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ABSTRACT
The growing importance of data visualization in business intelli-
gence and data science emphasizes the need for tools that can effi-
ciently generate meaningful visualizations from large datasets. Ex-
isting tools fall into twomain categories: human-powered tools (e.g.,
Tableau and PowerBI), which require intensive expert involvement,
and AI-powered automated tools (e.g., Draco and Table2Charts),
which often fall short of guessing specific user needs.

In this paper, we aim to achieve the best of both worlds. Our
key idea is to initially auto-generate a set of high-quality visualiza-
tions to minimize manual effort, then refine this process iteratively
with user feedback to more closely align with their needs. To this
end, we present HAIChart, a reinforcement learning-based frame-
work designed to iteratively recommend good visualizations for a
given dataset by incorporating user feedback. Specifically, we pro-
pose a Monte Carlo Graph Search-based visualization generation
algorithm paired with a composite reward function to efficiently
explore the visualization space and automatically generate good
visualizations. We devise a visualization hints mechanism to ac-
tively incorporate user feedback, thus progressively refining the
visualization generation module. We further prove that the top-𝑘
visualization hints selection problem is NP-hard and design an effi-
cient algorithm. We conduct both quantitative evaluations and user
studies, showing thatHAIChart significantly outperforms state-of-
the-art human-powered tools (21% better at Recall and 1.8× faster)
and AI-powered automatic tools (25.1% and 14.9% better in terms
of Hit@3 and R10@30, respectively).
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1 INTRODUCTION
Data visualization is an effective means to uncover underlying
insights [41, 46, 61, 68]. With the increasing importance of data
visualization, how to help users effectively and easily create
visualizations from massive datasets has attracted extensive at-
tention from academia [22, 24, 28, 29, 47, 54, 65] and industry (e.g.,
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Figure 1: Three cases of visualization approaches

Tableau [2]). Existing visualization tools can be broadly catego-
rized into two groups based on the user effort required for creating
visualizations, i.e., human-powered and AI-powered tools.

Human-powered Visualization tools, including Voyager2 [63],
DeVIL [66], and Lary [44], enable users to create their desired visu-
alizations by manually specifying the data attributes, transforma-
tions, and visual encodings, as shown in Figure 1(a). This process
is time-consuming and error-prone because it requires a deep un-
derstanding of the datasets and analytical tasks. Users often need
to attempt multiple iterations to achieve the final visualization.
Consequently, interactive visualization demands domain- and data-
specific expertise, which can significantly hinder novice users from
effectively engaging in visual analysis.

In response to the above challenges, recent research tries to auto-
mate the visualization process empowered by artificial intelligence.

AI-powered Automatic Visualization aims to enumerate and
recommend the (top-𝑘) best visualizations for a given dataset based
on predefined constraints [13, 26, 31, 36, 38] or learning-based
recommendation algorithms [39, 69]. For example, DeepEye [31]
recommends visualizations based on visualization rules and a rank-
ing model, while Table2Charts [69] generates top-𝑘 visualizations
using a table-to-sequence generation model. Although these tools
provide a valuable starting point for data analysis by suggesting
“good” visualizations, they risk misleading users with indiscrimi-
nate recommendations. The key issue is that these tools typically
rely on static logical rules or deep learning models without ade-
quately capturing user intent or feedback, hindering the tailoring
of recommended visualizations to better suit users’ needs.

Human and AI Paired Visualization. To mitigate the limitations
of the above methods and strike a balance between human-powered
and AI-powered visualization, we present Human and AI Paired
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Table 1: Comparison of HAIChart with existing works (Dataset: 𝐷 , User Operations:𝑈 , Visualizations: 𝑉 )

Types Systems Input Output Multi-round? Learned? Recommendation Perspectives
Domain Knowl. User Preferences Data Features

Human-powered
Voyager2 [63] 𝐷 ,𝑈 𝑉 ✗ ✗ ✓ ✗ ✗

DeVIL [66] 𝐷 ,𝑈 𝑉 ✗ ✗ ✓ ✓ ✗

Lary [44] 𝐷 ,𝑈 𝑉 ✗ ✗ ✓ ✓ ✗

AI-powered

DeepEye [31] 𝐷 𝑉 ✗ ✓ ✓ ✗ ✓

VizML [19] 𝐷 𝑉 ✗ ✓ ✗ ✗ ✓

Draco-Learn [38] 𝐷 𝑉 ✗ ✓ ✓ ✓ ✓

Data2Vis [15] 𝐷 𝑉 ✗ ✓ ✗ ✗ ✓

KG4VIS [26] 𝐷 , Knowl. Graph 𝑉 ✗ ✓ ✓ ✗ ✗

Table2Charts [69] 𝐷 𝑉 ✗ ✓ ✗ ✗ ✓

VizGRank [16] 𝐷 𝑉 ✗ ✗ ✓ ✗ ✓

PVisRec [39] 𝐷 𝑉 ✗ ✓ ✗ ✓ ✓

LLM4Vis [59] 𝐷 𝑉 ✗ ✓ ✗ ✗ ✓

PI2 [10] 𝐷 , SQL Queries 𝑉 , Interface ✓ ✗ ✓ ✓ ✗

Human-AI Paired HAIChart 𝐷 , User Feedback 𝑉 , Hints ✓ ✓ ✓ ✓ ✓

Visualization, as shown in Figure 1(c). Our key idea is to initially
recommend a set of high-quality visualizations and then continue
to refine these recommended visualizations by providing users
with visualization hints for further tuning. This approach not only
simplifies the process for novice users seeking to discover effective
visualizations but also empowers users to actively participate in and
guide the AI-powered visualization process through the human-
centered feedback, as shown in Table 1.

Note that another natural way humans interact with AI for vi-
sualizations is through conversations powered by Large Language
Models (LLMs), or briefly LLM4VIS [11, 14, 18, 21, 56, 59]. However,
the key limitation of LLM4VIS is that even with user natural lan-
guage hints, it is hard to precisely modify visualizations outputted
by LLMs using natural language; that is, easy-to-use but hard-to-
calibrate. Please refer to Section 7 for an empirical comparison with
LLM4VIS powered by GPT-4 and Section 8 for more discussions.

Challenges. There are three challenges in our problem. (C1) How
can we effectively and efficiently explore the visualization search
space to recommend visualizations that are both high-quality and
relevant? (C2) How can we evaluate the “goodness” of a generated
visualization comprehensively? (C3) How can we understand and
effectively integrate user feedback to guide the system toward
visualizations that align with users’ requirements?

Our Proposal: HAIChart. To address these challenges, we pro-
pose HAIChart to automatically and progressively recommend a
series of visualizations that adapt to evolving user preferences over
time. This process is characterized by the system’s ability to learn
from user interactions and feedback, iteratively refining the recom-
mended visualizations. The objective is to converge towards a final set
of visualizations that closely align with the user’s preferences, within
the constraints of the available data and visualization search space.
This iterative optimization is essentially a series of decisions based
on user intent, similar to the key idea in reinforcement learning.

We adopt the reinforcement learning framework to implement
HAIChart. We treat a visualization as a sequence of operations,
such as chart types and 𝑥/𝑦-axes configurations. Thus, the “state”
is the current sequence of incomplete visualization, the “action”
refers to selecting the subsequent visualization operation within
that state, and the “environment” is the visualization system itself.

The environment evaluates the quality of the visualizations and
provides rewards to guide the “agent” responsible for generating
and recommending visualizations.

