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ABSTRACT
Sampling-based Graph Neural Networks (GNNs) have become the
de facto standard for handling various graph learning tasks on
large-scale graphs. As the graph size grows larger and even ex-
ceeds the standard host memory size of a single machine, out-of-
core sampling-based GNN training has gained attention from the
community. For out-of-core sampling-based GNN training, the per-
formance bottleneck is the data preparation process that includes
sampling neighbor lists and gathering node features from exter-
nal storage. Based on this observation, existing out-of-core GNN
training frameworks try to accomplish larger percentages of data
requests without inquiring the external storage by designing bet-
ter in-memory caches. However, the enormous overall requested
data volume is unchanged under this approach. In this paper, we
present a new perspective on reducing the overall requested data
volume. Through a quantitative analysis, we find that Neighbor-
hood Redundancy and Temporal Redundancy exist in out-of-core
sampling-based GNN training. To reduce these two kinds of data
redundancies, we propose OUTRE, an OUT-of-core de-REdundancy
GNN training framework. OUTRE incorporates two new designs,
partition-based batch construction and historical embedding cache,
to reduce the corresponding data redundancies. Moreover, we pro-
pose automatic cache space management to automatically organize
available memory for different caches. Evaluation results on four
public large-scale graph datasets show that OUTRE achieves 1.52×
to 3.51× speedup against the SOTA framework.
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1 INTRODUCTION
Graph Neural Networks (GNNs) are becoming increasingly popular
in academia and industry, and are widely used on various graph
learning tasks, including node classification [25, 28, 33, 44, 52, 58],
link prediction [4, 50, 57], recommendation [1, 11, 18, 30, 51, 53],
graph clustering [8, 14, 59], and drug discovery [17, 24, 36, 49].
During training, GNNs typically fetch the 𝐿-hop neighborhood for
each node to complete its computation, where 𝐿 is the model depth.
These fetching operations incur extremely high memory cost when
training on large-scale graphs. To address this issue, researchers
propose sampling-based GNNs [6, 9, 16, 55] that randomly sample
a subset of neighbors for each node at each layer instead of utilizing
the entire neighborhood. Evaluations show that sampling-based
GNNs have significantly higher efficiency and smaller memory
cost while maintaining similar convergence accuracy with GNNs
trained on full neighborhoods [16].

Recently, the size of graph datasets have grown to several hun-
dred GBs and even exceeded one TB [20, 27]. Although the memory
footprint of sampling-based GNNs can be small by tuning the batch
size and the sample size, naïvely fetching neighborhood informa-
tion still requires the in-memory existence of the entire graph. A
straightforward solution to the memory scarcity issue is to extend
the graph storage to multiple machines and train GNNs distributely.
However, previouswork [32] found that the performance bottleneck
of sampling-based GNN training is the data preparation process
that issues a great number of data requests. On the other hand,
the computing devices (e.g., GPUs) are often underutilized during
training. Thus, scaling sampling-based GNN training to multiple
machines is not economical. Besides, the additionally introduced
communication cost may further exacerbate the underutilization
issue of computing devices.

With the fast development of storage technologies, Solid State
Drivers (SSDs) can now achieve multiple GBps of sequential band-
width and their prices have dropped significantly recently. There-
fore, some researcher have begun to explore the possibility of in-
corporating SSD into sampling-based GNN training. We refer to
the attempts that extend the memory space to external storage (e.g.,
disk, SSD) as “out-of-core” executions. However, SSDs are still sev-
eral magnitudes slower than host memory, especially for random
accesses. Thus, naïvely fetching 𝐿-hop neighborhoods from exter-
nal storage will further slow down the already dominating data
preparation process and deteriorate the final training performance.
Targeting reducing the percentage of data requests that inquire the
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external storage, an existing framework [39] uses the host memory
to cache important graph data. Specifically, it adopts a dual-cache
approach that utilizes a neighbor cache to cache neighbor lists and
a feature cache to cache node features. This dual-cache approach
has achieved significant speedup against naïve baselines.

The main focus of this dual-cache approach is to explore how to
accomplish more data requests through the caches in host memory.
However, the overall requested data volume is unchanged, and
how to reduce it remains to be explored. In this paper, we present
a new and a more fundamental perspective: reducing the overall
requested data volume. Through a quantitative analysis, we find
that two kinds of data redundancies exist in out-of-core sampling-
based GNN training. 1) Neighborhood Redundancy: Plenty of nodes
are redundantly included in the sampled 𝐿-hop neighborhoods of
many different training batches as one node can be connected to
many different batches’ training nodes. 2) Temporal Redundancy:
Calculating the exact node embeddings at every training iteration
incurs many unnecessary data requests as most embeddings only
experience modest changes across most training iterations.

We propose OUTRE, an OUT-of-core de-REdundancy GNN train-
ing framework that aims to reduce the overall requested data volume
by reducing two kinds of data redundancies. OUTRE is built on
the dual-cache approach and presents three new designs: 1) To
reduce Neighborhood Redundancy, we propose constructing train-
ing batches with min-cut graph partitions. By decreasing links
between different batches’ training nodes, the overlapped neigh-
borhood size can be reduced. We make profound performance opti-
mizations to one streaming graph partitioning algorithm [43] and
achieve efficient out-of-core graph partition. 2) Motivated by pre-
vious work [13, 21], we approximate node embeddings with their
histories to reduce Temporal Redundancy. We only cache second-
layer node embeddings to strike a balance among memory cost,
training efficiency and accuracy. 3) To alleviate exhausting tuning
efforts, we present an automatic cache space management module
to help OUTRE adapt to various datasets and hardware configura-
tions. Specifically, we add a profiling epoch ahead of training and
collect the approximated I/O savings for different caches. A low-cost
search process then finds the optimal memory split scheme.

Our contributions can be summarized as follows:

• (1) New Findings.We present a new design perspective, re-
ducing the overall requested data volume, for out-of-core
sampling-based GNN training and locate two kinds of data
redundancies, Neighborhood Redundancy and Temporal Re-
dundancy, through a quantitative analysis.

• (2)New Framework.Wepropose a new out-of-core sampling-
based GNN training framework, OUTRE. Inside the frame-
work, we present partition-based batch construction and
historical embedding cache to reduce the corresponding two
data redundancies. We further propose automatic cache
space management to automatically generate decent mem-
ory split schemes for the caches with real-world profiling.

• (3) SOTA Performance.We compare OUTRE with the SOTA
out-of-core sampling-based GNN training framework on
four public large-scale graph datasets. The evaluation re-
sults illustrate that OUTRE achieves 1.52× to 3.51× speedup
and maintains comparable convergence accuracy.

2 BACKGROUND
2.1 Graph Neural Networks
Graph Neural Networks (GNNs) are neural networks operating on
graph-structured data where each node is associated with a feature
vector. GNNs can capture valuable knowledge within each node’s
neighborhood other than only the node itself. Thus, GNNs out-
perform traditional deep learning methods (e.g., MLP) that cannot
utilize neighborhood information on various graph learning tasks.

An 𝐿-layer GNN is constituted by 𝐿 consecutive GNN layers.
The operations on node 𝑣 of the 𝑙-th (1 ≤ 𝑙 ≤ 𝐿) GNN layer can be
formulated as follows:

h𝑙𝑣 = 𝑢𝑝𝑑𝑎𝑡𝑒

(
h𝑙−1𝑣 , 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒

({
h𝑙−1𝑢 | 𝑢 ∈ N𝑣

}))
, (1)

where N𝑣 is the neighbor set of node 𝑣 . The aggregate function
aggregates knowledge from node 𝑣 ’s neighborhood. The aggregated
knowledge and node 𝑣 ’s own feature are fed into the update function.
Regarding real-world applications, each node in the graph might
have dozens or even hundreds of neighbors. Thus, fetching the
collective 𝐿-hop neighborhood for even a small number of nodes
would incur extensive time and memory cost when 𝐿 is large, which
is called the “neighbor explosion” problem [16]. Many researches [6,
9, 16, 55] propose sampling-based GNNs that sample only a subset of
the whole neighborhood to alleviate this problem. Sampling-based
GNNs are considerably more scalable and efficient on large-scale
graphs than GNNs that train on full neighborhoods.

2.2 Out-of-core Sampling-based GNN Training
Stage Decomposition

As the graphs used for GNN training grow larger [20, 27], using
sampling-based GNNs has become the de facto standard for train-
ing GNNs on large-scale graphs. The training pipeline of sampling-
based GNNs under the typical CPU-GPU hybrid system can be
decomposed into four stages: Sample, Gather, Transfer and Com-
pute. (1) Sample: for a batch of nodes (denoted byN𝑏 ), CPU extracts
their collective 𝐿-hop neighborhood (denoted by Ñ𝑏 ) recursively
from the graph’s adjacency matrix. (2) Gather: CPU gathers the
node features of Ñ𝑏 from the feature matrix and put them into a
contiguous memory area. (3) Transfer : CPU transfers the 𝐿-hop
neighborhood connections and the gathered features from host
memory to GPU. (4) Compute: GPU executes the forward and back-
ward operations according to specific GNNs. The Sample and the
Gather stage together are often denoted as Data Preparation since
they prepare data required by model execution.

