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ABSTRACT
Human mobility data offers valuable insights for many applica-

tions such as urban planning and pandemic response, but its use

also raises privacy concerns. In this paper, we introduce the Hi-

erarchical and Multi-Resolution Network (HRNet), a novel deep

generative model specifically designed to synthesize realistic hu-

man mobility data while guaranteeing differential privacy. We first

identify the key difficulties inherent in learning human mobility

data under differential privacy. In response to these challenges, HR-

Net integrates three components: a hierarchical location encoding

mechanism, multi-task learning across multiple resolutions, and pri-

vate pre-training. These elements collectively enhance the model’s

ability under the constraints of differential privacy. Through exten-

sive comparative experiments utilizing a real-world dataset, HRNet

demonstrates a marked improvement over existing methods in

balancing the utility-privacy trade-off.
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1 INTRODUCTION
In recent years, the use of human mobility data has gained signif-

icant attention for its potential to contribute to societal benefits,

such as traffic forecasting, urban planning, and pandemic response,

including COVID-19 spread analysis [9, 39, 59]. However, it also

raises critical privacy concerns even if the data are aggregated and

anonymized [49, 56].

*Work partially done while visiting Emory University.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 17, No. 11 ISSN 2150-8097.

doi:10.14778/3681954.3681983

Figure 1: HRNet utilizes three novel components to address
the bottlenecks of applying DP-SGD in human mobility gen-
eration: 1) a hierarchical location encodingmechanism using
deconvolution networks, 2) multi-task learning across multi-
ple resolutions, and 3) private pre-training using a DP coarse
transition matrix.

Differential Privacy (DP) [16] has emerged as the leading stan-

dard for maintaining data privacy. DP offers a strong, mathemat-

ically grounded privacy guarantee without relying on restrictive

assumptions about potential adversaries. The core principle of DP

is to ensure that output from the data analysis does not substan-

tially differ (bounded by a privacy parameter or privacy budget),

regardless of whether any specific individual’s data is included or

excluded from the dataset. The broad applicability and growing

adoption of DP in the real world [14, 19, 28, 54], as well as its en-

dorsement by the US Census Bureau [7], signify its importance and

effectiveness.

In this paper, we study the problem of DP data synthesis [6, 33,

65] for human mobility data. DP data synthesis generates synthetic

data that possesses statistical properties similar to the real data

while ensuring DP. According to the post-processing theorem of DP,

unlimited analysis can be performed on this synthetic data without

introducing further privacy concerns. Our goal is to synthesize

human mobility data, defined as a sequence of locations, to closely

resemble the real humanmobility data, which can be then used for a

variety of downstream tasks in previously mentioned applications.

Existing DP data synthesis methods for human mobility primar-

ily rely on DP-aware data structures, which can be categorized

into tree-based [8, 10, 24], Markov-based [23, 58], and clustering

approaches [27, 32, 41]. These methods generally employ general-

ization to reduce dimensionality and sensitivity, thereby balancing
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utility and privacy, but often at the cost of information loss. For

instance, clustering approaches only generate transitions between

𝑘 centroids by location generalization using clustering, leading to a

loss of precise transition information within the clusters. Moreover,

the state-of-the-art Markov-based method [58] does not account for

correlations beyond two-step intervals, and many methods over-

look auxiliary information such as time, which is crucial in human

movement. Tree-based methods aim to minimize such loss by con-

structing a data-dependent tree with a portion of the privacy budget.

However, such consumption leads to a lack of privacy budget during

the data generation phase, which results in diminished utility.

MTNet [60] is a deep learning approach designed for generating

short trips on road networks, such as taxi trips, while ensuring

DP. By utilizing meta-information from road networks, which is

not sensitive, MTNet adeptly manages the utility-privacy trade-off.

However, this approach imposes the inherent limitation of restrict-

ing mobility to road networks. Human mobility, in reality, is not

confined to such networks; it encompasses various modes includ-

ing subway travel and movement through non-road spaces like

parks. Additionally, even when focused on road networks, human

mobility often evolves into lengthy sequences of road segments, a

complexity that poses significant challenges under DP constraints.

Consequently, adapting MTNet for a broader spectrum of human

mobility appears to be an unpromising approach.

To the best of our knowledge, this is the first paper to adopt a

deep learning approach with DP for generating human mobility

which is not constrained to road networks. Recent advancements

have shown that deep learning approaches handling human mobil-

ity data outperform traditional models [43, 59]. There are several

generative models such as adversarial network (GAN) based mod-

els for generating realistic synthetic trajectories [21, 67]. However,

these models do not ensure formal privacy guarantee. Theoretically,

it is possible to ensure DP for any deep learning models by replac-

ing the optimization method with differentially private stochastic

gradient descent (DP-SGD) [1]. Unfortunately, simply adopting

DP-SGD on these generative models results in either poor utility

or infeasibly high privacy cost due to the large space domain and

complexity of the models. More concretely, we elaborate the two

primary challenges as follows.

(1) The number of model parameters: It has been demon-

strated [4, 5] that DP-SGD inevitably increases the lower

bound of empirical risk as the number of parameters in-

creases. In most models about human mobility (e.g., RNN

model [63] and attention model [62]), the number of model

parameters depends on the size of the space domain. If

we encode the space or Points of Interests (POIs) using

an encoding scheme such as embedding matrices or linear

embeddings, the number of model parameters is 𝑂 (𝑛POI)
where 𝑛POI denotes number of POIs, which can be signifi-

cantly large.

(2) Learning difficulty: the difficulty of learning human mo-

bility escalates with increasing 𝑛POI due to the increasing

number of labels for training. Therefore, a larger𝑛POI neces-

sitates larger models and longer training epochs to discern

subtle POI differences. This leads to decreased utility due

to the large number of parameters and higher consumption

of privacy budgets due to the composition theorem [30].

Contributions. In response to these challenges, we present the

Hierarchical and Multi-Resolution Network (HRNet), which encom-

passes a novel network structure and learning methodology. The

key features of HRNet, as illustrated in Figure 1, are threefold:

(1) Hierarchical location embedding: to alleviate the first

issue, HRNet adopts a hierarchical structure for location em-

bedding via transposed convolution. This approach signifi-

cantly reduces the number of parameters to 𝑂 (log(𝑛POI)),
thereby alleviating the decrease in utility commonly as-

sociated with traditional embedding methods that have

𝑂 (𝑛POI) parameters.

(2) Multi-task learning with multiple resolutions: to al-

leviate the second issue, we introduce multi-task learning.

Our hierarchical network design enables encoding of mul-

tiple resolutions. Beyond mastering the primary task, the

network concurrently engages in learning additional, less

complex tasks with coarser resolutions. This approach al-

lows for the intricate primary task to be deduced from

these simpler sub-tasks, thereby efficiently mitigating the

learning difficulties associated with a large number of POIs.

(3) Effective and private pre-training: to alleviate both is-

sues, we conduct private pre-training. The effectiveness of

pre-training in addressing the first issue of DP-SGD has

been underscored [3, 29]. Additionally, pre-training pro-

vides a ‘warm start’, effectively reducing the need for ex-

tensive training epochs, thus alleviating the second issue. A

common challenge with pre-training is its reliance on pub-

lic data, which may not always be readily available or suit-

able for all scenarios. HRNet enables efficient pre-training

without public data by leveraging a dense DP-compatible

transition matrix.

2 PRELIMINARIES
2.1 Differential Privacy
Differential Privacy (DP), as introduced by Dwork et al. [16], pro-

vides a robust mathematical framework for quantifying privacy

leakage in data publication scenarios. The formal definition of DP

is as follows:

Definition 2.1 ((𝜀, 𝛿)-Differential Privacy). Consider a dataset do-
main D and output domainZ. Given 𝜀 ∈ R+

and 𝛿 ∈ [0, 1], a ran-
domized mechanism𝑚, which randomly outputs𝑚(𝐷) ∈ Z with

input 𝐷 ∈ D, satisfies (𝜀, 𝛿)-DP if, for any two datasets 𝐷, 𝐷′ ∈ D
differing in at most one element, and for any subset of outputs

𝑍 ⊆ Z, the following inequality holds:

Pr[𝑚(𝐷) ∈ 𝑍 ] ≤ 𝑒𝜀 Pr[𝑚(𝐷′) ∈ 𝑍 ] + 𝛿.

