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ABSTRACT
Log-structured merge trees (LSM-trees) are commonly employed as

the storage engines for write-intensive workloads in modern time

series databases including Apache IoTDB. Following append-only

principle, LSM-trees can handle intensive writes and updates, but

consequently suffer high space amplification (SA). To reduce SA

in LSM-tree, compaction is triggered periodically to reorganize a

large number of immutable files on disk to eliminate redundancy.

This issue is further complicated in the Internet of Things (IoT)

scenarios, where frequent out-of-order data insertions and data

updates introduce duplicated keys, obsolete values and overlapping

bitmaps in multi-column data, thereby exacerbating SA concerns.

To mitigate SA in such contexts, this paper presents a Multi-

Column Compaction (MCC) strategy in Apache IoTDB, an open-

source time series database utilizing LSM-tree architecture and

supporting multi-column storage. We take into consideration both

the separate insertions (out-of-order data) and updates of multi-

column data, and analyze the hardness of selecting proper files

with the maximum space reduction in compaction. We then pro-

pose a heuristic method designed to improve the file selection, thus

reducing SA. To enhance the efficiency of this approach, we fur-

ther devise File Prefetcher and Compaction Cache. The proposed

MCC has been implemented in Apache IoTDB. Experimental results

demonstrate that our proposed MCC achieves better performance

in reducing space amplification.
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1 INTRODUCTION
Apache IoTDB

1
is an open-source time series database with high

performance for IoT applications [41]. It employs log-structured

merge trees (LSM-trees) [32] as storage engine. LSM-trees can effi-

ciently manage write-intensive workloads by following an append-

only principle to handle writes, making it naturally suitable for time

series databases. However, this consequently leads to high space

amplification (SA) [30, 36]. Tomitigate SA in LSM-tree, compactions

are periodically triggered to reorganize the immutable files on disk.

Compactions aim to eliminate redundancy, thereby fundamentally

improving the performance of the database, including reducing SA.

Nevertheless, the workloads are further complicated in the Internet

of Things (IoT) scenarios, especially with frequent out-of-order data

insertions and data updates, introducing new challenges to IoTDB

in terms of effectively managing SA.

1.1 Challenges in Apache IoTDB
While SA issues are prevalent, this section highlights unique chal-

lenges in Apache IoTDB regarding SA, which motivate the intuition

of considering multi-column compaction in this study.

Multi-column storage with bitmaps. Apache IoTDB supports

multi-column storage, a feature that is also prevalent in several LSM-

tree based stores, e.g., Cassandra [1] and Apache HBase [2]. This

structure allows multiple columns to share a key column, reducing

the space for storing redundant keys. Owing to unsynchronized

data ingestions and updates, null values are inevitable in multi-

column data. It then requires extra space for representing null

values. To manage null values, unlike HBase [2] and InfluxDB

[3] that record indexes to mark values, IoTDB (1) supports multi-

column storage and (2) employs bitmaps to manage null values

[26] for multi-column data. The bitmaps track the position of multi-

column values associated with the shared key column (i.e., indexes

the position of the values). This facilitates contiguous storage of

values within files for space efficiency. However, the bitmaps might

overlap with each other when the data and updates are delayed.

Figure 1 illustrates the real-world data example in the SAMSUNG

[42] dataset, which encounters data delays as shown in Figure 1(a).

Figure 1(b) shows the corresponding files in Apache IoTDB, where

multi-column data are collected by sensors with severe delay issues.

The white cells represent null values corresponding to ‘0’ in bitmap.

Different colors of cells indicate the arrival order of each data,

and these cells are actually recorded with ‘1’ in bitmap. The files

1
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Figure 1: Real-world example from SAMSUNG [42] dataset.

(SSTables) in Level 0 of LSM-tree in Figure 1(b) are flushed to the

disk with arrival time. When certain data of 𝑓1 and 𝑓2 are delayed in

other files, the corresponding cells with identical keys are recorded

repeatedly. As a result, the files in Level 0 exhibit duplicated keys

under the design of multi-column storage, leading to high SA.

Our previous study [26] has improved the storage efficiency

during the flushing stage by considering the bitmaps. Nevertheless,

the issue of the bitmap still persists during the compaction stage,

which motivates us to consider the compaction strategy for multi-

column data in IoTDB.

Out-of-order insertions and updates. Out-of-order insertions
(i.e., delayed data) and updates are prevalent especially in IoT appli-

cations. For instance, data from various sensors on mobile devices

are transmitted to a data collection engine for storage via networks.

However, network latency [42] can cause out-of-order data arrivals

resulting in different degrees of delay. Figure 1(a) illustrates the

data delays in the SAMSUNG [42] dataset collected from real-world

mobile devices. The x-axis denotes the arrival order of data points.

The fluctuating time of the arrived data points means that they are

received out-of-order. These issues challenge the design of time

series databases. Our previous works focus on mitigating the im-

pact of the delayed issues in IoTDB, regarding data sorting [45] and

write amplification (WA) [29]. However, the issue of SA in LSM-tree

is still severe.

Recall that compaction is periodically triggered, selecting some

files to sort-merge and compacting them to the next level. The

delayed data ingestion and updates pose challenges to compaction,

especially in the stage of selecting files. Existing compaction strate-

gies, such as Round-robin strategy [22] and Oldest strategy [4, 38],

select files in a predefined order, but neglect the delay and update

issues of multi-column data. Even worse, SA is often neglected in

the design of existing LSM-tree stores and optimization techniques

[30]. For instance, to conduct compaction in Figure 1(b), the tradi-

tional Oldest policy chooses 𝑓1, 𝑓2 and 𝑓3 to compact, as shown in

Figure 1(c). However, 𝑓4 has more overlapping data with 𝑓1 and 𝑓2

than 𝑓3, indicating that there is an opportunity for improving space

usage and mitigating SA.

1.2 Motivation
To this end, it is necessary to devise a file selection strategy tai-

lored to multi-column compaction in Apache IoTDB. Intuitively,

we can merge the files with their delayed and updated values to-

wards lower SA. The primary avenues for space reduction include

the following aspects: (1) Duplicated keys: For multi-column data,

duplicated keys are common when data from different columns

do not arrive simultaneously. For example, the files 𝑓1 and 𝑓2 in

Figure 1(b) have duplicated keys (2,3 and 4). Compacting these

files would eliminate such redundancies. (2) Obsolete values: Data

updates may also generate obsolete values and result in high SA.

The values of key 2 in Figure 1(b) provide an example of such data

updates. (3) Overlapping bitmap: The space cost of bitmaps is also

essential for multi-column data. For both delayed and updated data

in Figure 1(b), we can merge them for a more complete bitmap.

Hence, for the files in Figure 1(b), a better choice is to compact 𝑓1, 𝑓2
and 𝑓4, given their overlapping keys and complementary columns.

Figure 1(c) presents the results. In this sense, the extra space cost

for keys, values and bitmaps is saved.

Following the intuition, we introduce MCC, a compaction strat-

egy in Apache IoTDB. By taking into consideration both the sep-

arate insertions (out-of-order data) and updates of multi-column

data, MCC has the ability to reduce the space cost during the file se-

lection of the LSM-tree compaction. The experiments demonstrate

that MCC achieves better performance in reducing SA.

