind of composability,
queries should be able to output property graphs rather than sets
of tuples. Such queries can be seen as transformations, turning an
input property graph into an output property graph.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 17, No. 11 ISSN 2150-8097.
doi:10.14778/3681954.3681972

Interoperability of graph data has received little attention so
far, compared to the relational and XML data models [3]. Notable
research in the area [6, 11] relies on the simplified graph data model
that had been devised to provide the foundations for querying the
topology of graphs with formalisms such as conjunctive regular
path queries (CRPQs) [8] or regular queries [34]. As the simplified
graph data model ignores the presence of properties (key-value
pairs stored in nodes and edges), it is too far from the property
graph models used in graph databases such as Neo4j or Tigergraph,
and cannot be a foundation for practical solutions. These currently
rely on opaque external libraries, such as Neo4j’s APOC [28], or
involve complex handcrafted queries [29], as illustrated below.

Example 1.1. Figure 1 illustrates a graph transformation sce-
nario, in which a user has imported relational data into the popular
Neo4j graph database and would like to reshape it into a semanti-
cally meaningful property graph instance, to facilitate navigational
querying. The relational data consists of three tables,

User(𝑛𝑎𝑚𝑒, 𝑎𝑑𝑑𝑟𝑒𝑠𝑠) , Address(𝑎𝑖𝑑, 𝑐𝑖𝑡𝑦𝑁𝑎𝑚𝑒, 𝑐𝑖𝑡𝑦𝐶𝑜𝑑𝑒) ,
Location(𝑎𝑖𝑑, 𝑐𝑜𝑢𝑛𝑡𝑟𝑦𝑁𝑎𝑚𝑒, 𝑐𝑜𝑢𝑛𝑡𝑟𝑦𝐶𝑜𝑑𝑒) ,

with primary keys consisting of the underlined attributes, and
having two foreign keys: 𝑎𝑖𝑑 references 𝑎𝑑𝑑𝑟𝑒𝑠𝑠 in User from both
Address and Location.

Figure 1 (i) shows a rudimentary property graph obtained after
importing the relational data, using a generic ingestion method,
such as Cypher’s LOAD CSV clause. In the resulting property graph,
each node represents a single tuple of the relational instance, with
the relation’s name represented as the label, and the attributes
stored in the node’s properties. Note that there are no edges in this
property graph: relationships between places, locations, and users
are represented by way of foreign keys, just like in the original
relational instance. Needless to say, this is not the best way to
represent a relational instance as a property graph.

The user now wants to transform the instance in Figure 1 (i) into
one that makes better use of the property graph data model by facil-
itating navigational operations in queries like “Which people live in
the same city as Jean?”. The user intends to create a node for each
person, city, and country, and replace foreign key references with
explicit relationships. Figure 1 (ii) shows an implementation of this
transformation in openCypher that closely follows a graph refactor-
ing solution described in Neo4j’s GraphAcademy [29]. The reader
will notice how difficult it is to relate the constructs of this query
to the informal specification above. Even just making sense of the
MERGE clauses interleaved with implicit grouping and list manipula-
tions (UNWIND and collect) is a daunting task for an unacquainted
user. But the query leverages other advanced idioms too. For in-
stance, in Line 5, the script creates as many nodes of type Person
as there are rows output by the previous WITH clause: one for each
𝑢, due to implicit grouping. In line 9, the script generates one City
node for each distinct value found in property cityName across all

2906

https://doi.org/10.14778/3681954.3681972
https://github.com/yannramusat/TPG
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3681954.3681972
https://www.acm.org/publications/policies/artifact-review-and-badging-current

(i) Input property graph𝐺 containing ingested relational data.

1 MATCH (u:User)
2 MATCH (a:Address) WHERE a.aid = u.address
3 MATCH (l:Location) WHERE l.aid = u.address
4 WITH u, collect(a) AS Addresses, collect(l) AS Locations
5 CREATE (p:Person)
6 SET p.name = u.name
7 WITH p, Addresses, Locations
8 UNWIND Addresses AS a
9 MERGE (ci:City {name: a.cityName})
10 SET ci.code = a.cityCode
11 MERGE (p)-[:HasAddress]->(ci)
12 WITH p, Locations
13 UNWIND Locations AS l
14 MERGE (co:Country {name: l.countryName})
15 SET co.code = l.countryCode
16 MERGE (p)-[:HasLocation]->(co)

(ii) Ad-hoc transformation script in openCypher.

(iii) Resulting output property graph 𝐻 .

Figure 1: Ad-hoc transformation of raw ingested data.

𝑎’s; this is because the property name is specified as a.cityName
in the MERGE clause. Similarly, in line 14, a single Country node is
created for each distinct value found in property countryName.

Figure 1 (iii) shows the output property graph obtained by run-
ning the script on the input property graph from Figure 1 (i). It
reveals that the ad-hoc transformation fails to account for the fact
that cities are weak entities that cannot be identified by their name
alone, and conflates Luxemburg in Europe with Luxemburg in the
US. Detecting such errors is hard because openCypher lacks a trans-
parent mechanism for specifying identities of created elements. ◀

As we have seen, ad-hoc transformation scripts are error-prone
and hard to interpret and analyze. Moving away from handcrafted
implementations to declarative specifications has long been recog-
nized as pivotal for solving data programmability problems [10].
The aim of this work is to lay the theoretical foundations for
the declarative specification of property graph transformations,
and facilitate practical solutions for turning such specifications

into executable scripts in modern property graph query languages.
Constraint-based, fully declarative formalisms, such as schemamap-
pings for relational [9, 16, 17] and graph [6, 23] data, allow multiple
target solutions, leading to ambiguous transformations [12, 14]. For
property graphs, this makes the schema mapping problem unde-
cidable even under strong restrictions [23]. We avoid this problem
by focusing on transformations that return a unique, well-defined
output instance for each input instance, thus facilitating direct
execution of the transformation.

We propose a rule-based formalism that allows the user to de-
scribe the output property graph based on the input property graph,
by specifying not only labels, properties, and relationships between
output elements, but also their identities. The formalism builds
upon the Graph Pattern Calculus (GPC) [20], which is an abstrac-
tion of the common graph pattern matching features of GQL and
SQL/PGQ [15]. GPC is adequate in terms of expressive power: it
has ample facilities for querying properties and even on property-
less graphs it goes well beyond classical formalisms such as RPQs
and CRPQs. It is suitable for theoretical investigation owing to its
concise syntax and rigorous semantics. It should also keep our pro-
posal future-proof by ensuring out-of-the-box compatibility with
the expected implementations of these standards. Until then, we
can rely on the already implemented graph query languages, such
as Neo4j’s openCypher [22] or Oracle’s PGQL [33], which were a
strong inspiration for GQL. Indeed, the actual query language used
in the rules can be seen as a parameter of the framework.

In contrast to the purely topological formalism of [11], spec-
ifications of property-aware transformations can easily become
inconsistent, when they attempt to specify two different values for
the same property of a given element. Detecting such conflicts
naturally comes to the foreground of static analysis. As we show,
this problem is tightly connected to the satisfiability problem for
GPC+ (GPC extended with union and projection, also introduced
in [20]), which is to decide if there is a property graph satisfying a
given GPC+ query. Exploiting this connection, we establish tight
complexity bounds for both these problems, showing that they are
PSpace-complete. To the best of our knowledge, this is the first
static-analysis result on GPC. Given that query satisfiability is the
work horse of static analysis throughout database theory, we be-
lieve that with the adoption of the GQL standard our result will find
other uses. An immediate consequence for property graph transfor-
mations is that consistency cannot be checked statically due to the
prohibitive cost, and conflicts must be handled dynamically, during
the execution of the transformation.

In order to prove that our formalism can serve as a foundation
for practical data interoperability solutions, we provide a proof-
of-concept implementation. As no existing query engine supports
GQL yet, we rely on the Neo4j’s open-source implementation of
openCypher [22, 25], which offers most of the functionalities of
GQL described in [21]. We study the case when the rules are pro-
vided by the users and describe a generic, easily automated method
of translating these rules into executable openCypher scripts, and
apply it manually to selected realistic property graph transforma-
tions derived from real-world data integration scenarios of the
iBench benchmark suite [4]. We perform a comprehensive exper-
imental study gauging the efficiency of conflict detection and the

2907

effect of rule order and various optimizations on several implemen-
tation variants. We confirm that our implementation performs well
in all scenarios and scales to large input data. We also demonstrate
that our framework can be successfully applied in a concrete data
integration scenario on real-world data [19], and report the results
of a small-scale user study confirming that our framework enhances
readability and usability of transformations.

In summary, our main contributions are the following.
• We propose a comprehensive declarative formalism for

specifying transformations of property graphs, compatible
with SQL/PGQ and the upcoming GQL standard.
• We identify consistency as a key static-analysis problem,

and show that it is interreducible with satisfiability of GPC+
queries and that both are PSpace-complete.

• We provide a proof-of-concept implementation of our for-
malism in openCypher, and apply it to realistic scenarios
of graph-shaped data transformations.

• We show experimentally that our solution scales to large
input data, handles on-the-fly conflict detection with low
overhead, and enhances readability and usability, without
sacrificing preformance.

The rest of paper is organized as follows. In Section 2, we recall
the property graph data model along with GPC. In Section 3, we
give syntax and semantics of our graph transformation formalism.
In Section 4, we discuss the consistency in relation with satisfiability
of GPC+ queries, and establish the complexity bounds. In Section 5,
we describe our-proof-of-concept implementation. In Section 6, we
present both the experiments and the user study. In Section 7 and
in Section 8, we discuss the related work and conclude the paper.

2 PRELIMINARIES
We briefly introduce the basic concepts of the property graph data
model and the Graph Pattern Calculus (GPC) that we use in this
paper. We mostly follow the definitions from [20].