When adapting this four-stage training pipeline to out-of-core
settings, the training framework needs to access the adjacency
matrix and the feature matrix from external storage during Data
Preparation. The Transfer and the Compute stage remain unchanged.
To find the performance bottleneck of the training process, we ex-
tend the popular graph learning library PyG [12] to out-of-core
settings by letting it read the memory-mapped feature matrix and
indices of the CSR-formed adjacency matrix from SSDs. We keep
the indptr of the CSR-formed adjacency matrix in host memory
as it requires only 𝑂 (N) space, where N is the number of nodes
in the graph. The training time decomposition of a 3-layer Graph-
SAGE [16] with hidden size of 256 and sample size of (10,10,10) on
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Figure 1: Overview of a typical dual-cache out-of-core
sampling-based GNN training framework.

two OGB datasets [20] is shown in Table 1. To simulate the out-of-
core environment, we limit the available host memory to 4GB and
64GB for ogbn-products and ogbn-papers100M, respectively. The
batch size is set to 1,000. Table 1 illustrates that more than 95% of
the training time is spent on Data Preparation, meaning that Data
Preparation heavily bounds the GNN training performance.

2.3 Existing Out-of-core Sampling-based GNN
Training Frameworks

Observed that Data Preparation is the performance bottleneck, ex-
isting out-of-core sampling-based GNN training frameworks [38,
39, 42, 47] proposes various kinds of designs to accelerate Data
Preparation. There are mainly three branches of existing out-of-
core sampling-based GNN training frameworks. The first branch
of work [22, 47] follows previous attempts of out-of-core graph
processing systems [31, 45, 46, 61]. They split graphs to partitions
and execute only on the in-memory partitions. This design can
bring considerable performance improvement yet suffers from ac-
curacy loss when the graph size is significantly larger than the host
memory size. The second branch of work [38, 42] explores how to
efficiently train GNNs on large-scale graphs when GPU threads
can directly access data on SSDs [40]. They remove CPU from the
I/O stack and achieve high I/O bandwidth. The third branch of
work [39] adopts a dual-cache approach, whose overview is de-
picted in Figure 1. The neighbor cache and the feature cache stores
important neighbor lists and node features in host memory, respec-
tively. They focus on designing better cache policies to accomplish
more data requests without inquiring external storage.

We built our framework on the third branch of work. Instead of
only trying to increase the percentage of data requests saved from
inquiring external storage, we propose a new andmore fundamental
perspective that explores how to reduce the overall requested data
volume. Unlike the other two branches, the first branch of work
does not utilize full graph data during training. For fairness, we
do not compare with it in this paper. The second branch of work
is orthogonal to the third branch, and these two branches can be
easily combined. Therefore, we compare our framework mainly
with the third branch of work in this paper.

3 OBSERVATIONS
In this section, we firstly propose a new metric to quantify the
overall requested data volume for out-of-core sampling-based GNN

Table 1: Training time decomposition on two OGB datasets
under out-of-core environments.

Training Stages Sample Gather Transfer Compute

ogbn-products (4G mem) 374.61s 14.57s 9.49s 4.98s
ogbn-papers100M (64G mem) 121.03s 3542.62s 75.21s 20.94s

Table 2: Redundancy Ratio on two OGB datasets.

Datasets #Nodes #Training
∑𝐵
𝑏=1 |Ñ𝑏 | RR

ogbn-products 2,449,029 196,615 93,527,142 475.69
ogbn-papers100M 111,059,956 1,207,179 142,040,373 117.66

training. Then, we conduct a quantitative analysis and try to locate
two kinds of data redundancies in out-of-core sampling-based GNN
training. Finally, we propose two corresponding insights based on
the analysis results, which may help to boost training performance.

3.1 Redundancy Ratio
Asmentioned in Section 2.2, the training framework needs to access
the adjacency matrix and the feature matrix from external storage
during Data Preparation. Here, we empirically analyze the overall
requested data volume during Data Preparation. To conduct the
analysis quantitatively, we propose a new metric, “Redundancy
Ratio” (abbreviated as RR). RR is defined as the sum of the collective
𝐿-hop neighborhood sizes of all training batches versus the number
of training nodes:

𝑅𝑅 =

∑𝐵
𝑏=1 |Ñ𝑏 |∑𝐵
𝑏=1 |N𝑏 |

, (2)

where Ñ𝑏 and N𝑏 is the collective 𝐿-hop neighborhood set and the
training node set for the𝑏-th training batch, respectively.

∑𝐵
𝑏=1 |Ñ𝑏 |

is positively correlated with the number of sampled neighbors dur-
ing the Sample stage and the number of gathered node features
during the Gather stage. Thus,

∑𝐵
𝑏=1 |Ñ𝑏 | is a decent indicator for

the overall requested data volume during Data Preparation. More-
over, out-of-core sampling-based GNN training is bounded by Data
Preparation as shown in Table 1. Therefore,𝑅𝑅 is also an appropriate
metric to reflect the training performance.

To demonstrate how RR performs, we train the same GraphSAGE
model as in Section 2.2 and report their𝑅𝑅s in Table 2. Table 2 shows
that the sum of the collective 𝐿-hop neighborhood sizes (

∑𝐵
𝑏=1 |Ñ𝑏 |)

would be more than one hundred times greater than the number of
training nodes (

∑𝐵
𝑏=1 |N𝑏 |) and even exceed the graph size.

3.2 Neighborhood Redundancy
Most existing GNN training frameworks construct each training
batch by selecting training nodes randomly and then sample their
collective 𝐿-hop neighborhood. Randomly selecting training nodes
equips the model with higher convergence accuracy. However,
the sampled collective 𝐿-hop neighborhoods of different training
batches are massively overlapped since one node may be connected
to many different training batches’ training nodes. We name this
phenomenon that the sampled neighborhoods of different training
batches are massively overlapped as “Neighborhood Redundancy”.
Decreasing the overlapped neighborhood size between different
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Table 3: Redundancy Ratio reduction brought by partition-
based selection on two OGB datasets.

Datasets Random selection Partition-based selection

ogbn-products 475.69 321.53 (-32.41%)
ogbn-papers100M 117.66 86.36 (-26.60%)

Table 4: Redundancy Ratio reduction brought by reusing
historical embeddings on two OGB datasets.

Datasets reuse 0% reuse 10% reuse 20%

ogbn-products 475.69 365.48 (-23.17%) 322.63 (-32.18%)
ogbn-papers100M 117.66 103.35 (-12.16%) 85.91 (-26.98%)

training batches is vital to reduce Neighborhood Redundancy. Look-
ing at it reversely, this target is equivalent to increasing the num-
ber of edges between the training nodes within each training
batch because the number of edges in the graph is fixed.

To validate this hypothesis, we adopt themin-cut graph partition-
ing algorithm METIS [26] to partition the graph into 10,000 parts
where the number of intra-partition edges is maximized. Then we
randomly select several partitions every time, shuffle the training
nodes within them, and construct training batches according to the
pre-defined batch size value. We change the training node selection
approach from the original random selection to the partition-based
selectionmentioned above and repeat the experiments in Section 3.1.
Evaluation results in Table 3 illustrate that the partition-based selec-
tion helps reduce Redundancy Ratio by over 25% on both datasets.
The significant reduction implies that increasing the number
of edges between the training nodes within each training
batch helps to reduce the overall requested data volume and thus
accelerates out-of-core sampling-based GNN training.

3.3 Temporal Redundancy
Motivated by the observation that most embeddings only expe-
rience modest changes across the majority of training iterations,
existing work [7, 13, 21, 54] tries to approximate node embeddings
with histories generated in previous iterations. The optimization
space here is that deep learning models are insensitive to small
errors. Thus, cautiously approximating the newest results with
histories would not harm the model’s effectiveness.

Existing work reusing histories targets in-memory GNN training
and mainly aims at reducing the computation redundancy. Under
the out-of-core setting, reusing historical node embeddings
helps to reduce also the data redundancy that incurs unnecessary
data requests to external storage. We denote this kind of data redun-
dancy by “Temporal Redundancy” as it describes a kind of time-level
redundancy. For those embeddings that their histories would sub-
stitute, the data request volume induced by their sampling and
gathering operations is eliminated.

Considering that the host memory space is limited, we imple-
ment a historical embedding cache that only reuses embeddings of
the second layer. Moreover, we select high-degree nodes as reuse
candidates to explore how much requested data volume can be
reduced. The evaluation results of the same 3-layer GraphSAGE

are provided in Table 4. Table 4 shows that the Redundancy Ra-
tio decreases significantly when 20% nodes reuse their historical
embeddings. Thus, we hypothesize that reusing historical node
embeddings can bring decent performance gain to out-of-core
sampling-based GNN training.