We utilize the Monte Carlo Graph Search (MCGS) algorithm to
build this agent, enabling it to efficiently navigate the extensive
search space to discover optimal visualizations (addressing C1). To
more accurately evaluate the visualizations, we design a composite
reward function that takes into account the data features, visu-
alization domain knowledge, and user preferences to ensure the
quality of the visualizations (addressing C2). Moreover, we devise
a visualization hints selection algorithm for recommending useful
hints (e.g., “explore why flights are delayed”) to assist the user in
data exploration. This approach can integrate user feedback for
better visualization results (addressing C3).

Contributions.We make the following notable contributions.
(1) Problem Statement. We formally define the problem of human
and AI paired visualization (Section 2).
(2) HAIChart. We propose a reinforcement learning-based system,
HAIChart, to integrate human insights and AI capabilities for bet-
ter visualizations. HAIChart initially generates a set of promising
visualizations for users and iteratively improves the alignment of
recommended visualizations with user preferences by selecting a
set of visualization hints for interaction (Sections 3 & 4).
(3) Learning-to-Rate Visualization. We design a composite reward
function to rate the quality of visualizations, which is used to accu-
rately guide the visualization generation process (Section 5).
(4) Visualization Hints Selection. We design visualization hints as
the proxy to collect user feedback, prove the selection of the top-𝑘
visualization hints is an NP-hard problem and design an efficient
algorithm to select the top-𝑘 hints (Section 6).
(5) Experiments. We conduct both quantitative evaluations and
user studies to demonstrate that HAIChart outperforms human-
powered tools in terms of both accuracy (21% better at Recall) and
efficiency in creating visualizations (1.8× faster) and is better than
AI-powered systems in effectiveness by 25.1% and 14.9% in terms
of Hit@3 and R10@30, respectively (Section 7).
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Figure 2: An overview of HAIChart

2 PROBLEM AND SOLUTION OVERVIEW
2.1 Problem
Given a relational table 𝐷 , letV be all valid visualizations, and V+

be a set of “good” visualizations, both being associated with 𝐷 . In
practice, this set of visualizations V+ is often manually selected by
the users, such as the visualizations in a dashboard.

Visualization Selection. The problem of visualization selection
is to select a set V of visualizations from all valid visualizations
V , which maximizes V ∩ V+ (i.e., maximizes the number of good
visualizations being selected) and minimizes V \ V+ (i.e., minimizes
the number of bad visualizations being selected).

When being operated manually, visualization selection is time-
consuming, and its effectiveness depends on the user’s expertise in
data visualization and domain knowledge of specific datasets.

To reduce human effort, visualization recommendation algo-
rithms have been studied. These algorithms are mostly powered
by machine learning algorithms. However, these recommendation
algorithms are mainly one round.

One-Round Visualization Recommendation. The problem of
one-round visualization recommendation is to automatically suggest
a set V𝑆 of visualizations and ask the user to select a subset V ⊆ V𝑆 .

In practice, a one-round visualization recommendation may not
be sufficient to support the user’s diversified intent, e.g., selecting
all charts for a dashboard. Therefore, we propose to study a new
problem, which does multiple rounds of interactions with users to
collectively select all required good visualizations.

Multi-Round Visualization Recommendation. The problem
of multi-round visualization recommendation is to recommend 𝑛

rounds of visualizations to users. In each round, we can suggest V𝑆
𝑖

visualizations (optionally with some natural language hints), and
the user can select a subset V𝑖 ⊆ V𝑆

𝑖
visualizations in the 𝑖-th round.

After 𝑛 rounds, the user will select V =
⋃𝑛

𝑖=1 V𝑖 visualizations.

2.2 Solution Overview

HAIChart Overview.As shown in Figure 2,HAIChart consists of
two components: an offline part for learning-to-rate visualizations
and an online part for automatically recommending good visualiza-
tions and providing visualization hints for user interaction.

Offline: Learning-to-Rate Visualization. As shown in Fig-
ure 2(a), the offline part is responsible for understanding and evalu-
ating visualization quality. To achieve this, we incorporate visual-
ization rule of thumb, data features, and user preferences to learn a
composite reward function.

Online: Multi-Round Visualizations and Hints Recommen-
dation. As shown in Figure 2(b), HAIChart leverages an agent
powered by Monte Carlo Graph Search to recommend a set of
promising visualizations along with visualization hints to guide fur-
ther exploratory actions. Specifically, this agent initially traverses
the visualization search space effectively and efficiently. It generates
possible visualizations, estimates their quality based on the well-
trained composite reward function, and finally returns a ranked
list of high-quality visualizations. In addition, the system computes
visualization hints, derived from the current states of the Monte
Carlo Graph. The user can browse the recommended visualizations
and hints. Once the user selects a hint, the system will further ex-
plore the visualization space and recommend visualizations guided
by the selected hint.

3 REINFORCEMENT LEARNING FOR MULTI-
ROUND VISUALIZATION RECOMMENDATION

3.1 Preliminary
Inspired by previous works [31, 36, 38], we adopt a visualization
query to represent all possible visualizations discussed in this paper.
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Visualization Query. Given a relational table 𝐷 with
the scheme 𝑅(𝐴1, ..., 𝐴𝑚), a visualization query 𝑄 is com-
posed of a sequence of visualization operations (i.e., actions)
A(mark, encoding, transformation). Specifically:

• mark represents the type of visualization charts including
bar, line, pie, and scatter.

• encoding denotes the encoding of data attributes including
𝑥/𝑦-axes, aggregate functions, and color schemes.
• transformation defines data transformations: filtering, bin-

ning, grouping, sorting, and top-𝑘 operations.
Applying the visualization query 𝑄 to the table 𝐷 results in

the corresponding visualization 𝑉 , i.e., 𝑉 = 𝑄 (𝐷). Therefore, any
visualization 𝑉 for a table 𝐷 can be represented by a combination
of data attributes and cell values in 𝐷 , along with visualization
operations (i.e., actions) in A.

Example 1: [Visualization Query] Figure 3 shows an illustrative
query (𝑄) applied to the flight delays dataset (𝐷). The query visual-
izes a bar chart with the 𝑥-axis encoding cities (i.e., City column)
and the 𝑦-axis showing the average delay (i.e., AVG(Delay)). The
bar chart (𝑄 (𝐷)) shows the trend in average delays, showing that
LA (i.e., Los Angeles) has the shortest average delays, while MSP
(i.e.,Minneapolis) has the longest average delays. 2

Undoubtedly, the search space for visualizations is very large,
growing exponentially with the increase in number of columns and
combinations of visualization operations.

To effectively navigate this huge search space, we introduce
the concept of visualization query graph to represent all possible
visualizations for a given dataset, defined as follows:

Definition 3.1: [Visualization Query Graph] Given a table 𝐷 , the
visualization query graph G(V, E) is defined as a directed acyclic

graph. Specifically, each node 𝑣 ∈ V represents a visualization
operation, and each directed edge 𝑒 ∈ E indicates a transition
from node 𝑣𝑖 to 𝑣 𝑗 . The weight of an edge (𝑣𝑖 , 𝑣 𝑗 ), denoted by𝑤𝑖 𝑗 ,
indicates the effectiveness of transitioning from operation 𝑣𝑖 to
𝑣 𝑗 . A path from the root node to an end node within this graph
represents a sequence of visualization operations, which together
form a candidate visualization query. 2

Example 2: [Visualization Query Graph] As illustrated in Figure 4,
each layer of the graph corresponds to the possible values that a
visualization action can take. For example, the chart type (mark)
could be bar, line, scatter, pie, etc. Taking the blue path as an example,
it represents a visualization query – “mark Bar encoding x City
y AVG(Delay) transform group City”. After executing this query
over the dataset, it will create a bar chart. 2

3.2 HAIChart Details
Given a dataset for visualization, users typically select visualization
types, data columns, and transformation operations based on their
preliminary understanding. If the results do not meet their analysis
requirements, they adjust their operations to optimize the output.
This visualization process is a sequence of decision-making based on
user intent, similar to Reinforcement Learning (RL), where feedback
from the visualization system (i.e., environment) helps optimize
strategies to achieve satisfactory outcomes.