2.1 Data model
Conforming to the formal specification originating from [20], a
property graph 𝐺 is a tuple ⟨𝑁, 𝐸, 𝜆, src, tgt, 𝛿⟩ where O, L, K and
Const are disjoint countable sets of object identifiers (ids), labels,
keys (also called property names) and constants (data values), and

• 𝑁 ⊂ O is the finite set of node ids in 𝐺 ;
• 𝐸 ⊂ O is the finite set of edge ids;
• 𝑁 and 𝐸 are disjoint;
• 𝜆 : 𝑁 ∪ 𝐸 → 2L is a labeling function that associates to

every id a (possibly empty) finite set of labels;
• src, tgt : 𝐸 → 𝑁 define the source and target of each edge;
• 𝛿 : (𝑁 ∪𝐸) ×K → Const is a finite-domain partial function

that associates a constant with an id and a key from K .
The node ids and edge ids will be respectively called the nodes and
edges of the property graph.

That is to say, a property graph is a multigraph in the sense that
two vertices may be connected by more than one edge, even with
these edges having the same label(s), and that loops are permitted.
All the elements of the database (the nodes and the edges) store a
finite set of property-value pairs, represented by 𝛿 .

A property graph is presented in Figure 1 (iii). It contains infor-
mation about peoples’ location such as the City and the Country
they live in.We see that it contains one nodewith labelCity and two
nodes with label Country; two edges with label HasLocation and
two edges with label HasAddress; all nodes have property 𝑛𝑎𝑚𝑒;
and all nodes with label City or Country have an additional prop-
erty 𝑐𝑜𝑑𝑒 . Annotations p1, p2, . . . , co2 are node identifiers; edge
identifiers are not shown.

2.2 Graph Pattern Calculus
In the following, we introduce GPC by means of examples. The
reader can refer to [20] for more details on GPC, and to [21] for
insight on how it will actually be used in GQL.

In Example 1.1, the user can retrieve from the property graph
in Figure 1 (iii) “all people who live in the same city as a person
named $𝑛𝑎𝑚𝑒” using the following GPC query:

(: Person)
⟨𝑛𝑎𝑚𝑒=$𝑛𝑎𝑚𝑒 ⟩

:HasAddress (: City) :HasAddress (𝑦 : Person)

This is an example of a path pattern, which is essentially a regular
path query [8] augmented with conditioning: the filter ⟨𝑛𝑎𝑚𝑒 =

$𝑛𝑎𝑚𝑒⟩ checks that the value of the property 𝑛𝑎𝑚𝑒 is indeed the
one sought. Given a property graph, this pattern returns the nodes
that can be matched to 𝑦.

One can also use graph patterns in GPC (also called patterns or
queries in this paper), which are conjunctions of path patterns. For
example, the following query retrieves pairs of people living in
the same city, such that one person knows, possibly indirectly, the
other one:

(𝑥 : Person) :HasAddress (: City) :HasAddress (𝑦 : Person),

(𝑥) :Knows
1..∞
(𝑦) .

Such graph patterns generalize conjunctive two-way regular path
queries [8] to property graphs.

In GPC, each path pattern occurring in a graph pattern must be
qualified with a restrictor among the set of simple, trail (used by
default if none is given) and shortest. The restrictor’s purpose is to
ensure a finite result set: simple prevents repetition of nodes along
a path; trail prevents repetition of edges; and shortest selects only
the paths of minimal length among all the paths between two nodes.

For the ease of exposition, we simplify the semantics of GPC. We
assume that a pattern only returns a set of bindings (in [20], a tuple
of witnessing paths is also returned with each binding). In GPC,
variables used in the scope of a repetition operator, such as 1..∞, are
called group variables and are bound to lists of nodes or edges. The
remaining variables are called singleton variables and are bound
to single nodes or edges. For the purpose of our transformation
formalism we restrict the output of queries to singleton variables.

For a GPC pattern 𝑃 , a tuple 𝑥 of singleton variables in 𝑃 , and
a property graph 𝐺 , we write ⟦𝑃⟧𝑥

𝐺
for the set of bindings of 𝑥

returned by 𝑃 on 𝐺 . For instance, if 𝑃 is the first query above
and 𝐺 is the property graph depicted in Figure 1 (iii), we have
⟦𝑃⟧𝑦

𝐺
= {(𝑦 ↦→ p2)} when $𝑛𝑎𝑚𝑒 is “Jean”, ⟦𝑃⟧𝑦

𝐺
= {(𝑦 ↦→ p1)}

2908

when $𝑛𝑎𝑚𝑒 is “Robert”, and ⟦𝑃⟧𝑦
𝐺
= ∅ for any other name. (Note

that the trail restrictor has been used by default.)

3 PROPERTY GRAPH TRANSFORMATIONS
In this section, we present our declarative formalism for specifying
property graph transformations. An example is given in Figure 2.
The specification consists of two rules. Each rule collects data from
the input graph with a GPC pattern on the left of =⇒, and specifies
elements of the input graph using the expression on the right. This
expression resembles a GPC pattern, but it has specifications of the
element’s property values instead of filters and specifications of el-
ement identifiers instead of variables to be matched (new variables
will reappear on the right-hand side, in a slightly different role). In
what follows we discuss how new identifiers are generated using
Skolem functions (Section 3.1) and how identifiers, labels, and prop-
erties of output elements are specified using content constructors

(Section 3.2). Then, we describe the general form of rules (Sec-
tion 3.3) and explain their semantics in terms of a procedure that
generates an output property graph given an input property graph
(Section 3.4). We shall also see if the transformation in Figure 2
fixes the issues discussed in Example 1.1.

3.1 Generating output identifiers
Throughout the paper we assume that all identifiers in input prop-
erty graphs come from a countable set S ⊂ O of input identifiers,
and ensure that all identifiers in output property graphs come from
a countable set T ⊂ O \ S of output identifiers. Following [11], to
generate identifiers in the output graph, we use Skolem functions.
Specifically, we use a fixed injective Skolem function

𝑓 :
⋃︂
𝑘∈N
(O ∪ Const ∪ L)𝑘 → T .

In the context of relational schema mappings and data exchange,
Skolem functions are used for value invention [5], e.g., to generate
artificial primary keys of new tuples in a way that makes is possible
to refer to them in foreign keys. The way we use Skolem functions
is similar, but not the same, because element identifiers are not
data values. Rather, they are the property-graph analogue of object
identifiers from the object-oriented data model [1, 26]. Most of the
time they are invisible to the user, and are not expected to carry any
information beyond the identity of the element. Thus, the specific
choice of function 𝑓 is truly irrelevant, as long as 𝑓 is injective.

Example 3.1. In the rules in Figure 2 the Skolem function is kept
implicit, but its arguments are explicitly listed. For example, in
the subexpression ((𝑢) : Person), on the right-hand side of both
rules, (𝑢) indicates that the identifier of the ouptut node is 𝑓 (𝑢)
where 𝑢 is (the identifier of) a node selected from the input prop-
erty graph by the left-hand side GPC pattern, such as u1. Because
the same nodes 𝑢 are selected in both rules, the subexpressions
((𝑢) : Person) in both rules will be referring to the same output
nodes. Further, (ℓ .𝑐𝑜𝑢𝑛𝑡𝑟𝑦𝑁𝑎𝑚𝑒) specifies the node identifier as
𝑓 (ℓ .𝑐𝑜𝑢𝑛𝑡𝑟𝑦𝑁𝑎𝑚𝑒), where ℓ .𝑐𝑜𝑢𝑛𝑡𝑟𝑦𝑁𝑎𝑚𝑒 name refers to the value
of the property 𝑐𝑜𝑢𝑛𝑡𝑟𝑦𝑁𝑎𝑚𝑒 in a node ℓ selected from the input
graph, such as “United States”, and similarly for (𝑎.𝑐𝑖𝑡𝑦𝑁𝑎𝑚𝑒). If
ℓ .𝑐𝑜𝑢𝑛𝑡𝑟𝑦𝑁𝑎𝑚𝑒 = 𝑎.𝑐𝑖𝑡𝑦𝑁𝑎𝑚𝑒 for some ℓ and 𝑎, which can happen

in our example, (ℓ .𝑐𝑜𝑢𝑛𝑡𝑟𝑦𝑁𝑎𝑚𝑒) and (𝑎.𝑐𝑖𝑡𝑦𝑁𝑎𝑚𝑒) will indicate
the same output node. ◀

3.2 Content constructors
A property graph transformation must be able to specify not only
the identifiers of output elements, but also their labels and prop-
erties. For this purpose, we use content constructors. A content

constructor is an expression of the form:

𝐶 (𝑥) ≔ {
Id: (𝑎1, . . . , 𝑎𝑘)

Labels: 𝐿
Properties: ⟨𝑘1 = 𝑣1, . . . , 𝑘𝑛 = 𝑣𝑛⟩ }

where 𝑥 is a tuple of variables, 𝐿 is a finite set of labels; each 𝑘𝑖 is
a property name from K ; each 𝑣𝑖 is either a data value 𝑐 ∈ Const,
or an expression of the form 𝑥 .𝑎 for 𝑥 ∈ 𝑥 and 𝑎 ∈ K ; and each 𝑎𝑖
is either a constant 𝑐 ∈ Const, or a label ℓ ∈ L, or an expression
of the form 𝑥 .𝑎 or 𝑥 for 𝑥 ∈ 𝑥 and 𝑎 ∈ K . The field Id specifies
the identity of the node by listing the arguments to be fed to the
Skolem function. The fields Labels and Properties specify labels
and properties present in an element. Importantly, they do not
forbid additional labels and properties, which will allow the user
to split the description of an element across multiple rules, if the
user so desires. We write 𝐶.Id for the content of the Id field of 𝐶 ,
and similarly for other fields. When 𝑥 is clear from the context, we
simply write 𝐶 instead of 𝐶 (𝑥).

Example 3.2. In the first rule in Figure 2, new Country nodes are
described using the following content constructor:

𝐶t (𝑎,𝑢, ℓ) ≔ {
Id: (ℓ .𝑐𝑜𝑢𝑛𝑡𝑟𝑦𝑁𝑎𝑚𝑒)

Labels: {Country}
Properties: ⟨𝑛𝑎𝑚𝑒 = ℓ .𝑐𝑜𝑢𝑛𝑡𝑟𝑦𝑁𝑎𝑚𝑒, 𝑐𝑜𝑑𝑒 = ℓ .𝑐𝑜𝑢𝑛𝑡𝑟𝑦𝐶𝑜𝑑𝑒⟩ }.

