
Complex Event Recognition with Symbolic Register Transducers
Elias Alevizos

NCSR “Demokritos”
alevizos.elias@iit.demokritos.gr

Alexander Artikis
Univ. of Piraeus, NCSR “Demokritos”

a.artikis@unipi.gr

Georgios Paliouras
NCSR “Demokritos”

paliourg@iit.demokritos.gr

ABSTRACT
We present a system for Complex Event Recognition (CER) based
on automata. While multiple such systems have been described in
the literature, they typically suffer from a lack of clear and denota-
tional semantics, a limitation which often leads to confusion with
respect to their expressive power. In order to address this issue, our
system is based on an automaton model which is a combination of
symbolic and register automata. We extend previous work on these
types of automata, in order to construct a formalism with clear
semantics and a corresponding automaton model whose properties
can be formally investigated. We call such automata Symbolic Reg-
ister Transducers (SRT). The distinctive feature of SRT , compared
to previous automaton models used in CER, is that they can en-
code patterns relating multiple input events from an event stream,
without sacrificing rigor and clarity. We show how SRT can be
used in CER in order to detect patterns upon streams of events,
using our framework that provides declarative and compositional
semantics. We also compare our SRT -based CER engine against
other state-of-the-art CER systems and show that it is both more
expressive and more efficient.

PVLDB Reference Format:
Elias Alevizos, Alexander Artikis, and Georgios Paliouras. Complex Event
Recognition with Symbolic Register Transducers. PVLDB, 17(11): 3165 -
3177, 2024.
doi:10.14778/3681954.3681991

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/ElAlev/cer-srt.

1 INTRODUCTION
A Complex Event Recognition (CER) system takes as input a stream
of “simple events”, along with a set of patterns, defining relations
among the input events, and detects instances of pattern satisfaction,
thus producing an output stream of “complex events” [16, 25, 34].
For simplicity, wewill henceforth refer to “simple events” as “events”
and “complex events” as “patterns”. Typically, an event takes the
form of a tuple comprising numerical or categorical values. Complex
events must often be detected with very low latency [23, 29, 34].
Table 1 presents a simple example of a stream of event tuples.

Automata are of particular interest for the field of CER, because
they provide a natural way of handling sequences. As a result, the
usual operators of regular expressions, like concatenation, union

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 17, No. 11 ISSN 2150-8097.
doi:10.14778/3681954.3681991

and Kleene-star, have often been given an implicit temporal inter-
pretation in CER. For example, the concatenation of two events is
said to occur whenever the second event is read by an automaton
after the first one, i.e., whenever the timestamp of the second event
is greater than the timestamp of the first. On the other hand, atem-
poral constraints are not easy to define using classical automata,
since they either work without memory or, even if they do include
a memory structure, e.g., as with push-down automata, they can
only work with a finite alphabet of input symbols. For this reason,
the CER community has proposed several extensions of classical
automata. These extended automata have the ability to store input
events and later retrieve them in order to evaluate whether a con-
straint is satisfied [8, 16, 21]. They resemble both register automata
[30], through their ability to store events, and symbolic automata
[18], through the use of predicates on their transitions. They differ
from symbolic automata in that predicates apply to multiple events,
retrieved from the memory structure that holds previous events.
They differ from register automata in that predicates may be more
complex than that of (in)equality.

One issue with these CER-specific automata is that their proper-
ties have not been systematically investigated, in contrast to models
derived directly from the field of languages and automata; see [26]
for a discussion about the weaknesses of automaton models in
CER. Moreover, they sometimes need to impose restrictions on
the use of regular expression operators in a pattern, e.g., nesting
of Kleene-star operators is not allowed. We propose a system for
CER, based on an automaton model which can address these issues.
This model is a combination of symbolic and register automata.
We call such automata Symbolic Register Transducers (SRT). SRT
extend the expressive power of symbolic and register automata,
by allowing for more complex patterns to be defined and detected
on a stream of events. We also present a language with which we
can define patterns for complex events that can then be translated
to SRT . We call such patterns Symbolic Regular Expressions with
Memory and Output (SREMO), as an extension of the work pre-
sented in [32], where Regular Expressions with Memory (REM) are
defined and investigated. REM are extensions of classical regular
expressions with which some of the terminal symbols of an expres-
sion can be stored and later be compared for (in)equality. SREMO
allow for more complex conditions to be used, besides those of
(in)equality. They additionally allow each terminal sub-expression
to mark an element as belonging or not to the string/match that is
to be recognized, thus acting as transducers.

Our contributions may then be summarized as follows:

• We present a CER system based on a formal framework with
denotational and compositional semantics, where patterns
may be written as SREMO.
• We show how this framework subsumes, in terms of expres-
sive power, previous similar attempts. It allows for nesting

3165

https://doi.org/10.14778/3681954.3681991
https://github.com/ElAlev/cer-srt
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3681954.3681991
https://www.acm.org/publications/policies/artifact-review-and-badging-current

Table 1: Example of a stream of stockmarket ticks. A stream
is a sequence of events, where each such event is a tuple
of the form (type, id, price, volume). type is the type of trans-
action: S for SELL and B for BUY. id is an integer identifier,
unique for each company. It has a finite set of possible val-
ues. price is a real-valued number for the price of a given
stock. Finally, volume is a natural number referring to the
volume of the transaction. Events are assumed to be tempo-
rally ordered and their order is implicitly provided through
the index. Concurrent events cannot occur, i.e., each index
is unique to a single event.

type B B B S S B ...
id 1 1 2 1 1 2 ...

price 22 24 32 70 68 33 ...
volume 300 225 1210 760 2000 95 ...
index 1 2 3 4 5 6 ...

operators and selection strategies. It also allows n-ary ex-
pressions to be used as conditions in patterns, thus allowing
the detection of relational patterns.
• We extend previous work on automata and present a com-
putational model for patterns written in SREMO, Symbolic
Register Transducers (SRT), whose main feature is that it
supports relations between multiple events. SRT also have
the ability to mark exactly those events comprising a match.
• We show that SRT are closed under the most common oper-
ators, i.e., union, intersection, concatenation and Kleene-star.
Moreover, we show that, by using windows, SRT are closed
under complement and determinization. Windows are an
indispensable operator in CER because, among others, they
limit the search space for pattern matching.
• We implement a CER engine with SRT at its core and present
relevant experimental results. Our engine is both more ef-
ficient than other engines and supports a language that is
more expressive than that of other systems.

All proofs and complete algorithms may be found in an extended
technical report1. In Table 2 we have gathered the notation that we
use throughout the paper.

2 RELATEDWORK
Typical cases of CER systems that employ automata are the Chroni-
cle Recognition System [22, 24], Cayuga [20, 21], TESLA [15], SASE
[8, 45], CORE [13, 26] and Wayeb [9, 10]. There also exist systems
that do not employ automata as their computational model, e.g.,
there are logic-based systems [35, 40] or systems that use trees [36],
but the standard operators of concatenation, union and Kleene-star
are quite common and they may be considered as a reasonable set
of core operators for CER. The abundance of different CER systems,
employing various computational models and using various for-
malisms has recently led to some attempts to provide a unifying

1https://arxiv.org/abs/2407.02884

Table 2: Notation used throughout the paper.

Symbol Meaning

U/L ⊆ U∗/ti ∈ U universe/language over U/character

S = t1, t2, · · · / Si . .j = ti , · · · , tj stream / stream “slice” from index i to j

R = {r1, · · · , rk } register variables

v : R ↪→ U valuation

♯ / ∼ contents of empty register / automaton head

(u , v) |= ϕ condition ϕ satisfied by element u and
valuation v

•, ⊗ outputs

e1 + e2 / e1 · e2 / e∗ /@e
regular disjunction / concatenation /

iteration / skip-till-any-match
e [1. .w] windowed expression with window sizew

(e , S ,M , v) ⊢ v′ string S and matchM on expression e
with valuation v induce valuation v′

Lang(e)/Match(e , S) language/matches of expression e

c = [j , q, v] configuration (position, state, valuation)

Lang(T)/Match(T , S) language/matches of automaton T

framework [26, 28]. In [26], a set of core CER operators is identi-
fied, a formal framework is proposed that provides denotational
semantics for CER patterns, and a computational model is described
for capturing such patterns. For an overview of CER languages,
see [25], and for a general review of CER systems, see [16]. In this
Section, we present previous related work along three axes. First,
we discuss previous theoretical work on automata that is related
to CER. We subsequently present previous automata-based CER
systems. Finally, we briefly discuss some solutions which are be-
yond the scope of CER in the strict sense of the term, but have
characteristics that are of interest to CER. Table 3 summarizes our
discussion and provides a compact way to compare our proposal
against previous solutions.

Extended automaton models: theory. Outside the field of CER, re-
search on automata has evolved towards various directions. Besides
push-down automata that can store elements from a finite set to a
stack, there are other automaton models with memory, such as reg-
ister automata, pebble automata and data automata [11, 30, 37]. For
a review, see [39]. Such models are especially useful when the input
alphabet cannot be assumed to be finite, as is often the case with
CER. Register automata (initially called finite-memory automata)
constitute one of the earliest such proposals [30]. At each transition,
a register automaton may choose to store its current input (more
precisely, the current input’s data payload) to one of a finite set of
registers. A transition is followed if the current input is equal to
the contents of some register. With register automata, it is possible
to recognize strings constructed from an infinite alphabet, through
the use of (in)equality comparisons among the data carried by the
current input and the data stored in the registers. However, register
automata do not always have nice closure properties, e.g., they are
not closed under determinization. For an extensive study of register
automata, see [32, 33]. We build on the framework presented in
[32, 33] to construct register automata with the ability to handle
“arbitrary” structures, besides those containing only (in)equality
relations. Another model that is of interest for CER is the symbolic
automaton, which allows CER patterns to apply constraints on the

3166

https://arxiv.org/abs/2407.02884

Table 3: Comparing state-of-the-art with our proposal.
σ1: unary selection, σn : n-ary selection, ∧: intersection, ∨:
union, !: negation, ;: sequence, *: iteration, D: determinizabil-
ity, E: enumeration, S.P.: selection strategies, Stam : skip-till-
any-match, Stnm : skip-till-next-match, Sc : strict-contiguity.