DP-SGD:Differentially Private Stochastic Gradient Descent (DP-
SGD), as developed by Abadi et al. [1], adapts the conventional SGD

optimization process for deep learning models to satisfy DP. In tra-

ditional SGD, parameters of a model 𝜃 are iteratively updated to

minimize empirical risk, with gradient computations performed

using sampled data (minibatches). DP-SGD modifies this process

to ensure DP by introducing gradient clipping and noise addition
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steps. Specifically, the 𝑙2 norm of the gradient is first clipped to

limit sensitivity, followed by the addition of the Gaussian noise

to the averaged clipped gradients. The model parameters are then

updated using these randomized gradients, similar to conventional

SGD. This process continues until convergence is achieved or the

allocated privacy budget is depleted. From a DP perspective, this

process is interpreted as the sequential composition of the Gaussian

mechanism with subsampling (i.e., minibatch). Therefore, by em-

ploying composition techniques, the final published model satisfies

DP. We adopt numerical composition, which numerically computes

the upper bound of the privacy loss parameter 𝜀 using privacy

loss distributions [50]. Several studies enhance its computation

using techniques such as the Fast Fourier Transform [31] and the

"connect-the-dots" algorithm [15]. For implementation, we utilize

Google’s differential-privacy library
1
.

2.2 Problem Formulation
This study aims to generate synthetic human mobility data that

accurately mirrors actual human mobility (e.g., daily human mo-

bility such as home to workplace to home). Due to the inherently

continuous nature of human mobility in terms of both time and

geographical coordinates (latitude and longitude), this presents

significant challenges in direct modeling and evaluation. To ad-

dress this, we adopt a conventional approach of discretizing human

mobility data, thereby simplifying the modeling process. This sec-

tion first formulates discretized human mobility representation. It

then details the formulation of a generator for discretized human

mobility and outlines the evaluation methodology.

2.2.1 Trajectory: As a fundamental step, we define Points of Inter-

ests (POIs)
2
as uniformly distributed grid cells on a map, with each

grid cell assigned a unique integer ID. For instance, if a target map is

divided into a𝑤×𝑤 grid, the domain of POIs is defined as 𝐿 := [𝑤2],
where [𝑛] denotes the set (1, 2, . . . , 𝑛). That is, 𝑛POI = |𝐿 |. As il-
lustrated in Figure 1, different levels of discretization are possible,

such as 1×1, 2×2, and 4×4. A geographical location, defined by its

latitude and longitude, is transformed into an integer representing

the grid cell that encompasses the location. The mapping is per-

formed such that the grid cell located at (⌊𝑙/𝑤⌋, 𝑙%𝑤) is assigned
the integer 𝑙 ∈ 𝐿. We then represent a human mobility sequence

as a sequence of stay points, denoted as v = [𝑣1, 𝑣2, . . . ], where
𝑖 ∈ N, 𝑣𝑖 = (𝑙𝑖 , 𝑡𝑖 ), 𝑙𝑖 ∈ 𝐿. Note that this representation aligns POIs

that change from the previous POI so that 𝑙𝑖 ≠ 𝑙𝑖+1. Here, 𝑡𝑖 is the
index of the time slot that includes the corresponding time. Time

slots are made by discretizing entire time by 𝑛time, where 𝑛time is

the number of time slots. For example, 𝑣2 indicates the tuple of the

second POI visited and the time at which this POI was reached.

From this point forward, the term ‘trajectory’ will refer to this

discretized representation of human mobility.

2.2.2 Generator: In our study, we employ a neural network-based

generator, denoted as 𝐺𝜃 , to stochastically generate synthetic tra-

jectories. The process can be mathematically represented as v ∼ 𝐺𝜃 ,

1
https://github.com/google/differential-privacy (Accessed: July 14, 2024)

2
Here, the term ‘POI’ is not used in its original sense of indicating semantic locations.

However, our method can be applied in its original context as described in Section 3.2.2.

where v represents the generated synthetic trajectory, and 𝜃 sym-

bolizes the trainable parameters of the neural network. A detailed

example of such a generator, including its architecture and opera-

tional mechanics, will be discussed in Section 2.3.

2.2.3 Evaluation: Direct evaluation of the performance of 𝐺𝜃 is

intractable due to the inherent sparsity of trajectory data. To over-

come this, we adopt an indirect evaluation approach, focusing on

various statistical properties of trajectories. These statistical prop-

erties are computed from the dataset generated by𝐺𝜃 and are then

compared with empirical statistics derived from the provided tra-

jectory dataset 𝐷 . Key aspects of trajectory data that we examine

include waypoints, routes, destinations, transitions, and travel dis-

tances. By analyzing these specific statistics, we can gain insights

into the accuracy and fidelity of the trajectories generated by𝐺𝜃 .

The formal definitions and methodologies for computing these

statistics are detailed in Section 5.1. This approach enables a thor-

ough and nuanced evaluation of the generator’s performance in

replicating realistic human mobility patterns.

2.3 The Baseline Generator
This section delineates the architecture and operational mechanics

of the baseline generator used in our study.

2.3.1 The baseline generator. The baseline generator is structured
upon the chain rule of conditional probabilities:

𝐺𝜃 = Pr(v) =
|v |∏︂
𝑖=1

Pr(𝑣𝑖 |𝑣1, ..., 𝑣𝑖−1). (1)

This formulation allows the generator to sequentially construct

a trajectory from 𝑖 = 1 by modeling each conditional probabil-

ity Pr(𝑣𝑖 |𝑣1, . . . , 𝑣𝑖−1). To accomplish this, the generator integrates

three core components: embedding matrices for data points 𝑣𝑖 , a re-

current neural network (RNN) to process sequences, and a scoring

component to make a distribution.

Embedding Matrix: The embedding matrix translates each

data point 𝑣𝑖 = (𝑙𝑖 , 𝑡𝑖 ) to a vector representation. Two separate

embedding matrices are employed: one for the POI (𝑙𝑖 ) and another

for time (𝑡𝑖 ). The POI embedding matrix𝑀POI contains |𝐿 | trainable
vectors, whereas the time embedding matrix𝑀time includes 𝑛time

trainable vectors. The vector representation of 𝑣𝑖 is formed by

concatenating the 𝑡𝑖 th vector from the time embedding matrix with

the 𝑙𝑖 th vector from the POI embedding matrix:

encode(𝑣𝑖 ) = [𝑀time [𝑡𝑖 ], 𝑀POI [𝑙𝑖 ]] . (2)

Here,𝑀 [𝑖] represents the access to the vector of𝑀 at 𝑖th index and

[𝑎, 𝑏] represents the concatenation of vectors 𝑎 and 𝑏.

Recurrent Neural Network: For encoding trajectory prefixes

(𝑣1, . . . , 𝑣𝑖−1), we employ Gated Recurrent Units (GRUs) [12]. This

is because we have empirically found that GRU is slightly more

effective than alternative methods such as LSTM [25] and attention

mechanisms [57] in the context of DP-SGD. We attribute this to

the GRU’s simpler architecture and reduced parameters. The GRU

cell updates its state based on the previous state ℎ𝑖−1 and the en-

coded 𝑣𝑖−1: ℎ𝑖 = 𝑓GRU (ℎ𝑖−1, encode(𝑣𝑖−1)) . This process is applied
recursively to encode the entire trajectory prefix.

3060

https://github.com/google/differential-privacy


Scoring component: The scoring component is responsible for

converting the encoded prefix into the probability distribution over

[𝑛POI] × [𝑛time] for next predicted location. This conversion is ac-

complished using feed-forward neural networks 𝑔POI : R𝑛
hidden →

R |𝐿 |
and 𝑔time : R𝑛

hidden → R𝑛time
where 𝑛

hidden
is the dimensional-

ity of the hidden state ℎ𝑖 , followed by a softmax function to ensure

proper probabilistic normalization. The probability distribution

over spatial location 𝑙 ∈ 𝐿 given the hidden state ℎ𝑖 is computed

as Pr(𝑙 = 𝑙𝑖 |ℎ𝑖 ) = softmax(𝑔POI (ℎ𝑖 )) [𝑙𝑖 ] . Similarly, the probabil-

ity distribution over time 𝑡 ∈ [𝑛time] given ℎ𝑖 is determined by

Pr(𝑡 = 𝑡𝑖 |ℎ𝑖 ) = softmax(𝑔time (ℎ𝑖 )) [𝑡𝑖 ] . Ultimately, the conditional

probability Pr(𝑣𝑖 |𝑣1, . . . , 𝑣𝑖−1) given the previous observations is the
product of these two distributions, representing a joint probability

over POI and time: Pr(𝑣𝑖 |𝑣1, . . . , 𝑣𝑖−1) = Pr(𝑙 = 𝑙𝑖 |ℎ𝑖 ) Pr(𝑡 = 𝑡𝑖 |ℎ𝑖 ).