It specifies the identities and the values of properties 𝑛𝑎𝑚𝑒 and
𝑐𝑜𝑑𝑒 of new Country nodes in terms of the values of properties
𝑐𝑜𝑢𝑛𝑡𝑟𝑦𝑁𝑎𝑚𝑒 and 𝑐𝑜𝑢𝑛𝑡𝑟𝑦𝐶𝑜𝑑𝑒 retrieved from elements to which
variable ℓ is bound in the input graph. Rather then using the abstract
syntax introduced above, the rule in Figure 2 presents𝐶t in GPC-like
syntax [20] as

((ℓ .𝑐𝑜𝑢𝑛𝑡𝑟𝑦𝑁𝑎𝑚𝑒) : Country)
⟨𝑛𝑎𝑚𝑒=ℓ .𝑐𝑜𝑢𝑛𝑡𝑟𝑦𝑁𝑎𝑚𝑒, 𝑐𝑜𝑑𝑒=ℓ .𝑐𝑜𝑢𝑛𝑡𝑟𝑦𝐶𝑜𝑑𝑒 ⟩

.

3.3 Transformations
We describe transformations in terms of property graph transfor-
mation rules. Each rule brings together the data retrieved from the
input property graph by a GPC pattern and a description of output
elements expressed with content constructors.

We recall that the semantics of GPC is defined such that a query
returns tuples. Each tuple represents a binding of singleton variables
in that query to elements of the property graph.

We have two kinds of property graph transformation rules: node
rules and edge rules. A node rule is an expression of the form:

𝑃 (𝑥) =⇒ (𝐶 (𝑥))

2909

where 𝑃 (𝑥) is a GPC query with singleton variables 𝑥 and 𝐶 (𝑥) is
a content constructor. An edge rule is an expression of the form:

𝑃 (𝑥) =⇒ (𝐶s (𝑥))
𝐶 (𝑥)

(𝐶t (𝑥))

where 𝑃 (𝑥) is a GPC querywith singleton variables𝑥 and𝐶s (𝑥),𝐶 (𝑥)
and 𝐶t (𝑥) are content constructors. Finally, a property graph trans-

formation is a finite set of property graph transformation rules.

Example 3.3. The first edge rule in Figure 2 is built from the con-
tent constructor 𝐶t as defined in Example 3.2, and of the following
two content constructors 𝐶s and 𝐶:

𝐶s (𝑎,𝑢, ℓ) ≔ {
Id: (𝑢)

Labels: {Person}
Properties: ⟨𝑛𝑎𝑚𝑒 = 𝑢.𝑛𝑎𝑚𝑒⟩ },

𝐶 (𝑎,𝑢, ℓ) ≔ {
Id: ()

Labels: {HasLocation}
Properties: ⟨⟩ }. ◀

The above definition allows specifying multiple labels with a sin-
gle constructor as well as specifying the labels of a single element
using multiple rules. This feature, illustrated in the following exam-
ple, is crucial. Without it, in the presence of type hierarchies, one
would need negation in the query language to avoid duplicating out-
put elements. In our setting, GPC does not permit negating patterns
and it is unlikely for the complexity upper bounds in Section 4.1 to
hold when this form of negation is added.

Example 3.4. As discussed in Example 3.1, if for some nodes
ℓ and 𝑎 selected by the GPC patterns in the rules of Figure 2,
ℓ .countryName and 𝑎.cityName are equal, then the 𝐶t constructors
in both rules refer to the same output node. For instance for, ℓ = l1
and 𝑎 = a1 in the input graph in Figure 1 (i), both rules refer to
the node 𝑓 (“Luxemburg”) in the output graph in Figure 3. In con-
sequence, this node has two labels, City and Country. This, quite
likely, is not what the user actually wants. We will later see how to
fix it by adjusting the rules. ◀

Property graphs are multigraphs and our rules allow specifying
multiple edges with the same endpoints by using different argu-
ments for the Skolem function. We will see an example in Section 5.

We refer to the right-hand side expressions in node (resp. edge)
rules as node (resp. edge) constructors.We also allow rules of a more
general form, illustrated in Figure 4, where a comma-separated list
of node and edge constructors can be used on the right-hand side.
We also support aliasing, with scope limited to a single rule. For
instance, in the rule in Figure 4, we introduce alias 𝑥 = (𝑢) in the
first edge constructor, and use it in the second edge contructor.
Both these extensions are syntactic sugar. To eliminate aliases, we
simply substitute them with their definitions: in the example, we
replace 𝑥 in the second edge constructor with (𝑢). Then, we split
the rules: for each node or edge constructor on the right-hand side,
we create a separate rule with the same GPC pattern on the left.

3.4 Semantics
In this section, we describe operationally in Algorithm 1 how a
transformation given as a set of node and edge rules turns an input
property graph into an output property graph. In Section 5, we will
see how to implement this efficiently in an existing graph database.

Given a GPC query 𝑃 (𝑥), a content constructor𝐶 (𝑥) and a bind-
ing 𝑜 for 𝑃 (𝑥) over an input property graph 𝐺 , we define 𝐶.Id(𝑜)
by replacing in 𝐶.Id each 𝑥 𝑗 with 𝑜 𝑗 and each 𝑥 𝑗 .𝑎 with 𝛿𝐺 (𝑜 𝑗 , 𝑎).
Similarly, we define 𝐶.Properties(𝑜) by replacing in 𝐶.Properties
each 𝑥 𝑗 .𝑎 with 𝛿𝐺 (𝑜 𝑗 , 𝑎).

Algorithm 1 Semantics of a set of transformation rules.
Input: A property graph 𝐺 and a set of transformation rules 𝑇 .
Output: An output of the transformation𝑇 over𝐺 , a property graph

𝑇 (𝐺) = ⟨𝑁, 𝐸, 𝜆, src, tgt, 𝛿⟩.
1: initialize 𝑇 (𝐺) to the empty property graph

2: for each edge rule 𝑃 (𝑥) =⇒ (𝐶s (𝑥))
𝐶 (𝑥)

(𝐶t (𝑥)) ∈ 𝑇 do
3: add rules 𝑃 (𝑥) =⇒ (𝐶s (𝑥)) and 𝑃 (𝑥) =⇒ (𝐶t (𝑥)) to 𝑇
4: for each node rule 𝑃 (𝑥) =⇒ (𝐶 (𝑥)) ∈ 𝑇 do
5: for each binding 𝑜 ∈ ⟦𝑃⟧𝑥

𝐺
do

6: 𝑁 ← 𝑁 ∪ {𝑜 ≔ 𝑓 (𝐶.Id(𝑜))}
7: 𝜆(𝑜) ← 𝜆(𝑜) ∪𝐶.Labels
8: set 𝛿 (𝑜, 𝑘) to 𝑐 if 𝐶.Properties(𝑜) sets property 𝑘 to 𝑐
9: for each edge rule 𝑃 (𝑥) =⇒ (𝐶s (𝑥))

𝐶 (𝑥)
(𝐶t (𝑥)) ∈ 𝑇 do

10: for each binding 𝑜 ∈ ⟦𝑃⟧𝑥
𝐺
do

11: 𝑜s ← 𝑓 (𝐶s .Id(𝑜)); 𝑜t ← 𝑓 (𝐶t .Id(𝑜))
12: 𝐸 ← 𝐸 ∪ {𝑜 ≔ 𝑓 (𝑜s,𝐶.Id(𝑜), 𝑜t)}
13: src(𝑜) ← 𝑜s; tgt(𝑜) ← 𝑜t
14: 𝜆(𝑜) ← 𝜆(𝑜) ∪𝐶.Labels
15: set 𝛿 (𝑜, 𝑘) to 𝑐 if 𝐶.Properties(ō) sets property 𝑘 to 𝑐

Example 3.5. We describe, step by step, the operations carried
out by Algorithm 1 on the input consisting of the property graph
𝐺 from Figure 1 (i) and the transformation 𝑇1 which contains only
the first of the two rules in Figure 2.

First, the GPC query

𝑃 (𝑢, 𝑎, ℓ) ≔ (𝑢 : User), (𝑎 : Address), (ℓ : Location)
⟨𝑢.𝑎𝑑𝑑𝑟𝑒𝑠𝑠=𝑎.𝑎𝑖𝑑, 𝑢.𝑎𝑑𝑑𝑟𝑒𝑠𝑠=ℓ .𝑎𝑖𝑑 ⟩

is executed on 𝐺 (only once in the entire process) and outputs the
set of bindings ⟦𝑃⟧𝑢,𝑎,ℓ

𝐺
= {(𝑢 ↦→ u1, 𝑎 ↦→ a1, ℓ ↦→ l1), (𝑢 ↦→

u2, 𝑎 ↦→ a2, ℓ ↦→ l2)}.
In Line 3, the single edge rule of 𝑇1 is split into node rules

𝑃 (𝑥) =⇒ (𝐶s (𝑥)) and 𝑃 (𝑥) =⇒ (𝐶t (𝑥)), where 𝐶s and 𝐶t
have been defined in Example 3.3 and 3.2, respectively. These two
node rules are added to 𝑇1, which initially contains no node rules.

Suppose that the node rule 𝑃 (𝑥) =⇒ (𝐶s (𝑥)) is considered first
in the loop in Line 4. Two output nodes are created with respective
identifiers 𝑓 (𝑢1) and 𝑓 (𝑢2) (Line 6), one for each binding. Initially,
they have no labels, 𝜆(𝑓 (𝑢1)) = 𝜆(𝑓 (𝑢2)) = ∅, and no properties.
Then both get label Person (Line 7) and their property 𝑛𝑎𝑚𝑒 is set
to “Jean” and “Robert”, respectively (Line 8).