Therefore, we model the problem of visualization generation
and recommendation as a Markov Decision Process (MDP) [6] and
implement it using an RL framework.

The key RL components of HAIChart are as follows:

State. To apply the RL framework to our problem, it is crucial to
accurately define the state, which serves as input to the agent and
aids in making decisions during visualization generation. We trans-
form the visualization generation problem into a process that starts
from an initial state and proceeds through a series of visualization
operation/action decisions to reach a target state. Each state corre-
sponds to a visualization query consisting of multiple visualization
clauses, as described in Section 3.1.

Specifically, visualization queries can be classified into two types:

(1) Partial Visualization Queries. These queries need to be further
extended to form a complete query and reflect historical decision
paths in Visualization Query Graph. For example, an incomplete
query might have specified the type of chart (e.g., bar chart) but
not yet selected a specific data field for the 𝑥- or 𝑦-axis.

(2) Complete Visualization Queries. These queries do not require
additional extensions and can be evaluated for visualization quality
by our reward function. After that, the system updates the nodes
and edges of the graph based on the evaluation results.

Action. An action is an operation that an agent can perform based
on its current state, determining the next step in a visualization
query sequence. As discussed in Section 3.1, the visualization query
can be categorized into three main types of actions: mark, encoding,
and transformation. Therefore, for a given dataset𝐷 , the available
action space A is fixed.
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Figure 5: An example of MCGS-based visualization generation

Algorithm 1:MCGS-based Visualization Generation
Input: Dataset 𝐷 ;
Output: Top-𝑘 Visualization Results 𝑅 = {𝑉1, ...,𝑉𝑘 };

1 𝑛𝑜𝑑𝑒 ← Initialize(𝐷); G ← {𝑛𝑜𝑑𝑒 }; 𝑅 ← {};
2 for each iteration do
3 Set a visualization query𝑄 = “”;
4 𝑛𝑜𝑑𝑒 = 𝑟𝑜𝑜𝑡 ;
5 while𝑄 is invalid do
6 if node is fully expanded then
7 𝑛𝑜𝑑𝑒 ← select(G, 𝑛𝑜𝑑𝑒);
8 Add 𝑛𝑜𝑑𝑒 to𝑄 ;
9 if 𝑄 is valid then
10 break;

11 else
12 𝑛𝑜𝑑𝑒 ← expand(G, 𝑛𝑜𝑑𝑒);
13 𝑄 ← simulation(G, 𝑛𝑜𝑑𝑒);

14 𝑠𝑐𝑜𝑟𝑒 ← reward(𝑄);
15 BackPropagation(𝑠𝑐𝑜𝑟𝑒 ,𝑄 , G);
16 𝑉 ←𝑄 (𝐷 ) ; // Corresponding visualization
17 add𝑉 to 𝑅;

18 return 𝑅;

Agent. The agent combines the Monte Carlo Graph Search (MCGS)
algorithm and the Upper Confidence Bound (UCB) [4] algorithm to
generate visualizations and make decisions. The MCGS performs
well in navigating complex and uncertain search spaces, while the
UCB algorithm effectively balances the trade-off between exploiting
known optimal solutions and exploring new possibilities, thereby
optimizing the agent’s decision-making process (see Section 4).

Reward. The reward function evaluates the quality of the visualiza-
tions created by the MCGS algorithm and updates the visualization
query graph accordingly. This guides the agent to generate higher
quality visualizations. The reward function considers three key
factors: data features, visualization domain knowledge, and user
preferences to accurately assess visualization quality (see Section 5).

Environment. The environment inHAIChart first uses a pruning
algorithm to efficiently generate valid visualization queries during

the generation process. Second, it evaluates the quality of valid
queries and returns a reward to guide the training process.

4 VISUALIZATION GENERATION
4.1 Monte Carlo Graph Search-based

Visualization Generation
In Section 3.1, we introduced the visualization query graph, where
each visualization query is represented by a path within the graph.
All possible paths within the query graph constitute the search
space for visualizations.We can use search algorithms to explore the
graph and find high-quality visualizations. However, as the dataset
size increases, the search space expands exponentially, making it
challenging to efficiently find good visualization results.

Traditional graph search methods like Depth-First Search (DFS)
and Breadth-First Search (BFS) perform well in structured search
spaces but often fall short in large and complex spaces because
they cannot dynamically adjust the search strategy based on the
information already found. To address these limitations, we propose
a Monte Carlo Graph Search-based algorithm to navigate the vast
search space efficiently.

Key Idea. Our key idea is to dynamically accumulate and utilize
shared information from nodes throughout the search process. Ini-
tially, shared information is limited, but as the search progresses,
the accumulated information from explored nodes becomes increas-
ingly significant, providing greater support for decision-making.
This allows the algorithm to gradually reduce its reliance on ran-
dom simulations, leveraging accumulated knowledge to guide the
search and enhance efficiency [23].

We first overview ourMonte Carlo Graph Search-based visualiza-
tion generation algorithm. As shown in Algorithm 1, the algorithm
begins by taking a dataset 𝐷 as input, aiming to generate the top-𝑘
visualization results 𝑅. In the initial phase, the algorithm initializes
a root node based on the dataset 𝐷 , which serves as the starting
node of the graph G (Line 1).

In each iteration, the algorithm starts by initializing a visualiza-
tion query 𝑄 (Line 3) and then starts exploring from the root node.
During the node selection phase, each choice is added to the visual-
ization query𝑄 (Line 7-8) until an unexpanded node is encountered,
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followed by an expansion of this node (Line 12). When the visual-
ization query 𝑄 is valid, the algorithm utilizes a reward function
to calculate the score of the query (Line 14), then performs back-
propagation to update the information on the graph G (Line 15).
Finally, the query is transformed into the corresponding visualiza-
tion results and stored in 𝑅 (Lines 16-17). After 𝑘 visualizations are
selected, the algorithm returns this set 𝑅.

Next, we will detail the procedure of Algorithm 1 through Fig-
ure 5. The algorithm mainly includes the following four steps:

Selection. In the selection phase (Line 7 in Algo. 1), the algorithm
starts from the root node and recursively selects the optimal child
nodes until it reaches a node that has not yet been fully expanded.
As shown in Figure 5, the blue nodes represent the nodes selected in
this phase, while the green nodes represent the currently selected
nodes that have not been fully expanded. To effectively utilize the
feedback information provided by the reward function and balance
exploration and exploitation, we adopt the Upper Confidence Bound
(UCB) algorithm. The key idea of this algorithm is to select the child
node with the highest confidence upper bound at each iteration. The
specific selection strategy of the UCB algorithm can be represented
by the following formula:

𝑈𝐶𝐵 =

𝑋𝑖︸︷︷︸
exploitation

+
𝑐
√︁

2 ln𝑛/𝑛𝑖︸       ︷︷       ︸
exploration

(1)

where 𝑋𝑖 is the average reward of child node 𝑖 , 𝑛 is the number of
visits to the current node, 𝑛𝑖 is the number of visits to child node 𝑖 ,
and 𝑐 is a constant used to balance exploration and exploitation.