System σ1 σn ∨ ∧ ! ; * D E S.P. Remarks

Theory

Register automata ✘ ✘ ✔ ✔ ✘ ✔ ✔ ✘ ✘ Sc
Selection only for
unary (in-)equality.

Symbolic automata ✔ ✘ ✔ ✔ ✔ ✔ ✔ ✔ ✘ Sc

Symbolic register au-
tomata ✔ ✔ ✔ ✔ ✘ ✔ ✔ ✘ ✘ Sc

Automata-based CER solutions

SASE ✔ ✔ ✘ ✘ ✔ ✔ ✔ ✘ ✔ all

Iteration and
selection strategies
cannot be nested.
∨, ∧ and ¬ possible
in principle but not
available in source
code. Soundness

issues with
selection strategies

Cayuga ✔ ✔ ✔ ? ✘ ✔ ✔ ✘ ✘ Stam

Re-subscription
with multiple
automata for

nested expressions.

FlinkCEP ✔ ✔ ✔ ? ✔ ✔ ? ✘ ✔ ?
Soundness issues
with selection
strategies and

iteration.

Esper ✔ ✔ ✔ ? ✔ ✔ ✔ ? ✔ all

Mixture of trees,
automata and
Allen’s interval

algebra.

CORE ✔ ✘ ✔ ? ? ✔ ✔ ✔ ✔ all

Wayeb (symbolic
automata) ✔ ✘ ✔ ✔ ✔ ✔ ✔ ✔ ✘ all

Beyond CER

AFA ✔ ? ✔ ? ? ✔ ✔ ? ✘ Sc
Partial support of
negation. σn with
a single register.

MATCH_RECOGNIZE ✔ ✔ ✘ ? ✔ ✔ ✘ ? ✘ all
Supported features
depend on the
implementation.

Our proposal

Wayeb (SRT) ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ all

¬ and
determinization

supported only for
windowed
expressions.

attributes of events. Automata that have predicates on their transi-
tions were already proposed in [41]. This initial idea has recently
been expanded and more fully investigated in symbolic automata
[18, 42, 43]. In symbolic automata, transitions are equipped with
formulas constructed from a Boolean algebra. A transition is fol-
lowed if its formula, applied to the current input, evaluates to TRUE.
Contrary to register automata, symbolic automata have nice clo-
sure properties, but their formulas are unary and thus can only be
applied to a single element from the input string. This is one limita-
tion that we address here. We use Symbolic Regular Expressions with
Memory and Output (SREMO) and Symbolic Register Transducers
(SRT), a language and an automaton model respectively, that can
handle n-ary formulas and be applied for the purposes of CER. With
SREMO we can designate which elements of a pattern need to be
stored for later evaluation and which must be marked as being part

of a match. SREMO can be compiled into SRT , whose transitions can
apply n-ary formulas/conditions (with n>1) on multiple elements.
As a result, SRT are more expressive than symbolic and register
automata, thus being suitable for practical CER applications, while,
at the same time, their properties can be systematically investigated,
as in standard automata theory. In fact, our model subsumes these
two automaton models as special cases. It is also an extension of
Symbolic Register Automata [17], which do not have any output on
their transitions and cannot thus enumerate the detected complex
events, since they do not have the ability to mark input events as
being part of match. Moreover, the applicability of SRT for CER is
studied here for the first time. We show precisely how SRT can be
used for CER and how the use of SRT provides expressive power
without sacrificing clarity and rigor.

Extended automaton models as applied in CER. Automata with
registers have been proposed in the past for CER, e.g., in SASE and
Cayuga. However, previous systems typically provide operational
semantics and it is not always clear a) what operators are allowed,
b) at which combinations, c) what the properties of their automaton
models are. For example, SASE’s language seems to support nested
Kleene operators. However, it constructs automata whose states are
linearly ordered. Therefore, Kleene operators can only be applied
to single states. They cannot be nested and they cannot contain
other expressions, except for single events. As a result, disjunction
is also not allowed. On the other hand, Cayuga attempts to address
these expressivity limitations through the method of resubscription,
i.e., expressions which cannot be captured by a single automaton
are compiled into multiple automata [19]. Each sub-automaton can
then subscribe to the output of other automata, thus creating a
hierarchy of automata. Although this is an interesting solution,
the resulting semantics remains ambiguous, since the correctness
and limits of this approach have not been thoroughly investigated.
The novelty of our system is that it provides formal, compositional
semantics which allows us to address all of the above issues. With
the exception of negation, all other operators may be arbitrarily
combined in a completely compositional manner and each pattern
can be compiled into a single automaton, something which has
not been previously achieved. CORE [26, 27] and Wayeb [9, 10]
constitute two more recent automata-based CER systems. CORE
automata may be categorized under the class of “unary” symbolic
automata (or transducers, to be more precise), i.e., they do not
support patterns relating multiple events. The same is true for
Wayeb, which also employs “unary” symbolic automata.

Extended automaton models beyond CER. An adaptation of fi-
nite automata in the context of Data Stream Management Sys-
tems (which have strong similarities to CER systems) has also been
proposed in [14]. These automata are called augmented finite au-
tomata (AFA) and are enriched with registers, in order to capture
trends. Like SRT , they support arbitrary edges and are composi-
tional. On the other hand, AFA have different limitations. Each
AFA has a single register (one per active state), whereas there is
no such restriction for SRT . Additionally, AFA are not transduc-
ers and cannot enumerate the input events of a complex event.
Finally, the properties of AFA have not been theoretically studied,
for example with respect to determinization and negation. AFA can
handle certain instances of negation, but there are strong reasons

3167

to suspect that they are not in general closed under complement,
as is the case of register automata. In summary, SRT are more ex-
pressive than AFA. Another way to implement CER patterns, in
relational databases, is through SQL’s MATCH_RECOGNIZE, a pro-
posed clause that can perform pattern recognition on rows [6, 38].
MATCH_RECOGNIZE is very expressive and can in principle cap-
ture almost any pattern expressed in a CER language. However,
it is uncertain whether it would work in a streaming setting as
efficiently as CER systems. Recent work has proposed implementa-
tions of MATCH_RECOGNIZE that are more efficient than the one
already available in Flink [31, 46]. The proposed optimizations rely
on the use of prefiltering and clever indices so that the automaton
responsible for pattern recognition is fed only with a small subset
of the initial rows. They target the scenario of historical analysis
and their extension to a streaming setting is not considered. It still
remains an open issue whether the proposed optimizations would
work for patterns processing events in real time.

3 SYMBOLIC REGULAR EXPRESSIONS WITH
MEMORY AND OUTPUT

We start by presenting a language for CER and discuss its semantics.
The main feature of this language is that it allows for most of the
common CER operators (such as selection, sequence, disjunction
and iteration), without imposing restrictions on how they may be
used and nested. Our proposed language can also accommodate
n-ary conditions, i.e., we can impose constraints on the patterns
which relate multiple events of a stream, e.g., that the price of a
stock at the current timepoint is higher than its price at the previous
timepoint. We also discuss the semantics of patterns written in the
proposed language and show that these are well-defined. Hence,
in order to know whether a given stream contains complex events
corresponding to a given pattern, we do not need to resort to a
procedural computational model. The semantics of the language
may be studied independently of the chosen computational model.
This feature is critical, as it allows for a systematic understanding of
the use of operators. Additionally, it could be of importance for op-
timization, which often relies on pattern re-writing, assuming that
we can know when two patterns are equivalent without actually
having to run their computational models.

We extend the work presented in [32], where the notion of
regular expressions with memory (REM) was introduced. These
regular expressions can store some terminal symbols, in order to
compare them later (in a string) against a new input element for
(in)equality. The corresponding automata compiled from REM need
to be equipped with registers. Each transition has the option to
write the symbol that triggered it to some register. Transitions can
also access registers to retrieve their contents (previously stored
elements) and compare them with the last element read by the au-
tomaton’s head. One important limitation of REM with respect to
CER is that they can handle only (in)equality relations. In this sec-
tion, we extend REM so as to endow them with the capacity to use
relations from “arbitrary” structures. We call these extended REM
Symbolic Regular Expressions with Memory and Output (SREMO).

We assume that each terminal expression of a SREMO is a Boolean
expression whose predicates are in the form of a relation P . We
also assume that all possible input events constitute a universeU

(details may be found in the technical report). We can then extend
the terminology of classical regular expressions to define charac-
ters, strings and languages. Elements ofU are called characters and
finite sequences of characters are called strings. A set of strings L
constructed from elements of U, i.e., L ⊆ U∗, where ∗ denotes
Kleene-star, is called a language over U. Then, a stream S is an
infinite sequence S = t1, t2, · · · , where each ti ∈ U is a charac-
ter. By S1..k we denote the sub-string of S composed of the first k
elements of S . Sm ..k denotes the slice of S starting from the mth

and ending at the kth element. We can then define n-ary relations
P on the elements ofU and use these relations, or combinations
of them via Boolean connectives, as terminal expressions within
a regular expression. The arguments of P refer either to the most
recently read element of a string or to preceding elements, assumed
to have been stored in registers. We call such terminal expressions
“conditions”. Conditions are the basic building blocks of SREMO.
In the simplest case, they are applied to single events and act as
filters. In the general case, we need them to be applied to multiple
events, some of which may be stored to registers. Conditions will
essentially be the n-ary guards on the transitions of SRT .