Next, the algorithm moves to the node rule 𝑃 (𝑥) =⇒ (𝐶t (𝑥)).
Two nodes are created in the output with respective identifiers
𝑓 (“Luxemburg”) and 𝑓 (“United States”) (Line 6), one for each bind-
ing; they both get label Country (Line 7); and their properties 𝑛𝑎𝑚𝑒

and 𝑐𝑜𝑑𝑒 are filled in (Line 8).
Finally, the algorithm steps through the only edge rule in

𝑇1. For the first binding, the nodes corresponding to the end-
points of the edge that has to be created, namely 𝑜s ≔ 𝑓 (𝑢1)

2910

(𝑢 : User), (𝑎 : Address), (ℓ : Location)
⟨𝑢.𝑎𝑑𝑑𝑟𝑒𝑠𝑠=𝑎.𝑎𝑖𝑑, 𝑢.𝑎𝑑𝑑𝑟𝑒𝑠𝑠=ℓ .𝑎𝑖𝑑⟩

=⇒ ((𝑢) : Person)
⟨𝑛𝑎𝑚𝑒=𝑢.𝑛𝑎𝑚𝑒⟩

:HasLocation
((ℓ .𝑐𝑜𝑢𝑛𝑡𝑟𝑦𝑁𝑎𝑚𝑒) : Country)

⟨𝑛𝑎𝑚𝑒=ℓ .𝑐𝑜𝑢𝑛𝑡𝑟𝑦𝑁𝑎𝑚𝑒, 𝑐𝑜𝑑𝑒=ℓ .𝑐𝑜𝑢𝑛𝑡𝑟𝑦𝐶𝑜𝑑𝑒⟩
(1)

(𝑢 : User), (𝑎 : Address), (ℓ : Location)
⟨𝑢.𝑎𝑑𝑑𝑟𝑒𝑠𝑠=𝑎.𝑎𝑖𝑑, 𝑢.𝑎𝑑𝑑𝑟𝑒𝑠𝑠=ℓ .𝑎𝑖𝑑⟩

=⇒ ((𝑢) : Person)
⟨𝑛𝑎𝑚𝑒=𝑢.𝑛𝑎𝑚𝑒⟩

:HasAddress
((𝑎.𝑐𝑖𝑡𝑦𝑁𝑎𝑚𝑒) : City)

⟨𝑛𝑎𝑚𝑒=𝑎.𝑐𝑖𝑡𝑦𝑁𝑎𝑚𝑒, 𝑐𝑜𝑑𝑒=𝑎.𝑐𝑖𝑡𝑦𝐶𝑜𝑑𝑒⟩
(2)

Figure 2: Transformation 𝑇 given as a set of rules.

Figure 3: Output property graph 𝑇 (𝐺).

and 𝑜t ≔ 𝑓 (“Luxemburg”) are retrieved (Line 11). They corre-
spond to the nodes that were created, from this binding, by the
node rules that were added to 𝑇1 in Line 3. An edge with id
𝑓 (𝑓 (𝑢1), 𝑓 (“Luxemburg”)) is created (Line 12); its source and target
are set to 𝑓 (𝑢1) and 𝑓 (“Luxemburg”), respectively (Line 13); it gets
label HasLocation (Line 14); and no property is filled (Line 15). For
the second binding, an edge is created by the same process between
the nodes 𝑓 (𝑢2) and 𝑓 (“United States”). ◀

The role of Algorithm 1 is to give semantics to a set of transfor-
mation rules: it explains how the outputs of the multiple rules are
consolidated into a single output property graph. The following
result shows that our transformations are indeed graph-to-graph
transformations, offering a way to meet the expected requirements
of future versions of standard graph query languages [21].

Proposition 3.6. Given an input property graph𝐺 and a property

graph transformation 𝑇 , Algorithm 1 always returns a valid instance

of the property graph data model.

Although Algorithm 1 always returns a valid property graph
(Proposition 3.6), property values may depend on the order in which
the rules and bindings are considered in Lines 4–5 and 9–10. Hence,
the result of the transformation may be ill-defined on some inputs.
We investigate this further in the next section.

4 DETECTING CONFLICTS
As one would expect from any expressive property graph transfor-
mation language, our formalism supports manipulating properties
of output nodes and edges. Compared to purely structural mecha-
nisms, such as [11], this poses additional challenges.

Example 4.1. Let us continue Example 3.5 by now considering
the two-rule transformation 𝑇 presented in Figure 2. The second
rule gets split into two nodes rules, one of which is

𝑃 (𝑥) =⇒ ((𝑎.𝑐𝑖𝑡𝑦𝑁𝑎𝑚𝑒) : City)
⟨𝑛𝑎𝑚𝑒=𝑎.𝑐𝑖𝑡𝑦𝑁𝑎𝑚𝑒, 𝑐𝑜𝑑𝑒=𝑎.𝑐𝑖𝑡𝑦𝐶𝑜𝑑𝑒 ⟩

.

Suppose that this node rule is processed in Line 4 after the two
node rules discussed in Example 3.5. The algorithm attempts twice

to create a node with identifier 𝑓 (“Luxemburg”) (Line 6), once for
each binding. However, a node with identifier 𝑓 (“Luxemburg”) has
been already created by the second node rule in Example 3.5. In
consequence, the label City is added to this node (Line 7) and its
properties 𝑛𝑎𝑚𝑒 and 𝑐𝑜𝑑𝑒 are set to 𝐿𝑢𝑥𝑒𝑚𝑏𝑢𝑟𝑔 and 1457, respec-
tively (Line 8), overriding previous values 𝐿𝑢𝑥𝑒𝑚𝑏𝑢𝑟𝑔 and 𝐿𝑈𝑋 .
This means that one of the two values of property 𝑐𝑜𝑑𝑒 is lost and it
depends on the processing order of rules which one it is. Indeed, the
mapping now conflates not only two cities called Luxemburg, as in
Example 1.1, but also the country Luxemburg. This time, however,
the error is easy to spot: looking at the rules we see immediately that
the identity of the output nodes depends exclusively on the name
of the city/country, which means that all cities and countries with
the same name are conflated. We can fix the transformation easily
by including information about the corresponding country in the
identity of each City node, for instance by replacing (𝑎.𝑐𝑖𝑡𝑦𝑁𝑎𝑚𝑒)
with (𝑎.𝑐𝑖𝑡𝑦𝑁𝑎𝑚𝑒, ℓ .𝑐𝑜𝑢𝑛𝑡𝑟𝑦𝑁𝑎𝑚𝑒) in rule (2) in Figure 2. ◀

Detecting the modelling error in the rules in Figure 2 requires
human insight (basic understanding of geography) but we hope
to make it easier by insisting on explicit identity specification in
transformations. On the other hand, setting an output property to
conflicting values is something one can try to capture abstractly and
detect automatically. This is what we do next. In the reminder of
this section we focus on detecting conflicts statically, by analysing
a set of transformation rules to check if it can exhibit this patholog-
ical behavior on some input. We come back to handling conflicts
dynamically in Section 5 and Section 6. Due to the limited space,
most proofs are moved to the extended version of our paper [13].

4.1 Consistency
By a conflict we mean a situation when Algorithm 1 resets a previ-
ously set property to a different value, as illustrated in Example 4.1.
A transformation 𝑇 is consistent if for every input property graph
𝐺 , no execution of Algorithm 1 results in a conflict. Note that even
a transformation consisting of a single rule can be inconsistent,
because different bindings for the same rule can cause a conflict.

We study the following fundamental static analysis problem, in
the setting where there is no source schema constraining the set of
possible input property graphs.
Consistency. Given a transformation 𝑇 , check if 𝑇 is consistent.

As we show next, consistency of transformations is deeply re-
lated to satisfiability of GPC patterns. A GPC pattern is satisfiable
if it returns a non-empty set of answers on some property graph.
Towards the goal of establishing complexity lower bounds for the
consistency problem, we provide a polynomial-time reduction from
the satisfiability problem for GPC.
Satisfiability. Given a GPC pattern 𝑃 , check if 𝑃 is satisfiable.

2911

Lemma 4.2. The satisfiability problem for GPC is PTime-reducible

to the transformation consistency problem.

Proof. For a GPC pattern 𝑃 , let 𝑇𝑃 be the transformation con-
sisting of the following two rules

𝑃 () =⇒ ((𝑐) : ℓ)
⟨𝑘=5⟩

and 𝑃 () =⇒ ((𝑐) : ℓ)
⟨𝑘=7⟩

for some fixed label ℓ , constant 𝑐 , and property name 𝑘 . These rules
are not conflicting with themselves, because their node constructors
do not depend on the binding. However, they are conflicting with
each other on a graph 𝐺 if 𝑃 returns at least one answer on 𝐺 .
Hence, 𝑇𝑃 is consistent iff 𝑃 is not satisfiable. □

For the converse of Lemma 4.2 to hold we need to move to GPC+,
a simple extension of GPC with projection and union [20].

Lemma 4.3. The transformation consistency problem is PTime-

reducible to the satisfiability problem for GPC+.

Proof sketch. For a pair of rules 𝑅 and 𝑆 , and an attribute 𝑎,
we can write a Boolean GPC+ query 𝑄𝑅,𝑆,𝑎 () that detects if some
matches of 𝑅 and 𝑆 lead to different values for attribute 𝑎 in the
same element of the output graph. Because there are polynomially
many such triples, we can take the union of all such queries to
obtain the final GPC+ query to be checked for satisfiability. □

We now turn to study the complexity of the satisfiability problem
for GPC and GPC+. The two lemmas above will allow us to draw
conclusions for the consistency problem in Section 4.3.

4.2 The complexity of satisfiability
In Theorem 4.5, we establish that checking if a GPC+ query is satis-
fiable is a PSpace-complete problem (modulo certain assumptions
on the use of restrictors). We believe that this result is interesting in
its own right, beyond the application to transformation consistency
we consider this paper. Indeed, deciding whether a query expressed
in a given query language is satisfiable is a fundamental problem in
database theory. Very little is known to this date about GPC from a
theoretical viewpoint, and our work is one of the first to tackle a
key static analysis task related to this query language.

