
Searching Data Lakes for Nested and Joined Data
Yi Zhang

∗

AWS AI Labs

imyi@amazon.com

Peter Baile Chen
∗

MIT

peterbc@mit.edu

Zachary G. Ives

University of Pennsylvania

zives@cis.upenn.edu

ABSTRACT
Exploratory data science is driving new platforms that assist data

scientists with everyday tasks, such as integration and wrangling,

to assemble training datasets. Such tools take scientists’ work-in-

progress data as a search object (table or JSON) and find relevant

supplementary data from an organizational data lake, which can

be unioned or joined with the current data. Existing data lake

search tools find single, relational tables to match or join with a

search object. Yet many data science applications revolve around

hierarchical data, which can only be matched by creating views that

simultaneously join and transform several tables in the data lake.

In this paper, we extend the Juneau data lake search system [46]

for this broader class of matches at scale. Our contribution is a

general framework for efficiently merging ranked results to match

hierarchical data, leveraging novel techniques for indexing and

sketching, and incorporating existing single-table search techniques

and ranking functions. We experimentally validate our methods’

benefits and broad applicability using real data from data science

computational notebooks. Our results indicate that, with different

ranking functions, our approach can return the optimal set of views

up to 4.8x faster and 43% more related compared to heuristics, and

increase the data domain coverage by up to 28%. In a case study to

show the utility of our results to data science downstream tasks, we

reduce regression error by up to 6.6%, and improve classification

accuracy by up to 19.5%.

PVLDB Reference Format:
Yi Zhang, Peter Baile Chen, and Zachary G. Ives. Searching Data Lakes for

Nested and Joined Data. PVLDB, 17(11): 3346 - 3359, 2024.

doi:10.14778/3681954.3682005

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at

https://github.com/juneau-project/juneau.

1 INTRODUCTION
Data scientists are increasingly using tools that assist with data

exploration [19], machine learning model training, and workflow

definition tasks. These scientists search over tables and code from

public repositories such as GitHub [44], as well as enterprise or

public data lakes [34, 46–48] to find supplemental data that can aug-

ment their working dataset(s). In the same spirit as Code Llama [39]

or GitHub CoPilot [18] for software engineering, such tools assist

∗
This work was done while the authors were at the University of Pennsylvania.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 17, No. 11 ISSN 2150-8097.

doi:10.14778/3681954.3682005

Figure 1: Schema-compliant matches to a JSON search ob-
ject may come directly or through joins followed by nesting
transformations.

programmers with data engineering tasks such as discovery and

data augmentation [34, 46], as well as data wrangling and cleaning

steps [6, 46]. Such tools complement large language models like

GPT, Claude, and Gemini. Unlike LLMs that make suggestions based

on their parametric knowledge, search tools do not “hallucinate”

results. Moreover, they can incorporate policies for domain-specific

data types (e.g., gene sequence similarity) or for preferring one

source over another (e.g., based on freshness).

The core of such tools is a search system over data lakes [13, 32,
34]: Here, the user invokes a query via a search object (in existing

systems, a table) and the system queries data lake resources for (1)

union-compatible tables [13, 33, 46, 48] that can extend training or

test datasets with new tuples, (2) joinable tables [16, 46, 47] that

integrate data or addmachine learning features, or (3) common com-

putational steps found as used in prior workflows [22, 24, 44, 46].

In contrast to web table search [5, 37], the critical challenges of

developing such tools lie in understanding the (semantic) compati-

bility of the schema and detecting the primary-key overlap with the

query table [13, 46] . There are two broad classes of existing systems:

union-compatible search strives to find tables that match the search
object’s schema while providing novel rows; join-compatible search

tends to be non-goal-directed, opportunistically finding tables that

appear to join with the existing search table. Recent work [26]

shows how to use full disjunction to knit the results together to

form one output schema.

However, the paradigm of single-table matches to a search object

is overly restrictive. Data scientists frequently work with JSON files,

nested Dataframes, and composite tabular results (views) that join,

pivot, and explode imported tables. Here, to provide the best search

results — the search system must combine subsets of indexed data into
new hierarchical or joined data matching the search object structure.
New combinations of indexed tables (i.e., automatically discovered

views) better leverage existing data and provide additional insights.

3346

https://doi.org/10.14778/3681954.3682005
https://github.com/juneau-project/juneau
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3681954.3682005
https://www.acm.org/publications/policies/artifact-review-and-badging-current

This requires that the data lake system can not only find 1NF tables
but explore ways of creating query transformations over combinations
of indexed tables to match the query.

Example 1.1. Snapshots of the popular DBLP publications data-

base (dblp.org) have been exported for use in data science tasks,

e.g., in notebooks shared on kaggle.com. These snapshots are often

subsets of the entire database, taken at different points in time, and

their representation may range from flat CSVs
1
to nested JSON

2
.