1.3 Contribution
Our major contributions in this study are summarized as follows.

(1) We formalize the problem of selecting files for multi-column

compaction and analyze the NP-completeness of the problem in

Theorem 1 in Section 4.2. We also devise directed acyclic graph

(DAG) constraint. It guarantees different versions of data are cor-

rectly compacted in LSM-tree, ensuring the correctness of the com-

paction.

(2) We devise a Multi-Column Compaction (MCC) strategy tai-

lored to multi-column storage in IoTDB in Section 5. It adopts a

heuristic algorithm of file selection for better performance. File

Prefetcher and Compaction Cache are also dedicatedly devised for

efficient decisions regarding file selection in Section 6.

(3) We deploy the proposed MCC in Apache IoTDB [4], an open-

source time series database. The code is included in the official

GitHub repository of the system [5].

(4) We conduct experiments to validate that MCC successfully

reduces the SA in IoTDB. Moreover, we further implement the

proposed MCC in RocksDB [6] to show its applicability to other

LSM-tree implementations.

2 BACKGROUND
This section first provides some background on LSM-trees and then

highlights the importance of the compactions. Finally, it introduces

the LSM-tree in Apache IoTDB.
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Figure 2: System overview of MCC.

2.1 LSM-trees
LSM-trees are commonly employed as storage engines in NoSQL

stores. Compared to the original storage engines, such as B
+
-trees,

LSM-trees follow an out-of-place update strategy to handle write-

intensive scenarios [30] and reduce random I/Os. LSM-trees main-

tain a memory buffer for latest data ingestion, namely MemTable.

When theMemTable is full, LSM-tree sorts the keys in theMemTable

and then flushes it into disk. It then forms immutable SSTables in

the disk. The SSTables in the disk are organized by levels and the

sizes of the levels increase exponentially following a size ratio.

2.2 LSM-tree Compaction
To reorganize data in the disk, LSM-trees leverage compactions,

when the size of some level exceeds a predefined threshold. By

compactions, LSM-trees sort-merge data from lower levels to higher

levels and create new SSTables. Compaction is crucial in LSM-tree

designs. It not only reduces the space cost but also accelerates the

queries [18]. Leveling and tiering are the most common compaction

layouts for LSM-trees [38]. In the leveling layout, the keys in the

same level are all sorted. When compaction is triggered, the files

that are written to the next level are then sorted with all files that

overlap in keys, as utilized in LevelDB [7] and RocksDB [6]. Tiering

layout, instead, only generates a new file in the target level without

disturbing other files. It treats the files in an LSM-tree level as sorted

runs and different runs could overlap in keys. With such design,

tiering is more efficient in data insertion and updates but fails in

space cost and lookups. Tiering layout is also deployed by NoSQL

databases such as Cassandra [1] and HBase [2].

2.3 LSM-tree in Apache IoTDB
Apache IoTDB, an open-source time series database, employs LSM-

tree as storage engine. Specifically, IoTDB adopts a tiering layout.

As introduced in Section 2.2, tiering facilitates significantly fast data

ingestion at the expense of high SA. This trade-off is particularly

relevant in the application of IoTDB to IoT scenarios, where high-

frequency data collection results in vast amounts of data insertions.

As a result, while tiering layout enables IoTDB to handle extremely

large-scale data inputs and updates, it is also urgent to mitigate SA

problem in the LSM-tree of IoTDB.

Table 1: Notations.

Symbol Description

𝐹 the selected collection of the files

𝐶 (𝑓 )/𝐶 (𝐹 ) cost of a file/a set of files

𝑘 (𝑓 ), 𝑣 (𝑓 ), 𝑏 (𝑓 ) the space costs of keys, values and bitmaps in 𝑓

𝑐𝑘 , 𝑐𝑣, 𝑐𝑏 size parameters of keys, values and bitmaps

𝑉𝑗 , 𝑓𝑣𝑗 the 𝑗-th column of values and bitmaps

F the collection of all the files in a Level

𝑀 the number of allowed merging files

Merge(·) sort-merging of a collection of the files

𝐺 = (𝑉 , 𝐸) a DAG with the node set 𝑉 and edge set 𝐸

D the DAG constraint

3 SYSTEM OVERVIEW
This section gives a brief introduction to the proposed MCC in

Apache IoTDB. Figure 2 outlines the system.

The common delays of the data insertion and massive updates

in IoT workloads could result in high SA for multi-column data.

Our MCC is devised based on the tiering layout LSM-tree which is

adopted in IoTDB. As shown in Figure 2, MCC mainly works in the

Compaction Selector, aiming to select the files with the most space

reduction. We formalize the multi-column compaction problem in

Section 4.1 and prove its NP-hardness. Next, in Section 5, we devise

a file selection engine, equipped with a heuristic approach. The

heuristic approach builds a cost model that considers the charac-

teristics of multi-column data to achieve lower space cost.

To accelerate the selection approach, we devise File Prefetcher

and Compaction Cache to accelerate both the computation part in

Section 6. For the File Prefetcher, the proposed heuristic approach

requires scanning files for information including keys and bitmaps.

However, the native file readers in existing databases need to read

the whole file, i.e., deserializing all the keys, values and bitmaps.

To avoid deserializing the values to achieve higher efficiency, we

devise File Prefetcher to only consider the keys and the bitmaps

during file selection. Compaction Cache is also introduced to avoid

unnecessarily repeated computations.

4 MULTI-COLUMN COMPACTION PROBLEM
In this section, we first formalize themulti-column compaction prob-
lem (Problem 1). Next, we prove the NP-hardness of Problem 1. We

then introduce DAG constraint for updates to guarantee the cor-

rectness of the LSM-tree semantics. Some frequently used notations

are summarized in Table 1.

4.1 Problem
To comprehensively define our multi-column compaction problem,

we start from the definition of the multi-column data and its space

cost and then formally define the compaction problem. Finally, we

discuss the computation of the space cost.

4.1.1 Multi-column Data Organization. We first devise the cost

function 𝐶 , which computes the space cost of a file. Given a file

𝑓 which stores multi-column data, its space cost is composed of

three parts, including keys, values and bitmaps. The bitmaps are
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Figure 3: File organization with a bitmap, where 𝜃 = 3.

necessary and specially designed to mark the null values and as-

sociate the multi-column data with keys. With the indexing of the

bitmaps, only a shared key column is required for multiple columns.

In particular, the non-null values could be stored continuously to

be efficiently encoded and compressed. Since the metadata usually

takes fixed but limited space, for simplicity, we do not involve the

space cost of the metadata in our problem.

Therefore, the space cost𝐶 (𝑓 ) of a given file 𝑓 for multi-column

data is defined as follows:

𝐶 (𝑓 ) = 𝑐𝑘𝑘 (𝑓 ) + 𝑐𝑣𝑣 (𝑓 ) + 𝑐𝑏𝑏 (𝑓 ) (1)

where 𝑐𝑘𝑘 (𝑓 ), 𝑐𝑣𝑣 (𝑓 ) are the space costs the of keys and values

in 𝑓 , respectively, and 𝑐𝑏𝑏 (𝑓 ) is the space cost of the bitmap. In

addition, 𝑐𝑘 , 𝑐𝑣 and 𝑐𝑏 are size parameters that depend on different

database settings and data types.