Expansion. During the expansion phase (Line 12 in Algo. 1), the
algorithm selects the next valid action based on the current state (i.e.,
an incomplete visualization query). Specifically, it removes those
low-quality visualizations that are either syntactically incorrect
or violate visualization rules (see Section 4.2). For example, when
processing node 𝑣2 (in Figure 5), the algorithm identifies two high-
benefit candidates and randomly selects one for further expansion.

Simulation. During the simulation phase (Line 13 in Algo. 1), the
algorithm starts at the current node (e.g., node 𝑣3 shown in Figure 5)
and performs simulation actions. First, it checkswhether the current
visualization query is valid. If the query is invalid, the algorithm
randomly explores the next node according to the visualization
grammar rule until a valid query is constructed. Once a valid query
is formed, the learning-to-rate visualization part assigns a reward.

Backpropagation. This phase (Line 15 in Algo. 1) propagates the
simulation results through the visualization query graph. After the
simulation phase, as shown in Figure 5, the score obtained by node
𝑣3 is propagated along its path. Each node and edge along the path
updates its reward value and visit count based on the simulation
outcomes. Our learning-to-rate visualization module evaluates the
visualization quality and updates the node information along the
search path, guiding the algorithm to make more precise decisions
in subsequent explorations by feeding the results of each simulation
back into the visualization query graph.
Terminal Condition. The above steps are repeated until the maxi-
mum number of iterations is reached.

(b) Visualization Query Tree(a) Visualization Query Graph
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Figure 6: Comparison of tree and graph structures

Comparison of MCGS and MCTS. The Monte Carlo method
solves complex problems through random sampling but requires
simulation steps for each new node, impacting performance based
on node count [42]. Traditional MCTS methods rely on extensive,
random, and time-consuming simulations to determine the next
step [49]. Unlike traditional MCTS, our MCGS algorithm explores a
graph structure instead of a tree structure, allowing for more effec-
tive information sharing between nodes and reducing the number
of nodes, thereby increasing search efficiency [57].

As shown in Figure 6, visualization queries 𝑄1 and 𝑄2 differ
only in chart type; other clauses are identical. In a tree structure
(Figure 6(b)), this information cannot be shared due to the strict
parent-child hierarchy, leading to redundancy. In contrast, the graph
structure (Figure 6(a)) allows node information sharing across differ-
ent queries, reducing redundancy and improving search efficiency.

More concretely, we compare the number of nodes between
MCGS andMCTS. Consider 4 chart types, a dataset with𝑚 columns,
encoding that considers both the 𝑥- and 𝑦-axes, and data trans-
formations that include grouping and 4 aggregate operations. In
MCTS, each path is independent, resulting in a total node count of
𝑁tree = 4 ×𝑚3 × 4 = 16𝑚3. In MCGS, using the graph structure to
share nodes, the total node count is 𝑁graph = 4+ 3×𝑚 + 4 = 3𝑚 + 8.
The reduction factor is 𝑅 =

𝑁tree
𝑁graph

= 16𝑚3

3𝑚+8 . As 𝑚 increases, the
benefit of using MCGS becomes more significant, as it reduces the
number of nodes compared to MCTS.

In summary, by sharing nodes and reducing redundant calcula-
tions, MCGS significantly reduces the number of nodes and simula-
tions, enabling more efficient search [12, 43, 48].

4.2 Optimization Techniques

Rule-based Pruning. In the visualization generation process, se-
lecting and expanding nodes are crucial. However, the traditional
UCB algorithmmay lead to inappropriate node selections due to the
lack of visualization-specific knowledge. To alleviate these issues,
we introduce a rule-based pruning algorithm.

The key aspect of this algorithm is integrating domain knowl-
edge, such as data transformation rules and visualization rules, to
ensure the generated visualizations are syntactically correct. For
example, after completing a GROUP BY operation, if an aggregate
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function needs to be chosen for the 𝑦-axis, and the 𝑦-axis field is
categorical, then functions such as SUM, AVG, and NONE become
inapplicable. Our algorithm aims to exclude these inappropriate
options to enhance the efficiency and accuracy of the search.

Furthermore, we present a function 𝐿(𝑆,𝐴) that takes the current
state 𝑆 and the candidate operation set𝐴 as inputs, and outputs a set
of operations meeting specific constraints, formalizing the pruning
process based on domain-specific knowledge for visualizations.

Adaptive Random Exploration Strategy. During the visualiza-
tion generation process, each selected visualization operation (e.g.,
chart type) significantly affects the final visualization. Although the
UCB algorithm is designed to make the best choice based on the
current state, it may tend to over-explore high-scoring branches as
the number of simulations accumulates, overlooking other possi-
bilities. Moreover, the UCB algorithm might favor sub-optimal or
inefficient visualization actions, especially when the initial attempts
are inaccurately evaluated by the reward function [12, 51].

To address these issues, we propose an adaptive random explo-
ration strategy. This strategy adjusts the random selection probabil-
ity based on the number of already selected clauses, facilitating the
transition from exploitation to exploration. This approach increases
search space coverage and diversity while avoiding local optima. It
mirrors user behavior in constructing visualization queries, with ex-
tensive exploration at the initial stage and more targeted selection
based on earlier trials at later stages.

The optimized formula for the selection strategy is as follows:

𝑎𝑖 =

{
𝑟𝑎𝑛𝑑𝑜𝑚(𝐿(𝑆𝑖 , 𝐴𝑖 )), 𝑃exploration

arg max𝑏∈𝐿 (𝑆𝑖 ,𝐴𝑖 )
[
𝑄𝑖 (𝑏) + 𝑐

√︃
2 ln 𝑡
𝑁𝑖 (𝑏 )

]
, 𝑃exploitation

(2)

In our proposed decision-making strategy, the final choice 𝑎𝑖 for
each node 𝑖 is based on a series of parameters and functions. The
set of legal clauses available for node 𝑖 is represented by 𝐿(𝑆𝑖 , 𝐴𝑖 ).
The average reward for each clause 𝑏 is estimated by 𝑄𝑖 (𝑏), while
𝑁𝑖 (𝑏) tracks the number of times clause 𝑏 has been visited. The
total number of visits to the current node is denoted by 𝑡 , and the
constant 𝑐 is used to balance exploration in the process.

Furthermore, the balance between exploration and exploitation
in the strategy is controlled by two main probability parameters:
𝑃exploration and 𝑃exploitation. The exploration probability, 𝑃exploration,
is defined as 𝑝𝑛𝛼𝑛 , where 𝑝𝑛 is the initial probability of making
a random choice and 𝛼 is a constant less than 1 that controls the
decay rate of the random selection probability. On the other hand,
the exploitation probability, 𝑃exploitation, is defined as 1 − 𝑝𝑛𝛼𝑛 . As
the number of clauses 𝑛 selected in node 𝑖 increases, the probability
of random selection gradually decreases, while the probability of
selection based on the UCB algorithm correspondingly increases.

5 LEARNING-TO-RATE VISUALIZATION
Unlike environments for games like Atari [45] or Go [50], which
have clear reward and punishment rules, visualization evaluation
lacks such clarity and can be biased if based on a single criterion.

To address this, we propose a composite reward function that
incorporates visualization best practices, data features, and user
preferences to comprehensively evaluate visualization quality.