Definition 3.1 (Condition). Let ⊤ be a unary relation for which it
holds that u ∈ ⊤, ∀u ∈ U, i.e., this relation holds for all elements
of the universe U. Let R = {r1, · · · , rk } be variables denoting
the registers and ∼ a special variable denoting an automaton’s
head which reads new elements. The “contents” of the head always
correspond to the most recent element. We call R register variables.
A condition is then defined by the following grammar:
• ⊤ is a condition.
• P(r1, · · · , rn), where ri ∈ R ∪ {∼} and P an n-ary relation, is
a condition.
• ¬ϕ is a condition, if ϕ is a condition.
• ϕ1 ∧ ϕ2 is a condition if ϕ1 and ϕ2 are conditions.
• ϕ1 ∨ ϕ2 is a condition if ϕ1 and ϕ2 are conditions. ◀

Example 3.2. As an example, consider the simple case where
we want to detect stock ticks of type BUY (B), followed
by a tick of type SELL (S) for the same company. We
would thus need a simple condition on the first tick, de-
noted as TypeIsB(∼), where TypeIsB(x):=x .type=B. TypeIsB(∼)
has a single argument, the automaton head. We also need an-
other condition for the SELL tick and the company compar-
ison, denoted as TypeIsS(∼)∧EqualId(∼, r1). We assume that
TypeIsS(x):=x .type=S and EqualId(x,y):=x .id=y.id. Note that,
beyond the head variable, EqualId also has a register variable as
an input argument. ◀

Note that the arguments of P in Definition 3.1 refer either to
registers or to the current element of the head. We thus need a
way to conceptualize how the contents of these registers may be
accessed and modified. The notion of valuations serves this purpose.

Definition 3.3 (Valuation). Let R = {r1, · · · , rk } be a set of reg-
ister variables. A valuation on R is a partial function v : R ↪→ U,
i.e., some registers may be “empty”. We will also use the notation
v(ri)=♯ to denote the fact that register ri is empty, i.e., we extend
the range ofv toU∪{♯}. We also extend the domain ofv to R∪{∼}.

3168

By v(∼) we denote the “contents” of the automaton’s head, i.e., the
last element read from the string. ◀

For the base case of condition ϕ := P(r1, · · · , rn), we say that ϕ is
satisfied by (u,v), denoted by (u,v) |= ϕ, iffu ∈ P(v(x1), · · · ,v(xn)).
For the remaining cases, the semantics of conditions are defined as
in standard Boolean expressions.

We can now define SREMO, by combining conditions via the
standard regular operators. Conditions act as terminal expressions,
i.e., the base case upon which we construct more complex expres-
sions. Each condition may be accompanied by a register variable,
indicating that an event satisfying the condition must be written
to that register. It may also be accompanied by an output, either
•, indicating that the event must be marked as being part of the
complex event, or ⊗, indicating that the event is irrelevant and
should be excluded from any detected complex events.

Definition 3.4 (Symbolic regular expression with memory and out-
put (SREMO)). A SREMO is inductively defined as follows:

(1) ϵ is a SREMO.
(2) If ϕ is a condition (as in Definition 3.1) and o ∈ {•, ⊗} an

output, then ϕ ↑ o is a SREMO.
(3) If ϕ is a condition, o ∈ {•, ⊗} an output and ri a register

variable, then ϕ ↑ o ↓ ri is a SREMO.
(4) If e1 and e2 are SREMO, then e1 + e2 is also a SREMO.
(5) If e1 and e2 are SREMO, then e1 · e2 is also a SREMO.
(6) If e is a SREMO, then e∗ is also a SREMO. ◀

ϵ is the regular expression satisfied by the “empty” string, i.e.,
without any characters. With SREMO of the form ϕ ↑ o ↓ ri (case 3
above), we denote cases where we need to store the current element
read from the automaton’s head to register ri . If we additionally
need to mark the event as part of the match, we write o = •. We
write o = ⊗ when we do not want to mark the current element.
Case 4 corresponds to the usual disjunction, whereas case 5 to con-
catenation. Finally, case 6 is the Kleene-star operator. Disjunction,
concatenation and Kleene-star are the three standard operators in
regular expressions which are also used here.

Example 3.5. We now have everything we need to express the
pattern of our example. Consider the following SREMO:

e1 :=(TypeIsB(∼) ↑ • ↓ r1) · (⊤ ↑ ⊗)∗·
((TypeIsS(∼) ∧ EqualId(∼, r1)) ↑ •)

(1)

e1 first looks for elements of type BUY. When it finds one, it
marks it as belonging to a (candidate match) and writes it to
register r1. r1 stores the whole element. For example, if e1 starts
processing the stream of Table 1, after reading the first element,
r1 will have stored (B, 1, 22, 300). e1 can then skip any number of
elements, without marking or storing them, until encountering a
SELL element from the same company. It marks it as part of the
match as well. ◀

In order to define the semantics of SREMO, we begin with a
SREMO e and a string S . Due to space limitations, the formal def-
inition for the semantics of SREMO is presented in the technical
report. Here we only make some brief remarks. In automata theory,
we typically want to determine whether S is accepted by e . In our
case, the situation is more complex. The goal is actually twofold: a)

determine whether e can start from an empty valuation (all registers
are empty) and follow a “path” leading to the end of S ; b) deter-
mine whether such a “path” marks any events and thus generates
a match. We thus need to first define how a SREMO, starting from
a given valuation v and reading a given string S , reaches another
valuation v ′. Our final aim is to detect matches of a SREMO e in a
string S=t1, · · · , tn . A matchM={i1, · · · , ik } of e on S is a totally or-
dered set of natural numbers, referring to indices in the string S , i.e.,
i1 ≥ 1 and ik ≤ n (see also [13]). IfM={i1, · · · , ik } is a match of e
on S , then the set of elements referenced byM , S[M]={ti1 , · · · , tik }
represents a complex event. We writeM = M1 ·M2 for two matches
M1, M2 to denote the fact that M1 ∩ M2 = ∅, M1 ∪ M2 = M and
max(M1) < min(M2). With the notation (e, S,M,v) ⊢ v ′, we denote
that a SREMO e , starting from a valuationv , can read a string S and
produce a matchM , while reaching a new valuation v ′.

Based on the above, we may now define the language that a
SREMO accepts and the matches that it detects on a string S . The
language of a SREMO contains all the strings with which we can
reach a valuation, starting from the empty valuation, where all
registers are empty. The set of matches is composed of all the
matches computed after a SREMO has processed a string S .

Definition 3.6 (Language accepted and matches detected by a
SREMO). The language accepted by a SREMO e is defined as

Lang(e) = {S | (e, S,M, ♯) ⊢ v}

for some valuation v and some matchM of e on the corresponding
S , where ♯ denotes the valuation in which no v(ri) is defined, i.e.,
all registers are empty. The matches detected by a SREMO e on a
string S is defined as

Match(e, S) = {M | (e, S,M, ♯) ⊢ v}

for some valuation v . ◀

Example 3.7. We can now continue with our example. If we feed
the string/stream of Table 1 to SREMO (1), then we see that S1..4
is indeed accepted by e1. M = {1, 4} is also a match of e1 on S
(and on S1..4). The same is also true for S1..5 andM = {1, 5}. ◀

The above introduction highlights the expressiveness, flexibility
and formal semantics of SREMO. SREMO can express relational
patterns with n-ary constraints, by being able to relate the most re-
cently read element with any of the preceding ones. They also allow
for arbitrary nesting of the regular operators, without imposing
ad hoc restrictions. Moreover, their expressive power is combined
with clear, denotational semantics.

4 SYMBOLIC REGISTER TRANSDUCERS
In order to capture SREMO, we propose Symbolic Register Trans-
ducers (SRT), an automaton model equipped with memory, logical
conditions on its transitions and a single output on every transition.
The basic idea is the following. We add a set of registers R to an
automaton in order to be able to store events from the stream that
will be used later in n-ary formulas. Each register can store at most
one event. In order to evaluate whether to follow a transition or not,
each transition is equipped with a guard, in the form of a Boolean
formula. If the formula evaluates to TRUE, then the transition is fol-
lowed. Since a formula might be n-ary, with n>1, the values passed

3169

qsstart q1 qf
φ1() r1

φ2(, r1)

φ1(x) := (x.type = B)
φ2(x, y) := (x.type = S x.id = y.id)

r1

Figure 1: SRT corresponding to the SREMO of eq. (1).

to its arguments during evaluation may be either the current event
or the contents of some registers, i.e., some past events. In other
words, the transition is also equipped with a register selection. Be-
fore evaluation, the automaton reads the contents of the required
registers, passes them as arguments to the formula and the formula
is evaluated. Additionally, if, during a run of the automaton, a tran-
sition is followed, then the transition has the option to write the
event that triggered it to some of the automaton’s registers. These
are called its write registersW , i.e., the registers whose contents
may be changed by the transition. Finally, each transition, when
followed, produces an output, either ⊗, denoting that the event is
not part of the match for the pattern that the SRT tries to capture,
or •, denoting that the event is part of the match. We also allow
for ϵ-transitions, as in classical automata, i.e., transitions that are
followed without consuming any events and without altering the
contents of the registers.

We now formally define SRT . To aid understanding, we present
three separate definitions. The first concerns the automaton itself,
describing its structure, i.e., its states and transitions. The remaining
two describe the running behavior of a SRT . For this we need to
know its current state and register contents after every new event,
i.e., its so-called configuration. We also need to know how the
automaton changes configurations and how such a succession of
configurations (a so-called run) may lead to a match.

Definition 4.1 (Symbolic Register Transducer). A symbolic register
transducer (SRT) with k registers is a tuple (Q , qs , Qf , R, ∆) where

• Q is a finite set of states,
• qs ∈ Q the start state,
• Qf ⊆ Q the set of final states,
• R = (r1, · · · , rk) a finite set of registers and
• ∆ the set of transitions.

A transitionδ ∈ ∆ is a tuple (q,ϕ,W ,q′,o), alsowritten asq,ϕ↑o↓W→q′,
where

• q,q′ ∈ Q , where q is the source and q′ the target state,
• ϕ is a condition, as per Definition 3.1 or ϕ = ϵ ,
• W ∈ 2R are the write registers and
• o ∈ {⊗, •} is the output. ◀

We will use the dot notation to refer to elements of tuples. For
example, ifT is a SRT , thenT .Q is the set of its states. For a transition
δ , we will also use the notation δ .source and δ .target to refer to its
source and target states respectively.