4 FRAMEWORK DESIGN
In this section, we introduce our proposed out-of-core sampling-
based GNN training framework OUTRE in detail. Firstly, Section 4.1
provides an overview of OUTRE, where we describe the modifica-
tions we make to the conventional four-stage training pipeline and
briefly introduce the three main designs of OUTRE: partition-based
batch construction, historical embedding cache, and automatic cache
space management. Then, we explain these three designs one by
one in detail in Section 4.2, 4.3 and 4.4, respectively.

4.1 Framework Overview
4.1.1 Training Pipeline. We provide a workflow overview of our
proposed framework, OUTRE, in Figure 2. OUTRE is built on the
existing dual-cache framework (i.e., OUTRE also has the neighbor
cache and the feature cache), and it makes two essential modifica-
tions to the conventional four-stage training pipeline.

1) A pre-processing stage is added ahead of the conventional
pipeline. During pre-processing, OUTRE executes an out-of-core
min-cut graph partitioning algorithm to partition the graph into
many small parts that are later used to construct training batches.
Then, OUTRE runs a profiling epoch that includes only the Sample
and the Gather stage to collect necessary information for the auto-
matic cache space management module to determine the optimal
memory split scheme for different caches.

2) OUTRE decouples the Sample stage from the later three stages
following [39]. The conventional four-stage training pipeline ex-
ecutes all the stages consecutively for each training batch. Thus,
the neighbor cache (required by the Sample stage) and the fea-
ture cache (required by the Gather stage) have to reside in host
memory simultaneously. In contrast, decoupling the Sample stage
from the pipeline makes it possible for these two caches to occupy
the host memory exclusively. Therefore, more graph data can be
cached, which leads to potentially higher training performance. To
implement the decoupling, OUTRE writes the sampled collective
𝐿-hop neighborhoods back to external storage after the Sample
stage. Before the Gather stage, OUTRE reads each training batch’s
sampled results from external storage and executes the same as the
conventional pipeline afterwards.

4.1.2 Main Designs. The three main designs of OUTRE are (1)
partition-based batch construction, (2) historical embedding cache,
and (3) automatic cache space management. Firstly, partition-based
batch construction is proposed to reduce Neighborhood Redundancy
mentioned in Section 3.2. Each training batch in OUTRE is con-
structed by several randomly chosen graph partitions generated by
the min-cut graph partitioning algorithm during pre-processing.
The size of overlapped collective 𝐿-hop neighborhoods of different
training batches can be significantly decreased by increasing intra-
batch connections. Therefore, the overall requested data volume of
the Sample and the Gather stage is considerably reduced, which
accelerates out-of-core sampling-based GNN training.
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Figure 2: The workflow overview of OUTRE.

Secondly, aiming to reduce Temporal Redundancy observed in
Section 3.3, we implement a historical embedding cache that is in-
volved in both the Sample and the Compute stage. During the Sam-
ple stage, historical embedding cache tells the main process of what
nodes can be skipped according to the states of the encountered
nodes. Then, during the Compute stage, GPU pulls correspond-
ing historical node embeddings from historical embedding cache
and pushes the updated node embeddings to it according to the
information inside the historical embedding cache table.

Thirdly, we propose automatic cache space management to auto-
matically manage the sizes of different caches in OUTRE. This way,
OUTRE can achieve robust performance across various datasets
and hardware configurations without exhausting tuning efforts.
Specifically, OUTRE utilizes the collected information from the
profiling epoch during pre-processing to automatically determine
the optimal memory split scheme for the feature cache and the
historical embedding cache in a low-cost manner. The remainder of
this section will detail the three main designs of OUTRE.

4.2 Partition-based Batch Construction
The conventional random selection approach leads to massive
overlap between the collective 𝐿-hop neighborhoods of different
training batches, which we referred to as Neighborhood Redun-
dancy in Section 3.2. In OUTRE, we propose constructing train-
ing batches according to min-cut graph partitions. Specifically,
we first partition the graph into many small parts (e.g., 10,000
parts) using min-cut graph partitioning algorithms. The partitioned
subgraphs, including partition-wise adjacency matrices and the
full/train/validation/test node IDs within the partition, are written
to external storage. OUTRE randomly chooses several min-cut par-
titions during the Sample stage as a macro batch. Then, it shuffles
the training nodes within these partitions and constructs train-
ing batches (micro batches) according to the pre-defined batch size
value. OUTRE further loads corresponding partition-wise adjacency
matrices into host memory as the batch-specific dynamic neighbor
cache. This way, OUTRE reads from external storage only when the
desired neighbor lists cannot be found in both the global neighbor
cache and the batch-specific dynamic neighbor cache.

Although there is no intrinsic limitation on the choices of the
min-cut graph partitioning algorithm in OUTRE, some popular
choices like METIS [26] are inappropriate since they are in-memory
algorithms and would incur unacceptable memory cost when ap-
plied to large-scale graphs (see experimental comparison in Sec-
tion 6.3). Their high memory requirement disobeys the out-of-core
setting where host memory is limited. Therefore, we implement one
streaming graph partitioning algorithm, FENNEL [43], in OUTRE.
We enable FENNEL to execute in the out-of-core manner by mak-
ing it read the indices of the CSR-formed adjacency matrix from
external storage. We make profound performance optimizations
to the original FENNEL algorithm to accelerate its execution on
large-scale graphs. More implementation details of the modified
FENNEL algorithm in OUTRE can be found in Section 5.2.

Previous researches [32, 39, 60] intuitively cache the neighbor
lists of high-degree nodes in the neighbor cache since they are
more likely to be included in the collective 𝐿-hop neighborhoods
during the Sample stage. However, node degree is no longer an ap-
propriate metric for the neighbor cache in OUTRE. OUTRE tries to
maximize the connections within each training batch and addition-
ally treats partition-wise adjacency matrices as the batch-specific
dynamic neighbor cache. As a result, those high-degree nodes that
have many in-batch neighbors are no longer proper candidates for
the neighbor cache. Thus, we cache the neighbor lists of nodes
with large numbers of cross-partition neighbors in OUTRE. This
way, the counts for in-batch neighbors are eliminated, leading to
more accurate approximations for the requested data volume of
the Sample stage. The number of cross-partition neighbors for each
node can be collected during partitioning with little cost.

4.3 Historical Embedding Cache
Previous work [7, 13, 21, 54] observes that most embeddings only ex-
perience modest changes across most training iterations. Based on
this observation, they propose to reuse historical node embeddings
as approximations for the newest iteration. Besides the computation
redundancy pointed out by previous work, evaluation results in
Section 3.3 illustrate that reusing histories can also reduce Temporal
Redundancy and possibly accelerate out-of-core GNN training.
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However, previous work caches embeddings for all the layers and
all the nodes. These designs induce huge memory cost that is inap-
propriate for the out-of-core environment. Moreover, most previous
work do not proactively evict low-quality historical embeddings,
leading to accumulated errors [21]. To suit the characteristics of
the out-of-core environment, we present three nontrivial modifica-
tions to the original history reusing mechanism [13]. This altered
mechanism in OUTRE is denoted by “historical embedding cache”.

1) OUTRE only caches the historical node embeddings of the
second layer. Each cached second-layer node can potentially prune
an (𝐿-1)-depth computation graph. Although caching for the first
layer can possibly prune 𝐿-depth computation graphs, doing so in
OUTRE brings little benefit. Due to partition-based batch construc-
tion, training nodes are highly probable to be sampled by nodes
in the same training batch at the first layer. Under such scenario,
the originally pruned 𝐿-depth computation graph shrinks to a 1-
hop computation graph as this node’s second-layer embedding is
required to calculate exact first-layer embeddings for certain nodes.
Moreover, the 1-hop sampling and gathering cost has already been
greatly reduced by partition-based batch construction. Thus, we
choose to cache for the second layer to strike a balance between the
size of possibly pruned computation graphs and the probability of
being invalidated by nodes in the same training batch.

2) OUTRE only caches histories for a certain number of important
nodes. This designmakes it possible to constrain the largest possible
cache size, which is desirable for managing the limited host memory
under the out-of-core environment. In this paper, we propose a new
node-wise importance metric that directly records the node-wise
(𝐿-1)-hop neighborhood size while excluding those cached in host
memory. The node-wise (𝐿-1)-hop neighborhood size information is
collected in the profiling epoch during pre-processing. The details
about this new node-wise importance metric and the profiling
epoch will be introduced later in Section 4.4.

3) OUTRE proactively invalidates staled embeddings in historical
embedding cache to reduce the accumulated approximation errors
during training. A previously cached embedding is considered as
staled if the current iteration number minus the iteration number
it was most recently updated exceeds a pre-set threshold called
staleness. The idea of using staleness to control the quality of cached
embeddings comes from [21].