A data lake could also have complementary publication data (e.g.,

venues not indexed in DBLP) extracted from conference pages or

the ACM Digital Library. Now (see Figure 1), if a data scientist

takes a JSON snapshot of DBLP and searches for similar data to

train a classifier that recognizes CS papers, we would like to return

all relevant author-publication data (converted to the appropriate

structure), including (C1) objects that directly match the nested

schema, authors with nested papers; (C2) “pivoted” JSON, in a dif-

ferent structure with semantically compatible content (e.g., papers

with nested authors); (C3) nesting of flat tables or views represent-

ing the same concepts as the JSON; (C4) nesting of join queries over

1NF relations, matching the JSON schema.

In a similar fashion, a data scientist may take portions of the

above data and create an intermediate table for machine learning

training, which joins data from different levels of the DBLP hier-

archy. At this point, they may want to find matches, which, while

“flat," can be matched by joining 1NF data (which, in turn, could

have been gathered by decomposing other JSON structures). Unlike

prior join-compatible search approaches, this task is goal-directed
in terms of what joins; unlike prior union-compatible search ap-

proaches, this task requires more than single-table matches.

Conventional table search within a data lake introduces two key

challenges: identifying semantic and value overlap across thou-

sands to millions of tables, which has generally been addressed

using sketch and embedding techniques [16, 45, 47]; and efficiently

ranking the results, especially if there are multiple ranking mea-

sures [46]. Extending these ideas to heterogeneous and hierarchical

compositions of tables and JSON/XML results in three additional

critical challenges:

(1) Matches to the search object may be partial, requiring joins

to produce a complete search result. In our example, the JSON

can be normalized into three “primitive” relations: author,
paper, auth_paper. Individual data objects might contain the

information from all these (C1-3 in Figure 1); ormight require

us to find other tables to join, to form a complete match (C4).

Efficiently returning the top-𝑘 results, when each result has

an irregular number of joins, explodes the search space.

(2) Simply querying the primitive relations in top-𝑘 order, then

joining them, does not produce the top-𝑘 answers: intuitively,

high-scoring matches to papers may not actually join with

high-scoring matches to authors (as per database papers

with CVPR authors in Figure 1.) Therefore, the ranking func-

tion should measure the compatibility of a composition of

primitive relations, and the score should be independent of

the order of evaluation.

1
https://www.kaggle.com/jakboss/chunk-of-dblp-dataset

2
https://www.kaggle.com/mathurinache/citation-network-dataset

(3) Automatically and efficiently identifying which relations

should join (without introducing large numbers of false pos-

itives) is nontrivial – this is aided tremendously by identi-

fying fields that are good keys and also highly indicative of

semantic content, e.g., DOIs, SSNs, etc.

Searching data lakes for nested and joined data requires novel in-

dexing and pruning strategies. Broadly, as in Figure 1, the problem

requires that we decompose the nesting structure of our hierarchi-

cal data and find matches to each nesting level (columns in 1NF

tables, or in decompositions of other nested tables); then we return

a ranked set of queries (views) over these matches as the answers.

Note that among the search cases we have discussed, C4 is partic-

ularly challenging, as queries need to be created first. To address

these problems, we must innovate in how we index content in ta-

bles, and perform top-𝑘 computations, with the assistance of the

indices, across multiple tables while joining them.

A significant body of empirical work has been developed on

finding the best features for ranking individual tables considering

schema overlap, table overlap, and joinability (see Section 2). In

this paper, we develop a general query system that can “plug in”

existing individual table ranking strategies (with different degrees

of benefits depending on the specific setup), and our focus is on

scaling up running times of returning the (new) views over these

tables. To facilitate such a query system, we address the following

challenges.

Enumerating plans to join and nest data decomposed into
1NF, for a broad class of ranking functions.We compose partial
matches (1NF primitive tables) from our data lake using nesting and

join operations to match search object structure — favoring joins

of results that originally came from the same sources. However,

our system also considers cross-source joins, which are critical

to applications in Linked Open Data and scientific settings with

private data referencing entries in public databases.

Incremental maintenance of sketches and profiles. Exist-
ing data lake search systems developed in-memory sketches and

data profiles. To support data compositions in millions of tables,

these must be persisted and incrementally maintained.

Automatic index selection. To scale up the exploration of po-

tential joins to produce a match, we develop solutions to determine

combinations of fields to index across the data lake, in the form of

automatic data profile selection.
To sum up, this paper makes the following contributions:

• A new class of data lake search tools over joined and nested

data, whose task is to generate unions of nest-join queries

over data lake tables to match a search object, with customiz-
able ranking functions or modules.

• Identification of key requirements for ranking functions over

candidate views (over multiple tables), enabling an efficient

correlated top-k matching algorithm to rank them.

• Automatic selection techniques for profiling and sketching
millions of tables.

• Experimental validation of the viability and the generality of

our methods, over a diverse benchmark suite of real data and

notebooks, using state-of-the-art table scoring functions.

3347

https://dblp.org
https://kaggle.com
https://www.kaggle.com/jakboss/chunk-of-dblp-dataset
https://www.kaggle.com/mathurinache/citation-network-dataset

2 PRIORWORK
Semantics of Table Search. The problem of searching a data lake

for related tables has generated a significant interest [34].