Lemma 4.4. The satisfiability problem for GPC is PSpace-hard.

Proof sketch. We show how to reduce the membership prob-
lem for an arbitrary PSpace language to the satisfiability of a
GPC query. Let 𝐿 be a language in PSpace and 𝑀 a determinis-
tic polynomial-space Turing machine that recognizes 𝐿 in space
𝑐 · 𝑝 (𝑛) for a fixed constant 𝑐 and polynomial 𝑝 . In the following, 𝑛
denotes the length of the word𝑤 which is an input to𝑀 .

We construct the following GPC pattern 𝑃 :

𝑃 () ≔ 𝜌 (x)⟨𝜃1 ⟩

(︃ [︂
(u) (v)

]︂
⟨𝜃2 ⟩

)︃1..∞
(y)⟨𝜃3 ⟩

The intuition is the following. We can represent a configuration of
𝑀 in a single node, using a polynomial number of properties. The
pattern (x)⟨𝜃1 ⟩ is responsible for encoding the initial configuration

of 𝑀 over the input word 𝑤 . The pattern
[︂
(u) (v)

]︂
⟨𝜃2 ⟩

ensures

that there exists a valid transition of𝑀 between the configurations

represented by nodes 𝑢 and 𝑣 . Finally, (y)⟨𝜃3 ⟩ specifies that node 𝑦
represents an accepting configuration.

We can use techniques similar to the proof of the Cook-Levin
Theorem [24] to construct in time polynomial in 𝑛 the formulæ
𝜃1, 𝜃2, and 𝜃3. The size of 𝑃 is then clearly polynomial in 𝑛. This
reduction works with any 𝜌 ∈ {shortest, simple, trail}. □

For completeness, we also provide the matching upper bound
(under some assumptions) and obtain Theorem 4.5 as a result. The
details of the upper-bound proof are highly technical and the claim
depends heavily on the design choices made for GPC.

Theorem 4.5. The satisfiability problem for GPC+ queries using

only the simple and trail restrictors is PSpace-complete.

We prove the upper-bound of Theorem 4.5 by inductively con-
structing an equality type over all variables in the query. This non-
deterministic procedure uses only a polynomial amount of space by
avoiding storing the full match of the pattern. Unfortunately, this
does not extend to queries using the shortest restrictor: they seem
to require storing the full match. We leave open the question of
pinpointing the exact complexity of satisfiability for such queries.

Given the high complexity lower bounds, one might wonder
whether there are useful subclasses of GPC with tractable satis-
fiability. In Lemma 4.6 below, we show that even under strong
limitations, satisfiability is still intractable.

Lemma 4.6. The satisfiability problem is NP-hard even for single-

node GPC patterns.

4.3 Back to consistency
From Theorem 4.5, Lemma 4.2, and Lemma 4.3, we obtain the fol-
lowing fundamental result.

Corollary 4.7. The consistency problem is PSpace-complete for

transformations using only simple and trail restrictors.

In fact, the PSpace lower bound holds already for transforma-
tions using only two rules and any single restrictor. From Lemma 4.6
and Lemma 4.2 it follows that the problem remains intractable even
for transformations using very restricted GPC queries.

In the light of these high complexity lower bounds, it is unlikely
that conflict detection can be handled statically in practice. This
means that conflicts have to be handled dynamically, when the
transformation is executed. In Section 5 we discuss how this can be
implemented in practice and in Section 6 we show experimentally
that the incurred overhead is affordable.

5 TRANSLATION TO CYPHER
Algorithm 1 can be seen as an abstraction of a transformation
engine: it takes a transformation and an input property graph, and
produces an output property graph. In this section we show how
to compile a transformation to an openCypher script that can be
directly executed in any openCypher engine. This is similar in spirit
to executable SQL scripts for relational schema mappings, scalable
and efficient in producing target solutions [10].

We first discuss the overall complexity of Algorithm 1. Lines 6
and 12 involve a set-theoretic union and, without appropriate opti-
mization, their cost is proportional to the current number of ele-
ments in 𝑇 (𝐺) in each iteration of the loop. Lines 7–8 and 13–15

2912

can be implemented in O(1) provided that Lines 6 and 12 return
a pointer to the element 𝑜 ≔ 𝑓 (𝐶.Id(𝑜)) ∈ 𝑇 (𝐺). Thus the overall
complexity of Algorithm 1 on input 𝐺 is:

O (𝑡𝑖𝑛𝑡 + 𝑛𝑐 · 𝐼𝑛𝑡 (𝐺,𝑇) · |𝑇 (𝐺) |) (3)

where 𝑛𝑐 is the total number of content constructors in𝑇 , 𝐼𝑛𝑡 (𝐺,𝑇)
and 𝑡𝑖𝑛𝑡 are respectively the total size of all intermediate results
⟦𝑃⟧𝑥

𝐺
and the overall running time for computing ⟦𝑃⟧𝑥

𝐺
, with 𝑃 (𝑥)

ranging over all left-hand sides of rules in 𝑇 .
Thus, the total time taken by Algorithm 1 implemented naively

is quadratic in the size of the property graphs, which makes it prac-
tically unusable for large input instances. However, the complexity
heavily depends on the implementation of the set-theoretic unions.

Plain implementation. In Figure 5 we showcase the result of our
translation strategy for the variant 𝑇r of 𝑇 , presented in Figure 4.
This transformation has only one rule and is translated into a single
executable script. For transformations with several rules, each rule
of the transformation is independently translated into a script.

Cypher’s built-in elementId primitive provides access to the
identifier of an element, which is unique among all elements in
the database. It plays a crucial role in our implementation as we
actively use these identifiers as arguments to the Skolem function
generating output identifiers. To the best of our knowledge, there is
no explicit control of the creation of new identifiers in Neo4j, so we
equip nodes and edges in the output graph with a special property
_id that plays the role of controllable element identifier.

Lines 1–3 correspond to the left part of the rule and are re-
sponsible for retrieving the necessary information from the in-
put property graph. Recall that, in Line 3 of Algorithm 1, a node
rule is added for each endpoint of every edge constructor in the
transformation. Accordingly, in the openCypher script, each node
constructor used on the right-hand side of the rule is considered
separately (Lines 4–12). Similarly to how Skolem functions are
usually implemented in relational data exchange for schema map-
ping tasks [10], we implement them with string operations, e.g.,
_id: "(" + elementId(u) + ")". We rely on the semantics of
Cypher’s MERGE clause, described in [25], to implement the set-
theoretic union: in Lines 4, 7, and 10, MERGE checks whether an
element with this identifier already exists in the graph; either one
exists and is retrieved, or a new element is created. Adding the
corresponding label(s) to the retrieved node (Line 7 of Algorithm 1)
is implemented with the native Cypher’s SET clause in Lines 5, 8,
and 11. Similarly, the properties of the nodes (Line 8 of Algorithm 1)
are set in Lines 6, 9, and 12.

Finally, the relationships are created (Lines 13–18). To keep the
value of _id unique among all elements in the output, and given the
restriction that relationships hold a single label in Neo4j, the edge
labels have been provided as arguments to the Skolem functions in
Figure 4. Note that, when we merge an edge pattern, we are sure
that the endpoints already exist in the database.

We point out that the _id property and the _dummy label are
internal data; they are of no interest to the end user and can be
dropped after the transformation with Cypher’s REMOVE command.

Optimizations. Optimizing the MERGE clauses in Lines 4, 7, 10, 13,
and 16 which implement the set-theoretic unions is crucial in re-
ducing the overall execution time of the transformation.

As is the case in most database management systems, Neo4j
provides facilities for query optimization. The two that are relevant
in this context are indexes and uniqueness constraints. An index

permits to retrieve efficiently nodes with a given label that have a
specific value at a given property. When we know in advance that
all these values are unique, we can make further use of uniqueness
constraints (UCs). Note that in our implementation, we maintain the
invariant that each _id is unique across all elements in the output.

In the version of Neo4j Community Edition that we use for
running the experiments, indexes are implemented using b-trees,
which means that the cost of testing if an index with 𝑛 elements
contains a given key is O(log𝑛). That is, by using indexes we can
improve the worst-case complexity of Algorithm 1 to:

O (𝑡𝑖𝑛𝑡 + 𝑛𝑐 · 𝐼𝑛𝑡 (𝐺,𝑇) · log |𝑇 (𝐺) |) (4)

In the next sectionwe comprehensively evaluate the advantages and
disadvantages of using indexes and uniqueness constraints on nodes
and relationships, defined on the label/property pair _dummy/_id.

Conflict detection. The consistency problem is unfortunately
PSpace-complete by Corollary 4.7, so we cannot efficiently check
the declarative specification at compile time. Instead, we need to
be ready for potential inconsistencies at run time.

Figure 6 illustrates how one can detect conflicts on the property
code when creating a new City node. We use the ON MATCH sub-
clause of the MERGE clause to perform a comparison when we set
a property for an existing node. Notice that a different rule could
have led to the creation of this node and, consequently, z.code
may be empty; in this case the operator <> returns false and the
correct specification is reached.

6 EXPERIMENTS
Our experimental study has three main objectives: (i) evaluate the
benefits of using this formalism for transforming property graphs
in practical use-cases over a large amount of data, (ii) evaluate the
involved overhead of detecting potential inconsistencies at run-
time, and (iii) compare with the native openCypher approach such
as the one presented in Figure 1 (ii).

Experimental setting. We have implemented our property graph
transformations in openCypher 9 using a local Neo4j Community
Edition instance in version 5.9.0. For monitoring the results and per-
forming the database management tasks required in our methodol-
ogy, we have used Python 3.11 and the official Neo4j Python Driver
5.9.0. The source code, datasets, and configuration files are available
on the public GitHub repository of the project. We performed the
experiments on an HP EliteBook 840 G3 with an Intel Core i7-6600U
CPU and 32GiB of system memory (2133 MHz).