Example 4.2. As an example, consider the SRT of Figure 1. Each
transition is represented as ϕ ↑ o ↓W , where ϕ is its condition, o
its output andW its set of write registers (or simply ri if only a
single register is written).W may also be an empty set, implying
that no register is written. In this case, we avoid writingW on
the transition (see, for example, the transition from q1 to qf in
Figure 1). o may be omitted, in which case it is implicitly assumed
that o = ⊗. The definitions for the conditions of the transitions
are presented in a separate box, above the SRT . Note that the
arguments of the conditions correspond to registers, through the
register selection. Take the transition from qs to q1 as an example.
It takes the last element consumed from the string/stream (∼) and
passes it as argument to the unary formula ϕ1. If ϕ1 evaluates to
TRUE, it writes this last event to register r1, displayed as a dashed
square in Figure 1. On the other hand, the transition from q1 to
qf uses both the current element and the element stored in r1
((∼, r1)) and passes them to the binary formula ϕ2. The condition
⊤ (in the self-loop of q1) is unary, always evaluates to TRUE and
allows us to skip and ignore any number of events. The SRT of
Figure 1 captures the SREMO of eq. (1). ◀

We can describe formally the rules for the behavior of a SRT
through the notion of configuration:

Definition 4.3 (Configuration of SRT). Let S = t1, t2, · · · , tl be a
string and T a SRT consuming S . A configuration of T is a triple
c = [j,q,v], where
• j is the index of the next event/character to be consumed,
• q is the current state of T and
• v the valuation, i.e., the current contents of T ’s registers.

c ′ = [j ′,q′,v ′] is a successor of c iff one of the following holds:
• ∃δ : δ .source = q, δ .target = q′, δ .ϕ = ϵ , j ′ = j, v ′ = v , i.e.,
if this is an ϵ transition, we move to the target state without
changing the index or the registers’ contents.
• ∃δ : δ .source = q, δ .target = q′, δ .W = ∅, (tj ,v) |= δ .ϕ,
j ′ = j + 1, v ′ = v , i.e., if the condition is satisfied according
to the current event and the registers’ contents and there are
no write registers, we move to the target state, we increase
the index by 1 and we leave the registers untouched.
• ∃δ : δ .source = q, δ .target = q′, δ .W ≠ ∅,(tj ,v) |= δ .ϕ,
j ′ = j + 1, v ′ = v[W ← tj], i.e., if the condition is satisfied
according to the current event and the registers’ contents
and there are write registers, we move to the target state, we
increase the index by 1 and we replace the contents of all
write registers (all ri ∈ W) with the current element from
the string. ◀

Wedenote a succession of configurations by [j,q,v] → [j ′,q′,v ′],
or [j,q,v] δ

→ [j ′,q′,v ′] if we need to refer to the transition as well.
For the initial configuration, before any elements have been con-
sumed, we assume that j = 1,q = qs andv(ri) = ♯, ∀ri ∈ R. In order
to move to a successor configuration, we need a transition whose
condition evaluates to TRUE, when applied to ∼, if it is unary, or to
∼ and the contents of its register selection, if it is n-ary. If this is
the case, we move one position ahead in the stream and update the
contents of this transition’s write registers, if any, with the event
that was read. If the transition is an ϵ-transition, we do not move

3170

the stream pointer (since ϵ transitions are followed “spontaneously”,
without reading any events) and do not update the registers, but
only move to the next state.

The actual behavior of a SRT upon reading a stream is captured
by the notion of the run:

Definition 4.4 (Run of SRT over string/stream). A run ϱ of a SRT
T over a stream S = t1, · · · , tn is a sequence of successor configu-
rations [1,q1,v1]

δ1
→ [2,q2,v2]

δ2
→ · · ·

δn
→ [n + 1,qn+1,vn+1]. A run

is called accepting iff qn+1 ∈ T .Qf and δn .o = •. By Match(ϱ) we
denote all the indices in the string that were “marked” by the run,
i.e., Match(ϱ)={i ∈ [1,n] : δi .o=•}. ◀

The set of all runs over a stream S that T can follow is denoted
by Run(T , S) and the set of all accepting runs by Runf (T , S).

Example 4.5. An accepting run of the SRT of Figure 1, while
consuming the first four events from the stream of Table 1, is the
following:

ϱ =[1,qs , ♯]
δs ,1
→ [2,q1, (B, 1, 22, 300)]

δ1,1
→ [3,q1, (B, 1, 22, 300)]

δ1,1
→

[4,q1, (B, 1, 22, 300)]
δ1,f
→ [5,qf , (B, 1, 22, 300)]

(2)
Transition subscripts in this example refer to states of the SRT ,
e.g., δs ,1 is the transition from the start state to q1, etc. Note that
the valuation (contents or register r1) changes only once, from ♯
(empty) to (B, 1, 22, 300), after the transition from qs to q1 with
the first event. For the remaining configurations, the valuation
remains the same. This is the only transition that writes to r1.
The contents of r1 are retrieved and used in the last transition,
from q1 to qf . Run (2) is not the only run, since the SRT could
have followed other transitions with the same input, e.g., moving
directly from qs to q1. Another possible (and non-accepting) run
would be the one where the SRT always remains in q1 after its
first transition. ◀

Finally, we can define the language of a SRT as the set of strings
for which the SRT has an accepting run, starting from an empty
configuration. Similarly, the matches of a SRT on a string are the
matches the SRT “produces” by marking the input elements as it
reads the string, starting from an empty configuration.

Definition 4.6 (Language recognized and matches detected by SRT).
We say that a SRT T accepts a string S iff there exists an accepting
run ϱ = [1,q1,v1]

δ1
→ [2,q2,v2]

δ2
→ · · ·

δn
→ [n + 1,qn+1,vn+1] of T

over S , where q1 = T .qs and v1 = ♯. The set of all strings accepted
by T is called the language recognized by T and is denoted by
Lang(T). The set of matches detected by T on a string S is defined
as Match(T , S) = {Match(ϱ) | ϱ ∈ Runf (T , S)}. ◀

We now study the properties of SRT . All proofs are presented in
the extended technical report. We first prove that, for every SREMO
there exists an equivalent SRT . The proof is constructive, similar
to that for classical automata. Equivalence between an expression
e and a SRT T means that they recognize the same language and
have the same matches. See Definitions 3.6 and 4.6.

Theorem 4.7. For every SREMO e there exists an equivalent SRT T ,
i.e., a SRT such that Lang(e) = Lang(T) andMatch(e, S) = Match(T , S)
for every string S .

Next, we study the closure properties of SRT . Informally, closure
under some operator (e.g., union) means that we can always begin
with some initial set of SRT and use them to construct a new SRT ,
such that its language (matches) will be the result of applying the
operator on the languages (matches) of the initial set of SRT . For
example, closure under union means that, for every pair of SRT T1
and T2, there exists a SRT T such that M is a match of T iff it is a
match of T1 or T2. The formal definitions for closure under various
operators may be found in the technical report.

Theorem 4.8. SRT are closed under union, concatenation and
Kleene-star.

Example 4.9. The SRT of Figure 1 is equivalent to SREMO (1). ◀

SRT can thus be constructed from the three basic operators
in a compositional manner, providing substantial flexibility and
expressive power for CER applications.

Thus far we have described a basic set of operators with which
we can define complex event patterns and their corresponding com-
putational model. We have shown that our framework, with these
basic operators, has unambiguous, compositional semantics. Con-
trary to previous CER systems, it does not impose ad hoc restrictions
on the use of the operators, which may be used in a fully composi-
tional manner. Besides concatenation/sequence, union/disjunction
and Kleene-star/iteration, CER systems make extensive use of other
operators as well and even constructs which are external to the
language itself: the operators of intersection/conjunction and com-
plement/negation, the use of deterministic automata for CER, the
use of windows and of selection strategies.

We first study the closure properties of SRT under intersection
and complement, two popular operators in CER. We can prove the
following (see technical report for the proof):

Theorem 4.10. SRT are closed under intersection but not under
complement.

Intersection was not defined as an operator of SREMO in Defini-
tion 3.4. Theorem 4.10 shows that we can introduce such an operator.
On the other hand, as is the case for register automata [30], SRT are
not closed under complement. This result could pose difficulties for
handling negation, i.e., the ability to state that a sub-pattern should
not happen for the whole pattern to be detected. However, we can
(partially) overcome this problem by using windows in SREMO and
SRT , i.e., by limiting the length of strings accepted by SREMO and
SRT . In general, CER systems are not expected to remember every
past event of a stream and produce matches involving events that
are very distant. On the contrary, it is usually the case that CER
patterns include an operator that limits the search space of input
events, through the notion of windowing.

For a windowed SREMO, it is possible to construct an equivalent
deterministic SRT , provided that we ignore the outputs of this
SRT , essentially treating it as a recognizer and not as a transducer.
Therefore, equivalence is proven by showing that the language
of a windowed SREMO and that of a SRT are the same, ignoring

3171

equivalence based on the produced matches. We call such automata
output-agnostic SRT .

Theorem 4.11. For every windowed SREMO there exists an equiv-
alent output-agnostic deterministic SRT .

Corollary 4.12. Output-agnostic SRT compiled from windowed
SREMO are closed under complement.

This result allows us to extend windowed SREMO to also in-
clude a negation operator. Although the result about closure under
complement holds only when outputs are ignored, this is a minor
limitation since we are not typically interested to mark elements
that are negated in a SREMO.

CER patterns are sometimes characterized by their so-called se-
lection strategy [25]. This strategy determines whether the input
events in a match should occur contiguously in a stream or intermit-
tently, with other, irrelevant events happening between the relevant
ones. strict-contiguity, skip-till-any-match and skip-till-next-match
are the three common such strategies. We can show that selection
strategies may be applied as operators, through certain rewriting
rules. This implies that multiple (even nested) strategies may be
used in a pattern (more details may be found in the technical report).