5.1 Composite Reward Function
The composite reward function incorporates rules of thumb for
visualizations, data features, and user preferences to evaluate the
quality of visualization results. The formula for the Composite
Reward Function (CRF) is as follows:

𝐶𝑅𝐹 = 𝑆𝑘 × (𝛽𝑆𝑑 + (1 − 𝛽)𝑆𝑢 ) (3)

where 𝑆𝑘 represents the assessment result from visualization do-
main knowledge, 𝑆𝑑 indicates the score based on data features,
and 𝑆𝑢 denotes the user preference score. When evaluating a vi-
sualization result, we first conduct a preliminary evaluation based
on visualization domain knowledge. If the result aligns with the
domain knowledge, 𝑆𝑘 is assigned a value of 1; otherwise, it is 0.
Clearly, when 𝑆𝑘 = 0 (i.e., the visualization result does not alignwith
domain knowledge), the reward value 𝐶𝑅𝐹 becomes 0. Conversely,
when 𝑆𝑘 = 1, the calculation of𝐶𝑅𝐹 depends on the weighted com-
bination of 𝑆𝑑 and 𝑆𝑢 , where the weight coefficient 𝛽 is introduced
to balance the importance between data characteristic scoring and
user preference scoring, which is set based on experience.

5.2 Learn Composite Reward Function
We leverage well-established, human-annotated visualization cor-
pora [19, 39] and domain knowledge from the visualization com-
munity to learn the composite reward function.

LeveragingDomainKnowledge.We employ a rule-basedmethod
to ensure that the generated visualizations align with best prac-
tices and accurately reflect data features. Specifically, this method
leverages the data selection, transformation, and visualization rules
used by DeepEye [31].

For example, the rules for pie charts include: (1) Data selection
rules: the 𝑥-axis should represent categorical data, while the 𝑦-axis
should represent numerical data. (2) Data transformation rules: pie
charts are unsuitable for data aggregated with the AVG operation,
as they are primarily used to show proportions. (3) Visualization
rules: the 𝑦-axis values should not include negatives, and there
should be at least two distinct 𝑥-axis values to convey meaningful
information. Using this approach, we design 15 rules for different
types of visualizations and use these rules as strict constraints to
filter out low-quality visualizations.

Capturing Data Features. Our model is trained on a dataset an-
notated by real users [31], containing 285,236 visualizations and
their scores from 42 different domains. For each visualization, we
analyze key features, including the data types of the 𝑥- and 𝑦-axes,
the number of rows, extremes (maximum and minimum values),
value diversity (number of different values and the ratio of unique
values), and the correlation between the data of the 𝑥- and 𝑦-axes
and the type of chart. We extract 14 core features for model training.

We use LambdaMART [67] to train our scoring model, which
maps complex relationships between features and scores by build-
ing decision trees. Each tree evaluates features, such as the type
of data on the 𝑥-axis, then examines other features, and finally
outputs a score. This method enables the model to understand the
deep connections between feature combinations and scores. When
a new visualization is input, the model computes its features and
uses the trained LambdaMART to predict a score.
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Learning Common User Preferences. Capturing user prefer-
ences for visualization is essential in visualization recommendation
systems. Although it is ideal to consider individual preferences in
online recommendations, this poses a challenge due to the cold
start problem – new users often lack sufficient interaction history,
especially in visualization scenarios. In addition, collecting real-
time interaction data and fine-tuning models online for each user
can be resource-intensive and time-consuming.

To address these challenges, our goal is to first learn common
user preferences offline and then make online adjustments to the
MCGS algorithm based on feedback from visualization hints, which
we will discuss in Section 6. This approach strikes a balance be-
tween recommending high-quality visualizations and fine-tuning
the recommendations to better suit individual users.

To achieve this, our system utilizes the Generative Adversarial
Network (GAN) [17], specifically the IRecGAN [5], to learn com-
mon user preferences using a real-world visualization corpus. This
corpus includes user interaction logs collected from the Plotly com-
munity [39]. The dataset comprises historical interaction records of
17,469 users, with an average of 5.41 datasets and 1.85 visualizations
per user, and each dataset contains an average of 24.39 attributes.
For effective learning of user preferences across datasets and vi-
sualizations, we extracted 606 visualization configurations from
the original dataset, inspired by [39]. Each configuration includes
dataset-independent design choices such as chart types, colors,
and sizes, enabling the model to learn preferences without direct
dataset associations and to identify patterns from design choices.
By aggregating data, user, and visualization features across dif-
ferent datasets, we generated 15,531 training samples to train the
IRecGAN model [5].

In the first round of visualization recommendations, the evalua-
tions obtained from the trained IRecGAN model serve as a crucial
indicator of general user preferences. In the interaction phase (e.g.,
the second round),HAIChart refines and optimizes the recommen-
dation strategy based on the visualization hints selected by users,
which will be detailed in Section 6.

6 VISUALIZATION HINTS SELECTION
While the MCGS-based visualization generation algorithm can
recommend high-quality visualizations, it might not always align
with individual preferences. Conversely, interactive tools like Voy-
ager2 [63] offer flexible exploration options but can overwhelm
users with their complexity. These tools require users to sift through
dense control panels and numerous visualization options, much
like tackling a challenging “fill-in-the-blank” puzzle.

To address these issues, we introduce a visualization hints mod-
ule. Visualization hints represent the high-level visualization intent
derived by our system, as shown in Figure 7. This module simplifies
the complex decision-making process of visualization creation into
straightforward, user-friendly selections, akin to “multiple-choice
questions”. This method collects user intent, allowing our MCGS
algorithm to be fine-tuned online to better suit individual users.

Definition 6.1: [Visualization Hint] A visualization hint ℎ corre-
sponds to a visualization operation or action, such as selecting data
fields, applying aggregate operations, and choosing chart types. It
is expressed in easily understandable natural language. Each hint ℎ
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Figure 7: Visualization refinement with visualization hints

is associated with a set of visualizations V = {𝑣1, 𝑣2, . . . , 𝑣𝑛}, which
are ranked based on the values of the composite reward function
to prioritize high-value visualizations. 2

As shown in Figure 7, consider a data field-based hint: “Explore
⟨data field name⟩ over categories or time”, this hint essen-
tially defines a partial visualization query relevant to the data field.
Therefore, the user can browse these hints and select a desired hint
for visualization. Next, HAIChart will generate a set of relevant
visualizations based on the selected hint through the MCGS process.
This approach not only simplifies the steps for the user to define a
visualization query but also speeds up the process of gaining data
insights by guiding the user through meaningful hints to quickly
explore and understand the data.

Our goal is to select the top-𝑘 visualization hints that not only
cover different aspects and ensure high-quality visualizations but
also maintain an appropriate number of visualizations.

Definition 6.2: [Top-𝑘 Visualization Hints Selection] Given a set
of hints H = {ℎ1, ℎ2, . . . , ℎ𝑛}, where each hint ℎ𝑖 is associated with
a set of visualizations V𝑖 , and each visualization 𝑣 ∈ V𝑖 has an
associated reward value 𝑟𝑣 , the goal is to select a subset H′ ⊆
H consisting of 𝑘 hints. The selection must maximize the total
reward value of the subset H′, while ensuring the total count of
visualizations in H′ does not exceed a predefined budget 𝐵. The
optimization problem can be formulated as follows:

Maximize 𝐹 (H′) =
∑︁

ℎ𝑖 ∈H′

∑︁
𝑣∈V𝑖

𝑟𝑣 (4)

Subject to
∑︁

ℎ𝑖 ∈H′
|V𝑖 | ≤ 𝐵 and |H′ | = 𝑘 (5)

where |V𝑖 | represents the number of visualizations associated with
hint ℎ𝑖 , 𝐹 (H′) is the total reward value of the selected subset H′,
|H′ | is the number of selected hints, and 𝐵 is the upper limit on the
budget for the number of visualizations. 2

However, the problem of selecting hints is NP-hard because it is
equivalent to a known NP-hard problem – the Budgeted Maximum
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Algorithm 2: Top-𝑘 Visualization Hints Selection
Input: Set of hints H = {ℎ1, ℎ2, . . . , ℎ𝑛 }, 𝐵, 𝑘 ;
Output: Selected top-k set of hints H′;