Value-based table search (keyword search over tables).The
earliest table search systems look for matches to words or values

within tables. They rank table matches by how well the terms repre-

sent the tables. This line of work predates the data lake, and ranks

tables by TF/IDF-like measures; tables are matched without con-

sidering the compatibility between their schemas. Such tools were

largely targeted at enterprise networks [3, 15, 16, 20, 21, 43] and/or

tables that appear on the web [4, 5, 37].

Unionable table search (table augmentation).Given a search
table, these systems use schema alignment techniques to find simi-

lar columns. They rank tables based on schema similarity and how

many new rows are added [48]. At scale, columns are usually com-

pared using sketch-based techniques including LSH [16, 34, 46],

as well as techniques borrowed from schema matching [27] and

column or table embeddings [8, 10, 14] with Approximate Near-

est Neighbor Search (ANNS). D
3
L [2] further combined all these

techniques. Beyond those ideas, SANTOS [25] recently proposed

to use a knowledge base to discover the semantic relationships be-

tween pairs of columns in tables to find unionable tables. There are

also efforts considering how data from data science computational

notebooks can be leveraged as a data lakes [46], how computation

over that data might be reorganized [23], and even how schema

constraints might be inferred [41].

Joinable table search. Given a search table, this class of system

identifies columns that can be joined to other columns from tables

in the data lake, and ranks tables based on the estimated join com-

patibility [7, 17, 46, 47]. This line of work focuses on tables with

matching join columns, but otherwise is not generally directed

by a target schema. Similar to union-compatible table search, it

is intractable to do pairwise comparisons of columns to find join-

able pairs of columns, and therefore LSH and other sketch-based

techniques are often used. Recently, DeepJoin [11] proposed an

embedding-based retrieval method, which employs a pre-trained

language model fine-tuned on equi- or semantic join data for col-

umn embedding and uses ANNS, i.e., HSNW [31] for fast retrieval.

The ALITE system [26] explores how to merge and align dif-

ferent (tabular) search results (as a query post-processing), using

Full Disjunction as a means of null-padding tables as necessary to

achieve union compatibility among the matches. However, since

the returned matches are only constructed with tables returned by

the query for individual tables, the search space is limited.

Prior efforts match an individual table against other “raw” ta-
bles. Our work addresses union-compatible hierarchical data and
investigates techniques for scalably exploring joining and nesting

queries over primitive tables.

Foundations of our work. As the foundations of our work, we
extend an open-source, data lake search system, Juneau [46]

3
,

which encompasses many of the basic techniques described above.

More specifically, the open-source version of Juneau provides three

core capabilities, which are integrated into the Jupyter Notebook

data science environment.

3
https://github.com/juneau-project/juneau

Searching: Given a request from the user with a search table 𝑆 ,

Juneau searches for other tables that can be combined with 𝑆 by

unioning or joining. It compares 𝑆 against other tables using a series

of “pluggable” metrics, including schema overlap, value overlap,

and more. These are combined in a weighted linear fashion, and

newmetrics can be added, so long as the final function is monotonic

with regards to the individual metrics. Juneau works as a general

engine for top-𝑘 query processing, which ranks tables via this simi-

larity score. Juneau’s extensibility differentiates it from alternatives

in the previous section. Compared to those single-similarity-metric

systems [47], Juneau provides significant flexibility and customiz-

ability, but at the cost of more expensive search. For our problem

which involves multiple matching criteria, this customizability is

essential as well — but Juneau’s algorithms are not scalable enough.

Indexing and index selection: To scale its search and top-𝑘

ranking algorithms to tens of thousands of tables, Juneau relies on

additional strategies for indexing. A key capability is data profile, a
means of identifying and indexing subsets of columns in each table

belonging to a particular domain, which often co-occur. Intuitively,

a data profile captures the domain that identifies semantically

meaningful columns (e.g., a country) or combinations of columns

(e.g., a country + continent). However, Juneau requires a significant

extension to handle millions of tables, as we target.

Loading: As Juneau encounters tables (as they are created or

loaded in the Jupyter Notebook environment), it automatically loads

these into the data lake, in the process also extending any existing

data profiles to consider the data in each new table.

The Juneau system provides a foundation and platform imple-

mentation for exploring query-based data lake search — but we

also leverage other ideas from the literature.

A key aspect of table matching is the use of sketches for comput-

ing column compatibility (both for schema alignment and record

linking): LSH ensembles allow us to find overlapping strings [48];

Kolmogorov-Smirnov sketches allow us to compare value distri-

butions for numeric fields [42]. Our platform indexes and stores

hierarchical data, including XML and JSON. To enable maximum

flexibility during search (where the search object’s hierarchy may

not exactly match the stored object’s hierarchy), we normalize all

hierarchical data into 1NF relations, but maintain information about

the original structure, as well as the foreign keys required to re-

compose them into original or pivoted hierarchies. To do this, we

adopt ideas developed for storing XML in relations [9, 40]. For XML,

this occurs by consulting the XML schema and creating or reusing

relations (with appropriate schema elements) at 1 : 𝑛 nesting bound-

aries; then, on-the-fly as the XML is parsed, different components

of the XML tree are directly inserted into the appropriate tables.