For example, skip-till-any-match may be defined as follows:

Definition 4.13 (skip-till-any-match). If e1, e2, · · · , en are SREMO,
then eany :=⟲ (e1, e2, · · · , en) is a SREMO with ⟲ denoting the
skip-till-any-match selection strategy and

eany := e1 · (⊤ ↑ ⊗)
∗ · e2 · (⊤ ↑ ⊗)

∗ · · · (⊤ ↑ ⊗)∗ · en

In summary, we can state the following. Intersection is an opera-
tor that can be supported by our frameworkwithout any constraints.
Negation and determinization can also be supported, but only for
windowed expressions and with the understanding that negated
events cannot be marked as being part of a match. With respect
to selection strategies, skip-till-any-match can be accommodated
without any constraints. skip-till-next-match is also available, with
some minor limitations.

5 EXPERIMENTAL RESULTS
Wehave implemented a SRT -based CER engine by extendingWayeb2.
We present our implementation and experimental results.

5.1 Implementation
The workflow of our engine is the following (see Algorithm 1).
The user provides a pattern in the form of a windowed SREMO
with a specific selection strategy and the engine compiles this
pattern into a SRT Ts . This SRT is then fed with a stream S of sim-
ple events. Initially, before any input event has been consumed,
the set of runs Run(Ts , S ..0) is composed of a single run (see Def-
inition 4.4), [1,T ′.qs , ♯]. S ..0 denotes the stream when no event
has yet been processed. The single run, [1,T ′.qs , ♯], points to the
first event in the stream, it is in its start state qs and its regis-
ters are empty (♯). Wayeb then reads input events one by one
and updates its set of runs after every new event. At each time-
point k , before reading the kth event tk , Wayeb maintains the set
Run(Ts , S ..k−1). After processing tk , it produces Run(Ts , S ..k). This
2https://github.com/ElAlev/Wayeb

Algorithm 1: RunningWayeb with non-deterministic SRT .
Input: SRT Ts , input event tk , active runs Run(Ts , S ..k−1)
Output: Active runs Run(Ts , S ..k), accepting runs

Runf (Ts , S ..k)
1 Runf (Ts , S ..k) ← ∅;
2 Run(Ts , S ..k) ← ∅;
3 foreach ϱ ∈ Run(Ts , S ..k−1) do
4 C ← FindSuccessorConfigurations(ϱ, tk);
5 if |C | > 0 then
6 c ← pick and remove element from C;
7 ϱnew ← UpdateRun(ϱ, c);
8 if IsAccepting(ϱnew) then
9 ReportMatch(ϱnew);

10 Runf (Ts , S ..k) ← Runf (Ts , S ..k) ∪ ϱnew ;
11 else
12 Run(Ts , S ..k) ← Run(Ts , S ..k) ∪ ϱnew ;
13 foreach c ∈ C do
14 ϱ ′ ← Clone(ϱ);
15 ϱnew ← UpdateRun(ϱ ′, c);
16 if IsAccepting(ϱnew) then
17 ReportMatch(ϱnew);
18 Runf (Ts , S ..k) ← Runf (Ts , S ..k) ∪ ϱnew ;
19 else
20 Run(Ts , S ..k) ← Run(Ts , S ..k) ∪ ϱnew ;

21 return Runf (Ts , S ..k),Run(Ts , S ..k);

is achieved by evaluating tk against every ϱ ∈ Run(Ts , S ..k−1). Each

run ϱ = [1,q1,v1]
δ1
→ · · ·

δk−1
→ [k,qk ,vk] has to evaluate tk on all

the outgoing transitions of state qk . If no transition is triggered,
this means that the SRT cannot move to another state and ϱ is thus
discarded and not included in Run(Ts , S ..k). If only one transition

is triggered, then ϱ is updated, becoming ϱ = [1,q1,v1]
δ1
→ · · ·

δk−1
→

[k,qk ,vk]
δk
→ [k +1,qk+1,vk+1], with a new state qk+1 and register

contents vk+1. If n transitions are triggered and thus n next states
are to be reached, then ϱ is replaced by n new runs ϱ ′, ϱ ′′, etc.
Then each of these runs is updated with the new state and register
contents

• ϱ ′ = [1,q1,v1]
δ1
→ · · ·

δk−1
→ [k,qk ,vk]

δ ′k
→ [k + 1,q′k+1,v

′
k+1]

• ϱ ′′ = [1,q1,v1]
δ1
→ · · ·

δk−1
→ [k,qk ,vk]

δ ′′k
→ [k + 1,q′′k+1,v

′′
k+1]

• ...
The updated/new runs are added to the set of runs Run(Ts , S ..k),
replacing ϱ. Accepting runs are treated specially. If qk+1 ∈ Ts .Qf
and δk .o = • for some run ϱ, then ϱ reports all the input events
that it has marked with • and is then “killed”, i.e., not added to
Run(Ts , S ..k). This process is repeated for all runs of Run(Ts , S ..k−1).

The cost of evaluating a single event tk depends on several
factors. It depends on |Run(Ts , S ..k−1)|, the number of active runs
against which tk is to be evaluated. It also depends on the number
of outgoing transitions from the states of active runs as well as on
the complexity of evaluating the predicates of transitions. If we

3172

https://github.com/ElAlev/Wayeb

assume a constant cost for predicate evaluation cp and then bound
the number of outgoing transitions to be at most np , where np is
the number of predicates appearing in the initial SREMO (including
the ⊤ predicate), then the cost of evaluating tk against a run ϱ is
at most np · cp . Therefore, the total cost of evaluating all runs is
|Run(Ts , S ..k−1)| ·np ·cp . In the worst case, all outgoing transitions of
all runs are triggered. We will thus have to create |Run(Ts , S ..k−1)| ·
(np − 1) new run clones and perform |Run(Ts , S ..k−1)| · np run
updates. If cc is the cost of run cloning and cu the cost of run
updating, then the total cost would be

c =|Run(Ts , S ..k−1)| · np · cp + |Run(Ts , S ..k−1)| · (np − 1) · cc+
|Run(Ts , S ..k−1)| · np · cu =

|Run(Ts , S ..k−1)| · (np · cp + ·(np − 1) · cc + np · cu) =

|Run(Ts , S ..k−1)| · (np · (cp + cc + cu) − cc)
(3)

The complexity depends highly on the number of active runs at
every timepoint. We can also estimate the runtime complexity on a
“per-window” basis, by attempting to calculate the total number of
runs created for a window of input events. Relevant results have
been obtained in [45]. For a sequential pattern (without disjunction
or Kleene-star) under strict-contiguity and a windoww , the total
number of created runs is R ·w , where R is the percentage of input
events satisfying predicate p of the outgoing transition from the a
state. Under strict-contiguity, there is only one state where cloning
may occur and this is the first state, which has a self-loop with ⊤
and a transition to another state with predicate p. This predicate
will be satisfied R ·w times. If the average cost of handling a run
is cr (including predicate evaluation, clone creation, etc.), then the
total cost is R · w · cr . Under skip-till-any-match, the first state
will create R · w clones, the second (R · w)2, etc. We thus have
a geometric series and the total number of created runs will be
(R ·w)i+1−1
(R ·w)−1 , where i is the number of “terminal” sub-patterns in the

original pattern. If the pattern contains j Kleene “components” (and
thus the automaton j states with self-loops), then the total number
of runs will be (R ·w)

i−j+1−1
(R ·w)−1 ·2j ·R ·w . We see then that the worst-case

cost becomes exponential in the size of the window and the number
of Kleene-star operators.

5.2 Experimental setup
We present experimental results by comparingWayeb against other
state-of-the-art CER systems. Our goal is to test the systems with
expressive, relational patterns, i.e., with patterns which can relate
multiple events. For this reason, we had to exclude systems that can-
not express relational patterns, such as CORE and previous versions
of Wayeb. For some other systems, there is no publicly available
implementation or the implementation is no longer maintained
(e.g., CRS and Cayuga). Yet some other systems (e.g., TESLA) suffer
from low performance for certain classes of queries [12].

Flink’s implementation of MATCH_RECOGNIZE [3] was also
considered. However, though rich with various features, it is limited
in certain crucial respects. For example, iteration can only be ap-
plied to single events and not to subsequences. Moreover, we were
not able to reproduce results obtained from other engines, evenwith
simple sequential patterns, when applying the skip-till-any-match

strategy. Several matches were missing from the output. Neverthe-
less, we attempted to run some experiments and measure Flink’s
throughput, evenwhen it failed to report all matches.We discovered
that its throughput was the lowest of all other engines and compara-
ble to that of FlinkCEP, Flink’s CER engine. This is not a surprising
result, as Flink’s implementation of MATCH_RECOGNIZE is based
on FlinkCEP. For these reasons, we excluded MATCH_RECOGNIZE
from any further experiments.

Our comparison thus includes SASE v1.0 [7], Esper v8.7.0 [1] and
FlinkCEP v1.16.1 [4]. All these engines are written in Java. Wayeb is
implemented in Scala 2.12.10. All experiments were run on a 64-bit
Linux machine with AMD EPYC 7543 × 126 processors and 400 GB
of memory. We used Java 1.8 for all systems. All experiments for
all systems were run as single-core applications. Wayeb is an open-
source engine and the presented experiments are reproducible3.

As a basis for our experiments, we used the benchmark suite
presented in [13]4. The suite contains three datasets: a) stockmarket
data from a single day (224,473 input events); b) plug measurements
from smart homes (1,000,000 input events) and c) taxi trips from
the city of New York (585,762 input events). For the stock market
dataset, each input event is a BUY or SELL event, containing the
name of the company, the price of the stock, the volume of the
transaction and its timestamp. For the smart homes dataset, each
input event is a LOAD event, containing a load value in Watts, a
household id, a plug id and a timestamp. For the taxis dataset, each
input event is a TRIP event, containing the datetime of the pickup
and dropoff, the zone of the pickup and dropoff, the trip distance
and duration, the fare amount, the tip amount, etc.