To be specific, 𝑘 (𝑓 ) computes the number of the unique keys in

𝑓 and then multiplies with the space cost 𝑐𝑘 of each key. 𝑣 (𝑓 ) is
the number of the values and 𝑐𝑣 denotes the space cost for each

value. For 𝑏 (𝑓 ), it denotes the total bits in a bitmap, which have

the same shape as the values. Analogously, 𝑐𝑏 denotes the space

cost for one bit. However, we also note that, in the column-oriented

databases, if a given number 𝜃 of consecutive bits (i.e., a bit vector)

in the bitmap are all complete, the vector of this bitmap could be

neglected, i.e., it does not require space for storage. Therefore, we

have the following definition of 𝑏 (𝑓 ):

𝑏 (𝑓 ) =
∑︁

𝑣∈{𝑉1,𝑉2,...,𝑉𝑚 }

⌈ |𝑓𝑣 |
𝜃
⌉∑︁

𝑦=1

𝜎 (𝑓𝑣 [𝑦𝜃 : (𝑦 + 1)𝜃 ])𝜃

where 𝑓𝑣 [𝑎 : 𝑏] denotes the bit vector of the column 𝑓𝑣 from 𝑎-th

to 𝑏-th elements. 𝜎 (𝑓𝑣 [𝑎 : 𝑏]) = 0 if all bits in 𝑓𝑣 [𝑎 : 𝑏] are 1 and
otherwise 𝜎 (𝑓𝑣 [𝑎 : 𝑏]) = 1.

Example 1. Figure 3 presents an example of file organization in

IoTDB with bitmap. The space cost 𝐶 (𝑓 ), composed of three parts

including keys, values and bitmaps, where 𝜃 = 3. It contains totally

three keys and three columns with a missing value at 𝑉2 of 𝐼𝐷 = 3.

Therefore, we have 𝑘 (𝑓 ) = 3, 𝑣 (𝑓 ) = 8 in terms of keys and values.

For the bitmap, it goes through all values to check the null values.

Since 𝜃 = 3, the bit vector in columns 𝑉1 and 𝑉3 are complete

thus omitted, while the bit vector of (1, 1, 0) in 𝑉2 still remains, i.e.,

𝑏 (𝑓 ) = 𝜃 = 3. Following Formula 1, the space cost 𝐶 (𝑓 ) of 𝑓 could

be computed.





 



   







 



   

 

 





 



   

 

 





 









 









 









 





Figure 4: An example of multi-column compaction (𝑀 = 3).
(a), (b) and (c) provide three options with DAGs.

4.1.2 Selecting Files for Multi-column Compaction. In addition, we

also define themerge functionMerge(𝐹 ), denoting the sort-merging

of a collection of files into a merged file, where 𝐹 = {𝑓1, 𝑓2, . . . }.
By sort-merging the multiple columns, the same keys are merged

or updated according to their bitmaps, different keys are sorted

in the meantime. Therefore, 𝐶 (Merge(𝐹 )) denotes the space cost
of the merged file 𝐹 . For simplicity, we will use 𝐶 (𝐹 ) instead of

𝐶 (Merge(𝐹 )) when the context is clear.

To comprehensively evaluate the space cost reduction of the

compaction and minimize the space cost, we further define Δ𝐶 (𝐹 ),
denoting the space reduction of merging 𝐹 :

Δ𝐶 (𝐹 ) =
∑︁
𝑓 ∈𝐹

𝐶 (𝑓 ) −𝐶 (𝐹 ) (2)

To be specific, the space reduction mainly comes from: (1) the

elimination of the redundant keys (including both delay insertions

and updates), (2) the updates of the stale data values, and (3) the

removed complete bitmap vectors.

We then consider the multi-column compaction problem. The

compaction is triggered when the size of a specific level surpasses

a given threshold. Next, a specific number of files are chosen to

be merged and moved to the next level. While existing methods

consider different dimensions of choosing the files (e.g., Round-

robin or choosing the oldest files), we focus on the defined cost

model to solve the compaction problem for lower space cost.

Problem 1. (Multi-column compaction problem). Let F denote
the collection of the files in the given level, and𝑀 denote the allowed
number of merging files. We aim to choose the proper merging files
that lead to the lowest space cost, i.e., the maximum space reduction.

maxΔ𝐶 (𝐹 )
𝑠 .𝑡 .|𝐹 | = 𝑀,

𝐹 ⊆ F .

Example 2. Figure 4 presents an example of selecting compaction

files. F is composed of files from 𝑓1 to 𝑓4 and the color denotes the
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arrival time as introduced in Figure 1. To decide 𝑀 = 3 files for

compaction, Figures 4(a) and (b) provide two options of merging

𝑓1, 𝑓2 and 𝑓3 or 𝑓1, 𝑓2 and 𝑓4. According to the problem, merging

𝑓1, 𝑓2, 𝑓4 eliminates duplicated keys and obsolete values (with 𝑡𝑖𝑚𝑒 =

2, 3, 4, 5) and overlapping bitmap. Compared to merging 𝑓1, 𝑓2 and

𝑓3, the space reduction, i.e., Δ𝐶 (𝐹 ) is more significant. Hence, 𝑓1, 𝑓2
and 𝑓4 are selected to be merged.

4.1.3 Computation of the Costs. Finally, we present the method-

ology for computing the cost. As aforesaid, we define 𝐶 (𝐹 ) as the
space cost of the merged file 𝐹 and Δ𝐶 (𝐹 ) as the space reduction
achieved by merging 𝐹 . That is, our approach mainly focuses on

computing the space reduction Δ𝐶 (𝐹 ) of merging files in 𝐹 . Recall

that the space reduction is related to three aspects: redundant keys,

updated data value and complete bitmap vectors. Hence, the keys

and bitmaps are essential for this computation. In particular, the

bitmaps could provide information about the presence of updated

data values by indexing their positions. Consequently, we compute

the cost by fetching the keys and bitmaps of two files.

However, there still remain concerns regarding the implemen-

tation of this strategy: (1) As the values and bitmaps are stored

consecutively in the file and typically deserialized together, is it fea-

sible to fetch only the bitmaps without deserializing the values for

improved efficiency? (2) How does such computation affect other

crucial metrics like system throughput and resource utilization?

To address the first concern, in Section 6.2, we develop a dedi-

cated file prefetcher, which only accesses keys and bitmaps. This

allows for more efficient processing without the need to deserialize

the values. For the second concern, we evaluate throughput and

resource utilization in Section 7.2.6. While MCC incurs extra disk

I/O due to additional bitmap reads during the selection algorithm,

this trade-off is considered acceptable when weighed against the

remarkable gains of MCC in SA. Moreover, it does not impact the

throughput or lead to clearly increased CPU and memory usage.

We thus devise MCC to further reduce SA.

4.2 Hardness
Unfortunately, we find the Multi-Column Compaction Problem is

generally hard.

Theorem 1. The Multi-Column Compaction Problem (Problem 1)
is NP-hard.

Proof sketch. In summary, we can build a reduction from set covering
problem [21], one of the Karp’s 21 NP-complete problems, to the

decision version of Problem 1, thus showing the NP-hardness of

Problem 1. Please see full proofs in [8].

4.3 DAG Constraint for Updates
Problem 1 outlines the multi-column compaction problem. Nev-

ertheless, we need to further consider the LSM-tree correctness

semantics for updates. To be specific, LSM-tree updates data out

of place, thus multiple versions of data may exist in different files.