1 H′ ← ∅; 𝑡𝑜𝑡𝑎𝑙𝐶𝑜𝑠𝑡 ← 0;
2 H𝑣 ← {ℎ ∈ H | |ℎ | ≤ 𝐵}; // 1. Filter valid hints
3 H𝑣 ← SortByScore(H𝑣 ) ; // 2. Sort hints by score
4 // 3. Selection of top-k hints
5 for each ℎ𝑖 in H𝑣 do
6 if |H′ | < 𝑘 and 𝑡𝑜𝑡𝑎𝑙𝐶𝑜𝑠𝑡 + |ℎ𝑖 | ≤ 𝐵 then
7 H′ .append(ℎ𝑖 ) ;
8 𝑡𝑜𝑡𝑎𝑙𝐶𝑜𝑠𝑡 ← 𝑡𝑜𝑡𝑎𝑙𝐶𝑜𝑠𝑡 + |ℎ𝑖 |;
9 if |H′ | = 𝑘 then
10 break;

11 return H′;

Coverage problem [20]. To address this, we propose an efficient
algorithm to select the top-𝑘 visualization hints. To achieve effective
hint selection, the first step is to construct a comprehensive set of
hints and evaluate the benefit of each hint. The purpose of this initial
phase is to ensure that in the subsequent selection process, the best
hint can be selected from this evaluated set, thereby maximizing
the reward value. In this way, the algorithm mainly consists of two
steps: candidate hints generation and top-𝑘 hints selection.

Candidate Visualization Hints Generation.We identify high-
value nodes (i.e., visualization operations) from our visualization
query graph to pick the candidate hints. When computing the re-
ward for each hint, we introduce a decay coefficient 𝛿 to adjust
the scoring weight of each visualization, considering that the same
visualization appearing in different hints may reduce its unique-
ness. The decay coefficient 𝛿 , is defined as: 𝛿 = log

(
𝑁total
𝑁viz

)
, where

𝑁total is the total number of hints and 𝑁viz is the number of hints
containing the specific visualization. This coefficient reflects the
frequency of visualizations, with higher decay coefficients for more
frequent visualizations, thereby reducing their overall scores. After
multiplying this score by the reward value of the visualization, its
final value is determined. Therefore, after collecting all the hints,
we calculate the frequency of the appearance of each visualization
and combine it with the decay coefficients to compute its score.

Top-𝑘 Visualization Hints Selection. Our goal is to select the
best subset of hints that maximizes the total reward within a prede-
fined budget 𝐵. Algorithm 2 shows the pseudo-code. It first selects
all hints with a cost not exceeding the budget 𝐵, forming a candidate
hint set (Line 2). Then, it sorts valid hints based on the correspond-
ing average visualization score computed by the composite reward
function (Line 3). The algorithm continues to go through this sorted
set, picking hints to add to the final selected set until one of two con-
ditions is met: the number of selected hints reaches the predefined
𝑘 , or adding more hints would cause the total cost to exceed the bud-
get 𝐵 (Line 5-10). In this way, the algorithm prioritizes high-scoring
hints while maintaining the budget constraint, thus maximizing
the total reward value under the given budget.

User Feedback for Refinement. HAIChart leverages user-
selected visualization hints to guide the node exploration strategy
during the MCGS process. When users select a specific hint, they

Table 2: Statistics of the experimental datasets (Vis.: Charts)

Datasets #-Tables #-Vis. Avg(#-Vis.) Avg(#-Rows) Avg(#-Col.) Max(#-Col.)
VizML 79,475 162,905 2 2,817.8 3.3 25

KaggleBench 8 252 31.5 32,585.9 9.1 15
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Figure 8: Statistics of the VizML dataset

Table 3: Details in KaggleBench dataset

Datasets #-Rows #-Columns #-Vis.
D1 StudentPerformance 1,000 8 34
D2 AirplaneCrashes 5,191 6 22
D3 VideoGame 6,825 15 48
D4 GooglePlayStore 9,659 11 33
D5 AvocadosPrice 18,249 7 20
D6 SuicideRates 27,820 9 25
D7 Zomato 51,717 11 49
D8 GunViolence 140,226 6 21

direct the search graph to expand in a certain direction. For ex-
ample, as shown in Figure 7, if a user clicks on the hint “Explore
delay over categories or time”, the system focuses on applying
the data field “delay” to the 𝑦-axis. During the search process,
the system freezes other nodes and explores only those related to
“delay”, ensuring the generated results are relevant to the target
field. Thus, this method can align the search process with user prefer-
ences and effectively prune the search space, enhancing the efficiency
and accuracy of MCGS-based visualization recommendations.

7 EXPERIMENTS
7.1 Experiment Settings

Datasets. Table 2 shows two real-world datasets for experiments.

(1) VizML [19], derived from the Plotly community, features around
120,000 dataset-visualization pairs created by real users. This dataset
was refined by removing entries missing table or chart data and
cleaning up invalid characters. The dataset has four types of charts,
namely bar, pie, line, and scatter visualizations, resulting in 79,475
valid dataset-visualization pairs. These were randomly divided into
training, validation, and testing sets in a 7:1:2 ratio, allocating 55,632
pairs for training, 7,947 for validation, and 15,896 for testing. The
statistical information of the dataset, shown in Figure 8, indicates a
broad coverage, including various tables and visualizations used by
users across different domains and tasks.

(2) KaggleBench [16] is a public benchmark designed to evaluate
the effectiveness of visualization recommendations. Its data mainly
come from numerous data competitions and the corresponding
visualizations provided by the Kaggle platform. This dataset was
refined by filtering out low-quality datasets, removing rows with
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Table 4: Effectiveness of the first round of visualization recommendation

D Tasks Metrics The State-of-the-Art Methods Our Methods
Data2Vis [15] VizGRank [16] DeepEye [31] PVisRec [39] VizML [19] LLM4Vis [59] MCTS HAIChart- HAIChart

Vi
zM

L

Data Queries Hit@1 47.5% 57.6% 52.4% 52.3% - - 78.3% 79.7% 79.3%
Hit@3 51.3% 67.2% 67.6% 58.7% - - 88.2% 91.3% 91.9%

Design Choices Hit@1 41.7% 34.9% 34.1% 28.9% 28.7% 47.9% 42.4% 50.6% 48.7%
Hit@3 43.7% 42.9% 40.7% 51.3% - - 77.1% 81.8% 81.5%

Overall Hit@1 24.3% 25.6% 25.7% 21.8% - - 33.1% 37.9% 36.9%
Hit@3 26.9% 30.1% 33.9% 42.3% - - 64.7% 68.4% 67.4%

Ka
gg

le
Be

nc
h Data Queries P@10 41.2% 58.7% 62.5% 42.5% - - 52.2% 60.0% 63.8%

R10@30 25.0% 50.0% 48.7% 67.5% - - 73.6% 80.1% 83.7%

Design Choices P@10 88.7% 87.5% 93.7% 91.9% Hit@2:78.3% Hit@2:87.6% 93.8% 96.3% 96.3%
R10@30 95.0% 81.3% 95.0% 85.0% - - 92.5% 96.2% 96.2%

Overall P@10 28.7% 43.7% 48.7% 36.7% - - 45.4% 51.3% 55.0%
R10@30 13.8% 41.3% 33.7% 60.0% - - 63.8% 72.5% 74.9%

missing data, and fixing invalid characters. Finally, we obtained 8
datasets for evaluation, as shown in Table 3.

We trained or configured all methods using the VizML dataset
and tested them on the two datasets mentioned above.