Finally, our work on top-𝑘 query processing adapts ideas from Fa-

gin’s Threshold Algorithm [12] as well as the J* algorithm [35] to

iteratively explore options.

3 ENUMERATING POSSIBLE QUERIES
Our work explores how to create and rank join-nest queries over
combinations of tables in a data lake, which can be unioned with

a (hierarchical, i.e., non-1NF) search object. Our goal is a general

architecture that supports many potential scoring functions (mod-

ules) from the literature. In this section, we identify (1) the potential

3348

https://github.com/juneau-project/juneau

search space of matching the search object, (2) the necessary prop-
erties that the scoring function must satisfy during join. We separate

our discussion into identifying primitive tables in the data lake

that match portions of the schemas in the search object; ranking

potential matches by their “value-”add; then merging the results of

joining and nesting these tables together (as necessary) to produce a

compatible match. For simplicity of exposition, we describe how we

handle nested data, but our work can also generalize to “flat” joins

(by replacing outerjoins with innerjoins and omitting nesting).

3.1 Data Lake Join-nest Query Generation
When the user searches for a hierarchical data object 𝑆 , our system

explores query expressions, corresponding to the search data in

a nested structure, that augment 𝑆 , and finally returns a disjoint

union [26, 40] of each query expression’s output with 𝑆 . The detailed

definitions of our problem are as follows.

Definition 1 (Possibly-non-1NF Search Data). Given a (pos-
sibly -non-1NF) search data 𝑆 , we can express it as a search query
over 1NF relations denoted as 𝑉𝑞 . Denote a nest operation that groups
tuples with common values of 𝑥 as 𝑛𝑥 , 𝑉𝑞 = 𝑛0 (𝑆0,1 ⋈︁ 𝑆0,2 ⋈︁
· · ·) ⊲⊳ 𝑛1 (𝑆1,1 ⋈︁ 𝑆1,2 · · ·) ⊲⊳ · · ·𝑛𝑚 (𝑆𝑚,1 ⋈︁ 𝑆𝑚,2 ⋈︁ · · ·).

Definition 2 (Data LakeQueryGeneration Problem.). Given
a (possibly-non-1NF) search data 𝑆 that can be expressed as 𝑉𝑞 ,
and a corpus (data lake) of 1NF primitive tables with schema Σ =

{𝑅1, . . . , 𝑅𝑛} and data instances 𝐼 = {𝐼𝑅1
, . . . , 𝐼𝑅𝑛 }, the data lake

combinatorial search problem involves:
(1) Separate the search data 𝑆 into separate, 1NF sub-relations

{𝑆𝑖 }𝑚𝑖=1
by unnesting any nested relations. It means 𝑆 can be

represented as𝑉𝑞 = 𝑛0 (𝑛1 (· · · (𝑛𝑚 (𝑆0 ⊲⊳𝑆1 ⊲⊳𝑆2 ⊲⊳· · · ⊲⊳𝑆𝑚))),
where 𝑆0 = (𝑆0,1 ⋈︁ 𝑆0,2 ⋈︁ · · ·), 𝑆1 = (𝑆1,1 ⋈︁ 𝑆1,2 ⋈︁ · · ·),
· · · , 𝑆𝑚 = (𝑆𝑚,1 ⋈︁ 𝑆𝑚,2 ⋈︁ · · ·). Each nest operation 𝑛𝑖 should
take as an argument the attributes of

⋃︁𝑖
𝑗=0

𝑆 𝑗 .
(2) For each sub-relation 𝑆𝑖 , find combinations of primitive table

instances from 𝐼 . For the 𝑗 th combination that has been found,
we denote its table instances as 𝐼𝑅𝑖 𝑗,0 , 𝐼𝑅𝑖 𝑗,1 , · · · . Along with the
associated join keys, we can define a table expression 𝑇𝑖, 𝑗 for
each combination, i.e., 𝑇𝑖, 𝑗 = 𝑅𝑖 𝑗,0 ⋈︁ 𝑅𝑖 𝑗,1 ⋈︁ · · · ≈ 𝑆𝑖 . Here,
≈ means that 𝑇𝑖, 𝑗 is relevant to 𝑆𝑖 : namely, it has a schema
similar to 𝑆𝑖 , but 𝐼𝑅𝑖 contains a substantial number of rows
not present in the instance of 𝑆𝑖 .