To implement the historical embedding cache in OUTRE, we
need to insert new operations during the Sample and the Compute
stage. For the Sample stage, during sampling for the second layer,
OUTRE checks the node states inside the historical embedding cache
table and determines whether to execute sampling for certain cache

candidates. The Finite State Machine (FSM) illustrating cache can-
didates’ state transformations is shown in Figure 3. OUTRE skips
sampling for a cache candidate only when its state is “Skip”. For the
Compute stage, before executing the model’s 𝐿-th layer, OUTRE
checks the historical embedding cache table and generates two node
ID lists indicating what historical embeddings should be pulled
from the cache and what updated ones should be pushed to the
cache, respectively. Then, OUTRE executes the corresponding pull
and push operations and feeds the full input that consists of embed-
dings from (𝐿-1)-th layer’s computation and histories pulled from
historical embedding cache to the model’s 𝐿-th layer. The detailed
training pipeline of OUTRE is shown in Algorithm 1 and 2.

Algorithm 1 The Sample stage in OUTRE.
Input:

number of partitions 𝑛𝑝𝑎𝑟𝑡 , number of partitions per macro
batch 𝑛𝑝𝑒𝑟_𝑝𝑎𝑟𝑡 , number of training nodes in each batch
batch_size, number of layers L, historical embedding cache

Output: number of iterations 𝑛𝑖𝑡𝑒𝑟 , sampling results stored on
external storage

1: % Sample stage
2: 𝑛𝑖𝑡𝑒𝑟 = 0;
3: Generate macro_batches according to 𝑛𝑝𝑎𝑟𝑡 and 𝑛𝑝𝑒𝑟_𝑝𝑎𝑟𝑡 ;
4: for each macro_batch do
5: Generate micro_batches according to batch_size;
6: for each micro_batch do
7: Get initial train_nid;
8: for l ∈ {1, 2, ..., L} do
9: Initiate new_train_nid as empty;
10: for node in train_nid do
11: % maintain historical embedding cache
12: if l >= 2 && node is cache candidate then
13: Change node state according to FSM in Figure 3 in

historical embedding cache table;
14: If state is Skip, then skip sampling for node;
15: end if

16: if node hit the two neighbor caches then
17: Copy neighbors from host memory;
18: else
19: Read neighbors from external storage;
20: end if
21: If neighbor new, add to new_train_nid;
22: end for
23: train_nid = new_train_nid;
24: end for
25: 𝑛𝑖𝑡𝑒𝑟 += 1;
26: Write sampling results to external storage;
27: end for
28: end for

4.4 Automatic Cache Space Management
As there are three caches in OUTRE (i.e., the neighbor cache, the
feature cache and historical embedding cache), determining their
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Algorithm 2 The Gather, Transfer, and Compute stage in OUTRE.
Input:

number of layers L, number of iterations 𝑛𝑖𝑡𝑒𝑟 ,
feature cache, historical embedding cache

1: for each batch out of 𝑛𝑖𝑡𝑒𝑟 batches do
2: % Gather stage
3: Read corresponding sampling results from external storage;
4: for node in train_nid do
5: if node hit feature cache then
6: Record hit information for GPU;
7: else
8: Read node’s feature from external storage;
9: end if
10: end for
11: Update feature cache using gathered features;

12: % Transfer stage
13: Transfer collective 𝐿-hop neighborhood and feature cache

hit information from host memory to GPU;

14: % Compute stage
15: GPU fetches hit node features from feature cache via UVA;
16: for l ∈ {1, 2, ..., L} do
17: if l == L then
18: Get pull and push node IDs from historical embedding

cache table;
19: Execute corresponding pull and push operations on

historical embedding cache;
20: end if
21: Ordinary model computation;
22: end for
23: end for

respective sizes under a givenmemory budget is crucial to OUTRE’s
performance. Suppose the available host memory budget is 𝐵. Dur-
ing the Sample stage, the neighbor cache can occupy the 𝐵 memory
space exclusively. However, the feature cache and historical embed-
ding cache need to reside in host memory simultaneously starting
from theGather stage. Determining the respective sizes of these two
caches is nontrivial because the optimal memory split scheme cor-
relates with the characteristics of different datasets and hardware
configurations. Thus, no general memory split scheme suits all the
setups. In OUTRE, we propose a low-cost management module to
automatically generate a decent memory split scheme based on the
profiling information. This module is named as “automatic cache
space management”. We denote the percentage of memory assigned
to historical embedding cache by 𝛼 ∈ [0, 1]. Thus, the problem of
determining the optimal memory split scheme can be transformed
to determining the optimal 𝛼 .

To find the optimal 𝛼 in a low-cost manner, we first need a proxy
metric to approximate the training performance. As mentioned
in Section 2.2, out-of-core sampling-based GNN training is bottle-
necked by Data Preparation; in other words, the I/Os. Therefore, we
propose a node-wise metric, 𝑠𝑎𝑣𝑒𝑑_𝐼/𝑂 , that reflects the caching
benefits of each node to the training performance. 𝑠𝑎𝑣𝑒𝑑_𝐼/𝑂 is

measured by the number of node features that are saved from
reading from external storage to host memory. For example,
node 𝑖’s 𝑠𝑎𝑣𝑒𝑑_𝐼/𝑂 for the feature cache being 100 means that the
I/O volume equivalent to 100 node features can be saved if node 𝑖
is cached by the feature cache. To calculate 𝑠𝑎𝑣𝑒𝑑_𝐼/𝑂 for the two
caches, we execute a profiling epoch during pre-processing that
only incorporates the Sample and the Gather stage with the feature
cache and the historical embedding cache disabled.

Calculating 𝑠𝑎𝑣𝑒𝑑_𝐼/𝑂 𝑓 𝑒𝑎𝑡 is simple because the feature cache
helps to save I/O only at the Gather stage. Concretely, for each
node feature that hits the feature cache, we add 1 to this node’s
corresponding position in 𝑠𝑎𝑣𝑒𝑑_𝐼/𝑂 𝑓 𝑒𝑎𝑡 .

Calculating 𝑠𝑎𝑣𝑒𝑑_𝐼/𝑂ℎ𝑖𝑠𝑡 requires more effort because historical
embedding cache helps to reduce I/O volume at both the Sample and
the Gather stage. Due to that the memory access patterns of these
two stages are highly different (sampling has significantly more
random accesses than gathering), we use a coefficient 𝛽 to scale
the I/O volume of the Sample stage. We approximate 𝛽 in OUTRE
using real-world profiling results as follows:

𝛽 =
𝑡𝑖𝑚𝑒𝑠𝑎𝑚𝑝𝑙𝑒

𝐼/𝑂_𝑣𝑜𝑙𝑢𝑚𝑒𝑠𝑎𝑚𝑝𝑙𝑒

/
𝑡𝑖𝑚𝑒𝑔𝑎𝑡ℎ𝑒𝑟

𝐼/𝑂_𝑣𝑜𝑙𝑢𝑚𝑒𝑔𝑎𝑡ℎ𝑒𝑟
, (3)

where 𝐼/𝑂_𝑣𝑜𝑙𝑢𝑚𝑒𝑠𝑎𝑚𝑝𝑙𝑒 is the number of sampled neighbors, and
𝐼/𝑂_𝑣𝑜𝑙𝑢𝑚𝑒𝑔𝑎𝑡ℎ𝑒𝑟 is the number of gathered node features.

During the Sample stage, we record its (𝐿-1)-hop neighborhood
size for each node while excluding those cached in host memory.
This result is denoted by 𝑠𝑎𝑣𝑒𝑑_𝐼/𝑂𝑠𝑎𝑚𝑝𝑙𝑒

ℎ𝑖𝑠𝑡
. On the other hand, we

collect the node-wise unique (𝐿-1)-hop neighborhood size contri-
bution starting from the second layer. This result is denoted by
𝑠𝑎𝑣𝑒𝑑_𝐼/𝑂𝑔𝑎𝑡ℎ𝑒𝑟

ℎ𝑖𝑠𝑡
. If one node is cached by historical embedding

cache, then 𝑠𝑎𝑣𝑒𝑑_𝐼/𝑂𝑔𝑎𝑡ℎ𝑒𝑟

ℎ𝑖𝑠𝑡
node features that this node uniquely

requires can be saved from inquiring external storage during the
Gather stage. The total 𝑠𝑎𝑣𝑒𝑑_𝐼/𝑂 brought by historical embedding
cache can be calculated as follows:

𝑠𝑎𝑣𝑒𝑑_𝐼/𝑂ℎ𝑖𝑠𝑡 = 𝑠𝑎𝑣𝑒𝑑_𝐼/𝑂𝑠𝑎𝑚𝑝𝑙𝑒

ℎ𝑖𝑠𝑡
∗ 𝛽 + 𝑠𝑎𝑣𝑒𝑑_𝐼/𝑂𝑔𝑎𝑡ℎ𝑒𝑟

ℎ𝑖𝑠𝑡
. (4)

The detailed calculation procedures for 𝑠𝑎𝑣𝑒𝑑_𝐼/𝑂𝑠𝑎𝑚𝑝𝑙𝑒

ℎ𝑖𝑠𝑡
and

𝑠𝑎𝑣𝑒𝑑_𝐼/𝑂𝑔𝑎𝑡ℎ𝑒𝑟

ℎ𝑖𝑠𝑡
can be found in Section 5.3.