If we select files arbitrarily without considering the versions, it is

possible to compact files from a newer file into an older file while

skipping files that were created in-between. By compacting them

into the higher level, the more recent versions of data could not be

accessed by a query, since the in-between files in the lower level

are first encountered and returned.

Therefore, we use a directed acyclic graph (DAG) to model the

files with updates to ensure the correctness. The DAG is defined as

𝐺 = (𝑉 , 𝐸), where 𝑉 is the set of the nodes and 𝐸 is the set of the

edges. Hence, a node 𝑣 corresponds to a file 𝑓 and an edge from 𝑣 to

𝑣 ′ represents that 𝑓 ′ (corresponding to 𝑣 ′) contains some updated

values of 𝑓 (corresponding to 𝑣). We also define the path where

each node is connected by a direct edge to its successor [16]. A

node 𝑣 ′ is reachable from another 𝑣 if there exists a path from 𝑣 to

𝑣 ′. 𝑎𝑛𝑐𝐺 (𝑣) is defined as the set of nodes in 𝐺 that can reach 𝑣 , i.e.,

the ancestors of 𝑣 . For simplicity, we also use 𝑎𝑛𝑐𝐺 (𝑓 ) to denote the
files corresponding to 𝑎𝑛𝑐𝐺 (𝑣). Hence, to ensure the in-between

files are not neglected, we propose DAG constraint.

Definition 1. (DAG constraint). Given the file collection in the
same level denoted by F , and the corresponding DAG of F denoted
by 𝐺 , we say a subset 𝐹 ⊆ F satisfying the DAG constraint D, if
∀𝑓 ∈ 𝐹 , 𝑎𝑛𝑐𝐺 (𝑓 ) ⊆ 𝐹 , denoted by 𝐹 ⇒ D.

Problem 2. (Multi-column compaction problem with DAG con-
straint). Let F denote the collection of the files in the given level, and
let𝑀 denote the allowed number of merging files. We aim to choose
the proper merging files that lead to the lowest space cost, i.e., the
maximum space reduction, and the DAG constraint D is satisfied.

maxΔ𝐶 (𝐹 )
𝑠 .𝑡 .|𝐹 | = 𝑀,

𝐹 ⊆ F ∧ 𝐹 ⇒ D .

Proposition 2. The DAG constraint ensures the correctness of the
file selection strategy in LSM-tree with tiering-layout.

Please see full proofs in [8].

5 METHOD
In this section, we focus on the solution to the multi-column com-

paction problem. Regarding the NP-hardness in Theorem 1, we

develop a heuristic algorithm for the problem.

The heuristic algorithm is based on simulated annealing. Given

the set of files F in a level, we aim to find a subset 𝐹 with |𝐹 | = 𝑀

that tries to minimize the space reduction, i.e., Δ𝐶 (𝐹 ). A greedy

initialization algorithm is first employed. Next, a specific number of

files are iteratively removed from the current solution and the same

number of files will be added, which tries to improve the space

reduction.

5.1 Initialization
First, the algorithm starts from choosing𝑀 files as an initial solu-

tion 𝑆 . In each step, we select a file that mostly increases the space

reduction (Δ𝐶 (𝐹 )), i.e., in a greedy way. Such strategy locally max-

imizes the space reduction, and gives an initial solution 𝐹𝑖𝑛𝑖𝑡 for

updating phase. After initialization, we then turn to updating phase

to further improve the selection. In the initialization phase, the com-

putation of the space reduction follows the procedure introduced

in Section 4.1.3.

2978



5.2 Updating
In the updating phase, the algorithm iteratively updates the current

solution to enlarge the space reduction. In short, starting from the

𝐹𝑖𝑛𝑖𝑡 , the algorithm tries to search for the solution with higher

space reduction. In each iteration, a file is selected to be removed

from the current solution 𝐹 with |𝐹 | = 𝑀 , and another file is then

selected to be added to 𝐹 , generating another solution 𝐹 ′. 𝐹 ′ is then
decided to replace 𝐹 or not according to its current space reduction.

We will first introduce the removing policies. To remove 𝑑 files

from the current solution, where 𝑑 < 𝑀 is a given parameter.

Although it is a common strategy to randomly remove files from

𝐹 , inspired by [20] which is designed for set packing problem, we

adopt two removing policies:

Remove Policy I. The 𝑑 files that have the least overlapping keys

and values are removed. This policy tends to remove those files

that seem to have less impact to space reduction. Such removal

could possibly remove the infeasible files and increase the space

reduction with a better choice. However, such a strategy might

result in cycling when the solution falls into local optima. Hence a

random removing policy is then introduced.

Remove Policy II. The 𝑑 files are randomly chosen from 𝐹 . This

policy randomly chooses the file to remove. While it is less possible

to generate a better solution, it is still essential to avoid cycling and

local optima as aforementioned.

Empirically, Remove Policy I is adopted twice every three itera-

tions, and Remove Policy II is adopted once, to guide the algorithm

to find an optimal solution.

Next, we explain how the files are added into 𝐹 , i.e., how we

generate another solution 𝐹 ′ based on the 𝐹 by removing and adding

files. Two heuristics are considered for adding files, starting from

the dimensions of files and keys, respectively.

Add Policy I. Add Policy I starts from the files. For each file, we

compute how it could increase the space reduction by inserting

it into 𝐹 , which is similar to the initialization strategy. The files

are then sorted according to the increases they could bring to the

solution in decreasing order, and the first 𝑑 files are selected.

Add Policy II. Add Policy II starts from the keys. In each iteration,

it randomly finds a key in existing files in 𝐹 , and then searches for

the files that cover the key. Among these files, the one that increases

the space reduction (i.e., with the largest Δ𝐶 (𝐹 )) mostly will be

added to 𝐹 .

While Add Policy II might not result in a local optimum imme-

diately, it is meaningful to consider the key dimension to increase

the space reduction, which might lead to a global optimum. Add

Policy I and Add Policy II are adopted alternatively in the updating

phase. Both policies will generate a feasible solution 𝐹 ′ with 𝐶 (𝐹 ′).
Following the idea of simulated annealing, 𝐹 ′ will replace 𝐹 either

𝐶 (𝐹 ′) > 𝐶 (𝐹 ) or with a probability that is related to both iteration

number and their cost differences. Formally, we have the following

update rule:

𝐹 =

{
𝐹 ′, Δ𝐶 (𝐹 ′) > Δ𝐶 (𝐹 ) ∨ 𝑝 < exp (−Δ𝐶 (𝐹 )−Δ𝐶 (𝐹 ′ )

𝑡𝑘
)

𝐹, otherwise

Algorithm 1: MCC (F , 𝑀,𝑑, 𝑘, 𝑡 )

Input: files F in the compaction level, allowed number of

files𝑀 , updating file number 𝑑 , iteration number 𝑘 ,

initial temperature 𝑡

Output: selected file list 𝐹 ∗

1 initialize 𝐹𝑖𝑛𝑖𝑡 with greedy initialization;

2 𝐹 ∗ ← 𝐹𝑖𝑛𝑖𝑡 ;

3 for 𝑖𝑡𝑒𝑟 = 1, 2, . . . , 𝑘 do
4 if 𝑖𝑡𝑒𝑟 = 1, 2(mod3) then
5 𝐹 ′ ← Removing 𝑑 files from 𝐹 by Remove Policy I;

6 else
7 𝐹 ′ ← Removing 𝑑 files from 𝐹 by Remove Policy II;

8 if 𝑖𝑡𝑒𝑟 = 1(mod2) then
9 𝐹 ′ ← Add 𝑑 files to 𝐹 ′ by Add Policy I;

10 else
11 𝐹 ′ ← Add 𝑑 files to 𝐹 ′ by Add Policy II;

12 if Δ𝐶 (𝐹 ′) > Δ𝐶 (𝐹 ) or random(0, 1) <
exp (−Δ𝐶 (𝐹 )−Δ𝐶 (𝐹 ′ )

𝑡 ) then
13 𝐹 ← 𝐹 ′;
14 if Δ𝐶 (𝐹 ′) > Δ𝐶 (𝐹 ) then
15 𝐹 ∗ ← 𝐹 ′;
16 return 𝐹 ∗;

where 𝑝 = 𝑟𝑎𝑛𝑑𝑜𝑚(0, 1) is a random variable, 𝑡𝑘 denotes the tem-

perature in the 𝑘-th iteration, having 𝑡𝑘+1 = 𝜆𝑡𝑘 , i.e., shrinking with

a parameter 𝜆 ∈ (0, 1).