2.3.2 The objective function: To optimize the baseline generator,

given a training trajectory sequence v = (𝑣1, . . . , 𝑣𝑖 ), we employ

cross entropy loss as our objective function. The loss is calculated

as follows:

lossPOI + losstime =

|𝑣 |∑︂
𝑖=1

⎛⎜⎝
∑︂
𝑐∈𝐿

𝛿𝑐,𝑙𝑖 log(Pr(𝑙 = 𝑙𝑖 |ℎ𝑖 )) +
∑︂

𝑐∈[𝑛time ]
𝛿𝑐,𝑡𝑖 log(Pr(𝑡 = 𝑡𝑖 |ℎ𝑖 ))⎞⎟⎠ ,

where 𝛿𝑖, 𝑗 is the Kronecker delta.

2.3.3 The sequential generation: The trained generator is capable

of generating human mobility sequences by employing the chain

rule as delineated in Equation (1). Specifically, the process begins

with the initial POI. Subsequently, each following POI is recursively

sampled based on the conditional probability that is informed by

the previously sampled POIs. This procedure is iteratively executed

until a predefined condition, such as reaching a maximum sequence

length or a specific vocabulary signifies the end of the sequence.

2.4 The two bottlenecks
The baseline model discussed earlier shows a decrease in perfor-

mance when DP-SGD is applied, particularly as the number of POIs

increases. In this section, we identify and elaborate on the two

primary factors causing these performance bottlenecks.

2.4.1 The number of parameters |𝜃 |. Under the constraints of DP, it
is known that the lower bound of empirical risk of the private model

polynomially scales [4, 5] as the number of model parameters in-

creases. In the baseline model, the size of the parameters 𝜃 expands

linearly with increasing number of POIs (𝑛POI) due to the location

embedding matrix and the scoring component. Consequently, the

empirical risk would polynomially escalate as 𝑛POI increases, which

leads to worse utility of the generated human mobility.

2.4.2 The number of labels. With an increase in the number of

class labels (i.e., 𝑛POI), the model faces challenges in discerning

more subtle feature distinctions between classes (see Section 2.3.2).

This often necessitates the use of larger model architectures or

extended training epochs. However, such strategies are impractical

under DP-SGD constraints. In addition to the increased empirical

risk due to the increased model size as mentioned above, increasing

the number of training epochs results in greater privacy loss due to

the composition theorem of DP [30]. Therefore, learning difficulty

caused by the large number of labels is a bottleneck of DP-SGD.

2.4.3 Discussion: impact of the discretization parameter. In many

deep learning methods [35, 37, 58], as in this study, latitudes and

longitudes are discretized using a grid. However, determining the

parameters for this discretization (i.e.,𝑤 in this study) is not straight-

forward. This is because finer discretization makes the data more

sparse and increases the number of parameters required for the

network (location encoding). As discussed above, DP-SGD leads

to a decrease in accuracy in these cases. However, finer grids have

the advantage of capturing more detailed movements between grid

cells, improving the quality of the training data and potentially

increasing accuracy. Thus, there is a trade-off between the accuracy

improvement from higher-quality training data and the accuracy

decrease due to the noise required by DP. Therefore, mitigating the

two bottlenecks makes it less susceptible to the negative effects of

high-resolution discretization and thereby improves accuracy.

2.5 Transposed Convolution
In this section, we delve into the transposed convolutional opera-

tion, a key element of the main component in our proposed model.

Originating from the domain of computer vision [42], the trans-

posed convolution layer, also known as a deconvolution layer, is

typically employed to upsample or reconstruct the original images

from feature maps generated by convolutional layers. In contrast

to its conventional usage, our model uniquely incorporates the

specific instance of this layer, which we have termed the ‘2D quad

deconvolutional network’. This incorporation of the transposed

convolution layer is instrumental in addressing the two primary

bottlenecks identified earlier.

2D quad deconvolutional network. Consider the matrix 𝑀 with

shape (𝑤,𝑤,𝑛
dim

), where 𝑛
dim

denotes the number of channels,

and each channel comprises a𝑤×𝑤 square matrix. Similarly, let the

deconvolutional kernel be defined as a matrix of shape (2, 2, 𝑛
dim

),
containing 𝑛

dim
kernels, and each of these kernels is 2 × 2 matrix

denoted by kernel𝑘 . The 2D quad deconvolutional network expands

the matrix𝑀 to the matrix𝑀′
with dimensions (2𝑤, 2𝑤,𝑛

dim
) us-

ing a deconvolutional kernel. See Figure 1 for the running example.

In the second layer, the kernel slides over the input of (2 × 2)
matrix to perform the deconvolution operation for the four grids,

expanding a 2 × 2 matrix into a 4 × 4 matrix.

Let 𝑥 and𝑦 be integers, the transformation can bemathematically

represented as:

𝑀′ [2𝑥 + 𝛿𝑥 , 2𝑦 + 𝛿𝑦, 𝑘] =
𝑛
dim∑︂

𝑘 ′=1

kernel𝑘 [𝛿𝑥 , 𝛿𝑦, 𝑘′]𝑀 [𝑥,𝑦, 𝑘′],

where, 𝑘 ∈ [𝑛
dim

], 𝛿𝑥 and 𝛿𝑦 are binary values (0 or 1), and notation

𝑀 [𝑖, 𝑗, 𝑘] represents access to an element of the matrix 𝑀 with

the index (𝑖, 𝑗, 𝑘). This process effectively quadruples each 𝑛
dim

-

dimensional vector in the matrix. As a result, the original 𝑛
dim

-

dimensional vector 𝑀 [𝑥,𝑦] is expanded into four distinct 𝑛
dim

-

dimensional vectors:𝑀′ [2𝑥, 2𝑦],𝑀′ [2𝑥 +1, 2𝑦],𝑀′ [2𝑥, 2𝑦 +1], and
𝑀′ [2𝑥 + 1, 2𝑦 + 1]. Applying the 2D quad deconvolutional layer

𝑑 times multiplies the number of 𝑛
dim

-dimensional vectors by 4
𝑑
.
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When𝑤 is a power of 2, originating from a single 𝑛
dim

-dimensional

root vector 𝜃root, the final transformation of the network can be

represented as:

𝑀 = deconv
log

4
𝑤2

(𝜃root),
where deconv

𝑎
denotes the iterative application of the deconvolu-

tion operation 𝑎 times.

Figure 2: Overview of multi-task training with hierarchical
location encoding. In this example, we assume that𝑤 = 4, so
we have 4*4 POIs at resolution 2 and 2*2 regions at resolution
1 due to the hierarchical location encoding. Given prefix
(1, 2, 6), the model learns to infer grid cell 10 at resolution 2,
as well as grid cell 3 at resolution 1.

3 HRNET
In this section, we introduce the Hierarchical and Multi-Resolution

Network (HRNet). HRNet’s core novelty is the integration of a

hierarchical location encoding component, which supersedes the

traditional embedding matrix and scoring component. This design

reduces the number of parameters, effectively alleviating the first

bottleneck. Moreover, it facilitates multi-resolution interpretation,

enabling multi-task learning. This approach allows HRNet to pro-

cess and learn from data at multiple resolutions simultaneously,

adeptly handling the difficulty of learning at the finest resolution,

which alleviates the second bottleneck. Together, they contribute

to HRNet’s robustness to the number of POIs 𝑛POI when optimized

with DP-SGD.

We begin by outlining HRNet, using a simple example illustrated

in Figure 2. Subsequently, we delve into detailed explanations of

each component.

3.1 Overview
We provide the overview of multi-task training with hierarchical

location encoding of HRNet, illustrated in Figure 2. HRNet builds

upon the baseline model that models conditional probabilities. See

Section 2.3 for detail of the baseline model. Note that we simplify

our explanation, sidelining the training of time information which

is the same as the baseline, to emphasize the principal distinctions.

Consider a scenario depicted in Figure 2. The example involves

two resolutions, featuring 4 and 16 grid cells respectively, and

trajectory (1, 2, 6, 10) at resolution 2. In the learning phase for 𝑣 =

(1, 2, 6, 10), step 1 is learning 2 from prefix (1), step 2 is learning

6 from prefix (1, 2), and step 3 is learning 10 from prefix (1, 2, 6).
Consider step 3, HRNet operates as follows:

The hierarchical location encoding component encodes location

6. The GRU cell computesℎ3, embedding of the prefix (1, 2, 6), using

ℎ2 and the encoded vector of 6. ℎ3 forms a query vector with the

feed-forward neural networks for subsequent steps. Unlike the

baseline model that focuses exclusively on resolution 2, HRNet

concurrently considers resolution 1, that is, learning 3 at resolution

1 from (1, 2, 6). For each resolution, the model encodes all grid cells

and convert them to key vectors with feed forward neural networks.