Our results are presented incrementally as we increase the com-
plexity of the tested patterns. We start with sequential patterns
where some of the simple events are related through constraints
(Section 5.3). We also study the effect of window size on such pat-
terns (Section 5.4). We then add Kleene operators on single events
to these patterns (Section 5.5). We additionally test patterns with
nested Kleene operators (Section 5.6). Finally, we present results
with patterns containing various, mixed operators (Section 5.7).
Since windows are ubiquitous in CER (for performance issues),
we decided to focus on windowed SREMO in our experiments. We
also fixed the selection strategy to skip-till-any-match, since this
is the most demanding strategy, both in terms of time and space
complexity. For all experiments described here, we have made sure
that all engines produce the same results for each pattern.

The benchmark suite runs each experiment, i.e., each combina-
tion of engine, pattern and window size, 3 times. We report the
average throughput and memory footprint. Throughput is mea-
sured in terms of (input) events processed per second, whereas
memory is measured in terms of used memory (MB). For each run,
multiple memory measurements are taken, one every 10.000 input
events. Before the measurement, the garbage collector is explicitly
called. We report the average of those memory measurements. The
time we use to calculate throughput includes both the time required
to process input events (update the state(s) of the automaton, create
new runs, discard old ones, etc.) and the time required to report any
complex events. However, we have slightly modified the notion of

3https://github.com/ElAlev/cer-srt.
4https://github.com/CORE-cer/CORE-experiments.

3173

https://github.com/ElAlev/cer-srt
https://github.com/CORE-cer/CORE-experiments

3 6 9 12
0
3
6
9

12
15
18

T
h

ro
u

g
h

p
u

t
(e

/s
) ×10

5 Stock Market

3 6 9 12

10
1

10
2

M
e

m
o

ry
 (

M
B

)

Stock Market

 Wayeb
 Esper8
 SASE
 FlinkCEP

3 6 9 12
0
3
6
9

12
15
18

T
h

ro
u

g
h

p
u

t
(e

/s
) ×10

5 Smart Homes

3 6 9 12

10
1

10
2

M
e

m
o

ry
 (

M
B

)

Smart Homes

3 6 9 12
0
3
6
9

12
15
18

T
h

ro
u

g
h

p
u

t
(e

/s
) ×10

5 Taxis

3 6 9 12

10
1

10
2

M
e

m
o

ry
 (

M
B

)

Taxis

Figure 2: Throughput andmemory consumption for sequen-
tial patterns with n-ary predicates as a function of pattern
length. Window sizes arewstock = 500,wsmart = 5,wtaxi = 100.

“reporting a complex event”. Instead of writing it in a file/database
(a system-dependent, expensive operation), we perform (for all
systems) a simple arithmetic operation on the timestamps of its
constituent simple events.

We considered using implementation-independent metrics to
compare the different systems. However, the different implementa-
tions vary widely and do not necessarily share common operators
which could act as basic measurement blocks. This is especially true
for Esper, which, besides automata, also employs trees and Allen’s
interval algebra. For this reason, we decided to follow previous
work on comparing different CER systems, where throughput is
used as a metric [13, 45]. Note, however, that the compared systems
are all JVM-based, thus significantly limiting the effect of language
choice on their performance. With respect to complexity, the pub-
licly available implementation of SASE is very similar to Wayeb.
Thus, they have similar complexities. However, their performance
might vary significantly due to differences in the constants of Eq.
(3) concerning the costs of run cloning/updating. Concerning Flink-
CEP, according to its source code [5], it closely follows the version
of SASE presented in [8]. It is not clear which optimizations are
actually implemented and what their effects on FlinkCEP’s com-
plexity are. Finally, Esper’s documentation discusses the complexity
of some operations, but not those of pattern matching [2].

5.3 Sequential patterns
Our first set of experiments is focused on sequential patterns. We
begin with patterns of the following form:

seq3 :=⟲ ((ϕ1(∼) ↑ • ↓ r1), (ϕ2(∼) ↑ •), (ϕ3(∼, r1) ↑ •))[1..w] (4)
where ⟲ denotes the skip-till-any-match selection strategy (see
Definition 4.13), w is the window size and ϕi all contain “local”
constraints, i.e., conditions applied to the single, most recently read
event, while ϕ3 relates the most recently read input event with the
event that triggered ϕ1. For example, in the stock market dataset,

we have:
ϕ1(x) := x .name = INTC

ϕ2(x) := x .name = RIMM

ϕ3(x,y) := (x .name = QQQ ∧ x .price > y.price)

This specific pattern captures a sequence of three stock ticks from
three given companies. The relational constraint is that the stock
price of the last event should be greater than the price of the first
event. For each such pattern, we run experiments for variable pat-
tern “length”. We say that the length of the Pattern in eq. (4) is
3 because it is composed of 3 terminal sub-expressions. We can
increase the length of the pattern by adding more such expressions.
In our experiments we have used patterns of length 3, 6, 9 and 12.
For example, the pattern of length 6 has the following form:

seq6 :=⟲ ((ϕ1(∼) ↑ • ↓ r1), (ϕ2(∼) ↑ •), (ϕ3(∼, r1) ↑ •),

(ϕ4(∼) ↑ • ↓ r2), (ϕ5(∼) ↑ •), (ϕ6(∼, r2) ↑ •))
[1..w] (5)

The general template remains the same, i.e., ϕ4, ϕ5 and ϕ6 all apply
local filters with a given company name. For every three new sub-
expressions we also add a relational constraint (e.g., between ϕ4
and ϕ6 in Pattern (5)). The window size is kept constant (e.g., for
the stock market dataset,w = 500). The match frequency (ratio of
complex to input events) is in the range of 0.36% − 0% for the stock
market dataset (the lengthier the pattern the lower the number
of detected matches), 0.36% − 0% for the smart homes dataset and
0.05%−0% for the taxis dataset. Note that our purpose in using such
patterns is to stress test the systems under controlled conditions.
Some of the patterns may not be intuitive from a practical point
of view, but allow for controlled experiments. This is the reason
why we use a symmetrical and repeatable structure in the patterns
when increasing their length. We aim at testing the effect of length,
without introducing other performance affecting factors.

Figure 2 presents throughput and memory results for the afore-
mentioned sequential patterns and for all datasets. Wayeb and Esper
stand out clearly as the most efficient engines in terms of through-
put. Wayeb also has a significant advantage over Esper in most
experiments and a slight advantage for the smart homes dataset.
For example, Wayeb is almost 2.5 times as efficient as Esper for the
taxis dataset. FlinkCEP has by far the heaviest memory footprint,
while the other systems seem to have a similar performance. Wayeb
has a slightly better performance than Esper, its main competitor
in terms of throughput. In general, we see that the performance is
relatively stable as a function of pattern length for all systems. This
is especially true for memory. In particular, SASE’s low memory
footprint can be attributed to its general lightweight construction
(the other systems are designed to perform additional tasks, besides
vanilla, single-core CER) and its memory optimization schemes,
such as run recycling. Throughput exhibits slight variations. This
observation implies that the number of created runs does not vary
greatly for the tested sequential patterns.

5.4 Varying window size
In the next set of experiments, we investigated the behavior of
all systems with increasing window sizes. For each dataset, we in-
creased the window size up to the point where throughput exhibits
a significant drop. Figure 3 shows the relevant results. Wayeb again

3174

500 1k 2k 5k 10k 30k
0
3
6
9

12
15
18

T
h
ro

u
g
h
p
u
t
(e

/s
) ×10

5 Stock Market

 Wayeb
 Esper8
 SASE
 FlinkCEP

500 1k 2k 5k 10k 30k

10
1

10
2

10
3

10
4

M
e
m

o
ry

 (
M

B
)

Stock Market

5 10 50 100 500
0
3
6
9

12
15
18

T
h
ro

u
g
h
p
u
t
(e

/s
) ×10

5 Smart Homes

5 10 50 100 500

10
1

10
2

10
3

10
4

M
e
m

o
ry

 (
M

B
)

Smart Homes

100 200 400 1k 10k
0
3
6
9

12
15
18

T
h
ro

u
g
h
p
u
t
(e

/s
) ×10

5 Taxis

100 200 400 1k 10k

10
1

10
2

10
3

10
4

M
e
m

o
ry

 (
M

B
)

Taxis

Figure 3: Throughput andmemory consumption for sequen-
tial patterns with n-ary predicates as a function of window
size. Pattern length is 3.

exhibits the best performance in terms of throughput, followed by
Esper. Moreover, Wayeb remains better than Esper and FlinkCEP
in terms of memory consumption. All systems exhibit a through-
put deterioration as the window size increases. This implies that
window size is more important in determining the number of cre-
ated runs than pattern length. Wayeb and Esper also show a stable
memory footprint, indicating that the memory space reserved for
the number of runs is small compared to the total space required by
the engines. This conclusion is reinforced by SASE’s memory dete-
rioration. As a bare-bones CER engine, its memory consumption is
dominated by the number of runs, which is visible in the results.

5.5 Patterns with Kleene operators
We now move to patterns containing Kleene operators. We tested
the engines against patterns of the following form:

k3 :=⟲ ((ϕ1(∼) ↑ • ↓ r1), (ϕ2(∼) ↑ •)+, (ϕ3(∼, r1) ↑ •))[1..w] (6)

Pattern (6) is the same as Pattern (4), with a single difference. The
middle sub-expression (ϕ2) may be repeated more than once, by
using a Kleene-plus operator (ϕ+ := ϕ · ϕ∗). Again, we use patterns
of length 3, 6, 9, 12, gradually increasing the number of Kleene
operators (e.g., patterns of length 6 have 2 such operators). The
match frequencies are in the range of 0.61% − 0%, 1.35% − 0%,
0.08% − 0% for the stock market, smart homes and taxis dataset.