Example 3. (Example 2 continued). Figure 4 presents an example

of the proposal algorithm with the corresponding DAGs of the

data in Figure 1. The DAGs are constructed using the four files

in F from Figure 1(b). Figure 4(a) illustrates the files selected at

the initialization stage. By applying Remove Policy I and Add Pol-

icy I, 𝑓3 is removed from the list and 𝑓4 is added, as illustrated in

Figures 4(b). The result correctly follows the DAG constraint and

shows a lower space cost than that in Figures 4(a). However, as

shown in Figures 4(c), applying Remove Policy II and Add Policy

II results in 𝑓2 being removed and 𝑓4 being added. This conflicts

the DAG constraint since 𝑓2 is the ancestor of 𝑓4, which is invalid.

The algorithm would avoid such conflicting selection following the

DAG constraint.

Algorithm 1 outlines the complete procedure of the proposed

Multi-Column Compaction method. In some cases, the number of

files in a level is not large (e.g., with size ratio 10). While a brute

force strategy also works by comparing all the possible options, it

is still time-consuming considering it invokes more computations

of the overlaps than our proposal, i.e., the reduction in compaction

time compensates for the extra selection time.

6 SYSTEM DEPLOYMENT
In this section, we introduce how the proposed MCC is integrated

into Apache IoTDB [4]. We first describe the system as well as the

compaction procedure. Next, to reduce the time cost of the algo-

rithm, we devise File Prefetcher and Compaction Cache respectively

in Sections 6.2 and 6.3 to improve the efficiency.

2979



6.1 Deployment in Apache IoTDB
As illustrated in Figure 2, the Compaction Scheduler triggers the

Compaction Selector with a predefined interval and size capacity.

After the files are selected, they will be packaged and submitted as

a compaction task. The compaction task is then submitted to Com-

paction Task Manager and waits to be conducted. All the submitted

tasks are stored in a task queue, and will be extracted to execute by

the compaction thread pool.

The proposal has been open-sourced as part of IoTDB in its

official GitHub repository [5]. Specifically, our contributed codes

are mainly as the new SizeTieredCompactionSelector [9]. To

use MCC, one may build from source following the instructions

of IoTDB [5] and set compactionSelectFileMethod=mcc in the

configuration file iotdb-engine.properties.

6.2 File Prefetcher
While the proposed MCC selects files for less space cost, it requires

reading files while performing the proposed algorithm. Such strat-

egy might incur higher time cost when reading files. While reading

the files and obtaining their keys is viable, we further consider

devising our dedicated file reader, namely File Prefetcher, for more

efficient file processing.

We start from the problem introduced in Section 4.1. Recall that,

our problem focuses on space reduction. While the space cost of a

file is composed of keys, values and bitmaps, the computation of

the space reduction is indeed not related to the values themselves,

but related to the positions of the values, i.e., the bitmaps. In other

words, we can check the value overlaps (i.e., updates and delays)

with bitmaps and keys, since they already mark the positions of all

the values regardless of what the values are.

Unfortunately, the native File Reader in IoTDB deserializes all

the keys and values together, and cannot separately read keys

and bitmaps without deserializing values. We thus implement the

File Prefetcher, which only reads keys and bitmaps to avoid the

time-consuming value deserialization. The File Prefetcher follows

similar steps of File Reader. It first loads the file into memory, then

deserializes the keys and then the bitmaps. The value buffer is

neglected thus saving the time of deserializing the values.

6.3 Compaction Cache
To avoid repeated computations, we also provide the Compaction

Cache, which records the computed overlaps between files. It is

maintained in each level in LSM-tree. When the files are selected

and submitted as a compaction task, it will remove the related costs

of them. When new costs of files are computed in the specific level,

the cache of this level is also updated. By Compaction Cache, MCC

could (1) prune files when they do not overlap with each other, and

(2) check the cache for computed costs.

7 EXPERIMENTS
In this section, we implement our proposal in IoTDB with tiering-

layout LSM-tree, and experimentally evaluate the methods over

real-world datasets. The experiment-related codes and data are

available at [8].

Table 2: Dataset summary.

#point #row #column null rate

Campus 8.4M 1,000,000 10 15.81%

CSSC 28.8M 639,770 48 6.22%

WC 64.3M 10,000,000 8 19.58%

WH 12.2M 1,600,000 8 4.43%

SAMSUNG 5.6M 300,000 19 1.25%

CitiBike 8.9M 600,000 15 0.1%

CNNC 46.2B 300,000,000 154 0.5%

7.1 Settings
7.1.1 Datasets. In the experiments, we use seven real-world time

series datasets with different rows, columns and null rates. SAM-

SUNG [42] and CitiBike [10] are real-world datasets without artifi-

cial delays. Table 2 provides a summary of the datasets.

7.1.2 Metrics. While the main focus of the paper is space size, i.e.,

how much space is for storing the multi-column data on disk, we

also analyze the potential benefits of MCC to other metrics.

Space size. Space size is defined as the disk space used for storing
the data. Since the compaction is continuously triggered, without

further explanations, the space size is computed after all the com-

paction tasks finish, i.e., none of the level exceeds its capacity.

Space amplification (SA). SA is the key metric of the evalu-

ation. SA is defined as the ratio of the total cells divided by the

unique cells [25, 30].
1
Actually, SA computes the space cost for the

obsolete/invalid data to evaluate the usage of the disk space.

Throughput and resource utilizations. We also report the

write and read throughput as well as the resource utilizations in-

cluding CPU, memory and disk I/O to show the impact of MCC on

system performance.

7.1.3 Workloads and Database Parameters. It is important to eval-

uate how different methods handle different workloads. We thus

introduce how we generate different workloads for evaluating the

proposal. Taking both delays and updates into consideration, given

the input files, first, we set delay rate and update rate to control the

ratio of the data that are delayed or updated. Based on them, we

randomly select the data to be delayed or updated, simulating IoT

data input. By default, update rate and delay rate are set to 25%.

7.1.4 Methods. We compare our proposed Multi-Column Com-

paction (MCC) with the following competitors:

(1) Round-Robin: Selecting the files following a round-robin

strategy [22].

(2) Oldest: Selecting files according to their flushing time, i.e.,

selecting the oldest files for compaction [4, 38], which is

also the default strategy of IoTDB.