It then calculates scores for the next location given the prefix (1, 2, 6)
by performing a dot product with the query vector. This operation

generates a probability distribution for each resolution (i.e., over

[4] and [16]), using the softmax function. The model computes the

cross-entropy loss based on this probability distribution and the

actual value, i.e., 3 at resolution 1, and 10 at resolution 2. Finally,

the model calculates the gradients of the parameters 𝜃 from the

summed cross-entropy losses. It then employs DP-SGD for model

update.

3.2 Hierarchical Location Encoding
HRNet introduces a novel approach in its location encoding mech-

anism, which has smaller number of parameters than the baseline

model. The key feature is the employment of a hierarchical network

structure with 2D quad deconvolutional network.

3.2.1 The structure. The core of HRNet’s location encoding is a

trainable root vector, denoted as 𝜃root. This root vector is aug-

mented with a 2D quad deconvolutional network comprising of 𝑑

layers. The process involves the application of this 2D quad decon-

volutional network to 𝜃root, producing 4
𝑑
distinct vectors. Essen-

tially, this operation results in an embedding matrix of dimensions

(2𝑑 , 2𝑑 , 𝑛
dim

):𝑀𝑑 = deconv
𝑑 (𝜃root). For a detailed explanation of

the deconv operation, refer to Section 2.5. Notably, the number

of parameters in each deconvolutional layer only depends on the

kernel size and is independent of 𝑛POI, sustaining a constant num-

ber of parameters. Consequently, this architecture requires only

𝑂 (𝑑) = 𝑂 (log𝑛POI) parameters to generate 𝑛POI vectors, which is a

significant reduction compared to the𝑂 (𝑛POI) parameters typically

needed in embedding matrix.

3.2.2 Vector assignment. The assignment of the 4
𝑑
vectors gener-

ated by the hierarchical location encoding component to the 𝑛POI
POIs follows a specific methodology. Given that the grid size,𝑤 ∗𝑤 ,

is a power of 4, we set 𝑑 = log
4
(𝑤 ∗𝑤). This approach facilitates

an alignment of vectors with the grid, described as:

hiencode(𝑙) = 𝑀𝑑 [⌊𝑙/𝑤⌋, 𝑙%𝑤],

where 𝑙 ∈ 𝐿. This assignment method naturally incorporates the

first law of geography [55], suggesting that geographically proxi-

mate locations have similar embeddings. This proximity principle

is a direct result of the deconvolutional operation, where a single

parent vector generates four adjacent embeddings.

Scattered POI assignment. The above assignment assumed that

POIs are the grid cells according to a uniform grid as described

in Section 2.2.1 for simplicity. Note that this grid assumption is

not necessary and HRNet can work with scattered POIs as long

as the number of POIs is equal to or less than 4
𝑑
. As mentioned

above, we should follow the first law of geography rather than

randomly assigning vectors to the scattered POIs. Thus, we propose

amethod for assigning scattered POIs to vectors in𝑀𝑑 following the
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proximity principle. First, we create a grid that covers all scattered

POIs. Here, we set the minimum 𝑑 so that the number of POIs

is less than 4
𝑑
, and 𝑤 = 2

𝑑
. Then, we compute the coordinates

of the center of each grid cell (cell𝑗 ) and assign each POI (POI𝑖 )

to a unique cell so that the Euclidean distance 𝑑 (POI𝑖 , cell𝑗 ) is as
small as possible. This assignment can be formalized as a linear

assignment problem with a cost matrix 𝐶 , where

𝐶 = {𝑑 (POI𝑖 , cell𝑗 )}𝑖∈[𝑛POI ], 𝑗∈[4𝑑 ] .

This optimization can be solved using the Jonker-Volgenant algo-

rithm [13]. Once each POI is assigned to a unique grid cell, we can

use the vector assignment method described above. Since POIs are

aligned based on geographical proximity, this embedding also in-

corporates the proximity principle of the deconvolutional network.

3.3 Scoring
HRNet employs an efficient scoring mechanism that combines the

hierarchical location encoding with dot product operations to es-

tablish a probability distribution over POIs.

Formulation of the Scoring Process. In this process, the encoded

prefix sequence (𝑣1, . . . , 𝑣𝑖−1), represented by ℎ𝑖−1, is transformed

into a query vector. This transformation is executed using a feed-

forward neural network, denoted as 𝑓query. Concurrently, the en-

coded POI, hiencode(𝑙), is processed into a key vector through

another feed-forward neural network, named 𝑓
key

. Mathemati-

cally, this can be represented as query = 𝑓query (ℎ𝑖 ) and key𝑙 =

𝑓
key

(hiencode(𝑙)). Following these transformations, the score of 𝑙

as 𝑣𝑖 is determined by computing the dot product between the query

and the key vector score𝑙 = query · key𝑙 . The final step involves

applying the softmax function to these scores across all POIs, result-

ing in a probability distribution over POIs: Pr(𝑣𝑖 = 𝑙𝑖 |𝑣1, . . . , 𝑣𝑖−1) =
softmax(score𝐿) [𝑙𝑖 ], where score𝐿 = (score1, . . . , score |𝐿 | ).

3.4 Multi-resolution Learning
In this section, we address the challenge of learning difficulty associ-

ated with a large number of labels by redefining the objective func-

tion in HRNet. The solution lies in employing a multi-resolution

interpretation, facilitated by the hierarchical location encoding

component. The essence of our approach is to extend beyond the

original task by incorporating multiple tasks across various resolu-

tions. This multi-resolution strategy entails not only focusing on

the primary task at hand but also simultaneously considering tasks

at coarser resolutions, which are easier than the primary task. By

doing so, the model gains a broader understanding of the data from

the coarser resolutions, allowing it to better manage the complexity

that comes with a large label space even in the noise of DP.

3.4.1 Multi-resolution Interpretation. Here, we maintain the as-

sumption that the number of grid cells, denoted as𝑤 ×𝑤 , is a power

of 4, with 𝑤 = 2
𝑑
. This forms the basis for our multi-resolution

interpretation, which extends beyond the primary grid division of

2
𝑑 × 2

𝑑
(as described in Section 2.2).

We consider grid divisions of 2
𝑖res × 2

𝑖res
at each resolution level

𝑖res ∈ {1, 2, . . . , 𝑑 − 1}. Here, the 𝑖resth resolution includes 𝐿𝑖res grid

cells, represented as: 𝑖res ∈ [𝑑], 𝐿𝑖res := [4𝑖res ] . The matrix 𝑀𝑖res

(refer to Section 3.2.1) encodes these grid cells by applying the

vector assignment in Section 3.2.2. The encoding for grid cell 𝑙 at

resolution 𝑖res is thus:

hiencode𝑖res (𝑙) = 𝑀𝑖res [⌊𝑙/2𝑖res⌋, 𝑙%2𝑖res ],
where 𝑙 ∈ 𝐿𝑖res . This encoding is then fed into the scoring compo-

nent to generate a probability distribution over the grid cells at

resolution 𝑖res:

Pr(𝑙𝑖res = 𝑙 |𝑣1, . . . , 𝑣𝑖−1) = softmax(score𝐿𝑖res ) [𝑙],
where 𝑙 ∈ 𝐿𝑖res and score𝐿𝑖res

= (score1, . . . , score |𝐿𝑖res | ). Note that
we use the query vector that is computed by GRU, which is common

in all the resolutions.

3.4.2 The Objective Function. Our novel training strategy lever-

ages the multi-resolution interpretation, incorporating multiple

tasks across different resolutions. For a given grid cell 𝑦 in 𝐿𝑑 (the

POI at the primary task level), the goal is to learn this grid cell and si-

multaneously learn its corresponding grid cells at lower resolutions

𝑖res, where 𝑖res < 𝑑 . That is, this approach introduces additional

𝑑 − 1 tasks into our training.

Each task at resolution 𝑖res comes with its own loss function:

loss𝑖res =
∑︂

𝑙∈𝐿𝑖res

𝛿𝑙,up𝑖res (𝑦) log(Pr(𝑙𝑖res = 𝑙 |𝑣1, . . . , 𝑣𝑖−1)),

where up𝑖res
(𝑦) ∈ 𝐿𝑖res is the grid cell covering 𝑦 at resolution

𝑖res. Pr(𝑙𝑖res = 𝑙 |𝑣1, . . . , 𝑣𝑖−1) represents the inferred probability of

the next grid cell being 𝑙 at resolution 𝑖res. These losses for all

resolutions are then summed up, and this sum is used to compute

the gradient for backward propagation.

Optimizing these loss functions facilitates the determination

of the probability distribution for the next grid cell not only at

the primary resolution 𝑑 but also at each additional resolution 𝑖res.