Figure 4 shows the throughput results (left column). We excluded
SASE and FlinkCEP from this set of experiments because they
cannot support patterns with Kleene operators with the expected
semantics. As far as SASE is concerned, although it can accept,
compile and run patterns with Kleene operators, it tends to produce
manymorematches than those expected from the semantics of skip-
till-any-match. This indicates that SASE could possibly suffer from
soundness issues, at least when some operators are used. FlinkCEP,
on the other hand, has the inverse problem. Our investigation of
FlinkCEP has led us to conclude that this behavior is probably due

3 6 9 12
0
3
6
9

12
15
18

T
h

ro
u

g
h

p
u

t
(e

/s
) ×10

5 Stock Market

 Wayeb
 Esper8

4 8 12 16
0
3
6
9

12
15
18

T
h

ro
u

g
h

p
u

t
(e

/s
) ×10

5 Stock Market

 500
 1k
 2k
 5k
 10k
 30k

3 6 9 12
0
3
6
9

12
15
18

T
h

ro
u

g
h

p
u

t
(e

/s
) ×10

5 Smart Homes

4 8 12 16
0
3
6
9

12
15
18

T
h

ro
u

g
h

p
u

t
(e

/s
) ×10

5 Smart Homes

 5
 10
 20
 30
 40

3 6 9 12
0
3
6
9

12
15
18

T
h

ro
u

g
h

p
u

t
(e

/s
) ×10

5 Taxis

4 8 12 16
0
3
6
9

12
15
18

T
h

ro
u

g
h

p
u

t
(e

/s
) ×10

5 Taxis

 100
 200
 300
 400
 500
 1k

Figure 4: Throughput for patterns with n-ary predicates
and Kleene operators as a function of pattern length (left).
Throughput for patterns with n-ary predicates and nested
Kleene operators as a function of pattern length for various
windows (right).

to the fact that FlinkCEP does not allow the use of skip-till-any-
match within a Kleene operator. Some matches are thus dropped.
For these reasons, we focused on Wayeb and Esper which can
support patterns with Kleene operators and skip-till-any-match.

Wayeb always exhibits higher throughput than Esper. In some
cases (e.g., for the taxis dataset), Wayeb’s throughput is 6 times
that of Esper’s. As expected, the performance of both Wayeb and
Esper for this class of patterns is lower than their performance for
sequential patterns. Due to the presence of Kleene operators, the
engines need to produce many more runs. Whenever the stream
contains simple events satisfying ϕ2, the engines need to keep track
of all possible combinations of these events. This is the reason why
more runs are created. BothWayeb and Esper have a stable memory
usage across all patterns: less than 5 and 10 MB respectively.

5.6 Patterns with nested Kleene operators
At the next level of pattern complexity, we have patterns with
nested Kleene operators. In order to run experiments with such
patterns, we used expressions of the following form:

kn4 :=⟲ ((ϕ1(∼) ↑ • ↓ r1), ((ϕ2(∼) ↑ •), (ϕ3(∼) ↑ •)+)+,

(ϕ4(∼, r1) ↑ •))
[1..w] (7)

Note that ϕ2 is under a single Kleene-plus operators whereas ϕ3
under two. This expression has 4 terminal sub-expressions. We
also used patterns with 8, 12 and 16 terminal sub-expressions, i.e.,
patterns with multiple (2, 3 and 4) nested Kleene operators. The
match frequencies are in the range of 4.29%−2.000%, 0.08%−0.64%,
0.03% − 1.19% for the stock market, smart homes and taxis dataset.
These numbers correspond to the extreme window values of the
shortest query kn4 (the larger the window the more the detected
matches). For lengthier queries, the frequency may drop to 0.0%.

3175

q1 q2 q3 q4 q5

Pattern

0

5

10

15

T
h

ro
u

g
h

p
u

t
(e

/s
) ×10

5

 Wayeb Esper8 SASE FlinkCEP

Figure 5: Throughput for patterns with n-ary predicates and
various operators.w = 1000.

SASE’s language does not support patterns with nested Kleene
operators. FlinkCEP has the issues mentioned in Section 5.5 regard-
ing the semantics of skip-till-any-match with iteration. Esper’s
language is also not able to support such patterns. Wayeb is the
only engine which can properly support nested Kleene operators.

The experimental results are shown in Figure 4 (right column).
In order to gain a more complete understanding of Wayeb’s be-
havior, we show results for multiple values of the window size.
Wayeb maintains high throughput, in the order of millions or hun-
dreds of thousands of events per second, for most combinations
of window size and pattern length. As the window size increases,
Wayeb’s performance deteriorates, since larger window sizes al-
ways lead to more runs being created. The combined variation of
window size and pattern length in this figure illustrates also the
more pronounced combined effect on throughput. The window size
still remains the most important factor for performance. For large
windows though, the pattern length starts having an impact as well,
since larger windows give a chance to longer patterns to create
additional runs.

5.7 Patterns with other operators
In the last set of experiments, we used the stock market dataset
and tested all engines against patterns with various operators. We
considered a diverse range of patterns, where other operators like
disjunction, iteration and their combination were employed. In
particular, we tested 5 patterns:

(1) A sequential pattern starting and ending with a SELL event,
and with two BUY events in between.

q1 :=⟲ ((ϕ1(∼) ↑ • ↓ r1), (ϕ2(∼) ↑ •),

(ϕ3(∼) ↑ •), (ϕ4(∼, r1) ↑ •))
[1..w] (8)

where
ϕ1(x) := x .type = SELL ∧ x .name = MSFT

ϕ2(x) := x .type = BUY ∧ x .name = ORCL

ϕ3(x) := x .type = BUY ∧ x .name = CSCO

ϕ3(x,y) := x .type = SELL ∧ x .name = AMAT ∧ x .price < y.price

(2) q2: same as q1, but with local thresholds on price.
(3) q3: same as q1, but ϕ2 now includes disjunction: ϕ2(x) :=
(x .type = BUY ∨ x .type = SELL) ∧ x .name = ORCL. We
also applied the same modification to ϕ3.

(4) q4: same as q3, but with local thresholds on price.
(5) Combining iteration and disjunction:

q5 :=⟲ ((ϕ1(∼) ↑ • ↓ r1), (ϕ2(∼) ↑ •)+, (ϕ3(∼, r1) ↑ •))[1..w] (9)

where

ϕ2(x) := (x .type = BUY ∨ x .type = SELL)∧

x .name = QQQ ∧ x .volume = 4000

SASE can only support SREMO q1 and q2. Therefore, we do not
show SASE results for SREMO q3, q4 and q5. FlinkCEP supports all
5 patterns, but its semantics of the iteration operator are ambiguous
and its results when using iteration do not match those of the other
systems. Therefore, we do not show FlinkCEP results for SREMO
q5. The match frequencies are in the range of 0% (q2) to 13% (q3).

The relevant results are shown in Figure 5.Wayeb has the highest
throughput for all patterns, followed by Esper. The performance for
q2 is higher than that for q1, due to the presence of extra threshold
filters which prune several runs. On the other hand, q3 is the most
demanding one, because it does not have any threshold filters and
it includes disjunction, thus leading to more runs being created.
q4 rebounds to higher throughput figures, due to the inclusion
of filters. For q5, Esper has its lowest performance and Wayeb its
second lowest, due to the presence of both iteration and disjunction.

Finally, we experimentally tested Wayeb’s performance on the
above patterns when there is no requirement for it to produce an
output, i.e., to completely enumerate each complex event. For this
purpose, we completely switched off Wayeb’s functionality of grad-
ually creating partial matches. We only retained its functionality
of tracking the runs to determine whether they have reached a
final state. Wayeb’s performance remained almost unaffected. The
reason for this behavior is that we already represent runs in a very
minimal way, even when they need to carry partial matches. Thus,
the main bottleneck for Wayeb lies in the actual evaluation and
maintenance of the runs and not in the production of their output.

6 SUMMARY & FUTUREWORK
We presented a system for CER based on an automaton model, SRT ,
that supports patterns with n-ary conditions (n ≥ 1), which are
quintessential for CER applications. SRT have nice compositional
properties, as most of the standard operators in CER, such as con-
catenation / sequence, union / disjunction, intersection / conjunc-
tion and Kleene-star / iteration, may be used freely. Complement
may also be used and determinization is possible, if a window op-
erator is used, a very common feature in CER. The experimental
results show that our framework with SRT is highly expressive,
with the ability to support complex patterns with nested operators
and relational constraints, while outperforming other engines for
most patterns and workloads.

Our aim for the future is to investigate our engine’s optimization
potential, given that its current implementation is straightforward.
We will also explore the ability of SREMO and SRT to capture ag-
gregates, which is related to how the current semantics of SREMO
determine (register) variable binding. We intend to explore how
SREMO can efficiently capture aggregates. Finally, we will investi-
gate how we can extend SRT so that they can handle hierarchies of
events, through the use of complete histories of events [44].

ACKNOWLEDGMENTS
Supported by the CREXDATAproject (EUHorizon2020No 101092749).

3176

REFERENCES
[1] [n.d.]. Esper. https://www.espertech.com/esper/. [Online; accessed 23-May-

2024].
[2] [n.d.]. Esper complexity. http://esper.espertech.com/release-8.9.0/reference-

esper/html/performance.html. [Online; accessed 23-May-2024].
[3] [n.d.]. Flink - Pattern Recognition. https://nightlies.apache.org/flink/flink-docs-

release-1.18/docs/dev/table/sql/queries/match_recognize/. [Online; accessed
23-May-2024].

[4] [n.d.]. FlinkCEP - Complex event processing for Flink. https://nightlies.apache.
org/flink/flink-docs-release-1.17/docs/libs/cep/. [Online; accessed 23-May-2024].

[5] [n.d.]. FlinkCEP NFA source code. https://github.com/apache/flink/blob/master/
flink-libraries/flink-cep/src/main/java/org/apache/flink/cep/nfa/NFA.java. [On-
line; accessed 23-May-2024].