(3) Update: The file selection strategy selects files based on the

highest number of updates in single-column scenarios [6].

1
To apply SA to the multi-column data, we slightly modify the definition of SA in [30],

where SA is the ratio of the total entries divided by the unique entries.
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Figure 5: Scalability on CNNC dataset.
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Figure 6: Varying delay rate and update rate on WH dataset.

7.2 Comparison over Different Workloads
In this section, we evaluate the influences of different workloads to

the compactions.

7.2.1 Scalability. To evaluate the scalability of MCC, we consider

an extremely large-scale IoT environment of CNNC, customer of

IoTDB, comprising 154 columns, with row counts varying from

1 × 108 to 3 × 108. It amounts to 205GB of data. The space cost and

SA are provided in Figure 5. The main impact of larger data volume

is the increasing number of levels in the LSM-tree. As the data size

grows, the LSM-tree becomes deeper, making it more challenging

to manage SA due to a large number of delays and updates. By our

selection algorithm for proper files to compact, MCC consistently

demonstrates high performance with hundreds of gigabytes data.

This again highlights its robustness and scalability.

7.2.2 Varying Delay Rate. Delay rate is another essential workload
parameter, as it controls the proportion of delayed data. In general,

a high delay rate poses challenges for all methods, since the keys

are delayed more severely and incur higher SA. Figure 6(a) reports

the results of the methods by varying delay rate from 10% to 50%.

Overall, as the delay rates increase, the SA of all methods tends to

grow. Nevertheless, MCC consistently shows the lowest SA among

all the competitors, validating the applicability of MCC when data

are delayed to different degrees.

7.2.3 Varying Update Rate. Update rate affects the space size more

evidently as shown in Figure 6(b). As the update rate increases,

the baselines demonstrate significant growth in SA, whereas MCC

maintains a lower SA and experiences comparatively less growth.
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Figure 7: Varying null rate.
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Figure 8: Evaluation on datasets with real-world delays.

This validates the effectiveness of MCC in managing large work-

loads with high update rates.

7.2.4 Varying Null Rate. The gain of the proposed method mainly

comes from sparse updates and data delays, as illustrated in Figure 6.

Especially, with the increase of update rates in Figure 6(b), the

improvement by our MCC becomes more significant. Null rates of

the datasets do not largely affect the improvement, but only the

corresponding space costs. Nevertheless, we vary the null rate of

the WH dataset from 5% to 25% by randomly removing some data

and evaluating the space size and SA of different methods. The

results are presented in Figure 7. It can be observed that different

null rates result in different data sizes, as shown in Figure 7(a).

Overall, SA of different methods is not affected by the null rates

according to Figure 7(b).

7.2.5 Datasets with Real-world Delays. In this section, we eval-

uate MCC over two real-world datasets without artificial delays.

SAMSUNG [42] is recorded with out-of-order (delayed) events with

network issues over mobile devices in IoT applications. CitiBike [10]

is composed of Citi Bikers ride records with out-of-order recorded

time (i.e., with different degrees of data delays).

The results in Figure 8 show that MCC achieves the lowest SA

across varying data sizes in both datasets. Since these datasets

mainly suffer from real-world delay issues, the performance gains

of MCC are primarily attributed to its ability in handling time

delays more effectively. Other non-time-aware techniques such as

Round-Robin have worse performance. The results are consistent

with Figure 6(a) on various delay rates, i.e., MCC is more effective

in handling severe delays.
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Figure 9: The performance of MCC on throughput (pts/s) and
resource utilization metrics across different workloads.

7.2.6 Throughput and Resource Utilization under Various Workload
Patterns. In this section, we evaluate MCC and baseline algorithms

under various workload patterns, including mixed read/write sce-

narios (with a read-to-write ratio of 1:1) and read-intensive sce-

narios (with a read-to-write ratio of 10:1). These workloads are

generated using IoT-benchmark [11], a specialized tool for bench-

marking time-series databases. The experiments utilize the data

from theWH dataset to generate the workloads.Writes within these

workloads are interleaved with reads. The queries are mainly range

lookups, which are more common for time series databases. We

separately record throughput and resource utilization (including

CPU usage, memory usage and disk I/O). All metrics are normalized

by dividing by the largest value among the three methods for better

visualization.

Figures 9(a) and (b) display the results for mixed workload and

read-intensive workload, respectively. As for the throughput, while

it is not the primary target of our MCC, it still outperforms the

baselines in both workload types, especially in the read-intensive

workload. This improvement is attributed to the reduced lookup

costs of MCC due to the reduced file sizes of the merged files.

In addition to the system throughput, we expand our experiments

to involve additional metrics, including CPU usage, memory usage

and disk I/O. During the evaluation, the CPU and memory usage

metrics are the average values recorded throughout the execution

of the workloads. Additionally, we also record the frequency of disk

I/O operations for various methods.

The results are also presented in Figure 9. It can be observed that

the performance of MCC in terms of throughput, CPU usage, and

memory usage is comparable to that of the baseline methods. While

MCC incurs extra disk I/O due to additional bitmap reads during the

selection algorithm, this trade-off is considered acceptable when

weighed against the remarkable gains of MCC in SA. Moreover, it

does not impact the throughput as also evidenced by Figure 9. In

addition, MCC does not lead to clearly increased CPU and memory

usage.

7.3 Effectiveness and Limitations of MCC

Table 3: Ablation study of MCC on SA results.

WH Campus WC CSSC

MCC 1.659 1.646 1.713 1.703

MCC without Add Policy I +0.061 +0.091 +0.058 +0.072

MCC without Add Policy II +0.013 +0.022 +0.017 +0.015

MCC without Remove Policy I +0.065 +0.105 +0.042 +0.081

MCC without Remove Policy II +0.003 +0.001 -0.001 +0.002

Round-Robin 1.973 1.940 2.005 1.989

Oldest 1.936 1.902 1.966 1.938

Table 4: Comparison of MCC and the optimal solution.

Metric Dataset MCC Optimal Difference Avg

SA

WH 1.652 1.648 -0.3%

-2.7%

Campus 1.429 1.409 -1.4%

WC 1.458 1.413 -3.1%

CSSC 1.669 1.568 -6.0%

Select Time (s)

WH 18.5 147.7 +698%

+828%

Campus 12.4 73.2 +490%

WC 76.2 1209.3 +1487%

CSSC 17.1 125.9 +636%

7.3.1 Ablation Study. In this section, we conduct an ablation study

to validate the impact of the add/remove strategies on MCC. The

results of SA are summarized in Table 3.

Add Policies. Both Add Policies are essential for MCC, as they

consider overlaps in different dimensions. Note that MCC without

Add Policy I leads to a significant increase in the SA, highlighting

its contribution to the overall performance. This is not surprising

since Add Policy I specially focuses on space reduction through a

locally optimal strategy. Add Policy II considers the key dimension

to reduce space cost. To avoid local optima, it prevents adding

repeatedly the same files by Add Policy I.

Remove Policies. According to the results, Remove Policy I is

beneficial for the performance of MCC by removing the files that

minimally affect space reduction. Remove Policy II appears less

impactful as it randomly removes files from the list. Nevertheless,

as introduced in Section 5.2, it still plays an important role in pre-

venting cycling and local optima, thereby appearing to be effective

in three out of four datasets.