Moreover, the tasks defined at smaller 𝑖res are inherently simpler

due to the reduced number of labels |𝐿𝑖res |. Inferring finer cells from
well-trained coarser resolution due to the simplicity, guided by the

first law of geography, assists in mitigating the learning difficulty

associated with the primary task.

4 PRIVATE PRE-TRAINING
Pre-training using publicly available data has been recognized as an

effective strategy to mitigate the limitations of DP-SGD [3]. How-

ever, the reliance on publicly accessible data is often a significant

constraint, as such data may not always be available. To address

this challenge, we introduce a novel private pre-training method-

ology that utilizes a DP compliant transition matrix, eliminating

the need for public data. This private pre-training strategy not only

provides a ‘warm start’ to accelerate the model’s convergence but

also enhances the model’s capability to reduce empirical risk.

4.1 DP Transition Matrix
In our approach, we utilize a first-order transition matrix as ground

truth for pre-training. The core task in this context is to predict

the distribution of the next POI from a given POI. However, when

dealing with a large number of POIs 𝑛POI, a direct POI-to-POI first-

order transition matrix becomes excessively sparse. To avoid this

issue, we leverage the multi-resolution interpretation of HRNet.

Instead of a direct POI-to-POI transition, we consider transitions
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from a broader region, specifically a grid cell at a coarser resolution

𝑙𝑖res ∈ 𝐿𝑖res , to a POI 𝑙 ∈ 𝐿𝑑 .

TRAN𝑖res [𝑙𝑖res , 𝑙] =
∑︂
v∈𝐷

1𝑉𝑙𝑖res ,𝑙 (v)/|v|, (3)

where 1 is an indicator function and 𝑉𝑙𝑖res ,𝑙 is a subset of trajectory

universeV , which includes trajectories that have transition from

𝑙𝑖res to 𝑙 :𝑉𝑙𝑖res ,𝑙 := {v ∈ V|∃𝑖, up𝑖res (v[𝑖]) = 𝑙𝑖res & v[𝑖+1] = 𝑙}. Note
that this calculation normalizes the count with the sequence length

|v|, to limit sensitivity to 1 for DP. To ensure DP, we introduce

Laplace noise into the matrix as follows:

DPTRAN𝑖res [𝑙𝑖res , 𝑙] = TRANires
[𝑙𝑖res , 𝑙] + Laplace(𝜀), (4)

where Laplace(𝜀) is a Laplace noise that leads to 𝜀-DP when sensi-

tivity is 1. This approach results in a denser transition matrix, hence

more informative and less noisy, which is useful in pre-training.

Figure 1 left side shows a sample of such coarse transition matrix.

4.2 Pre-training
This section outlines the pre-training methodology using the DP

transitionmatrix. During this phase, the core objective is to generate

a probability distribution depicting the likelihood of transitions

from a given region (a grid cell at resolution 𝑖res) to the POIs. It is

important to note that while both the hierarchical location encoding

component and its scoring component undergo pre-training, the

prefix encoding component (GRU) (see Figure 2) does not since the

DP transition matrix does not contain prefix information.

4.2.1 The Architecture. The architecture for the pre-training phase
incorporates a temporary substitute for GRU, necessitated by the

absence of prefix information in the DP transition matrix. This

temporary component is designed to mimic the function of the

GRU, generating a query vector with dimensions identical to those

of an encoded prefix. Conceptually, this query vector symbolizes

the initial grid of the transition, as represented by the following

equation:

ℎ = temp(𝑥), (5)

where 𝑥 is the input vector that represents the given region, with

further details provided in the following section. Notably, this tem-

porary component is exclusive to the pre-training phase and is

replaced with GRU during model training.

Aside from thismodification, the architecture during pre-training

remains consistent with the HRNet model. The scoring component

processes the vector ℎ output by the temporary component, in tan-

dem with POI encodings obtained from the hierarchical encoding

component. The query vector is computed as query = 𝑓query (ℎ),
and the key vector for a potential POI 𝑙 is computed as key𝑙 =

𝑓
key

(hiencode𝑑 (𝑙)). The score for POI 𝑙 is then calculated using a

dot product score𝑙 = query ·key𝑙 . The application of a softmax func-

tion to these computed scores results in a probability distribution

over 𝐿.

4.2.2 The Objective Function. To enhance learning, we propose

a data augmentation approach to augment the transition matrix,

achieved through proportional blending of regions (grid cells at reso-

lution 𝑖res). Amixing ratio vector is defined as: r = (𝑟1, . . . , 𝑟 |𝐿𝑖res | ) ∈
[0, 1] |𝐿𝑖res | , subject to the constraint

∑︁ |𝐿𝑖res |
𝑖=1

𝑟𝑖 = 1. Here, each 𝑟𝑖

denotes the proportion of region 𝑖 in the initial state, forming a

prior distribution as a multinomial distribution with probabilities r.
Then, the ground truth probability distribution given r is calculated
as:

Pr(𝑙next |r) =
∑︂

𝑙∈𝐿𝑖res

Mult(𝑙
initial

= 𝑙 |r) Pr(𝑙next |𝑙initial = 𝑙),

whereMult(·|r) is the multinomial distribution with probabilities

(𝑟1, . . . , 𝑟 |𝐿𝑖res | ) and Pr(𝑙next |𝑙initial = 𝑙) = DPTRAN𝑖res [𝑙]. This
essentially models the probability distribution for the next POI,

given a stay at 𝑙
initial

with the probability Pr(𝑙
initial

|r). The mix-

ing ratio is generated by sampling from a Dirichlet distribution

r ∼ Dirichlet(a), where a = (1, 1, . . . , 1) and |a| = |𝐿𝑖res |. Note
that the augmented transition matrix is still DP due to the post

processing property.

For the model derived probability distribution, we incorporate

the mixing ratio r into the location encoding as follows:

𝑥 =
∑︂

𝑙∈𝐿𝑖res

Mult(𝑙
initial

= 𝑙 |r)hiencode𝑖res (𝑙) .

This is the weighted sum of the encoding of region 𝑙 ∈ 𝐿𝑖res with

ratio r. Then, we use the mixed encoding 𝑥 as input to the temporal

component (i.e., Equation (5)) to derive the key vector and then the

output distribution. Finally, the loss is

loss = KL(Pr(𝑙next |r) | |�̂� |r), (6)

where �̂� |r is the output distribution derived from the key vector.

With this objective function, our model not only learns the proba-

bility distributions of DPTRAN but also learns from a continuous

representation among these probability distributions.

4.2.3 Discussion. In summary, HRNet is pretrained using DPTRAN

(Equation 4) based on the KL loss (Equation 6). Here, we further

explain the rationale behind this choice from two perspectives:

Warm Start. One challenge of DP-SGD is that it requires many

iterations due to starting from a cold state. A warm start helps

to mitigate this issue [3], and we anticipate this benefit in our

approach. This is because when the KL loss during pre-training is

optimized, it also helps to optimize the cross-entropy loss during

main training due to the multi-task learning. It is important to

note that optimizing cross-entropy loss is essentially the same as

optimizing KL loss. Although marginalization to generate DPTRAN

means the KL loss is not exactly the original cross-entropy loss, we

expect it to be similar enough to provide a warm start.

Differential Privacy Efficiency. There are several alternatives for
pretraining beyond the first-order transition matrix DPTRAN, such

as second-order transitions and transitions that include time infor-

mation. Additionally, we could use a sophisticated and nonuniform

grid based on density, similar to privtree [66], for the initial grid

of DPTRAN. As shown by Zhou et al. [70], using public data to

find the gradient subspace addresses the issue of a large number of

parameters and improves noise stability. Therefore, a more precise

DPTRAN as mentioned above could potentially enhance the main

training results. However, these methods typically require addi-

tional privacy budget. From our experience, we found that using

first-order transition and a fixed resolution (𝑖res = 2) is more benefi-

cial than these complex methods. First-order transitions are denser
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than second-order transitions and those with time information,

making the perturbed information more useful for pre-training. A

fixed resolution allows us to allocate a larger portion of the pri-

vacy budget to perturb the transition matrix, which provides better

information for pre-training. Moreover, a fixed resolution enables

algorithmic privacy budget allocation (see Section 4.3.1) without

seeing raw data.

Although the selection of first-order transition and (𝑖res = 2)

was heuristically made based on the principles mentioned above,

it is not theoretically clear why this approach is effective. Under-

standing what type of information or loss contributes to the main

task is challenging, and we believe this study provides some in-

sights. Investigating the types of information that are beneficial for

pre-training is an interesting direction for future research.

4.3 Privacy Analysis of HRNet with
Pre-training

We analyze the privacy guarantees of HRNet when pre-trained

using the DP transition matrix.