(3) Apply an outer union [40] between 𝑆 and a set of expressions of
the form 𝑉𝑞,𝑗 = 𝑛0, 𝑗 (𝑛1, 𝑗 (· · · (𝑛𝑚,𝑗 (𝑇0, 𝑗 ⊲⊳𝑇1, 𝑗 ⊲⊳ · · ·𝑇𝑚,𝑗))).
Restrict expressions𝑉𝑞,𝑗 to those that are relevant to 𝑆 , namely
they have a similar schema to 𝑆 and yield a substantial number
of (nested) rows not present in the instance of 𝑆 .

Example 3.1. Given the JSON fragment of Figure 1 as our search

data 𝑆 , our system decomposes 𝑆 into a set of relations: 𝑆0, corre-

sponding to authors and 𝑆1, corresponding to papers with author

IDs (as foreign keys). 𝑆 can be expressed using the search query
𝑉𝑞 = 𝑛𝑆0

(𝑆0 ⊲⊳ 𝑆1), where ⊲⊳ represents a left outerjoin between

authors and papers-with-author-foreign-keys relations. Adopting

the notation of the nested relational algebra, 𝑛𝑥 represents a nest
operation that groups tuples with common values of 𝑥 and, for

each group, associates a nested list of elements created from the

remaining columns. In our case, we will nest by all attributes in

the schema of 𝑆0, thus nesting 𝑆1 under 𝑆0. Next, referring again

to Figure 1, 𝑆0 approximately matches the primitive table in the

data lake called 𝑎𝑢𝑡ℎ𝑜𝑟 ; 𝑆1 approximately matches the join ex-

pression 𝑝𝑎𝑝𝑒𝑟_𝑎𝑢𝑡ℎ ⋈︁ 𝑝𝑎𝑝𝑒𝑟 . We then union 𝑛𝑎𝑢𝑡ℎ𝑜𝑟 (𝑎𝑢𝑡ℎ𝑜𝑟 ⊲⊳

(𝑝𝑎𝑝𝑒𝑟_𝑎𝑢𝑡ℎ ⋈︁ 𝑝𝑎𝑝𝑒𝑟) to add rows to 𝑆 . □

From the example, it should be evident that searching for join-

nest queries from a data lake can leverage many ideas from standard

data lake search for individual tables. We can treat it as a problem of

finding matches at each level of a hierarchical search object — then

composing these into “appropriate” combinations. However, we

additionally need to ensure that we tractably explore combinations

of matches that actually produce join results and that we develop an

effective ranking function (discussed in Section 3.2).

Since some tables in the data lake may be equivalent to joins

of others, to restrict the search space to a tractable set of candi-

date queries, we make two simplifying assumptions in each query

expression as we compute its relevance:

• We defer nesting operations to the end, based on the schema

— so we only need to enumerate joins and outer joins.

• Note that an outer join expression contains a superset of the

corresponding inner join expression.We assume that the cost

and cardinality of left outerjoin is closely approximated by

the cost and cardinality of an inner join; thus our relevance

function treats inner and outer joins as the same.

With these simplifications, we can assume our search query 𝑉𝑞
and each of our candidate queries 𝑉𝑗 are conjunctive expressions.

Over the set of all such expressions, we will develop strategies for

exploring all candidates scoring in the top-𝑘 results.

Referring back to Definition 2, observe that steps 2 and 3 rely

on notions of schema similarity and numbers of rows not present,
to define the utility for each candidate expression. This can be

achieved by defining a scoring function 𝑟𝑒𝑙 (𝑠, 𝑡) as the combina-

tion of a schema similarity measure and a “row complementarity”

measure between two tables 𝑠 and 𝑡 .

3.2 Ranking Candidate Queries
Our goal is a query system that supports a broad array of scoring

functions. We assume that the score of each candidate query ex-

pression considers at least: (1) how schema-compatible its output

is, when compared to the search object; (2) the cardinality of the

output of the query expression, which is indicative of how semanti-

cally related its base tables are, which also reflects their joinability;

(3) the number of new rows that the expression adds to the search

object, representing new information.

Suppose our search object 𝑆 can be separated into sub-relations

{𝑆1, . . . , 𝑆𝑙 } that are joined and nested. Our goal is to create join

expressions over related tables of each table from {𝑆1, . . . , 𝑆𝑙 }, i.e.,
a different series of base tables: {𝑅1, . . . , 𝑅𝑙 }, to complement 𝑆 . Im-

portantly, our scoring function should satisfy two properties.

(1) Algebraically equivalent query expressions should have the

same score, so a query optimizer (and precomputed expres-

sions) do not change the score of a match. A join expression

should have the same score as a join of the primitive tables.

(2) The scoring function needs to satisfy the monotonicity prop-

erty of Fagin et al. [12]: namely, that for any two candi-

date tuples 𝑇 (𝑥1, 𝑥2, 𝑥3, . . .), 𝑇 ′(𝑥 ′
1
, 𝑥 ′

2
, 𝑥 ′

3
, . . .), 𝑠𝑐𝑜𝑟𝑒 (𝑇) ≤

𝑠𝑐𝑜𝑟𝑒 (𝑇 ′) if 𝑥𝑖 ≤ 𝑥 ′𝑖 for every 𝑖 .