Datasets.Due to the lack of benchmarks for property graph trans-
formations, in order to build realistic scenarios we have adapted
the mappings from several relational data integration scenarios
from the iBench suite [4]. In particular, we encode relational input
instances as property graphs by creating a node for each tuple (no
edges), and we let the target instances be property graphs as well,
thus simulating graph-to-graph transformations. Each mapping in
a scenario corresponds to a rule of our formalism. Following the
method described in Section 5, we compute an openCypher script
implementing each rule.

2913

(𝑢 : User), (𝑎 : Address), (ℓ : Location)
⟨𝑢.𝑎𝑑𝑑𝑟𝑒𝑠𝑠=𝑎.𝑎𝑖𝑑, 𝑢.𝑎𝑑𝑑𝑟𝑒𝑠𝑠=ℓ .𝑎𝑖𝑑⟩

=⇒ (𝑥 = (𝑢) : Person)
⟨𝑛𝑎𝑚𝑒=𝑢.𝑛𝑎𝑚𝑒⟩

(HasLocation) :HasLocation
((ℓ .𝑐𝑜𝑢𝑛𝑡𝑟𝑦𝑁𝑎𝑚𝑒) : Country)

⟨𝑛𝑎𝑚𝑒=ℓ .𝑐𝑜𝑢𝑛𝑡𝑟𝑦𝑁𝑎𝑚𝑒, 𝑐𝑜𝑑𝑒=ℓ .𝑐𝑜𝑢𝑛𝑡𝑟𝑦𝐶𝑜𝑑𝑒⟩
,

(𝑥)
(HasAddress) :HasAddress

((𝑎.𝑐𝑖𝑡𝑦𝑁𝑎𝑚𝑒) : City)
⟨𝑛𝑎𝑚𝑒=𝑎.𝑐𝑖𝑡𝑦𝑁𝑎𝑚𝑒, 𝑐𝑜𝑑𝑒=𝑎.𝑐𝑖𝑡𝑦𝐶𝑜𝑑𝑒⟩

Figure 4: Refined property graph transformation 𝑇r.

1 MATCH (u:User)
2 MATCH (a:Address) WHERE a.aid = u.address
3 MATCH (l:Location) WHERE l.aid = u.address
4 MERGE (x:_dummy { _id: "(" + elementId(u) + ")" })
5 SET x:Person,
6 x.name = u.name
7 MERGE (y:_dummy { _id: "(" + l.countryName + ")" })
8 SET y:Country,
9 y.name = l.countryName, y.code = l.countryCode
10 MERGE (z:_dummy { _id: "(" + a.cityName + ")" })
11 SET z:City,
12 z.name = a.cityName, z.code = a.cityCode
13 MERGE (x)-[hl:HasLocation {

14 _id: "(" + elementId(x) + "," + "HasLocation" + ","

15 + elementId(y) + ")" }]->(y)

16 MERGE (x)-[ha:HasAddress {

17 _id: "(" + elementId(x) + "," + "HasAddress" + ","

18 + elementId(z) + ")" }]->(z)

Figure 5: openCypher script corresponding to 𝑇r (Figure 4).

1 MERGE (z:_dummy { _id: "(" + a.cityName + ")" })
2 ON CREATE SET z:City, z.code = a.cityCode
3 ON MATCH SET z:City, z.code = CASE WHEN z.code <> a.cityCode
4 THEN "Conflict detected!" ELSE a.cityCode END

Figure 6: Detecting conflicts on the property code.

Table 1: Scenarios characteristics.

Labels / Properties Rules
Scenario | L𝑖𝑛 | | L𝑛𝑜𝑑𝑒

𝑜𝑢𝑡 | | L𝑒𝑑𝑔𝑒

𝑜𝑢𝑡 | |K | |𝑇 | 𝑛𝑐

PersonAddress 2 2 1 7 2 6
FlightHotel 2 3 2 5 1 7
PersonData 3 3 2 3 1 5
GUSToBIOSQL 7 5 4 80 8 18
DBLPToAmalgam1 7 5 4 140 10 22
Amalgam1ToAmalgam3 15 2 1 128 8 22

The middle part of Table 1 reports the number |L𝑖𝑛 | of input
labels in each scenario (corresponding to the number of different
relations in the original iBench scenario), the number |L𝑛𝑜𝑑𝑒

𝑜𝑢𝑡 | of
output node labels, the number |L𝑒𝑑𝑔𝑒

𝑜𝑢𝑡 | of output edge labels, and
the number |K | of properties. The right part provides information
about the number of rules in the scenario |𝑇 | and the total number
𝑛𝑐 of content constructors. In each scenario, for each of the |L𝑖𝑛 |
input node labels, we generated up to 105 nodes.

Methodology. The main abstraction in our implementation is a
Scenario which describes an input property graph database that
contains some data of a given size stored in specific node and rela-
tionship properties. As previously shown in Figure 1 (i), given the
iBench output, we create a node for each tuple, having as properties
(key/value pairs) the columns names and column values. We also
add the Cypher specification of a set of indexes and constraints on
the output side, that are created before executing the transformation

Figure 7: Comparison between uniqueness constraints and
indexes for computing 𝑇 (𝐺).

Figure 8: Impact of indexing strategies and implementation
variants on the computation of 𝑇 (𝐺).

Figure 9: Average computation time for different orders of
execution of the rules.

Figure 10: Ratio between the time for computing 𝑇 (𝐺) with
and without conflict detection (using PI_NI).

when the output data is still empty. This step is not time consuming
and takes on average less than one millisecond per index.

2914

A scenario includes several Cypher queries—one for each trans-
formation rule—that are successively applied. To simulate the pro-
cess of transforming one graph into another, and to distinguish
between input and output data, we have used disjoint sets of labels
in the input and output instance. Thus, a single database instance
holds both input and output data at a time, but contains initially no
output data. As a final step, a scenario is responsible for flushing
the database and removing the indexes and constraints in order to
have a fresh database instance before executing the next scenario.
Note that the query cache (execution plans) is cleared when one
of them is dropped. We monitored the total amount of time spend
by Neo4j in applying the transformation rules. Each experiment
generally represents the average taken over 5 runs of a scenario.

Alternative implementation using separate indexes. In Section 5,
we discussed an implementation of the framework, the Plain im-

plementation (PI), which uses a single index on the output side
to speed up the retrieval of already existing nodes by Cypher’s
MERGE clause. Using a single index for all nodes in the output may
severely impact the performance of the implementation as the cost
of index maintenance may become prohibitive. To quantify this, we
compare with an alternative implementation, the Separate indexes
implementation (SI), where the label is part of the argument list,
similar to the case of relationships. The goal here is to mitigate the
cost of maintaining a very large index by splitting the data into
many smaller ones. Note that it is still possible to detect conflicts
in this variant with a slight modification of the code from Figure 6.

Impact of indexes and uniqueness constraints. We start by com-
paring the advantages of using uniqueness constraints on nodes
(NUC) and indexes (NI) on the two alternative implementations,
NI and SI. Figure 7 reports the results for our FlightHotel scenario,
showing that for large input data, indexes tend to outperform UCs.

We next investigate the impact of using combinations of indexes
on nodes and relationships. We compared variants with indexes on

nodes and relationships (NI_RI), indexes on nodes only (NI), indexes
on relationships only (RI), and without indexes (WI) for the previ-
ous PI and SI implementations and their respective variants with
conflict detection enabled: Conflict Detection over Plain implemen-

tation (CD/PI), Conflict Detection over Separate indexes (CD/SI). We
showcase in Figure 8, on a logarithmic scale, the results that were
obtained for theDBLPToAmalgam1 scenario. Other scenarios show
similar trends and they are reported in the extended version of our
paper [13]. It is clear from the figure that the choice of indexes to
use is crucial. Using indexes only on nodes is more efficient than
using a combination of indexes on nodes and relationships, which
is in turn more efficient than using indexes only on relationships
or using no index at all. The key reason of this behavior is that
indexes on nodes already allow accessing the endpoints of edges,
along with the edges themselves, efficiently. Additional indexes on
edges do not help, but do incur additional overhead.

The positive point that emerges from this study is that the imple-
mentation does not require fine tuning to be efficient in a specific
scenario; using indexes only on nodes is consistently the best ap-
proach to use. Additionally, when using indexes only on nodes (NI),
the Plain implementation (PI) is negligibly slower than Separate
indexes implementation (SI), whereas for other combinations of
indexes it is noticeably slower. We discussed in Example 3.4 that
PI allows for more flexible use of labels compared to the SI (which

corresponds to having a dedicated Skolem function for each set of
labels). In view of the above results, in the remaining experiments
we focus on the Plain implementation with node indexes (PI_NI).

Impact of rule order. Our formalism is declarative and does not
specify the order for the execution of the rules. Hence, we have
investigated the impact of different orders on the computation
time of the transformation. We compare the minimum, average
and maximum running times using random orders with the (fixed)
order provided in iBench as baseline. Figure 9 reports the results for
the DBLPToAmalgam1 scenario; error bars indicate minimum and
maximum computation times observed over 20 independent runs.
For space reasons,GUSToBIOSQL and Amalgam1ToAmalgam3, ex-
hibiting similar results, are deferred to the extended version [13].

We can observe that the impact of the order in which the rules
are applied on the execution time of the transformation is not sub-
stantial; randomized orders have a variance similar to that of a fixed
order. It is fair to say that the performance of our implementation
does not rely on any specific execution order.

Overhead of detecting potential inconsistencies. We evaluated the
impact of turning on conflict detection (over PI_NI) by investigat-
ing the ratio between computation time with and without conflict
detection. The theoretical complexity of our implementation of
Algorithm 1 with conflict detection is:

O (𝑡𝑖𝑛𝑡 + 𝑛𝑐 · 𝐼𝑛𝑡 (𝐺,𝑇) · (log |𝑇 (𝐺) | + 𝑐)) (5)

for 𝑐 a constant modeling the cost of the conditional statement.
Thus the overhead incurred by detecting conflicts is 1 + 𝑐

log |𝑇 (𝐺) | ,
which tends to 1 in larger scenarios.

The results presented in Figure 10 experimentally validate that
the incurred overhead of conflict detection is reasonably low for
large input instances, and stays within a constant factor, roughly
between 1 and 1.3, depending on the scenario.