Theorem 4.1. Given a dataset 𝐷 , privacy parameters 𝜀1, 𝜀2 ∈ R+

and 𝛿 ∈ [0, 1], and initial parameters of HRNet 𝜃 , the pre-training
and training process for HRNet is as follows:

𝜃 ′ = pretrain(𝜃, dptran(𝐷, 𝜀2)) . (7)

𝜃 ′′ = DPSGD(𝐷, 𝜃 ′, 𝜀1, 𝛿). (8)

Here, dptran(𝐷, 𝜀2) refers to the computation of Equation (4) and
pretrain is the standard training with loss function (6). DPSGD is the
private training algorithm described in Section 2.1, utilizing the allo-
cated privacy parameters (𝜀1, 𝛿), and initial parameter 𝜃 ′. Deriving
the trained parameters for HRNet (i.e., 𝜃 ′′) satisfies (𝜀1 + 𝜀2, 𝛿)-DP.

Proof. We can see that the entire computation is the sequential

composition of Equation (7) and Equation (8). For Equation (7) (i.e.,

the pre-training phase), the raw data 𝐷 is employed solely for gen-

erating DPTRAN (i.e., Equation (4)). The application of the Laplace

mechanism, which is known to satisfy 𝜀2-DP [17], ensures that

the pre-training phase is 𝜀2-DP. According to the post-processing

theorem [18], computing 𝜃 ′ satisfies 𝜀2-DP since it does not further

utilize𝐷 . For Equation (8) (i.e., the training phase), the raw data𝐷 is

used for DPSGD and DPSGD satisfies (𝜀1, 𝛿)-DP (see Section 2.1 for

detail). By applying the composition theorem of DP [18], deriving

𝜃 ′′ satisfies (𝜀1 + 𝜀2, 𝛿)-DP. □

4.3.1 Privacy Budget Allocation. Based on the analysis above, we

have demonstrated that HRNet with pre-training satisfies (𝜀1+𝜀2, 𝛿)-
DP. A critical challenge arises in optimally allocating the given

privacy budget 𝜀 between 𝜀1 and 𝜀2 due to the difficulty in hyperpa-

rameter selection, such as cross-validation, under the DP constraint.

An excessive allocation to 𝜀2 (thus reducing 𝜀1) may lead to pre-

mature depletion of the privacy budget for DP-SGD during model

training, potentially hindering the model’s convergence and impair-

ing its final performance. Conversely, a small 𝜀2 risks yielding an

insufficient pre-trained model, thereby diminishing its effectiveness

in supporting DP-SGD. Striking a balance in privacy budget distri-

bution is therefore crucial for enhancing the overall performance of

the model. This section proposes a heuristic solution to this budget

allocation challenge.

Solution. Assume that we use the 𝑖resth resolution for the ini-

tial region of the DP transition matrix. We propose the following

allocation formula:

𝜀2 = min

(︃
𝑐𝑤2

4
𝑖res

log(𝑤)
|𝐷 | , 𝜀

)︃
, 𝜀1 = 𝜀 − 𝜀2 . (9)

This solution is derived (see Appendix in the full version [53]) in

order to maintain a constant signal-to-noise ratio (SNR) in the DP

transition matrix, based on the dataset’s meta-information (the

number of records |𝐷 | and the parameter that decides the number

of grid cells𝑤 ) which is not sensitive, thus publicly available. Our

aim is to consistently ensure a minimum quality of the DP transition

matrix for effective pre-training.

5 EXPERIMENTS
Our experiments aim to evaluate the efficacy of HRNet in generating

human mobility data under DP constraints. We first compare the

privacy-utility trade-off of our approach with existing state-of-the-

art methods. Additionally, we conduct an ablation study to assess

the impact of our novel components: hierarchical location encoding,

multi-task learning, and private pre-training.

5.1 Setup
5.1.1 datasets: We utilize five datasets, broadly classified into three

categories: human mobility, taxi trajectory (road network), and

synthetic data. Human mobility encompasses a wide range of unre-

stricted mobility patterns, while road network data is constrained

by road networks. The datasets employed are Geolife [69] (human

mobility), Peopleflow
3
(human mobility), Didi in Chengdu [60] (taxi

trajectory), and two synthetic datasets. The synthetic datasets are

used in the ablation study and discussed in detail in Section 5.4. We

use randomly sampled 10, 000 trajectories from each dataset as the

training dataset. See details of the datasets in Appendix in the full

version [53].

5.1.2 Preprocessing: In the preprocessing phase, our approach cen-

ters on the concept of stay points, as defined by Li et al. [34]. A

stay point is identified when an individual remains within a radius

of 𝑚 meters for a duration exceeding 𝑡 minutes. To prepare our

dataset, we first process each trajectory to identify these stay points.

The identified stay points are then regarded as critical waypoints,

representing significant stops or areas of interest in the movement

patterns of individuals. By focusing on these waypoints, we can

distill the essence of each trajectory, thereby capturing the most

relevant and informative aspects of human mobility. Note that our

preprocessing inevitably leads to a loss of detailed information,

such as minor route variations and brief stops.

5.1.3 Competitors. We compare our method with a baseline and

three state-of-the-art methods in distinct categories as outlined in

Introduction:

• Baseline: implements the generator as described in Sec-

tion 2.3 with DP-SGD.

3
http://pflow.csis.u-tokyo.ac.jp/home/
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• PrivTrace [58]: a state-of-the-art Markov-based approach

leveraging Markov models for mobility data analysis.

• Clustering [41]: a generative method with mobility data

clustering using 𝑘-means.

• MTNet [60]: a deep learning method specifically tailored

for road network data.

We excluded tree-based methods such as DPT [24] from our

comparison. This decision was based on reports [41, 58] from the

aforementioned studies, which indicated superior performance of

the Markov and the clustering-based methods over tree-based ap-

proaches. For our implementation, we relied on publicly available

open-source codes for PrivTrace and MTNet.

5.1.4 Evaluation metrics: To compare the quality of generated mo-

bility data, we evaluate the discrepancies between generated and

original stay-point trajectories (denoted as v) across various met-

rics. We employ the Jensen-Shannon (JS) divergence and average

relative error (ARE) for measuring discrepancy (both the lower

the better), with details provided in the Appendix in the full ver-

sion [53]. The key metrics considered are as follows which are

all probability distributions. Waypoint captures which waypoints

are traversed given a starting point. Destination captures which

location serves as the final destination given a starting point. Tran-
sition captures where the trajectory moves next from a starting

point. Travel distance represents the total length of a trajectory.

Diametermeasures themaximum distance between any two points

along a trajectory. Route captures the route taken from a starting

point. Density at 𝑡 is the probability of a trajectory being at a

specific location at time 𝑡 . Trajectory density is the probability of

a trajectory passing through a specific area. Trajectory pattern
captures the most frequent transition patterns.

5.2 Comparison with Baseline, PrivTrace, and
Clustering

In this section, we present a comparative evaluation of HRNet

against existing approaches for human mobility not constrained

by road networks. The competitors in this analysis include the

Baseline, PrivTrace, and Clustering methods. The used datasets are

the Geolife dataset and the Peopleflow dataset.

5.2.1 Main result. Table 1 showcases the main result, where we

assess the discrepancy across four metrics with a fixed privacy bud-

get (𝜀 = 2). Notably, our proposed method demonstrates significant

superiority across all metrics compared to the other approaches.

The statistical-based methods, such as Clustering and PrivTrace,

inherently struggle with a high signal-to-noise ratio due to the need

to add noise to sparse data. Conversely, deep learning methods have

the potential to uncover hidden characteristics of POIs, moving

beyond mere sparse information. The Baseline method experiences

a decrease in utility, largely due to its incompatibility with DP-

SGD, as it still relies on learning sparse information through an

embedding matrix. Our approach, incorporating a deconvolutional

network, multi-task training, and private pre-training, effectively

learns dense, hidden characteristics in a manner that harmonizes

with DP-SGD.

5.2.2 Utility-privacy trade-off. This subsection delves into the utility-
privacy trade-off of HRNet in comparison to other competitors,

achieved by varying the privacy budget. The results depicted in

Figures 3 and 4 illustrate this analysis. It is observed that at lower

privacy budgets (e.g., 𝜀 < 1), PrivTrace and clustering sometimes

exhibit better performance. This is attributed to their direct compu-

tation of transitions.

In contrast, deep learning methods generally require extensive

training epochs to learn the hidden features of human mobility.