3349

A natural way to define a monotonic scoring function for a

conjunctive query is to make it the weighted sum of a series of

components: by the above criteria, this would include a component

establishing how schema-similar each 𝑅𝑖 is to each 𝑆𝑖 ; a component

establishing how many new results are in 𝑅𝑖 but not in 𝑆𝑖 ; and a

component establishing how effectively each 𝑅𝑖 joins with 𝑅𝑖+1.

Below, we first measure the joinability among data lake tables,

then introduce the complete scoring function.

3.2.1 Joins. Some of the data indexed in our data lake come from

decomposed JSON or XML — given that our system tracks the

original relationships, we could limit our exploration to joins along

these relationships. However, important results may also arise by

joining across data from different sources, e.g., references in Linked

Open Data or from local to public scientific databases.

With a large number of tables in the data lake, combinatorial ex-

plosion may arise among potential join expressions, resulting in an

extremely high number of candidate queries. Inspired by A* search,

we seek to iteratively assemble, as separate streams, “promising”

subexpressions that start by matching each of sub-relation 𝑆𝑖 in the

search query 𝑉𝑞 . We can combine these subexpressions across the

streams until we have a complete candidate expression. Therefore,

our metric first scores partial joins, then we will see how they can

be combined to measure the joinability among multiple tables.

Traditional top-𝑘 enumeration explores how to combine a uni-

form set of tuples in streams. In our setting, we may need to explore

in a non-uniform way, since some candidate objects match one

primitive table in our search object whereas others may match mul-

tiple. We do this by creating a join subexpression exploration graph
in which nodes are relations, weighted edges represent similarity

scores (between a query sub-relation 𝑆𝑖 and a primitive table 𝑅𝑖 ,

using some standard measure of union-compatibility as in prior

data lakes search systems [46, 48]); or between some table 𝑅𝑖 and

some other candidate table with which it joins, 𝑅 𝑗 . (This approach

somewhat resembles the J* enumeration of Natsev et al. [35] but is

at the relation and not tuple level, and starts by considering table

approximate matches.)

Consider a candidate expression 𝑉𝑖 , posed over the relations

in the data lake Σ, which joins 𝑙 primitive tables. Each table in

the expression, denoted as 𝑅 𝑗,𝑖 , may join multiple other tables

𝑅𝑘,𝑖 , each with a different join predicate. Define a helper func-

tion 𝐿(𝑅 𝑗,𝑖 , 𝑅𝑘,𝑖) = {⟨𝑐, 𝑐 ′⟩|𝑐 ∈ �̄� 𝑗,𝑖 , 𝑐
′ ∈ �̄�𝑘,𝑖 }, which represents

the pairs of columns participating in a single equijoin predicate be-

tween 𝑅 𝑗,𝑖 , 𝑅𝑘,𝑖 from 𝑉𝑖 . Building upon this, we introduce a second

helper function 𝑃 (𝑅 𝑗,𝑖) = {𝐿(𝑅 𝑗,𝑖 , 𝑅𝑘,𝑖) |⟨𝑅 𝑗,𝑖 , 𝑅𝑘,𝑖 , 𝐿(𝑅 𝑗,𝑖 , 𝑅𝑘,𝑖)⟩ ∈
𝐸𝑖 } which captures the set of all predicates between tables 𝑅 𝑗,𝑖 , 𝑅𝑘,𝑖 .

Then for 𝑉𝑖 , we define its view graph 𝐺 (𝑉𝑖) = {𝑁𝑖 , 𝐸𝑖 , 𝐿𝑖 }, where:
– Nodes 𝑁𝑖 = {𝑅1,𝑖 , ...𝑅𝑙,𝑖 }, each of which represents a relation in

𝑉𝑖 .

– Edges 𝐸𝑖 =
{︁⟨︁
𝑅 𝑗,𝑖 , 𝑅𝑘,𝑖 , 𝐿(𝑅 𝑗,𝑖 , 𝑅𝑘,𝑖)

⟩︁
|𝑅 𝑗,𝑖 , 𝑅𝑘,𝑖 ∈ 𝑁𝑖 , 𝐿(𝑅 𝑗,𝑖 , 𝑅𝑘,𝑖)

∈ 𝐿𝑖
}︁
are labeled undirected edges; an edge

⟨︁
𝑅 𝑗,𝑖 , 𝑅𝑘,𝑖 , 𝐿(𝑅 𝑗,𝑖 , 𝑅𝑘,𝑖)

⟩︁
indicates that there exists an equijoin predicate 𝐿(𝑅 𝑗,𝑖 , 𝑅𝑘,𝑖) be-
tween two base tables, 𝑅 𝑗,𝑖 and 𝑅𝑘,𝑖 of view 𝑉𝑖 .