7.3.2 Comparison to the Optimal Solution. In this section, we com-

pare MCC with the optimal solution that utilizes a brute-force

approach to traverse all file combinations, to better understand the

efficiency and potential limitations of the proposal.

As shown in Table 4, MCC demonstrates comparable space cost

to the optimal solution, which only shows an average improvement

of 2.7%. However, the optimal solution results in a significantly

higher time cost to select proper files, with an average increase

of 828%. Note that the compaction execution time of both solu-

tions is almost the same and thus not included in the table. For

instance, both methods take about 115s to execute compaction for

WH dataset. However, the optimal solution incurs an additional

147.7s of latency, which is 1.28× the compaction execution time,
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Figure 10: Varying column number.

while bringing only limited performance gains. Additionally, the

number of selected files is set to 3 in this evaluation. Given that

the latency of the brute-force approach for the optimal solution in-

creases exponentially with the number of selected files, it becomes

increasingly untenable as the number of selected files grows. To

conclude, the heuristic approach MCC may have some effective-

ness limitations, but the performance gain compared to the optimal

solution is slight. The efficiency of MCC is significantly better, with

only 11% of the time cost of the optimal solution in average.

7.3.3 Comparison to Single-column Compaction. Note that single-
column compaction strategies solely focus on overlapping keys (up-

dates) while neglecting the bitmap for representing multi-column

data. The extra space of bitmap is however crucial for reducing SA.

Moreover, the delay of single-column data will not introduce over-

lapping keys thus has no SA to consider as well. For instance, one

of the file selection strategies used in RocksDB [6, 38] selects files

based on the highest number of updates in single-column scenarios,

without considering delay and bitmap issues. Thereby, simply us-

ing single-column compaction is insufficient for multi-column data.

This issue is more severe with a larger number of columns, where

the space cost of the bitmap is significant. Unfortunately, this is

common in IoT time series applications, suggesting the necessity

of multi-column compaction.

We compare the proposed MCC with the single-column update-

based selection strategy (i.e., Update [6, 38] in Figure 10). In the

context of single-column data without bitmap, SA mainly comes

from data updates. Therefore, as shown in Figure 10, for single-

column data (i.e., when the column number is 1), MCC achieves

similar performance as the update-based strategy, since both of

them choose files based on updates. It verifies the above analysis.

However, as the column number increases, the performance of

the update-based strategy declines, whereas MCC continues to

deliver robust performance with the consideration of bitmap costs

Table 5: Combining MCC with Lazy Leveling (LL).

Metric Dataset MCC MCC+LL Difference Avg

SA

WH 1.652 1.537 -7.0%

-5.6%

Campus 1.429 1.350 -5.5%

WC 1.458 1.407 -3.5%

CSSC 1.669 1.565 -6.2%

WA

WH 3.45 5.50 +59.4%

+45.2%

Campus 3.34 4.77 +42.8%

WC 3.43 4.31 +25.7%

CSSC 3.36 5.13 +52.7%

for multi-column data. The reason is that simply relying on the

number of updates neglects the incomplete bitmaps resulting from

data delays, which significantly impacts SA.

7.3.4 Combination with Other Methods. Dostoevsky [23] intro-

duces the Lazy Leveling LSM-tree design, known as L-leveling.

This design utilizes leveling layout for the last level of the LSM-

tree while employing tiering in the other levels. The Lazy Leveling

strategy can reduce SA associated with tiering layout through our

design. We thus implement the Lazy Leveling strategy in Apache

IoTDB and integrate it with the proposed MCC.

Table 5 presents the results. It can be observed that Lazy Leveling

(LL) can be combined with MCC and reduce the space amplifica-

tion (SA). On average, Lazy Leveling achieves a reduction of 5.6%

in space cost compared to MCC alone. This improvement seems

not substantial, because MCC already addresses space issues with

updates and delays in lower levels effectively. However, this inte-

gration results in about 45.2% increase in write amplification (WA),

owing to the need for sorting time series in the leveling layout

which incurs additional disk I/O operations.

7.4 Applicability of MCC
MCC can also be generalized to other LSM-tree implementations

without similar support, such as tiering layout. In addition to the

tiering LSM policy with columnar storage, this section discusses

the applicability of the proposal, especially on implementing MCC

in row-based storage and LSM-trees with leveling and partitions.

We further implement MCC in RocksDB [6], a leveling LSM-tree

based storage, to show the applicability of MCC to other systems

as well as the use cases.

7.4.1 LSM-trees with Leveling and Partitioning. LSM-trees with

leveling, such as LevelDB [7] and RocksDB [6], also incorporate

the file selection strategies during compaction. Unlike tiering, LSM-

trees with leveling partition a run into non-overlapping files. The

file selection problem in leveling is slightly different from that in

tiering. As described in Section 2.2, in a leveling layout, the files in

the same level are all sorted by keys, i.e., the updates and delays

data in the same level will be merged directly. When compaction

is triggered from Level 𝑖 to Level 𝑖 + 1, the selected files should be

merged with the files in the next level. Despite these differences,

we can still apply the proposed MCC to LSM-trees with leveling.

Following the idea of optimizing SA, the goal of MCC in leveling

layout is to choose the proper merging files in Level 𝑖 that lead to the
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Figure 11: Implementation of MCC in RocksDB.

lowest space cost after merging them into Level 𝑖+1, i.e., maximizing

space reduction. Since the files in Level 𝑖 do not overlap, we can

optimize space reduction by individually assessing the impact of

each file when moved to the next level.

Therefore, we implement the proposed MCC in RocksDB [6],

an open-source key-value store adopting leveling layout. The im-

plementation of MCC in RocksDB is similar to that in IoTDB by

modifying the file picker module. We also reuse the index reading

module in RocksDB to prefetch the keys for reducing the overhead

of reading files. The computed costs of merging the files are also

cached, to avoid redundant computations. Figure 11 illustrates the

results of each dataset in RocksDB by varying data size. Owing to

the data updates and delays, MCC consistently outperforms base-

lines across all datasets. Nevertheless, the performance enhance-

ments offered by MCC in a leveling layout are not as substantial

as those observed with tiering layouts. The reason is that leveling

layouts ensure the files within the same level are all sorted without

any overlaps, in contrast to tiering layouts.

7.4.2 Row-based Storage Using LSM-trees. MCC can be generalized

to row-based storage based on LSM-tree architecture. For instance,

TiDB [27] is an open-source HTAP database with a row-based

storage engine TiKV [12]. In its data model, each row is represented

as a key-value pair, analogous to the multi-column time series

storage in IoTDB. When updates and delays are introduced to a row

in TiDB, it leads to NULL values as well as extra space overhead.

This presents an opportunity for MCC to optimize space utilization

during compaction by selecting files to optimize space reduction. To

apply MCC, the cost function needs to be slightly adjusted as TiKV

does not use bitmap. However, the core part of the cost function and

the selection framework of MCC are still applicable, as they already

consider the data updates that are frequent in OLTP workload.

Hence, implementing MCC in row-based storage systems is not

only feasible but can also enhance their efficiency. Note that TiKV

also employs RocksDB for persistent storage. In this sense, we can
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Figure 12: Varying deletion rate.

implement MCC in TiKV by adapting the implementation with

RocksDB as well, which has been validated in Figure 11. We omit

the evaluation results on this similar implementation.