Finally, the unified caching benefit incorporating both the feature
cache and historical embedding cache is formalized as follows:

𝑏𝑒𝑛𝑒 𝑓 𝑖𝑡 = sum

(
sort(𝑠𝑎𝑣𝑒𝑑_𝐼/𝑂 𝑓 𝑒𝑎𝑡 )

[
:

⌊
𝐵 ∗ (1 − 𝛼) − sizetab

𝑑𝑓 𝑒𝑎𝑡

⌋])
+ sum

(
sort(𝑠𝑎𝑣𝑒𝑑_𝐼/𝑂ℎ𝑖𝑠𝑡 )

[
:
⌊
𝐵 ∗ 𝛼 − sizetab

𝑑𝑒𝑚𝑏𝑒𝑑

⌋ ] )
.

(5)

For 𝑠𝑎𝑣𝑒𝑑_𝐼/𝑂 𝑓 𝑒𝑎𝑡 and 𝑠𝑎𝑣𝑒𝑑_𝐼/𝑂ℎ𝑖𝑠𝑡 , we calculate the prefix sums
of their descendently sorted versions in advance to accelerate the
search for the optimal memory split scheme. To determine the
optimal memory split scheme, we alternate 𝛼 in equation 5 from 0
to 1 and record the highest benefit and the corresponding 𝛼 . The
alternating step size is set to 0.01 by default. The search cost is
negligible since a single search step costs 𝑂 (1).

In OUTRE, 𝑠𝑎𝑣𝑒𝑑_𝐼/𝑂 𝑓 𝑒𝑎𝑡 and 𝑠𝑎𝑣𝑒𝑑_𝐼/𝑂ℎ𝑖𝑠𝑡 in equation 5 in
descendent order are treated as node-wise importance metrics to
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select cache candidates for the feature cache and historical embed-
ding cache, respectively. 𝑠𝑎𝑣𝑒𝑑_𝐼/𝑂 𝑓 𝑒𝑎𝑡 and 𝑠𝑎𝑣𝑒𝑑_𝐼/𝑂ℎ𝑖𝑠𝑡 reflect
I/O savings of the actual training process. In comparison, conven-
tional metrics like node degree [32, 39, 60] are intuitive and may
be inconsistent with real-world conditions.

4.5 Additional Memory and I/O Cost Analysis
To facilitate the proposed three main designs, OUTRE requires cer-
tain amount of additional memory and I/O cost. For partition-based
batch construction, the additional I/O cost mainly comes from the
min-cut graph partition during pre-processing, where partition-
wise adjacency matrices and node IDs are written to external mem-
ory. The additional writing cost here is approximately𝑂 (M), where
M is the number of edges in the graph. The𝑂 (M) cost can be amor-
tized among multiple training runs because the graph partition
only executes once during pre-processing. During the Sample stage,
OUTRE further reads partition-wise one-hop adjacency matrix into
main memory. The additional reading cost here is approximately
𝑂 (M +M). For historical embedding cache, besides the embedding
cache itself, OUTRE needs to additionally maintain three N-length
arrays that record nodes’ states, positions, and staleness, respec-
tively. For automatic cache space management, OUTRE also main-
tains additionally three N-length arrays during pre-processing,
which are 𝑠𝑎𝑣𝑒𝑑_𝐼/𝑂 𝑓 𝑒𝑎𝑡 , 𝑠𝑎𝑣𝑒𝑑_𝐼/𝑂

𝑠𝑎𝑚𝑝𝑙𝑒

ℎ𝑖𝑠𝑡
and 𝑠𝑎𝑣𝑒𝑑_𝐼/𝑂𝑔𝑎𝑡ℎ𝑒𝑟

ℎ𝑖𝑠𝑡
.

To sum up, for one typical training run, the additional memory
cost of OUTRE is approximately 𝑂 (N) (maintain historical embed-
ding cache), and the additional I/O cost is 𝑂 (M) (read in partition-
wise adjacencymatrices). For example, on ogbn-papers100M,OUTRE
requires 1.24GB additional memory to complete training. In return,
OUTRE reads in 20.5GB less neighbor IDs during the Sample stage
and 309.8GB less node features during the Gather stage than Ginex.

5 IMPLEMENTATION
5.1 Framework Implementation Overview
OUTRE is implemented based on Ginex [39], a dual-cache out-
of-core sampling-based GNN training framework. Unlike Ginex,
OUTRE does not bypass the system page cache when reading from
files on external storage. This is because the adjacency matrix of-
ten constitutes only a small percentage of graph data and can be
mostly cached in host memory by the system page cache. OUTRE
adopts the neighbor cache and feature cache module in Ginex
yet implements new node-wise importance metrics for cache can-
didate selection as mentioned in Section 4.2 and 4.4. To reduce
the CPU-side load, OUTRE utilizes the pin_memory_inplace() and
gather_pinned_tensor_rows() functions provided by DGL [48] to let
GPU fetch node features that hit the feature cache in the zero-copy
manner [34] via UVA [41]. The C++ gather function in OUTRE only
gathers node features that miss the feature cache. We re-write the
NeighborSampler class and the C++ sample function in Ginex to
serve the need for partition-based batch construction and histori-
cal embedding cache. A pre-processing stage that includes min-cut
graph partitioning and profiling is added ahead of the original four-
stage training pipeline. The next two subsections will detail the
implementation of the modified FENNEL partitioning algorithm
and the calculations for saved I/O.

Table 5: Overview of the four large-scale graph datasets.

Datasets #Nodes #Edges #Features #Train nodes Dataset size

ogbn-papers100M 111,059,956 3,231,371,744 128 1,207,179 70GB
mag240M-cite 121,751,666 2,595,497,852 768 1,112,392 385GB
IGB-medium 10,000,000 120,077,694 1024 6,000,000 40.8GB
IGB-large 100,000,000 1,223,571,364 1024 60,000,000 401.8GB

5.2 Modified FENNEL Partitioning Algorithm
FENNEL [43] is a streaming graph partitioning algorithm that pro-
cesses nodes in a stream and inserts each node to the partition that
scores the highest in its cost function. The cost function of FENNEL
is the weighted sum of the partition size and the number of common
neighbors in the partition. To adapt FENNEL to the GNN training
scenario, we add an additional penalizing term for the number of
training nodes within each partition in the cost function.

The most performance-critical part of FENNEL is calculating the
number of common neighbors between each node’s neighborhood
and each existing partition. We adopt Bloom Filters [3] to approxi-
mate the calculations for intersection cardinality. Maintaining one
Bloom Filter for each partition requires enormous memory when
the number of partitions is huge. Thus, we re-implement FENNEL
as a two-level graph partitioning algorithm to alleviate this memory
issue. For example, when the desired number of partitions is 10,000,
we partition the original graph into 100 partitions during first-level
partitioning and further partition each first-level partition into 100
small partitions. Moreover, having observed that calculating the
cost function of different partitions in FENNEL is fully independent,
we parallelize FENNEL on the partition level by OpenMP [10] to
exploit thread-level parallelism.

5.3 Calculations for saved I/O
Calculations for saved I/O consists of calculations for three arrays:
𝑠𝑎𝑣𝑒𝑑_𝐼/𝑂 𝑓 𝑒𝑎𝑡 , 𝑠𝑎𝑣𝑒𝑑_𝐼/𝑂

𝑠𝑎𝑚𝑝𝑙𝑒

ℎ𝑖𝑠𝑡
and 𝑠𝑎𝑣𝑒𝑑_𝐼/𝑂𝑔𝑎𝑡ℎ𝑒𝑟

ℎ𝑖𝑠𝑡
. We imple-

ment the calculation for these three arrays in the NeighborSampler
class, and these arrays are shared among all the dataloader pro-
cesses. The updates to these shared arrays are marked as critical
sections and serialized by a shared lock. 𝑠𝑎𝑣𝑒𝑑_𝐼/𝑂 𝑓 𝑒𝑎𝑡 records the
node-wise access frequency during the Gather stage. For each train-
ing batch, we increase 𝑠𝑎𝑣𝑒𝑑_𝐼/𝑂 𝑓 𝑒𝑎𝑡 ’s corresponding positions of
all the nodes in its sampled collective 𝐿-hop neighborhood by 1.