However, our method enhances the learning process through pre-

training and multi-task learning, effectively reducing the need for

a larger privacy budget, unlike the baseline method. Furthermore,

as epsilon increases, deep learning approaches increasingly outper-

form their counterparts. This advantage stems from their direct

learning of raw data, avoiding the utility loss associated with sensi-

tivity bounding, a common issue in statistical-based methods like

clustering and PrivTrace.

5.3 Comparison with MTNet
MTNet [60] represents a leading deep learning methodology de-

signed specifically for generating short trips within road networks.

The architecture of MTNet necessitates that trajectories be confined

to connected road networks. This requirement is incompatible with

datasets like Geolife and Peopleflow, which encompass mobility

patterns extending beyond road networks, including activities like

train travel or park traversing. Hence, for a comparative analysis

with MTNet, we utilize the Didi dataset.

Our results, as illustrated in Figures 5 and 6, focus on evaluat-

ing destination and route discrepancies. For both metrics, MTNet

initially exhibits superior performance, primarily because it gener-

ates trajectories using road network metadata. However, as epsilon

increases, our method demonstrates improved results. This discrep-

ancy arises from the differing objectives of the training targets. Our

method is tailored to learn semantically significant next waypoints.

Conversely, MTNet is designed to directly learn the next road seg-

ment. As a result, MTNet is required to learn a longer sequence

which is difficult to learn under DP constraints. Hence, our method

has better convergence in the case where DP-SGD is applied.

5.4 Ablation study
In this section, we conduct an ablation study to elucidate the individ-

ual contributions of the key components of HRNet: the hierarchical

location encoding via deconvolutional network, multi-resolution

multi-task learning, and private pre-training. Our analysis begins

with the Geolife dataset, followed by an examination using syn-

thetic datasets, each with distinct characteristics.

RandomDataset:The Random dataset comprises of trajectories,

each with a fixed length 2. The initial and second locations in these

trajectories are randomly selected from all POIs, forming a total

of 10, 000 trajectories. This dataset is characterized by completely

random empirical transition distributions, effectively disregarding

the first law of geography.

Straight Dataset: Each trajectory in the Straight dataset is of

fixed length 3. The first location is chosen from even columns on

a grid (i.e., 𝐿1 = {𝑙 ∈ [𝑤 ∗ 𝑤] | ⌊𝑙/𝑤⌋/2 = 0}). Subsequently, the
second and third locations are determined as the next two rows

above in the same column (𝑙2 = 𝑙1 +𝑤 and 𝑙3 = 𝑙2 +𝑤 ). This study

creates 10, 000 trajectories.
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Table 1: The discrepancy of the generated dataset to the real dataset (Geolife / Peopleflow) with𝑤 = 32 when 𝜀 = 2 and 𝛿 = 10
−5.

JS Divergence ↓ ARE ↓
waypoint destination transition travel distance diameter density_t traj density traj pattern

Clutering 9.92 / 12.9 0.438 / 0.650 0.422 / 0.542 0.0227 / 0.154 0.0921 / 0.133 0.123 / 0.0813 0.233 / 0.852 0.701 / 0.772

PrivTrace 12.6 / 11.0 0.274 / 0.649 0.245 / 0.431 0.0476 / 0.0181 0.0712 / 0.0531 - 0.212 / 0.835 0.712 / 0.781

Baseline 6.68 / 10.1 0.397 / 0.670 0.397 / 0.486 0.0275 / 0.151 0.0932 / 0.303 0.115 / 0.0512 0.382 / 0.811 0.771 / 0.912

HRNet 5.67 / 6.17 0.192 / 0.586 0.212 / 0.309 0.00871 / 0.0569 0.0681 / 0.183 0.0523 / 0.0425 0.184 / 0.562 0.671 / 0.743

Figure 3: The discrepancy of
destination on Peopleflow
dataset (𝑤 = 64) for each 𝜀 ∈
[0, 3.0].

Figure 4: The discrepancy of
transition on Geolife dataset
(𝑤 = 32) for each 𝜀 ∈ [0, 3.0].

Figure 5: The discrepancy of
destination on Didi dataset
(𝑤 = 32) for each 𝜀 and 𝛿 =

10
−5.

Figure 6: The discrepancy of
route onDidi dataset (𝑤 = 32)
for each 𝜀 and 𝛿 = 10

−5.

The ablation study is structured around six configurations, com-

bining the elements of deconvolutional network, multi-task train-

ing, and private pre-training:

• Baseline: baseline generator with DP-SGD.

• Pre-training: baseline + private pre-training (Section 4).

Unlike our complete model, the location encoding compo-

nent is not pre-trained here due to the absence of coarse

region embeddings.

• Deconvolutional Network: the location encoding com-

ponent of the baseline is replaced with a 2D quad deconvo-

lutional network.

• Deconvolutional Network + Pre-training: this com-

bines private pre-training with the deconvolutional net-

work setup.

• Deconvolutional Network + Multi-task Training: this
integrates multi-task training (Section 3.4) with the decon-

volutional network framework.

• Deconvolutional Network +Multi-task Training + Pre-
training (HRNet): the complete solution.

Through this study, we aim to isolate and understand the contri-

bution of each component to the overall efficacy of our method in

capturing and replicating human mobility patterns.

5.4.1 Real data. The evaluation on the Geolife dataset with a grid

size of 𝑤 = 64 is depicted in Figure 7. The results indicate that

the incorporation of each component – the deconvolutional net-

work, multi-task learning, and pre-training – not only enhances

the accuracy in terms of discrepancy reduction but also accelerates

convergence.

The deconvolutional network, in particular, contributes to im-

provement of discrepancy by offering an efficient parameterization.

Its architecture supports the integration of multi-task learning and

Figure 7: The discrep-
ancy of transition on
Geolife (𝑤 = 64). 𝑝, 𝑑 , and
𝑚 represent pre-raining,
deconvolutional network,
and multi-task learning,
respectively.

Figure 8: The discrepancy
of transition on Random
dataset (𝑤 = 32). 𝑑 , 𝑚,
and 𝑝 mean deconvolutional
network, multi-task learn-
ing, and pre-training, respec-
tively.

Table 2: The number of parameters with varying grid size𝑤 .

𝑤 = 8 𝑤 = 16 𝑤 = 32 𝑤 = 64

baseline 14, 054 26, 534 76, 454 276, 134

ours 24, 710 28, 934 41, 606 47, 942

pre-training while providing benefits even when deployed indepen-

dently. Multi-task learning improves the convergence speed with

DP-SGD by incorporating simpler tasks as observed in the study

by Dockhorn et al.[15]. Pre-training, on the other hand, offers a

substantial boost in convergence speed through a warm start and

enhances utility, aligning with findings by Amid et al. [3].

5.4.2 Deconvolutional Network. The deconvolutional network not

only enables multi-task learning and private pre-training but also
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Table 3: Results for next location prediction and trajectory
classification. We used the same privacy budget for the base-
line model and HRNet (𝜀 = 3.0, 𝛿 = 10

−5).

Acc@1 Acc@5 F-score AUROC

next

loc

pred

baseline w/o DP 29.7 45.1 40.9 84.5

baseline 13.3 30.6 25.2 60.3

HRNet 23.1 37.7 30.2 70.2

traj

class

Random Forest 78.2 - 74.3 92.6

baseline w/o DP 73.4 - 70.1 91.3

baseline 48.3 - 47.8 72.1

HRNet 58.3 - 55.9 78.7

reduces the number of parameters. As mentioned in Section 2.4, it

is known that the lower bound of empirical risk increases as the

number of parameters increases [4]. Therefore, the reduced number

of parameters is a crucial advantage of the deconvolutional network,

and we explore this aspect here. Table 2 compares the number of

parameters with the baseline architecture (i.e., matrix embedding).

The number of parameters in HRNet depends logarithmically on

the number of POIs, in contrast to the baseline mechanism, which

depends linearly. As a result, even if𝑤 becomes larger, the number

of parameters remains stable. This difference theoretically improves

stability, and this is supported by the experimental results shown

in Figure 7.

5.4.3 Multi-task learning. HRNet benefits from the efficient utiliza-

tion of inferences derived from simpler tasks, which align with the

first law of geography. It is important to note that bias based on the

first law of geography can also have a negative impact. To further

substantiate this point, we investigate a scenario where the first

law of geography is not applicable, utilizing the Random dataset

for this purpose. The results of this investigation are presented in

Figure 8. Contrary to previous observations, the addition of multi-

task learning in this context results in a decrease in utility. This

decline can be attributed to the inductive bias towards the first law

of geography, which, in the case of the Random dataset, leads to a

misalignment with the actual data characteristics. Consequently,

the multi-task learning framework, while beneficial under certain

conditions, may impact the results negatively when the underlying

data does not adhere to the geographic principles it assumes.