Figure 11: Run-time comparison for different likelihood of
conflicts (using CD/PI_NI with 105 nodes for each input type).

Robustness against incidence of conflicts. iBench’s scenarios have
very few or no conflicts. To investigate the generalizability of these
results to more conflict-prone scenarios, we designed an experiment
using an additional randomization step: when a rule attempts to
set a value for an attribute, the value is changed randomly. This
allows us to control the average number of conflicts in the output.
Figure 11 reports, on a logarithmic scale, the results for all our
scenarios, with varying likelihood of conflicts, ranging from 0% to
100%. Note that, the size of the output is preserved because only
the attributes are affected, not the topology of the graph.

2915

Table 2: Running times and size of intermediate data (ICIJ).

Rules 𝑡𝑖𝑛𝑡 𝑡 𝐼𝑛𝑡 (𝐺,𝑇) |𝑇 (𝐺) | 𝑂/𝐼 𝑡𝑒
𝑖𝑛𝑡

𝑡𝑒

𝑅1 − 𝑅4 2,757 11,192 374,955 748,524 1.996 0.007 0.015
𝑅5 − 𝑅9 3,553 5,946 62,242 82,616 1.327 0.057 0.072
𝑅10 − 𝑅13 15,509 36,775 1,906,686 1,905,547 0.999 0.008 0.019
𝑅14 − 𝑅17 9,667 21,006 493,556 1,173,720 2.378 0.020 0.018
𝑅18 only 8,407 25,640 785,124 1,570,470 2.000 0.011 0.016

We observe that the prevalence of conflicts has no impact on
the execution time, suggesting that our framework’s stability is
preserved, even with a large proportion of conflicts in the output.

Figure 12: Horizontal scaling, with varying number of inde-
pendent copies of the scenario.

Horizontal scalability. We have investigated how well our frame-
work scales with the number of rules and input labels. We built
larger scenarios by taking an increasing number of independent
copies of the scenarios from Table 1. The resulting transformations
reach over one hundred rules and input labels, and over 1.5 mil-
lion input nodes (in total). Figure 12 reports the results for the
PersonData and Amalgam1ToAmalgam3 scenarios.

We observe the running time scales smoothly (almost linearly)
as the number of copies increases. Results on other scenarios follow
similar trends and are deferred to the extended version [13].

Improvement over handcrafted scripts: a user study. To compare
empirically the readability and usability of the script-based ap-
proach and our framework, we ran an ad-hoc user study involving
12 participants that were all already familiar with openCypher.

We compared the ability of the participants to understand the
behavior of some provided openCypher scripts and transformations
in clearly defined scenarios. Only 25% of the participants have been
able to fully understand the behaviour of the openCypher scripts,
whereas 67% of them succeeded with transformations. In average,
participants have scored 50% on openCypher scripts and 90% on our
framework. Participants were also asked to compare openCypher
scripts and our framework in terms of understandability, intuitive-
ness, and flexibility; they all have favored our framework by a great
margin. For space reasons, the questionnaire, the participant’s an-
swers, and the full discussion of the obtained results are deferred
to the extended version of our paper [13].

6.1 Use-case Study: Improving Data Integration
In this section, we want to compare the cost of running the whole
transformation compared to the cost of querying the source prop-
erty graph to extract the bindings (intermediate data). To this
end, we use a real-world dataset, the Offshore Leaks Database and
guide from the International Consortium of Investigative Journalists

(ICIJ) [19], a property graph with 1,908,466 nodes and 3,193,390
edges taken from [32]. This dataset consolidates data from several
leaks (Panama Papers, Bahamas Leaks, etc.) collected by ICIJ over a

period of ten years, but still presents the consolidated data in a het-
erogeneous manner. The dataset contains information about entities
(off-shore companies), officers of those, intermediaries (middlemen
who help set up off-shore companies), and jurisdictions (countries
or territories where off-shore companies are registered). We have
designed a modular 18-rule transformation aiming to uniformize
the presentation of the information contained in the graph. The
rules are grouped into 5 subsets, each addressing a specific refac-
toring goal motivated below. For space reasons, we have deferred
the rules themselves to the extended version of our paper [13].

Refactoring registered addresses (𝑅1 − 𝑅4). The ICIJ database con-
tains the registered addresses of the officers, and entities. These
rules are responsible for creating nodes representing countries and
linking to the addresses. Because the data is semi-structured and
collected from multiple sources, information may be stored in at-
tributes that have different names, or may even not be available at
all. All these cases are covered by these four rules.

Uniformizing address information for intermediaries (𝑅5 − 𝑅9).
After careful investigation, we found that the registered address of
intermediaries can be stored in three different ways in the database:
(i) an intermediary can have a direct relationship with an address,
(ii) the address can be stored in the properties of the node itself, and
(iii) when neither of the two previous cases applies, it is necessary
to retrieve the address of an entity linked to this intermediary. These
rules permit to consistently store address information.

Exporting the nodes (𝑅10−𝑅13). These rules copy the node infor-
mation from the source to the target; they are necessary to preserve
all the information from the original graph.

Improving similarity detection (𝑅14 − 𝑅17). Because the dataset
consolidates multiple leaks, certain specific relationships, such as
similar and same_as, are used to indicate that some officers (resp.
addresses) are likely to represent the same real life entity. These
rules focus on exporting this data and improving the similarity
detection. This is illustrated by Rule 15 shown in Figure 13 which
composes the relationships similar and same_as to ensure that both
its endpoints correspond to officers having the same address. (This
is because similar encompasses address similarity.) Then, it checks
whether their names are also similar. If both conditions hold, it
safely adds a similarity edge between the endpoints in the output.

Refactoring jurisdictions (𝑅18). The last rule is responsible for
connecting the jurisdictions with their associated countries; this
information is not explicitly stored in the initial database.

Results. Our experimental results are reported in Table 2. We
report the time 𝑡𝑖𝑛𝑡 (inms) the database takes to retrieve the interme-
diate data; the total time 𝑡 of running the transformation (extracting
the bindings and constructing the output); the size 𝐼𝑛𝑡 (𝐺,𝑇) of in-
termediate data; the size of the output 𝑇 (𝐺); the ratio 𝑂/𝐼 of the
size of the output to the size of intermediate data. To account for the
differences in the sizes of the outputs of the respective tasks, we also
report the average time 𝑡𝑒

𝑖𝑛𝑡
taken to produce each binding of the in-

termediate result, and the average time 𝑡𝑒 taken to construct each el-
ement of the output.We break down the reported values into groups
of rules corresponding to the aforementioned integration tasks.

There are several things that we can learn from Table 2. First, the
overhead 𝑡𝑒/𝑡𝑒

𝑖𝑛𝑡
of turning the intermediate results into a proper

property graph is reasonable. For Rules 𝑅14 − 𝑅17, it is even com-
paratively more efficient to compute the output property graph

2916

(𝑜 : Officer)
:similar

0..∞
(: Officer)

:registered_address
(: Address)

:similar
(: Address)

:registered_address
(: Officer)

:similar
0..∞
(𝑝 : Officer)

⟨𝑡𝑜𝐿𝑜𝑤𝑒𝑟 (𝑜.𝑛𝑎𝑚𝑒)=𝑡𝑜𝐿𝑜𝑤𝑒𝑟 (𝑝.𝑛𝑎𝑚𝑒)⟩

=⇒ ((𝑜) : T_Officer)
() : T_Similar

⟨𝑙𝑖𝑛𝑘=”similar name and address as”⟩ ((𝑝) : T_Officer)

Figure 13: Improved similarity detection (𝑅15).

(overhead is 0.9). The worst case is for rules 𝑅10−𝑅13 exhibiting an
overhead of 2.4. Second, the ratio 𝑂/𝐼 is also reasonable, ranging
from 1 to 2.4. This shows that, in practical contexts, 𝐼𝑛𝑡 (𝐺,𝑇) can
be assumed to have a size comparable to |𝑇 (𝐺) |.

Thus, we have demonstrated that the overhead incurred by pro-
ducing a property graph rather than a set of bindings is acceptable
for a realistic transformation in a real-life integration scenario.

7 RELATEDWORK
Schema mapping and data exchange. Specifying the relationship
between two relational (or XML) schemas using a set of declarative
assertions is a task known as schema mapping [9, 16, 27]. This rela-
tion, is usually non functional, i.e. given an input instance 𝐼 , several
target instances satisfying the mapping constraints exist.

Schemamappings and data exchange have been studied in [6, 23]
for graph databases. The mapping languages considered are based
on classical graph database queries such as regular path queries [7],
limited in their expressivity by not supporting data values. More-
over, answering queries on the target is already intractable in data
complexity for RPQs [6] and undecidable for data RPQs [23]. In com-
parison, our transformation framework provides more flexibility
by including the support for data values, and any target query can
be answered by simple execution on the produced property graph.

Graph generating dependencies have been introduced and studied
in [30, 31]. They help specify the creation of new graph elements,
hence could lead to a semantics for specifying exchange of graph
data. Nevertheless, this would still provide a non functional ap-
proach, much like the above-mentioned data exchange framework.

Graph transformations.Graph database transformations based on
acyclic conjunctive two-way RPQs have been investigated in [11].

The graph database model they consider does not have data val-
ues. However, we have seen that dealing with data values gives rise
to the consistency checking problem, which is key to understand-
ing if a property graph transformation is well-defined. Another
difference is that they are using a single dedicated node constructor
for each label. In Section 3 and 5, we have seen that this approach
is too rigid for dealing with multiple labels.

Object-creating functions. The Skolem functions we use in our
constructors resemble to the object creating functions that are used
in the object-oriented database model [1, 26]. Among transforma-
tion languages based on oid generation, StruQL [18] specifically
operates on object-oriented semi-structured instances. The major
difference with our work is that they have multi-valued attributes.
Hence, additional integrity constraints are necessary to ensure a
correct modeling of property graphs in their model. Therefore, they
did not take into account the problem of consistency.