𝑠𝑎𝑣𝑒𝑑_𝐼/𝑂𝑠𝑎𝑚𝑝𝑙𝑒

ℎ𝑖𝑠𝑡
records node-wise (𝐿 − 1)-hop neighborhood

size while excluding those cached in host memory. 𝑠𝑎𝑣𝑒𝑑_𝐼/𝑂𝑔𝑎𝑡ℎ𝑒𝑟

ℎ𝑖𝑠𝑡
records node-wise unique contribution to the collective (𝐿-1)-hop
neighborhood for the training nodes and their 1-hop neighbors.
To calculate these two arrays, we write a new profiling-specific
sampling function, in which OUTRE generates two new sets of
adjacency matrices starting from the second layer sampling. One
set of adjacency matrices only records edges not cached in host
memory for 𝑠𝑎𝑣𝑒𝑑_𝐼/𝑂𝑠𝑎𝑚𝑝𝑙𝑒

ℎ𝑖𝑠𝑡
. The other set only records edges

that connect to unique nodes that are new to the sampled collective
neighborhood for 𝑠𝑎𝑣𝑒𝑑_𝐼/𝑂𝑔𝑎𝑡ℎ𝑒𝑟

ℎ𝑖𝑠𝑡
. After sampling for a training

batch, OUTRE sets the weight of all the nodes in the sampled
collective 𝐿-hop neighborhood to 1. Then, OUTRE multiplies this
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Table 6: Overall training performance comparison on four datasets.

Configurations ogbn-papers100M mag240M-cite IGB-medium IGB-large
Sa. Ga. Tr. Co. Total Sa. Ga. Tr. Co. Total Sa. Ga. Tr. Co. Total Sa. Ga. Tr. Co. Total

GraphSAGE

𝐿=2

PyG+mmap 8.5s 181.4s 8.5s 7.1s 213.8s 9.4s 360.9s 30.0s 5.9s 433.3s 11.2s 411.9s 256.0s 28.7s 878.7s 141.1s 46,437.9s 1,320.1s 960.7s 50,148.1s
Ginex 143.7s 116.5s 9.3s 5.2s 275.7s 148.1s 231.9s 49.3s 6.1s 435.4s 109.3s 258.9s 326.8s 23.9s 723.6s 746.4s 5,020.1s 2,256.9s 309.7s 7,606.1s

Ginexmod 118.2s 93.1s 3.0s 17.3s 227.6s 121.3s 186.2s 6.8s 19.3s 349.3s 40.1s 226.8s 163.2s 68.4s 498.7s 646.2s 4,291.1s 993.5s 825.8s 5,173.2s
OUTRE 83.9s 52.6s 3.2s 13.1s 178.1s 88.6s 79.8s 8.2s 13.3s 204.7s 17.8s 174.4s 204.7s 54.5s 428.3s 385.4s 3,792.6s 1183.1s 763.6s 4,359.8s

𝐿=3

PyG+mmap 121.0s 3,542.6s 75.2s 20.9s 3,822.8s 61.9s 4,571.5s 146.6s 14.3s 5,139.6s 30.4s 6,412.4s 1,494.8s 53.7s 9,302.2s - - - - Out of time
Ginex 292.1s 284.1s 90.9s 8.1s 605.4s 197.1s 513.1s 377.8s 7.3s 970.4s 233.3s 1,946.7s 2,292.8s 41.9s 3,773.6s 2,905.7s 38,475.3s 16,668.7s 334.0s 42,220.0s

Ginexmod 155.4s 152.8s 6.0s 16.6s 338.0s 157.2s 484.0s 34.6s 71.8s 720.9s 151.4s 1,788.4s 713.3s 484.1s 2,707.8s 2,491.2s 27,835.7s 12,974.6s 4,510.3s 34,340.3s
OUTRE 106.6s 77.0s 8.6s 14.2s 235.4s 111.7s 177.2s 47.4s 45.6s 349.1s 62.9s 444.3s 828.4s 384.4s 1,706.5s 480.3s 21,721.8s 13,227.4s 3,340.3s 27,755.3s

GAT

𝐿=2

PyG+mmap 9.9s 172.8s 10.9s 13.8s 218.6s 9.3s 376.4s 30.4s 13.3s 460.0s 11.9s 415.1s 256.3s 73.7s 947.2s 141.7s 45,983.9s 1,314.6s 1,207.3s 50,007.4s
Ginex 136.6s 134.1s 9.9s 10.3s 288.8s 137.9s 242.4s 44.4s 13.0s 439.4s 110.1s 261.3s 329.2s 63.8s 781.8s 752.2s 4,618.1s 2,264.9s 679.1s 7,638.9s

Ginexmod 121.4s 103.2s 3.1s 23.2s 245.1s 119.7s 197.6s 7.1s 28.3s 367.3s 37.6s 231.7s 171.6s 113.2s 554.3s 638.6s 4,041.7s 1,033.2s 1,283.6s 5,482.2s
OUTRE 84.1s 55.6s 3.7s 16.2s 180.2s 87.9s 78.2s 7.6s 20.9s 202.5s 16.4s 171.5s 213.4s 90.4s 461.1s 394.6s 3,476.1s 1,039.2s 1,146.4s 4,571.6s

𝐿=3

PyG+mmap 98.8s 2,376.9s 63.2s 9.3s 2,535.6s 65.9s 3,943.7s 224.9s 31.8s 4,427.9s 22.4s 4,108.4s 1,482.5s 47.2s 6,991.3s - - - - Out of time
Ginex 256.6s 265.6s 81.8s 32.1s 654.6s 195.2s 468.5s 412.0s 39.8s 1,092.4s 225.3s 1,917.9s 2,363.2s 198.5s 4,238.2s 2,959.4s 38,629.1s 16,726.3s 1,529.7s 44,287.2s

Ginexmod 156.6s 149.4s 5.9s 27.5s 344.2s 153.9s 443.8s 31.5s 89.7s 680.6s 145.3s 1,749.7s 725.2s 619.7s 2,912.3s 2,476.5s 27,979.2s 12,628.4s 4,962.3s 34,859.7s
OUTRE 94.5s 73.1s 8.8s 26.4s 226.7s 98.8s 124.7s 41.4s 55.1s 310.6s 53.2s 537.8s 813.9s 497.8s 1,975.5s 495.6s 22,137.9s 13,036.1s 3,792.7s 28,564.0s

GCN

𝐿=2

PyG+mmap 8.2s 167.0s 8.4s 7.3s 199.3s 8.6s 374.1s 29.9s 7.0s 446.9s 11.8s 408.6s 255.1s 29.4s 873.5s 143.0s 46,243.3s 1,323.2s 873.2s 49,868.4s
Ginex 140.2s 122.6s 9.9s 4.4s 277.0s 138.9s 230.2s 49.9s 5.8s 423.2s 112.7s 259.4s 333.2s 22.7s 730.3s 738.5s 4,900.8s 2,253.9s 284.4s 7,566.6s

Ginexmod 116.5s 97.3s 3.7s 18.6s 231.7s 113.6s 185.5s 6.3s 19.1s 342.3s 38.3s 225.4s 164.6s 67.5s 495.6s 642.7s 4,383.6s 957.8s 813.7s 5,135.8s
OUTRE 82.4s 53.0s 4.4s 13.3s 174.3s 79.5s 80.2s 8.1s 14.3s 192.9s 18.2s 178.1s 215.7s 53.3s 441.7s 390.4s 3,810.8s 1,096.7s 743.5s 4,369.8s

𝐿=3

PyG+mmap 94.8s 2,457.7s 63.5s 13.1s 2,616.8s 66.2s 4,019.6s 366.1s 11.5s 4,620.2s 23.3s 3,946.9s 1,484.1s 47.4s 6,790.4s - - - - Out of time
Ginex 271.4s 255.6s 83.8s 7.6s 611.9s 204.3s 450.5s 405.6s 9.8s 1,032.6s 233.8s 1,900.8s 2,349.6s 31.8s 3,846.1s 5,092.9s 25,843.4s 27,971.6s 578.2s 47,524.3s

Ginexmod 165.9s 173.4s 6.8s 18.7s 357.2s 164.4s 424.8s 37.6s 73.2s 674.2s 143.6s 1,673.6s 773.2s 457.6s 2,617.2s 2,537.6s 27,075.4s 12,495.6s 4,367.4s 31,836.3s
OUTRE 99.7s 61.9s 9.5s 15.9s 202.2s 91.8s 136.4s 49.4s 40.3s 305.4s 52.2s 433.4s 845.9s 377.5s 1,795.3s 485.3s 21,965.9s 13,106.7s 3,127.8s 26,959.2s

weight vector with the two sets of adjacency matrices in the reserve
order to generate respective updates to the two shared arrays.

6 EVALUATION
In this section, we compare the training performance of OUTRE
with other out-of-core sampling-based GNN training frameworks
on four public large-scale graph datasets.