7.4.3 Use Cases in Addition to Time Series. Note that RocksDB [6]

is a general-purpose system not specialized for time series. LinkedIn

utilizes RocksDB to manage its vast and complex data workloads

composed of user interactions, connections and posts, leading to

a large number of real-time updates [13]. Given its global user

base, the data management task of LinkedIn faces the challenges

from frequent updates by user activities (e.g., profile modifications

and interaction results). To mitigate the high space amplification

resulting from these workloads, integrating RocksDB with MCC

could provide a solution for managing the large number of updates.

The overall storage efficiency is thus expected to be improved.

7.4.4 Applicability of MCC to Other Time Series Databases. While

our findings are mainly discussed in the context of Apache IoTDB,

the considered features such as multi-column storage and bitmap

management are indeed prevalent in other time series databases us-

ing LSM-trees. For instance, InfluxDB IOx [14] leverages LSM-trees

with Apache Parquet file format [15], which inherently supports

multi-column storage and bitmap management. It suggests that our

proposed MCC approach could also be effectively implemented in

similar structures and demonstrates its adaptability.

7.5 Variation of File Selection Goals
Different file selection algorithms have different goals for optimiza-

tion. For instance, selecting “oldest” files in a level [6, 22] tries to

improve the read performance. Selecting files with the highest num-

ber of updates [6] tries to reduce the space cost and in the meantime

improve the read performance. Round-robin strategy [19, 22] tries

to maintain a balance between different metrics, whereas MCC

takes both delays and updates into consideration. While SA is the

primary focus, we show that MCC can be extended and integrated

with other goals through the cost function.

Specifically, in addition to delays and updates, reducing tomb-

stones resulting from data deletes could also be an interesting goal.

Due to the out-of-place update principle of LSM-trees, a delete

operation inserts a tombstone to invalidate the stored data [37].

While this facilitates fast data deletion, it comes at the cost of high

SA. To explore the potential of enhancing MCC by incorporating

various objectives, we integrate tombstone density [1] within the
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MCC framework to further reduce space costs and enhance read

performance. Following Formula 2, we can define Δ𝐶 (𝐹 ) as:

Δ𝐶 (𝐹 ) =
∑︁
𝑓 ∈𝐹

𝐶 (𝑓 ) −𝐶 (𝐹 ) + 𝐷 (𝐹 ), (3)

where 𝐷 (𝐹 ) denotes the size of deleted data by tombstones. This

adaptation enables MCC to select files with higher 𝐷 (𝐹 ), leading
to lower SA after compaction.

We extend our experiments to validate the proposed approach

by incorporating data deletion into the workloads at varying rates.

The proposed MCC-D (i.e., MCC with deletion optimization) mod-

ifies the cost function of MCC to combine the goal of selecting

tombstones. Figure 12 presents the results. It can be observed from

Figure 12(a) that the space cost of all methods decreases as the

deletion rate increases. However, as shown in Figure 12(b), SA of

the baseline methods increases with varying deletion rates. This

rise is owing to the fact that not all the deleted data are immediately

removed but are marked with tombstones, thereby increasing SA.

The original MCC primarily considers data delays and updates, thus

leading to a slight increase in its SA as well. MCC-D, instead, shows

consistently lower SA with various deletion rates.

8 RELATED WORK
In this section, we review previous works on LSM-tree optimization

and LSM-tree compactions.

8.1 LSM-tree Stores and Optimization
LSM-trees [32] have been widely used in modern stores [36], such

as LevelDB [7], RocksDB [6], Apache IoTDB [4] and AsterixDB [17].

LSM-trees pioneer the storage engine for write-intensive scenarios,

employing immutable files for storage and proposing compaction

for better utilization of disk space. This makes LSM-trees adap-

tive and advanced in supporting different kinds of workloads and

databases, not only NoSQL [1, 2], but also relational [28, 31] and

time series databases [3, 40].

The increasing usage of LSM-trees also brings opportunities for

optimization. Large number of techniques have been studied to

optimize the performance of LSM-trees, ranging from improving

WA [33, 34], merge operations [39, 46], special workloads [35, 43]

and so on, according to the taxonomy in [30].

Among all the optimization techniques for special workloads,

LSM-trie [43] considers ultra-large key-value stores as well as high

WA, so that the storage of the metadata is also challenging. SlimDB

[35] focuses on semi-sorted data and proposes optimization for such

data to reduce WA. In this paper, we mainly focus on the workloads

of Apache IoTDB, i.e., the typical workloads in IoT applications.

The frequent out-of-order insertions and updates are the main

concerns. Our previous works aim to mitigate the impact of the

delayed issues in IoTDB, regarding data sorting [45] and WA [29],

while MCC focuses on reducing SA and also obtains performance

gains in both WA and lookup costs.

8.2 LSM-tree Compaction in Apache IoTDB
To manage disk space, LSM-trees employ compaction operations

to reorganize data. Compactions are fundamentally significant to

the performance of LSM-trees. Overall, the task of MCC belongs

to the Data Movement Policy in the LSM-tree compaction design

space discussed in [36]. Compared to the existing design space, this

is the first work to extend the background of the files into multi-

column storage, a structure supported by Apache IoTDB to reduce

space cost of multiple time series. IoTDB also leverages bitmaps

to manage null values in multi-column data. Regarding bitmaps,

our previous study [26] has improved the storage efficiency during

flushing stage. Nevertheless, the issue of the bitmap in compaction

stage motivates us to further devise MCC for IoTDB.

Existing studies optimize compactions in several aspects. Dosto-

evsky [23] proposes hybrid layouts to combine the advantages of

leveling and tiering. The skip-tree [44] proposes a skipping merging

idea for choosing files in higher levels. Dynamic Capacity Adapta-

tion [25] dynamically adjusts LSM-tree level size to reduce space-

amplification due to the existence of obsolete entries. However,

compaction of multi-column data is not researched. To this end,

MCC addresses the scenarios when multi-column data are sepa-

rately inserted or updated in Apache IoTDB. To the best of our

knowledge, this is the first work concerning compaction for multi-

column data. In addition, Dostoevsky [23] could be combined with

our proposal for file selection in the lower levels with tiering layout

in IoTDB. Spooky [24] and Dynamic Capacity Adaptation [25] also

accept tiering design and can be combined with MCC. PebblesDB

[34] leverages guards to split the keys, which might result in large

partitions in the worst cases.

9 CONCLUSION
LSM-trees are commonly employed in time series databases, and

compactions are fundamental operations of LSM-trees to reorga-

nize the files for high performance. Space amplification (SA) issues

are prevalent in LSM-trees. Even worse, the IoT applications make

the SA issues more severe in Apache IoTDB. In particular, the chal-

lenges of SA in IoTDB are unique owing to (1) multi-column storage

devised with bitmaps and (2) frequent out-of-order insertions and

updates in IoT applications. Regarding the duplicated keys, obsolete

values and overlapping bitmaps of multi-column data, we devise

Multi-Column Compaction (MCC) to reduce SA in Apache IoTDB.

We formalize the problem of multi-column compaction and prove

the hardness of the problem in Theorem 1. Selection strategy tai-

lored to multi-column storage is also proposed to solve the problem.

We then devise dedicated File Prefetcher and Compaction Cache to

reduce the computation cost and accelerate the decisions. Analysis

and experimental results in IoTDB validate the effectiveness of the

proposed MCC in reducing SA in IoTDB. Notably, we implement

the proposed MCC in RocksDB to show its applicability to other

LSM-tree implementations.
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