To facilitate efficient scoring of join queries, we constrain the

join-related scoring function to satisfy a series of algebraic equiv-

alences matching the join. For each pair of tables 𝑅𝑖 , 𝑅 𝑗 ∈ Σ, we
denote 𝐹𝐾 (𝑅𝑖 , 𝑅 𝑗) = {⟨𝑐, 𝑐 ′⟩|𝑐 ∈ �̄�𝑖 , 𝑐 ′ ∈ �̄� 𝑗 , 𝑐 → 𝑐 ′}. We add a join

edge between the relations, with a score based on the joinability
between two data lake tables. This is based on the logarithm of

their (estimated) selectivity when joined on any key-foreign key

relationship(s):

𝑗𝑠𝑐𝑜𝑟𝑒 (𝑅𝑖 , 𝑅 𝑗) = log

|𝑅𝑖 ⋈︁Φ𝑖 𝑗 𝑅 𝑗 |
|𝑅𝑖 | |𝑅 𝑗 |

(1)

where Φ𝑖 𝑗 = 𝐹𝐾 (𝑅𝑖 , 𝑅 𝑗). We extend our pairwise joinability score

to measure the joinability of tables from a subgraph of our join

subexpression exploration graph, i.e., generalizing the score to

more than two tables. Therefore, given {𝑅1, ..., 𝑅𝑙 } and the join

subexpression exploration graph, we consider the log of the overall

selectivity of joining all of the given tables:

𝑗𝑠𝑐𝑜𝑟𝑒 (𝑅1, ...𝑅𝑙) = log

|𝑅1 ⋈︁ 𝑅2 ... ⋈︁ 𝑅𝑙 |∏︁𝑙
𝑖=1

|𝑅𝑖 |
(2)

where each join may have multiple predicates, with the attributes

of multiple relations in the expression. To further simplify the score,

we assume attribute independence, as is commonly done in query

optimization in the absence of detailed statistics. In this case, we can

rewrite the selectivity of a join expression �̄� in a form as follows:

𝑠𝑒𝑙 (�̄� ⋈︁ 𝑅𝑏) = 𝑠𝑒𝑙 (�̄�)
∏︂

Φ𝑎,𝑏 ,𝑅𝑎∈�̄�

|𝑅𝑎 ⋈︁Φ𝑎,𝑏 𝑅𝑏 |
|𝑅𝑎 | |𝑅𝑏 |

(3)

Here 𝑠𝑒𝑙 refers to the selectivity of a join expression, 𝑅𝑎 and 𝑅𝑏 are

tables respectively.

Therefore, our 𝑗𝑠𝑐𝑜𝑟𝑒 can be decomposed as follows with the

attribute independence assumption:

𝑗𝑠𝑐𝑜𝑟𝑒 (𝑅1, . . . , 𝑅𝑙) = log

|𝑅1 ⋈︁Φ1,2
𝑅2 |

|𝑅1 | |𝑅2 |
|𝑅1 ⋈︁Φ1,2

𝑅2 ⋈︁Φ2,3
𝑅3 |

|𝑅1 ⋈︁Φ1,2
𝑅2 | |𝑅3 |

. . .
|𝑅1 ⋈︁Φ1,2

. . . ⋈︁Φb𝑙 ,𝑙
𝑅𝑙 |

|𝑅1 ⋈︁Φ1,2
. . .𝑇b𝑙 | |𝑅𝑙 |

=
∑︂
Φb 𝑗 ,𝑗

log

|𝑅b 𝑗 ⋈︁Φb 𝑗 ,𝑗
𝑅 𝑗 |

|𝑅b 𝑗 | |𝑅 𝑗 |

=
∑︂
Φb 𝑗 ,𝑗

𝑗𝑠𝑐𝑜𝑟𝑒 (𝑅b 𝑗 , 𝑅 𝑗)

(4)

where b𝑙 represents the index of any table which 𝑅 𝑗 is joined with,

and𝑅b 𝑗 ∈ {𝑅1, ..., 𝑅 𝑗−1}. Note that this decomposition also indicates

the associativity of our join score.

3.2.2 Multi-Table Relatedness. Now, we can combine other

relatedness factors to finalize our scoring function. Given a search

query 𝑉𝑞 , assume there is a mapping 𝜎 which associates a sub-

relation 𝑆𝑖 with a table 𝑅 𝑗 ∈ Σ. This mapping will be accompanied

by a relatedness function 𝑟𝑒𝑙𝜎 (𝑉𝑞) that measures the relatedness

between the search query 𝑉𝑞 and the tables mapped from the sub-

relations of the candidate expression by 𝜎 .

The relatedness function 𝑟𝑒𝑙𝜎 (𝑉𝑞) is defined between a candidate
and the query expression as follows:

∑︂
𝑆𝑖 ,𝜎 (𝑆𝑖)∈Σ

𝑟𝑒𝑙
(︁
𝑆𝑖 , 𝜎 (𝑆𝑖)

)︁
+

∑︂
𝐿 (𝑆𝑖 ,𝑆 𝑗)∈𝐿𝑞

𝑗𝑠𝑐𝑜𝑟𝑒
(︁
𝜎 (𝑆𝑖), 𝜎 (𝑆 𝑗)

)︁
(5)

Therefore, our top-𝑘 search problem is to find top-𝑘 mappings

Γ𝑘 = {𝜎}, such that ∀𝜎 ∈ Γ𝑘 , 𝑟𝑒𝑙𝜎 (𝑉𝑞) > 𝑟𝑒𝑙𝜎′ (𝑉𝑞), if 𝜎 ′ ∉ Γ𝑘 .