6.1 Experiment Setup
Hardware and software configurations. All the evaluations are
conducted on a Linux server with two Intel(R) Xeon(R) Platinum
8255C CPUs, a single NVIDIA Tesla V100 with 32GB GPU memory
and PCIe GEN3 NVMe SSDs. 64GB host memory is locked for
evaluation unless otherwise stated. As for software versions, we
use Python 3.9, PyTorch 1.12.1, and CUDA 11.6.
Datasets. We conduct the evaluations on four public large-scale
graph datasets: ogbn-papers100M, mag240M-cite, IGB-medium, and
IGB-large. Ogbn-papers100M and mag240M-cite are from Open
Graph Benchmark (OGB) [20]. Mag240M-cite is a homogeneous
graph containing only “paper” nodes and “paper-cite-paper” edges
of the original mag240M graph. IGB-medium and IGB-large are
from Illinois Graph Benchmark (IGB) [27]. The two IGB datasets
have significantly larger training sets than the two OGB datasets.
The dataset statistics are briefly summarized in Table 5.
Compared baselines. The two compared baseline frameworks
are PyG [12]+mmap and Ginex [39]. The PyG version in the evalu-
ation is 2.3.1. PyG+mmap is extended from PyG by letting it read
memory-mapped adjacency matrices and node features from exter-
nal storage with NumPy’s memmap method. We also compare to
a baseline called “Ginexmod”. Ginexmod uses the same read flag as
OUTRE that makes system page cache to cache graph data. More-
over, Ginexmod enables GPU to directly access cached node features
in host memory via UVA, same as OUTRE. For OUTRE, we set the
number of partitions in partition-based batch construction to 10,000,
and every training batch is constructed with 20 randomly chosen
partitions. In historical embedding cache, we set staleness threshold
to 100, and only cache the second layer’s historical embeddings.

Evaluation workloads. We adopt training a 3-layer GraphSAGE
[16] as the main comparison workload. The hidden size and the
sample size are set to 256 and (10,10,10), respectively. The default
batch size is set to 1,000. We further extend the comparison to
training 2-layer and 3-layer GAT [44] and GCN [28] in the main
experiment. We set the neighbor cache size in Ginex and OUTRE to
1GB for IGB-medium and 10GB for other datasets. The feature cache
size in Ginex is set to 10GB for ogbn-papers100M and IGB-medium
and 30GB for mag240M-cite and IGB-large. The aggregated size of
the feature cache and the historical embedding cache in OUTRE is
set to be the same as the feature cache size in Ginex.

6.2 Overall Performance
We report the per-epoch time of the four compared frameworks
on the four datasets in Table 6. The evaluation workloads here are
training 2-layer and 3-layer GraphSAGE, GAT and GCN. The per-
epoch time is decomposed following the four-stage pipeline (i.e.,
Sa. for Sample, Ga. for Gather, Tr. for Transfer, and Co. for Compute).
The Gather stage is pipelined with the two later training stages in
Ginex, Ginexmod and OUTRE. Thus, their per-epoch time is less
than the sum of the four stages. We put this Ginex’s and Ginexmod’s
pre-computation time for the optimal cache policy into their Gather
time since it aims to accelerate the Gather stage.

Table 6 shows that OUTRE consistently outperforms all the base-
lines across different model configurations and datasets. Equipped
with techniques in OUTRE that target improving data transfer
efficiency, Ginexmod outperforms Ginex on all the evaluation work-
loads. We observe that GNN option has little effect on the overall
training performance, which conforms to the fact that out-of-core
sampling-based GNN training is bounded by Data Preparation. In-
tuitively, the number of model layers is positively correlated with
the amount of data redundancies. Reflected in evaluation results,
we find that OUTRE shows larger average speedup against Ginex
on 3-layer workloads than 2-layer workloads (2.45× vs. 1.78×).
To note that, Ginex is shown to have larger per-epoch time than
PyG+mmap on training 2-layer GNNs on ogbn-papers100M due to
its overhead.We also find that PyG+mmap has the highest sampling
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Figure 4: Time-to-accuracy comparison of PyG+mmap, Ginex and OUTRE.

Table 7: Impacts of different partition methods.

Partition Methods ogbn-papers100M IGB-medium
per-epoch time acc per-epoch time acc

no partition 389.9s 64.28 2,089.4s 75.39
METIS 213.6s 64.18 1,640.7s 75.31

modified FENNEL 235.4s 64.15 1,706.5s 75.33

Table 8: Ablation study of performance optimizations on
FENNEL’s partition performance.

Partition Methods ogbn-papers100M IGB-medium
partition time peak mem partition time peak mem

METIS 17,854.6s 477.3G 498.8s 18.9G
original FENNEL >12h 28.1G >12h 1.7G

+ OpenMP >12h 28.1G 2675.1s 1.7G
+ Bloom Filter >12h 333.6G 2106.4s 29.1G

+ two-level partition 9,710.2s 34.2G 794.6s 2.4G
- Bloom Filter >12h 29.3G 5751.4s 1.9G

performance among all the frameworks although it does not cache
important neighbor lists. We attribute this phenomenon to the fact
that the other three frameworks all need to write sampling results
to external storage, which drags the sampling execution.

We also draw the time-to-accuracy curves of the 3-layer Graph-
SAGE on all the four datasets for PyG+mmap, Ginex and OUTRE in
Figure 4. We record the test accuracy (valid accuracy for mag240M-
cite) and the accumulated training time of every epoch. The hori-
zontal lines in the figures indicate the target test accuracies. Figure 4
illustrates that OUTRE achieves comparable convergence accuracy
with others and has significantly lower time-to-accuracy than the
two baseline frameworks.

6.3 Impacts of Partition-based Batch
Construction

The partition-based batch construction in OUTRE constructs training
batches according to min-cut graph partitions to reduce Neighbor-
hood Redundancy. To achieve the target, we adopt a streaming
graph partitioning algorithm, FENNEL [43], to suit the needs of
out-of-core environments. Moreover, we make profound perfor-
mance optimizations to the original FENNEL algorithm, which
accelerate its execution significantly. However, the partition qual-
ity of FENNEL cannot compete with METIS [26], and some of our
performance optimizations introduce approximation errors.

Table 9: Impacts of the choices for cached layers in historical
embedding cache.

Cached layer ogbn-papers100M IGB-medium
per-epoch time acc per-epoch time acc

only 1st 238.4s 64.13 1,796.7s 75.36
only 2nd 235.4s 64.15 1,706.5s 75.33

all 253.7s 64.08 2,297.5s 75.28

To explore the impacts of partition qualities, we provideOUTRE’s
per-epoch time and final accuracy on ogbn-papers100M and IGB-
medium when using different graph partitioning algorithms in
Table 7. For METIS, we use the version implemented in DGL [48].
“Modified FENNEL” denotes the variant with all our performance
optimizations, and “no partition” denotes the variant that disables
partition-based batch construction. Table 7 illustrates that the “no
partition” variant requires considerably higher per-epoch time than
others, which shows the effectiveness of partition-based batch con-
struction. Moreover, the per-epoch time and final accuracy of “mod-
ified FENNEL” is close to “METIS”. This observation demonstrates
that the slightly lower partition quality of modified FENNEL com-
pared to METIS does not influence training performance much.

We report the partition time and the peak memory footprint
of METIS and FENNEL, and also the effects of our performance
optimizations on ogbn-papers100M and IGB-medium in Table 8. All
the methods partition the graph into 10,000 partitions. Compared
to METIS, all the FENNEL variants except “+ Bloom Filter” have
significantly lower memory footprint, which satisfies the needs of
the out-of-core environment. Furthermore, the results also show
that all our performance optimizations contribute to the partition
performance as expected. The significant longer running time of “-
Bloom Filter” shows that even with two-level partition, the usage
of Bloom Filter is necessary to reduce the time complexity of single
search operation to a constant. To note that, OUTRE only executes
the graph partition algorithm once for a specific graph. Thus, its
time cost can be amortized among multiple training runs.

6.4 Impacts of Historical Embedding Cache
We propose to only cache the historical embeddings of the second
layer in OUTRE to achieve the highest performance-cost ratio. To
validate this design, we report the per-epoch training time and final
accuracy of caching only the second layer, only the first layer and
all the layers on ogbn-papers100M and IGB-medium in Table 9. We
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Table 10: Impacts of number of model layers to historical
embedding cache on ogbn-papers100M.

#Layers only cache 2nd cache all the layers
per-epoch time per-epoch time

2 178.1s 191.6s
3 235.4s 263.7s
4 298.7s 340.5s

Table 11: Impacts of different staleness threshold values in
historical embedding cache.

Staleness ogbn-papers100M IGB-medium
per-epoch time acc per-epoch time acc

1 271.6s 64.32 1,922.2s 75.44
50 248.4s 64.21 1,712.1s 75.37
100 235.4s 64.15 1,706.5s 75.33
500 211.7s 63.74 1,121.4s 75.14
1,000 200.8s 63.64 1,047.8s 74.83

keep the size of historical embedding cache fixed among these three
variants. We also report the training performance of only caching
the second layer and caching all the layers when the number of
model layers vary in Table 10. Table 9 illustrates that only caching
the second layer performs significantly better than only caching
the first layer in OUTRE. This phenomenon can be attributed to
partition-based batch construction that greatly reduces I/O cost of
fetching 1-hop neighborhoods. On the other hand, we also observe
that only caching the second layer outperforms caching all the
layers. As mentioned in Section 4.3, caching one node of the second
layer can possibly prune an (𝐿-1)-depth computation graph which
has the highest performance-cost ratio in OUTRE. Thus, under
the same cache size budget, caching only the second layer can
prune more redundant computation subgraphs, leading to higher
performance. This performance priority remains when the number
of model layers grows to more than 3, as shown in Table 10.