Methods. We evaluate the following methods.
(I) AI-powered Visualization Methods:

(1) Data2Vis [15] transforms datasets into visualization queries
using a sequence-to-sequence model.

(2) VizGRank [16] achieves visualization recommendation by
modeling the relationships between visualizations as graphs and
using graph-based ranking algorithms.

(3)DeepEye [31] combines data features with domain knowledge
to recommend top-𝑘 good visualizations.

(4) PVisRec [39] recommends a set of visualizations by learning
from user preferences.

(5) VizML [19] uses deep learning models for visualization rec-
ommendations. It focuses on five specific types of tasks, excluding
data querying. Our evaluation will assess VizML’s effectiveness in
recommending design choices.

(6) LLM4Vis [59] uses in-context learning to interact with Chat-
GPT for recommending visualizations. Like VizML, it excludes data
querying tasks. Thus, our comparison focuses on design choices,
evaluated using the same Hit@𝑘 metric as LLM4Vis.
(II) Human-powered Visualization Methods:

(7) Voyager2 [63] is an interactive system that allows users to
create and explore visualizations through click-based interactions.
(III) Human and AI paired Visualization Methods:

(8) HAIChart (ours) is the full implementation based on MCGS
and the composite reward function, as described in this paper.

(9) HAIChart- (ours) differs from HAIChart in the composite
reward function, where the capturing data features model is trained
on the VizML corpus.

(10) LLM4Vis+ (ours) is an improved version of LLM4Vis [59].We
enhanced LLM4Vis to support data queries and top-𝑘 visualizations.

(11) MCTS-based Baseline (ours) follows the same implemen-
tation as HAIChart, except it uses the MCTS-based method for
recommending visualizations.

Metrics. Following previous studies evaluating automatic visual-
ization systems [15, 19, 37, 69], we employ Hit@𝑘 , P@𝑘 , and Rt@𝑘

as evaluation metrics. Given that creating a visualization involves

data queries, design choices, and final integration, our evaluation
is divided into three tasks. The metrics are defined as follows:

(1) Hit@𝑘 : This metric evaluates whether the ground truth appears
in the top-𝑘 results. We apply this to the VizML dataset with 𝑘 set to
3, as each user typically creates about 2 visualizations on average.

(2) P@𝑘 : This metric measures how many ground truths are in the
top-𝑘 results. For the KaggleBench dataset, we set 𝑘 to 10, consid-
ering that each dataset typically contains over 20 visualizations.

(3) R𝑡@𝑘 : This metric assesses how many of the top-𝑡 ground
truths are covered in the top-𝑘 results. We use R10@30 for the
KaggleBench dataset, analyzing how many of the top 10 ground
truths are included in the first 30 results returned by the model.

Experimental Environment. Experiments were performed on an
Ubuntu 22.04 Server LTS with dual Intel Xeon 8383C CPUs, 512GB
RAM, and eight NVIDIA RTX 4090 GPUs.

7.2 Experimental Results
7.2.1 Exp-1: Effectiveness of the First-round of Recommendations.
This experiment evaluates the effectiveness of the first-round visu-
alization recommendations by HAIChart. We tested all methods
on the VizML and KaggleBench datasets. Table 4 shows the results.

(1) Overall, our methods (HAIChart and HAIChart-) significantly
outperform all state-of-the-art methods across all metrics, showing
the effectiveness of our framework. The performance gap between
HAIChart- and HAIChart is primarily due to the capturing data
features module: HAIChart- is trained on the VizML training set,
while HAIChart is trained on a more diversified corpus [31].

(2) On the VizML dataset, HAIChart achieves 36.9% Hit@1 and
67.4% Hit@3 on the overall task, surpassing the competitive meth-
ods DeepEye and PVisRec by 11.2% and 25.1%, respectively. On the
KaggleBench dataset, HAIChart achieves 55% P@10 and 74.9%
R10@30 on the overall task, outperforming DeepEye and PVisRec
by 6.3% and 14.9%. These results demonstrate HAIChart’s effec-
tiveness in leveraging MCGS algorithms with a composite reward
function to find high-quality visualizations in a large search space.

(3) DeepEye performs well on the P@10 metric using a rule-based
approach, while PVisRec excels on the Rt@30 metric with per-
sonalized recommendations. By blending visualization rules, user
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Table 5: Performance vs. #-Iterations on KaggleBench

Tasks Metrics DeepEye Voyager2 LLM4Vis+ (ours) HAIChart (ours)
Iter. 1 Iter. 1 Iter. 2 Iter. 3 Iter. 1 Iter. 2 Iter. 3 Iter. 1 Iter. 2 Iter. 3

Data Queries P@10 62.5% 45.0% 55.1% 58.0% 47.2% 65.0% 74.3% 63.8% 69.5% 79.2%
Design Choices P@10 93.7% 78.7% 96.3% 97.4% 75.6% 91.5% 97.2% 96.3% 97.6% 99.3%

Overall P@10 48.7% 40.0% 44.9% 45.7% 41.0% 55.6% 65.3% 55.0% 58.2% 68.8%

Table 6: Effectiveness of Hints Selection
Dataset Metrics Round 1 Round 2 Round 3

KaggleBench
Hit@1 64.7% 65.2% 69.1%
Hit@3 79.4% 82.2% 85.7%
Hit@5 88.2% 89.6% 92.1%

(a) HAIChart

1 - Strongly Disagree 2 - Disagree 3 - Neutral 4 - Agree 5 - Strongly Agree

0% 20% 40% 60% 80%100%
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(c) Voyager2
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(b) LLM4Vis+

Figure 9: Qualitative analysis on user study
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Figure 10: Quantitative analysis on user study

preferences, and data features, HAIChart achieves strong results
in both the P@10 and Rt@30 metrics.

7.2.2 Exp-2: Effectiveness of Multi-round Recommendations. This
experiment assesses whether HAIChart improves visualization
recommendations and enhances user efficiency in data exploration
through multiple rounds of interaction and visualization hints.
Participants. The study involved 17 participants (7 females, 10
males, aged 21-33), including 12 experts (6 Ph.D. candidates, 4 mas-
ter’s students, and 2 undergraduates in computer science) and 5
non-experts from non-technical backgrounds.
Task. Participants used HAIChart, DeepEye, Voyager2, and
LLM4Vis+ to analyze eight datasets from KaggleBench. These
datasets required specific analytical tasks, such as analyzing the
relationship between student performance and background fac-
tors in the StudentsPerformance dataset, as well as open-ended
explorations to evaluate each tool’s adaptability and efficiency.
Procedure. (1) Preparation: Participants were introduced to the
datasets and tools through a hands-on demonstration. (2) Experi-
mentation: Participants explored datasets using these tools, during
which we recorded their time spent, interactions, and visualiza-
tions. After each round, HAIChart offered the top-9 hints and
new recommendations. (3) User Feedback: After the experiment,
participants rated each tool on a five-point Likert scale [3, 25] and
provided feedback through interviews.
User Study Results.We conducted both quantitative and qualitative
analyses. The observations are as follows:

(1) As shown in Table 5, HAIChart improves visualization recom-
mendations through user feedback. After two rounds of interac-
tions, P@10 increased from 55% to 68.8%, outperforming LLM4Vis+
and Voyager2 by 3.5% and 23.1%, respectively. Unlike Voyager2’s
manual exploration and LLM4Vis+’s time-consuming natural lan-
guage queries, HAIChart’s hints guide users efficiently. DeepEye,
achieving 48.7% in the first round, lacks multi-turn recommendation
support and does not improve with additional interactions.