Even for datasets that generally follow the first law of geography,

it is possible for some grid cells to not satisfy this law. For example,

a grid cell near the border of a coarser cell tends to differ from the

characteristics of the coarser cell because people in this grid cell

often move to the adjacent coarser cell, whereas people in grid cells

near the center of the coarser cell tend to stay within the same

coarser cell. It is important to note that some cells may suffer due

to this bias, even though it globally improves performance. Solving

this aspect further is an interesting direction for future research.

5.5 Application Case Study
5.5.1 Next location prediction. Next location prediction or recom-

mendation is crucial for various applications such as smart cities,

tourism, and advertising. In this section, we evaluate our model’s

ability to predict the next location. To ensure a more realistic setting,

we preprocess the Geolife dataset with the notion of significant

locations [26, 46, 64] to make scatterd POIs, instead of a grid-based

approach. Details on embedding scattered POIs instead of grid cells

can be found in Section 3.2.2. This preprocessing results in 734 POIs

and 9, 816 trajectories, which are split into a training set and a test

set with a ratio of 0.9 to 0.1. We trained generative models on the

training dataset and performed next location inference on the test

dataset. Table 3 presents the results. Acc@𝑘 represents the accu-

racy when the correct answer is included in the top-𝑘 predictions,

and AUROC is the area under the receiver operating characteristic

curve. The baseline w/o DP is trained using SGD instead of DP-

SGD. We spent the same privacy budget (𝜀 = 3, 𝛿 = 10
−5) to both

the baseline and HRNet. The results show that while the baseline

model significantly loses utility due to noise, HRNet outperforms

the baseline, demonstrating its robustness to noise in the case of

scattered POIs.

5.5.2 Trajectory classification. Trajectory classification involves

training a model to categorize trajectories into different types. Here,

we consider classification of transportation modes, a well-known

problem in trajectory classification [40, 61, 68]. Some of trajec-

tories in the Geolife dataset are labeled as bike, walk, car, bus,

and train. We create 5, 980 trajectories using grid-based discretiza-

tion with 𝑤 = 32, splitting them into a training set and a test

set with a 0.9 to 0.1 ratio. Using the training set, we first train

a generative model (HRNet or the baseline) to synthesize trajec-

tories. Here, the label information is incorporated into the gen-

erative model by extending Equation 2 as follows: encode(𝑣𝑖 ) =

[𝑀time [𝑡𝑖 ], 𝑀POI [𝑙𝑖 ], 𝑀label
[𝑠]], where𝑀

label
is the embedding ma-

trix for labels and 𝑠 represents the label index. This encodingmethod

generates trajectories considering the label information. With this

generated labeled data, we extract features following the method

proposed by Liao et al. [36] and train a random forest classifier

using these features. The lower part of Table 3 shows the classifica-

tion results on the test dataset. The Random Forest results represent

the model trained with raw data. Compared to the baseline, our

model performs better, but there is still a significant performance

drop. This is because trajectory classification requires maintaining

spatio-temporal correlations, making it more challenging than next

location prediction. Additionally, our model uses discretized time

information with the embedding matrix, and the preprocessing

required for embedding inherently leads to some information loss.

5.5.3 Commuting distance analysis. Analyzing commuting pat-

terns is a real-world application, as conducted by the U.S. Cen-

sus Bureau [45]. In this study, similar to the work by Machanava-

jjhala [45], we conducted a commuting distance analysis on the

generated data. We utilized trajectories labeled as "commuting"

from the peopleflow data. We created 20, 000 trajectories using grid-

based discretization with𝑤 = 32 for these commuting trajectories.

We then trained a generative model (HRNet or the baseline model)

to generate synthetic commuting trajectories, and analyzed them.

Figures 9 show the results. Each point in the figures corresponds to

a specific destination cell. The x-axis shows the number of trajecto-

ries ending in that destination cell, and the y-axis shows the average

commute distance to that destination block. For the baseline model

(the left figure), many average commute distances are longer than
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Figure 9: Average commuting distance for each destination
by the baseline model (left) and HRNet (right).

the original average commute distances, especially for destinations

with a smaller number of trajectories. In contrast, our generated

trajectories (the right figure) result in average commute distances

that are similar to the original ones, even for destinations with a

smaller number of trajectories.

6 RELATEDWORK
6.1 Non-deep Learning Models

Clustering. Clustering-based methods [27, 32] first cluster the

locations to reduce the number of locations as a preprocessing step.

Then, they count the transitions in the smaller location domain (i.e.,

classes) to create a probabilistic model with the Laplace mechanism.

Many clustering-based methods [27, 32] have been found to cause

unexpected privacy leakage in the data-dependent preprocessing

due to flaws in the privacy proof [47]. Instead, data-dependent

preprocessing and the use of the Laplace mechanism, which is very

effective with respect to privacy-utility trade-off, can sometimes

perform well with small 𝜀 values (see Figure 3). However, clustering

based preprocessing leads to substantial information loss, and even

with large 𝜀 values, accuracy cannot be significantly improved.

Tree and Markov models. Tree [10, 24] and Markov [23, 58] meth-

ods first construct a data structure (e.g., prefix tree) for trajectories.

Then, they count elements (e.g., nodes) to create the probabilistic

model. Essentially, tree and Markov methods face two problems

due to the high uniqueness of patterns in trajectory: how to define

locations (e.g., determining the grid size 𝑤 ) and how to resolve

sparsity. Since the initial study by Chen et al. [10], subsequent

studies have attempted to address these issues. In the work [11],

substrings are considered for building an exploration tree based

on a Markov assumption, resulting in higher leaf counts and bet-

ter utility. DPT [24] addresses the sparsity problem by restricting

movement to adjacent cells using a hierarchical structure, effec-

tively capturing short trajectory features. However, this method’s

limitation to adjacent cell movement prevents conversion to stay

point trajectories, resulting in longer sequence lengths. Given DP’s

characteristics, performance significantly degrades with longer se-

quence lengths, making it unsuitable for capturing broad patterns

such as daily human movement. PrivTrace [58] addresses the spar-

sity problem heuristically, yielding good results on some datasets,

but there remains the problem of determining constants used in

heuristics. Our method addresses them using hierarchical networks

and multi-task learning.

6.2 Deep Learning Models
As argued in this study, when using DP-SGD, sparsity emerges

as a significant issue in deep learning, and thus not many studies

propose using DP-SGD. Ahuja et al. [2] propose using negative sam-

pling and skip-gram to solve this sparsity issue. Note that such tech-

niques could also be applicable to our study.Wang et al. [60] address

this problem similarly to DPT by restricting movement to adjacent

road network segments. Hence, as demonstrated in Figure 5, they

effectively capture short trajectory features and perform well with

small 𝜀 due to prior road network information. However, the same

problem as DPT arises, making it unsuitable for capturing broad

daily human movement patterns. Without the formal guarantees

like DP, many deep learning approaches [22, 48, 51] rely on obfusca-

tion caused by the generation itself. However, without any formal

guarantee, it is unclear if privacy is genuinely preserved [52]. Even

without privacy-aware considerations, sparsity remains a prob-

lem, and there are studies proposing models similar to ours. Lim

et al. [37] address sparsity by employing multi-task learning with

multiple resolutions, but their naive creation of embedding matrices

for each resolution results in a large number of parameters (𝑂 (𝑛2)),
which is not suitable to DP-SGD. Lian et al. [35] adopt a hierarchical

location encoding using a quadtree similar to our study, but instead

of using a deconvolutional network, they treat quadtree paths as

sequences and perform sequence embedding with the attention

architecture [57]. Consequently, encoding a single location requires

processing a sequence length corresponding to the quadtree depth.

Longer sequence lengths degrade DP-SGD performance, which is

not ideal. Moreover, the application of multi-task learning to such

methods is not trivial. Many deep learning methods for capturing

trajectory features have been considered [20, 38, 44, 63]. However,

directly encoding the tuple of latitude and longitude is fundamen-

tally challenging [35], leading to the use of embedding matrices.

Using embedding matrices poses the same issues as the baseline.

7 CONCLUSION
In this paper, we introduced HRNet, a novel framework designed to

effectively learn and generate human mobility data under DP con-

straints. HRNet incorporates three novel components: a hierarchical

location encoding component, multi-resolution multi-task learning,

and private pre-training. The concept of a hierarchical network, as

employed in HRNet, has intrinsic value beyond its application in

location encoding. The hierarchical nature of data is not unique to

locations but is also evident in language for example, where words

possess semantic layers. This observation opens up possibilities for

applying our hierarchical approach to improve language models

under DP constraints, suggesting a promising avenue for future

research in the field of privacy-preserving deep learning.
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