Interoperability of graph data. Although RDF, RDF-star and the
property graph data model share striking similarities, both being

based on elementary graph concepts, like nodes and edges, intri-
cate interoperability issues arise when attempting to exchange
data between them. RDF-star notably allows for annotating RDF
triples with metadata annotations, which are notoriously difficult to
capture within the property graph data model as witnessed in [2].

The main concern of transformation languages between graph
data models is thus primarily focused on solving the well-known
impedance mismatch problem [10], which does not arise in our
setting because we have property graphs for both input and output.
Our transformation language can be thus more expressive, and can
be executed by the graph database management system itself.

Mining the identities of nodes across networks.Network alignment
is a technique for finding node correspondences between two or
more networks. It can be used, for example, to associate nodes
from different social networks with the same user [35]. Nodes are
identified based on their similarities with respect to both their
features (i.e., their properties) and their neighborhood.

While these methods are not part of graph transformation for-
malisms, they can be used to guide the construction of graph trans-
formations. For instance, in Section 6.1, the results of network
alignment (the similarity edges in the Offshore Leaks Database)
were leveraged to better integrate data coming from multiple leaks.

8 CONCLUSION
Our research is the first to lay the theoretical foundations for declar-
ative property graph transformations, and facilitate practical so-
lutions for turning such specifications into executable scripts in
modern property graph query languages. New challenges arise
from the specification of property-aware transformations, notably
the task of checking if a transformation is consistent. Using a proof-
of-concept implementation of our formalism in openCypher, we
showcase the efficiency of our approach for transforming property
graphs for both real-world and synthetic datasets.

This work paves the way for obtaining compositional semantics
for graph query languages. As a future direction, we will inves-
tigate the model extensions needed for the above semantics, by
addressing label and path variables, and aggregates. Meanwhile,
our framework can already seamlessly support the group variables
of GPC because those are list of identifiers that can be flattened into
the identifier lists of the constructors. Finally, we will investigate
how to assist users in the design process of their transformation
rules; for instance by lifting schema matching techniques [9, 10]
from relational to property graph schemas.

ACKNOWLEDGMENTS
Angela Bonifati and Yann Ramusat were supported by the Veri-
Graph (ANR-21-CE48-0015) project. Filip Murlak was supported by
Poland’s NCN grant 2018/30/E/ST6/00042.

2917

REFERENCES
[1] Serge Abiteboul and Paris C. Kanellakis. 1998. Object Identity as a Query Lan-

guage Primitive. J. ACM 45, 5 (1998), 798–842.
[2] Ghadeer Abuoda, Daniele Dell’Aglio, Arthur Keen, and Katja Hose. 2022. Trans-

forming RDF-star to Property Graphs: A Preliminary Analysis of Transformation
Approaches. In QuWeDa 2022. 17–32.

[3] Marcelo Arenas, Pablo Barcelo, Leonid Libkin, and Filip Murlak. 2010. Relational
and XML Data Exchange (1st ed.). Morgan and Claypool Publishers.

[4] Patricia C. Arocena, Boris Glavic, Radu Ciucanu, and Renée J. Miller. 2015. The
IBench Integration Metadata Generator. VLDB 9, 3 (2015), 108–119.

[5] Patricia C. Arocena, Boris Glavic, and Renee J. Miller. 2013. Value Invention in
Data Exchange. In SIGMOD. 157–168.

[6] Pablo Barceló, Jorge Pérez, and Juan Reutter. 2013. Schema Mappings and Data
Exchange for Graph Databases. In ICDT. 189–200.

[7] Pablo Barceló, Jorge Pérez, and Juan L. Reutter. 2012. Relative Expressiveness of
Nested Regular Expressions. In AMW. 180–195.

[8] Pablo Barceló Baeza. 2013. Querying Graph Databases. In PODS. 175–188.
[9] Z. Bellahsene, A. Bonifati, and E. Rahm. 2011. Schema Matching and Mapping.
[10] Philip A. Bernstein and Sergey Melnik. 2007. Model Management 2.0: Manipu-

lating Richer Mappings. In SIGMOD. 1–12.
[11] Iovka Boneva, Benoît Groz, Jan Hidders, Filip Murlak, and Slawek Staworko.

2023. Static Analysis of Graph Database Transformations. In PODS. 251–261.
[12] Angela Bonifati, Ugo Comignani, Emmanuel Coquery, and Romuald Thion. 2017.

Interactive Mapping Specification with Exemplar Tuples. In SIGMOD. 667–682.
[13] Angela Bonifati, Filip Murlak, and Yann Ramusat. 2024. Transforming Property

Graphs. arXiv:2406.13062 [cs.DB] https://arxiv.org/abs/2406.13062
[14] Laura Chiticariu and Wang-Chiew Tan. 2006. Debugging schema mappings with

routes. In PVLDB. 79–90.
[15] Alin Deutsch, Nadime Francis, Alastair Green, Keith Hare, Bei Li, Leonid Libkin,

Tobias Lindaaker, Victor Marsault, Wim Martens, Jan Michels, Filip Murlak,
Stefan Plantikow, Petra Selmer, Oskar van Rest, Hannes Voigt, Domagoj Vr-
goc, Mingxi Wu, and Fred Zemke. 2022. Graph Pattern Matching in GQL and
SQL/PGQ. In SIGMOD. 2246–2258.

[16] Ronald Fagin, Phokion G. Kolaitis, Renée J. Miller, and Lucian Popa. 2005. Data
Exchange: Semantics and Query Answering. TCS 336, 1 (2005), 89–124.

[17] Ronald Fagin, Phokion G. Kolaitis, and Lucian Popa. 2005. Data Exchange:
Getting to the Core. TODS 30, 1 (2005), 174–210.

[18] Mary Fernandez, Daniela Florescu, Alon Levy, and Dan Suciu. 1997. A Query
Language for a Web-Site Management System. SIGMOD 26, 3 (1997), 4–11.

[19] Miguel Fiandor and Michael Hunger. [n.d.]. Offshoreleaks Data Packages. Re-
trieved March 1, 2024 from https://github.com/ICIJ/offshoreleaks-data-packages

[20] Nadime Francis, Amélie Gheerbrant, Paolo Guagliardo, Leonid Libkin, Victor
Marsault, Wim Martens, Filip Murlak, Liat Peterfreund, Alexandra Rogova, and
Domagoj Vrgoc. 2023. GPC: A Pattern Calculus for Property Graphs. In PODS.
241–250.

[21] Nadime Francis, Amélie Gheerbrant, Paolo Guagliardo, Leonid Libkin, Victor
Marsault, Wim Martens, Filip Murlak, Liat Peterfreund, Alexandra Rogova, and
Domagoj Vrgoč. 2023. A Researcher’s Digest of GQL. In ICDT, Vol. 255. 1–22.

[22] Nadime Francis, Alastair Green, Paolo Guagliardo, Leonid Libkin, Tobias Lin-
daaker, Victor Marsault, Stefan Plantikow, Mats Rydberg, Petra Selmer, and
Andrés Taylor. 2018. Cypher: An Evolving Query Language for Property Graphs.
In SIGMOD. 1433–1445.

[23] Nadime Francis and Leonid Libkin. 2017. Schema Mappings for Data Graphs. In
PODS’17. 389–401.

[24] Michael R. Garey and David S. Johnson. 1990. Computers and Intractability; A

Guide to the Theory of NP-Completeness. W. H. Freeman & Co.
[25] Alastair Green, Paolo Guagliardo, Leonid Libkin, Tobias Lindaaker, Victor

Marsault, Stefan Plantikow, Martin Schuster, Petra Selmer, and Hannes Voigt.
2019. Updating graph databases with Cypher. VLDB 12, 12 (2019), 2242–2254.

[26] Richard Hull and Masatoshi Yoshikawa. 1990. ILOG: Declarative Creation and
Manipulation of Object Identifiers. In VLDB. 455–468.

[27] Phokion G. Kolaitis. 2005. Schema Mappings, Data Exchange, and Metadata
Management. In PODS. 61–75.

[28] Neo4j. 2023. APOC user guide for Neo4j 5. Retrieved November 9, 2023 from
https://neo4j.com/docs/apoc/current/

[29] Neo4j. 2023. Graph Data Modeling Fundamentals. Retrieved November 9, 2023
from https://graphacademy.neo4j.com/courses/modeling-fundamentals/

[30] Larissa C. Shimomura, George Fletcher, and Nikolay Yakovets. 2020. GGDs:
Graph Generating Dependencies. In CIKM. 2217–2220.

[31] Larissa C. Shimomura, Nikolay Yakovets, and George Fletcher. 2022.
Reasoning on Property Graphs with Graph Generating Dependencies.
arXiv:2211.00387 [cs.DB] https://arxiv.org/abs/2211.00387

[32] Philipp Skavantzos and Sebastian Link. 2023. Normalizing Property Graphs.
Proc. VLDB Endow. 16, 11 (2023), 3031–3043.

[33] Oskar van Rest, Sungpack Hong, Jinha Kim, Xuming Meng, and Hassan Chafi.
2016. PGQL: A Property Graph Query Language. In GRADES. 1–6.

[34] Moshe Y. Vardi. 2016. A Theory of Regular Queries. In PODS. 1–9.
[35] Si Zhang and Hanghang Tong. 2020. Network Alignment: Recent Advances and

Future Directions. In CIKM. 3521–3522.

2918

https://arxiv.org/abs/2406.13062
https://arxiv.org/abs/2406.13062
https://github.com/ICIJ/offshoreleaks-data-packages
https://neo4j.com/docs/apoc/current/
https://graphacademy.neo4j.com/courses/modeling-fundamentals/
https://arxiv.org/abs/2211.00387
https://arxiv.org/abs/2211.00387

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Data model
	2.2 Graph Pattern Calculus

	3 Property graph transformations
	3.1 Generating output identifiers
	3.2 Content constructors
	3.3 Transformations
	3.4 Semantics

	4 Detecting conflicts
	4.1 Consistency
	4.2 The complexity of satisfiability
	4.3 Back to consistency

	5 Translation to Cypher
	6 Experiments
	6.1 Use-case Study: Improving Data Integration

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