[6] [n.d.]. ISO/IEC 19075-5:2021 Information technology — Guidance for
the use of database language SQL — Part 5: Row pattern recogni-
tion. https://standards.iteh.ai/catalog/standards/iso/f753ca23-4b3c-4c9f-8a0a-
1113f39bc404/iso-iec-19075-5-2021. [Online; accessed 23-May-2024].

[7] [n.d.]. SASE Open Source System. https://github.com/haopeng/sase. [Online;
accessed 23-May-2024].

[8] Jagrati Agrawal, Yanlei Diao, Daniel Gyllstrom, and Neil Immerman. 2008. Effi-
cient pattern matching over event streams. In SIGMOD Conference. ACM, 147–
160.

[9] Elias Alevizos, Alexander Artikis, and George Paliouras. 2018. Wayeb: a Tool
for Complex Event Forecasting. In LPAR (EPiC Series in Computing), Vol. 57.
EasyChair, 26–35.

[10] Elias Alevizos, Alexander Artikis, and Georgios Paliouras. 2022. Complex event
forecasting with prediction suffix trees. VLDB J. 31, 1 (2022), 157–180.

[11] Mikolaj Bojanczyk, Claire David, Anca Muscholl, Thomas Schwentick, and Luc
Segoufin. 2011. Two-variable logic on data words. ACM Trans. Comput. Log. 12,
4 (2011), 27:1–27:26.

[12] Marco Bucchi, Alejandro Grez, Andrés Quintana, Cristian Riveros, and Stijn
Vansummeren. 2021. CORE: a COmplex event Recognition Engine. CoRR
abs/2111.04635 (2021).

[13] Marco Bucchi, Alejandro Grez, Andrés Quintana, Cristian Riveros, and Stijn
Vansummeren. 2022. CORE: a COmplex event Recognition Engine. Proc. VLDB
Endow. 15, 9 (2022), 1951–1964.

[14] Badrish Chandramouli, Jonathan Goldstein, and David Maier. 2010. High-
Performance Dynamic Pattern Matching over Disordered Streams. Proc. VLDB
Endow. 3, 1 (2010), 220–231.

[15] Gianpaolo Cugola and Alessandro Margara. 2010. TESLA: a formally defined
event specification language. In DEBS. ACM, 50–61.

[16] Gianpaolo Cugola andAlessandroMargara. 2012. Processing flows of information:
From data stream to complex event processing. ACM Comput. Surv. 44, 3 (2012),
15:1–15:62.

[17] Loris D’Antoni, Tiago Ferreira, Matteo Sammartino, and Alexandra Silva. 2019.
Symbolic Register Automata. In CAV (1) (Lecture Notes in Computer Science),
Vol. 11561. Springer, 3–21.

[18] Loris D’Antoni and Margus Veanes. 2017. The Power of Symbolic Automata and
Transducers. In CAV (1) (Lecture Notes in Computer Science), Vol. 10426. Springer,
47–67.

[19] Alan Demers, Johannes Gehrke, Mingsheng Hong, Mirek Riedewald, and Walker
White. 2005. A general algebra and implementation for monitoring event streams.
Technical Report. Cornell University.

[20] Alan J. Demers, Johannes Gehrke, Mingsheng Hong, Mirek Riedewald, and
Walker M. White. 2006. Towards Expressive Publish/Subscribe Systems. In
EDBT (Lecture Notes in Computer Science), Vol. 3896. Springer, 627–644.

[21] Alan J. Demers, Johannes Gehrke, Biswanath Panda, Mirek Riedewald, Varun
Sharma, and Walker M. White. 2007. Cayuga: A General Purpose Event Monitor-
ing System. In CIDR. www.cidrdb.org, 412–422.

[22] Christophe Dousson and Pierre Le Maigat. 2007. Chronicle Recognition Improve-
ment Using Temporal Focusing and Hierarchization. In IJCAI. 324–329.

[23] Opher Etzion and Peter Niblett. 2010. Event Processing in Action. Manning
Publications Company.

[24] Malik Ghallab. 1996. On Chronicles: Representation, On-line Recognition and
Learning. In KR. Morgan Kaufmann, 597–606.

[25] Nikos Giatrakos, Elias Alevizos, Alexander Artikis, Antonios Deligiannakis, and
Minos N. Garofalakis. 2020. Complex event recognition in the Big Data era: a
survey. VLDB J. 29, 1 (2020), 313–352.

[26] Alejandro Grez, Cristian Riveros, and Martín Ugarte. 2019. A Formal Framework
for Complex Event Processing. In ICDT (LIPIcs), Vol. 127. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 5:1–5:18.

[27] Alejandro Grez, Cristian Riveros, Martín Ugarte, and Stijn Vansummeren. 2020.
On the Expressiveness of Languages for Complex Event Recognition. In ICDT
(LIPIcs), Vol. 155. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 15:1–15:17.

[28] Sylvain Hallé. 2017. From Complex Event Processing to Simple Event Processing.
CoRR abs/1702.08051 (2017). http://arxiv.org/abs/1702.08051

[29] Ulrich Hedtstück. 2017. Complex event processing: Verarbeitung von Ereignis-
mustern in Datenströmen. Springer Vieweg, Berlin.

[30] Michael Kaminski and Nissim Francez. 1994. Finite-Memory Automata. Theor.
Comput. Sci. 134, 2 (1994), 329–363.

[31] Michael Körber, Nikolaus Glombiewski, and Bernhard Seeger. 2021. Index-
Accelerated Pattern Matching in Event Stores. In SIGMOD Conference. ACM,
1023–1036.

[32] Leonid Libkin, Tony Tan, and Domagoj Vrgoc. 2015. Regular expressions for data
words. J. Comput. Syst. Sci. 81, 7 (2015), 1278–1297.

[33] Leonid Libkin and Domagoj Vrgoc. 2012. Regular Expressions for Data Words.
In LPAR (Lecture Notes in Computer Science), Vol. 7180. Springer, 274–288.

[34] David C. Luckham. 2005. The power of events - an introduction to complex event
processing in distributed enterprise systems. ACM.

[35] Periklis Mantenoglou, Dimitrios Kelesis, and Alexander Artikis. 2023. Complex
Event Recognition with Allen Relations. In KR. 502–511.

[36] Yuan Mei and Samuel Madden. 2009. ZStream: a cost-based query processor for
adaptively detecting composite events. In SIGMOD Conference. ACM, 193–206.

[37] Frank Neven, Thomas Schwentick, and Victor Vianu. 2004. Finite state machines
for strings over infinite alphabets. ACM Trans. Comput. Log. 5, 3 (2004), 403–435.

[38] Dusan Petkovic. 2022. Specification of Row Pattern Recognition in the SQL
Standard and its Implementations. Datenbank-Spektrum 22, 2 (2022), 163–174.

[39] Luc Segoufin. 2006. Automata and Logics for Words and Trees over an Infinite
Alphabet. In CSL (Lecture Notes in Computer Science), Vol. 4207. Springer, 41–57.

[40] Efthimis Tsilionis, Alexander Artikis, and Georgios Paliouras. 2022. Incremental
Event Calculus for Run-Time Reasoning. J. Artif. Intell. Res. 73 (2022), 967–1023.

[41] Gertjan van Noord and Dale Gerdemann. 2001. Finite State Transducers with
Predicates and Identities. Grammars 4, 3 (2001), 263–286.

[42] Margus Veanes. 2013. Applications of Symbolic Finite Automata. In CIAA (Lecture
Notes in Computer Science), Vol. 7982. Springer, 16–23.

[43] Margus Veanes, Nikolaj Bjørner, and Leonardo Mendonça de Moura. 2010. Sym-
bolic Automata Constraint Solving. In LPAR (Yogyakarta) (Lecture Notes in Com-
puter Science), Vol. 6397. Springer, 640–654.

[44] Walker M. White, Mirek Riedewald, Johannes Gehrke, and Alan J. Demers. 2007.
What is "next" in event processing?. In PODS. ACM, 263–272.

[45] Haopeng Zhang, Yanlei Diao, and Neil Immerman. 2014. On complexity and
optimization of expensive queries in complex event processing. In SIGMOD
Conference. ACM, 217–228.

[46] Erkang Zhu, Silu Huang, and Surajit Chaudhuri. 2023. High-Performance Row
Pattern Recognition Using Joins. Proc. VLDB Endow. 16, 5 (2023), 1181–1194.

3177

https://www.espertech.com/esper/
http://esper.espertech.com/release-8.9.0/reference-esper/html/performance.html
http://esper.espertech.com/release-8.9.0/reference-esper/html/performance.html
https://nightlies.apache.org/flink/flink-docs-release-1.18/docs/dev/table/sql/queries/match_recognize/
https://nightlies.apache.org/flink/flink-docs-release-1.18/docs/dev/table/sql/queries/match_recognize/
https://nightlies.apache.org/flink/flink-docs-release-1.17/docs/libs/cep/
https://nightlies.apache.org/flink/flink-docs-release-1.17/docs/libs/cep/
https://github.com/apache/flink/blob/master/flink-libraries/flink-cep/src/main/java/org/apache/flink/cep/nfa/NFA.java
https://github.com/apache/flink/blob/master/flink-libraries/flink-cep/src/main/java/org/apache/flink/cep/nfa/NFA.java
https://standards.iteh.ai/catalog/standards/iso/f753ca23-4b3c-4c9f-8a0a-1113f39bc404/iso-iec-19075-5-2021
https://standards.iteh.ai/catalog/standards/iso/f753ca23-4b3c-4c9f-8a0a-1113f39bc404/iso-iec-19075-5-2021
https://github.com/haopeng/sase
http://arxiv.org/abs/1702.08051

	Abstract
	1 Introduction
	2 Related Work
	3 Symbolic Regular Expressions with Memory and Output
	4 Symbolic Register Transducers
	5 Experimental results
	5.1 Implementation
	5.2 Experimental setup
	5.3 Sequential patterns
	5.4 Varying window size
	5.5 Patterns with Kleene operators
	5.6 Patterns with nested Kleene operators
	5.7 Patterns with other operators

	6 Summary & Future Work
	Acknowledgments
	References