(2) According to Figure 10,HAIChart is 1.8 and 2.2 times faster than
LLM4Vis+ and Voyager2, respectively, achieving an average recall
of 83.7%. This is 21% and 24.8% higher than LLM4Vis+ and Voy-
ager2, indicating thatHAIChartmeets analytical needs with fewer

interactions and less time. Furthermore, user feedback (Figure 9)
underscores HAIChart’s ease of learning and usability, facilitating
more effective exploration and higher quality visualizations.

(3) Feedback from participants highlightedHAIChart’s practicality
in data exploration. They widely acknowledged that HAIChart
simplifies tasks and enhances efficiency with helpful hints. For
example, Participant P1 stated, “Unlike Voyager2, which is not user-
friendly for beginners,HAIChartmakes it easier to choose data fields
and operations through intuitive hints.” Participant P5 mentioned a
limitation with LLM4Vis+, “Natural language interaction simplifies
creating initial visualizations, but fine-tuning is challenging. LLMs
often misunderstand my intent, requiring repeated adjustments.” This
suggests that natural language ambiguity may cause ‘communica-
tion’ issues with LLMs during data exploration. Intuitive control
panels or guidance, like hints, would enhance the user experience.

Nevertheless, participants also suggested improvements for
HAIChart, such as adding a control panel for enhanced flexibil-
ity (Participant P10) and supporting more complex chart types to
broaden analysis capabilities (Participant P15).

7.2.3 Exp-3: Effectiveness of Visualization Hints Selection. This ex-
periment evaluates the effectiveness of visualization hint selection
by analyzing interaction logs from 17 users in a multi-round rec-
ommendation experiment (Exp-2), using the Hit@𝑘 metric.

The results in Table 6 show that Hit@1 is 64.7% in the first round
of recommendations, demonstrating the system’s ability to accu-
rately predict the hint most interesting to the user. As the number
of interaction rounds increases, the recommendation accuracy im-
proves further. By the third round, the Hit@3 value increased to
85.7%. These results demonstrate the system’s effectiveness in pri-
oritizing the information required by the user and the effectiveness
of the hint selection in guiding the user’s decision-making process.

7.2.4 Exp-4: Ablation Study of the MCGS Optimization Techniques.
We proposed several MCGS optimization techniques, including
Rule-based Pruning and an Adaptive Random Exploration Strategy.
We conducted ablation studies using the VizML and KaggleBench
datasets to evaluate their impact on overall performance.

The results in Table 7 show that removing any optimization
technique from either dataset leads to a decline in performance,
confirming their importance. Specifically, in the VizML dataset,
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Table 7: Ablation studies on HAIChart (overall performance)

Methods VizML KaggleBench
Hit@1 Hit@3 P@10 R10@30

HAIChart 36.9% 67.4% 55.0% 74.9%

Opt. Tech. w/o Rule-based Pruning 34.6% 65.3% 37.4% 40.0%
w/o Adapt. Random Exploration 33.4% 42.1% 45.7% 65.0%

Composite
Reward Func.

w/o Domain Knowl. 26.3% 60.2% 31.0% 33.8%
w/o User Preferences 30.8% 64.2% 40.7% 54.9%
w/o Data Features 34.2% 64.1% 36.0% 68.7%
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Figure 11: Efficiency on KaggleBench datasets

removing the Adaptive Random Exploration Strategy reduces the
improvement from Hit@1 to Hit@3 from 30.5% to 8.7%, which
demonstrates that this strategy enhances result diversity and avoids
local optima, thereby improving performance.

7.2.5 Exp-5: Ablation Study of the Composite Reward Function.
Our composite reward function consists of three components: data
features, visualization domain knowledge, and user preferences.
We conducted ablation studies using the VizML and KaggleBench
datasets to evaluate their impact on overall performance.

Table 7 shows the results with the following observations.
Overall, removing any component decreased the performance of

HAIChart. Performance drops were more significant when remov-
ing domain knowledge or user preferences, indicating that these
aspects are crucial for aligning visualizations with user needs. In
summary, integrating data features, visualization domain knowl-
edge, and user preferences in the composite reward function en-
hances the effectiveness of visualization recommendations.

7.2.6 Exp-6: The Efficiency of HAIChart. We compared the effi-
ciency of HAIChart and existing methods using the KaggleBench
dataset, which includes eight tables (D1 to D8) of varying sizes.

Figure 11 shows the results with the following observations:

(1) HAIChart generates visualizations in 1 to 5 seconds, with an
average of 2.4 seconds, and hint generation takes only 1 to 3millisec-
onds, validating its capability for rapid visualization exploration.

(2) HAIChart is, on average, 1.8 times faster than MCTS, espe-
cially for datasets with many columns. For example, with the D3
dataset (15 columns), HAIChart’s graph-based structure outper-
forms MCTS’s tree-based structure by 2.9 times.

Overall, HAIChart is efficient enough for data visualization.

8 RELATEDWORK

Human-powered Visualization tools such as Tableau, Voyager,
and Polaris [1, 2, 44, 52, 62, 66] allow users to select or adjust data
sources, chart types, and data transformation operations for data
visualization. For example, Tableau [2] offers a code-free interface
for creating visualizations through click-and-drag actions. How-
ever, these tools are highly dependent on user skills, presenting
challenges such as steep learning curves.

AI-powered Automatic Visualization tools [8, 16, 19, 26, 28, 30–
32, 39, 40, 69] uses algorithms to automatically generate and rec-
ommend meaningful visualizations. For example, DeepEye [31]
uses machine learning to recommend good visualizations based on
data features and domain knowledge. Similarly, VizML [19] trains
a neural network model to recommend charts based on large-scale
real-world visualization cases. PVisRec [39] suggests personalized
visualizations based on the user’s past interactions. However, these
systems may overlook user intent, resulting in recommended visu-
alizations that may not always meet users’ needs.

Large LanguageModels for Visualization (LLM4VIS). LLM4VIS
leverages large language models to transform natural language
queries into data visualizations [33–36, 53, 56, 59, 60]. For exam-
ple, ChartGPT [56] employs LLMs to generate visualizations from
natural language queries, while LLM4Vis [59] uses few-shot learn-
ing to suggest visualization types and explain them in text. These
methods rely on users providing clear query descriptions and may
struggle with accurately modifying visualizations through natural
language [70]. Our method complements LLM4VIS by providing
visualization hints and easy-to-adjust features, reducing user input
and making the visualization creation process more efficient.

Reinforcement Learning is a learning approach based on trial-
and-error, where an agent receives feedback from its environ-
ment [27]. It has been successfully used in various tasks such as
item recommendation [58] and data preparation [7–9]. Recently,
it has also been applied to visualization tasks [10, 13, 64, 69]. For
example, PI2 [10, 55] uses MCTS to generate interactive UI widgets
from SQL logs, assisting developers in understanding necessary
queries for analysis tasks. Unlike PI2, which requires user-provided
SQL queries, HAIChart automatically recommends visualizations
for datasets and offers hints to guide data exploration. Both systems
facilitate data exploration but differ in their application scenarios.

9 CONCLUSION
We introduce HAIChart, which pairs human insight with AI ca-
pabilities to enhance visualization quality progressively and itera-
tively through user feedback. HAIChart utilizes a Monte Carlo
Graph Search-based visualization algorithm for automatically rec-
ommending high-quality visualizations. It is also equipped with
a visualization hints mechanism to actively incorporate the user
feedback and thus fine-tune the visualization generation algorithm
iteratively.HAIChart has been validated for its effectiveness in cre-
ating high-quality visualizations that align with user preferences.
Future research could explore integrating LLMs into our frame-
work to generate and evaluate visualizations, potentially enhancing
generalizability and robustness for diverse applications.
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