As mentioned in Section 3.3 and 4.3, historical embedding cache in
OUTRE can reduce Temporal Redundancy and accelerate out-of-core
GNN training. However, these benefits come at the cost of intro-
ducing approximation errors. The error volume can be controlled
by the pre-set threshold staleness. For example, setting Staleness
to 1 is equivalent to disabling historical embedding cache. On the
other hand, setting Staleness to a large value risks producing un-
satisfactory accuracy. In Table 11, we report the per-epoch time
and the final accuracy of OUTRE on ogbn-papers100M and IGB-
medium when Staleness varies from 1 to 1,000. Table 11 shows
that the per-epoch time gradually increases and the final accuracy
decreases as expected when Staleness varies from 1 to 1,000. Com-
pared to disabling historical embedding cache (i.e., Staleness being
1), setting Staleness to 100 helps to accelerate training by 15.4% and
19.6% on ogbn-papers100M and IGB-medium, respectively. When
setting Staleness to 1,000, although the per-epoch time continues
to decrease, the convergence accuracy is 0.68% and 0.61% lower
than when historical embedding cache disabled, respectively. The
accuracy loss over 0.5% might not be acceptable under many appli-
cations. Thus, the default Staleness is set to 100 in OUTRE for the
balance between training performance and final accuracy.

Table 12: Impacts of different node-wise importance metrics
on ogbn-papers100M.

#Layers Metrics Sample Gather Total

𝐿=2
random 85.4s 58.1s 187.6s
degree 84.3s 54.7s 185.4s

𝑠𝑎𝑣𝑒𝑑_𝐼/𝑂 83.9s 52.6s 178.1s

𝐿=3
random 157.4s 122.6s 336.6s
degree 122.5s 99.9s 262.6s

𝑠𝑎𝑣𝑒𝑑_𝐼/𝑂 106.6s 77.0s 235.4s

𝐿=4
random 171.6s 151.7s 405.4s
degree 141.2s 128.7s 354.9s

𝑠𝑎𝑣𝑒𝑑_𝐼/𝑂 109.3s 103.3s 298.7s

6.5 Impacts of Automatic Cache Space
Management

The automatic cache space management module in OUTRE helps
to automatically generate a decent memory split scheme for the
feature cache and historical embedding cache. In this subsection,
we validate the effectiveness of this module. We manually vary
the memory split ratio 𝛼 from 0.1 to 0.9 with step size 0.1 and
evaluate each configuration’s corresponding per-epoch time. The
evaluation results on all the four datasets are shown in Figure 5.
The approximated I/O saving (i.e., benefit in Equation 5) returned
by the automatic cache space management module is also drawn
in the same figures. The blue lines and the red lines denote the
per-epoch time and the approximated I/O savings, respectively.

Figure 5 illustrates that the real-world performance and the
approximated I/O saving calculated by OUTRE show consistent
trends. For example, the approximated I/O saving peaks at 0.25
and 0.52 (shown in green dashed lines) on ogbn-papers100M and
IGB-medium, respectively. And the real-world per-epoch time also
achieves its lowest in the nearby 𝛼 range. We also observe that the
optimal memory split ratios of different datasets differ. The reason
might be that the feature dimension of IGB-series datasets is signif-
icantly larger than that of ogbn-papers100M (1024 vs. 128). Thus,
assigning more memory to the feature cache for IGB-series datasets
is reasonable. This observation further shows the importance of
the automatic cache space management module.

As mentioned in Section 4.4, OUTRE uses 𝑠𝑎𝑣𝑒𝑑_𝐼/𝑂 𝑓 𝑒𝑎𝑡 and
𝑠𝑎𝑣𝑒𝑑_𝐼/𝑂ℎ𝑖𝑠𝑡 returned from real-world profiling to select cache
candidates for the feature cache and historical embedding cache,
respectively. Here, we report OUTRE’s per-epoch runtime of using
different node-wise importance metrics in Table 12. Evaluation
results show that our proposed new node-wise importance metrics
for selecting cache candidates outperforms

7 RELATEDWORK
In-memory GNN Training Frameworks. As GNNs show sig-
nificant performance superiority over traditional deep learning
methods on graph learning tasks, how to accelerate and scale GNN
training on large-scale graphs starts to attract the community’s
attention. PaGraph [32] observes that many nodes are redundantly
transferred to GPU and proposes to cache some of the high-degree
nodes in GPU memory. ROC [23] formalizes the problem of finding
optimal intermediate data to cache in GPU memory and solves it
by dynamic programming. Moreover, it uses a runtime prediction
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Figure 5: Effectiveness of the search process inside automatic cache space management.

model to achieve balanced graph partitions. PyTorch-Direct [34]
adopts the Unified Virtual Addressing (UVA) [41] technique to let
GPU directly access the graph data within the host memory with-
out CPU’s involvement. P3 [15] exploits the potential of applying
model parallelism to GNN training. DGCL [5] notices the heteroge-
neous data links in real-world systems and presents an algorithm
to solve the communication planning problem. There are also some
attempts on GNN-specific accelerators [29, 35, 56].
Out-of-core GNN Training Frameworks. The graph size used
for GNN training grows larger [20, 27], and the sizes of some public
graph datasets have exceeded the typical host memory size of a sin-
gle machine. Thus, how to incorporate external storage into current
GNN training frameworks becomes a hot topic. There are mainly
three branches of existing work. The first branch of work [22, 47]
proactively moves in and out partitioned graph data to carry out
out-of-core GNN training. However, they only execute GNN train-
ing on in-memory partitions, and graph data on external storage is
simply neglected, which leads to lower accuracy. HierBatching [22]
additionally pins some high-degree nodes in the host memory to
compensate for the lost neighbors. In contrast, OUTRE would go to
external storage to find the requested graph data that has not been
stored in host memory. Thus, partition-based batch construction in
OUTRE causes no accuracy loss to sampling-based GNN training.

The second branch of work [38, 42] is built on a previous sys-
tem [40] that enables GPU threads to make on-demand and fine-
grained data requests to NVMe SSDs and improves I/O efficiency
significantly. GIDS [38] applies this technique to GNN training.
Helios [42] further decouples the originally synchronous I/O stack
to an asynchronous one and achieves decent performance gain.

The third branch of work [39] adopts the dual-cache framework
that caches both neighbor lists and node features. This branch fo-
cuses on how to increase the percent of requested data volume that
can be saved from accessing external storage. Ginex [39] imple-
ments the optimal caching policy [2] for the feature cache with
the data access order collected during the Sample stage. We build
OUTRE on this branch, and propose a new and more fundamental
design perspective on reducing the overall requested data volume.
Reusing Historical Node Embeddings. Reusing historical node
embeddings is first proposed by [7] and is later generalized by
GAS [13]. GraphFM [54] proposes the Feature Momentum tech-
nique that applies momentum steps on historical node embeddings
and outperforms GAS. The above work stores historical embed-
dings for all the nodes and all the model layers, incurring enormous

memory costs. ReFresh [21] proposes one staleness-based and one
gradient-based metric to control both the size and the quality of
the stored historical embeddings. OUTRE’s historical embedding
cache mainly follows Refresh’s design, yet we make nontrivial mod-
ifications to suit the characteristics of out-of-core environments.
Specifically, we only cache node embeddings of the second layer to
achieve high performance-cost ratio. Moreover, we pre-define the
cache candidate to limit the cache size strictly. Finally, we propose
a new node importance metric for cache candidate selection, which
reflects real-world training performance.
Graph Partitioning in Out-of-core Graph Processing Systems.
Existing out-of-core graph processing systems [45, 46, 61] target
conventional graph processing workloads (e.g., PageRank [37], con-
nected components [19]) and execute iteratively. These graph pro-
cessing system cannot execute GNN training workloads without
profound modifications. They usually use heuristic graph partition-
ing algorithms and focus on how to reduce the I/O operations at the
level of the whole iterative process (e.g., skip loading certain graph
partitions, reduce the number of iterations). In contrast, OUTRE
targets GNN training and utilizes min-cut graph partitioning algo-
rithms to reduce the I/O operations in just one round of traversal for
all the training nodes, which is different from the design objective
of out-of-core graph processing systems.

8 CONCLUSION
In this paper, we propose a new out-of-core sampling-based GNN
training framework, OUTRE. Unlike existing work that tries to
reduce the percentage of data attempts that inquire external storage,
we present a new design perspective that explores how to reduce the
overall requested data volume. We conduct a quantitative analysis on
out-of-core sampling-based GNN training and find two kinds of data
redundancies exist in its requested data volume. Then we propose
three corresponding new designs, partition-based batch construction,
historical embedding cache and automatic cache space management,
to reduce the data redundancies and accelerate training. Evaluation
results on four public large-scale graph datasets show that OUTRE
achieves 1.52× to 3.51× speedup against the SOTA framework.
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