3350

4 CORRELATED TOP-K SEARCH
The previous section formalized the search space (the set of con-

junctive queries across all combinations of sources) and the scoring

function. We then want to use pruning strategies to explore a mini-

mal number of options. As in prior work, we seek to adapt Fagin’s

Threshold Algorithm [12] (TA) to guide exploration. The standard

TA algorithm considers how to explore a set of “streams” that each

has scoring sub-components. In our setting, it is natural to consider

the matches at each level of the hierarchy to be a separate “stream”.

The key challenge here is that each of these “streams” is itself a top-

𝑘 search across many possible tables, considering multiple metrics.

The choices made at one level of streams, in turn, interact with the

choices made at the next level.

A strawman greedy solution involves tackling this problem at

two levels: first, for each sub-relation 𝑆𝑖 from the search query

𝑉𝑞 , find the top matches. Then, take the top matches to each sub-

relation, and find the top-scoring ways of joining these (first, start-

ing with knowledge of foreign keys to other tables, then finding

other matches by looking at value overlap). It should be intuitively

obvious that the best matches at the local level (which consider

factors such as schema overlap and row non-overlap) may not

themselves have enough correlation in their join keys to produce

meaningful answers, which are supposed to be the best matches at

the global level across all sub-relations.

Our proposed solution to the correlated top-𝑘 search problem

builds upon the prior section. Since it is infeasible to enumerate

all possible join-nest queries (views), that can correspond to all

sub-graphs of the join expression exploration graph introduced

in Section 3.2, we propose to incrementally assemble, as separate

streams, “promising” subexpressions (of joins), and meanwhile en-

sure the optimality of the relatedness score (Eq. 5). Specifically,

“base” streams are computed by matching data lake tables to each

𝑆𝑖 in the search query 𝑉𝑞 , using our multiple table-to-table metrics.

Intuitively, at the second level, our algorithm starts to combine mul-

tiple such streams based on ranked order of cost — in the process,

greedily applying any relevant predicates from the join expression.

Ultimately, once a combination of base streams is generated that in-

corporates all base streams, and satisfies all predicates — it becomes

a complete candidate query that is emitted if its score is guaranteed

to be greater than or equal to the score of any remaining queries

to be explored. The idea of incrementally combining streams is

similar to J* search [35]. However, our application requires the

“base” stream to be read incrementally, because each stream itself

is a top-𝑘 search across 1NF tables. Our algorithm must minimize

accesses to sub-optimal 1NF tables and sub-queries, as each may

result in costly computation that can end up not contributing to

the final top-𝑘 results. Such challenges do not occur in J*.

To present our algorithm, we start with the base case, with only

two tables in the search data. Subsequently, we generalize it to

multi-table search data by incrementally assembling “base” streams.

4.1 Top-k Search for Two Streams
The basic idea of detecting the top-𝑘 join-nest queries for two-

stream inputs (i.e., to match a 2-level hierarchy within our search

table) extends ideas of the No-Random-Access Algorithm [12]. Here

are the notations. For tables 𝑆𝑖 , 𝑆 𝑗 ∈ 𝑉𝑞 (the search object), each

table 𝑡 ′ ∈ Σwill be ranked based on 𝑟𝑒𝑙 (𝑆𝑖 , 𝑡 ′) and 𝑟𝑒𝑙 (𝑆 𝑗 , 𝑡 ′), where
Σ refers to all 1 NF primitive tables in the data lake. For simplicity,

we denote the ranked list of Σ based on 𝑟𝑒𝑙 (𝑆𝑖 , 𝑡 ′) as Σ′𝑖 (Note Σ
′
𝑖
is

only for notation; we do not actually rank tables in Σ.). We introduce

a window size 𝑑 , which represents that only 𝑑 tables in each stage

will be accessed from Σ′
𝑖
and Σ′

𝑗
. Note accessing 𝑑 tables from Σ′

𝑖

and Σ′
𝑗
are two top-𝑑 queries to Σ respectively. Our goal is to find

the top-𝑘 most related join-nest queries to𝑉𝑞 , meanwhile exploring

the fewest 1NF tables and intermediate sub-expressions of join over

those 1 NF tables.

Specifically, we first issue two top-𝑑 queries to read 𝑑 tables

from Σ′
𝑖
and Σ′

𝑗
respectively, and try to detect the top-𝑘 mapped

expressions for 𝑉𝑞 based on the join information of those 2𝑑 tables.

To achieve the goal, we try to estimate the relatedness score for all

possible expressions (views). For the views that consist of only those

2𝑑 tables from Σ′
𝑖
and Σ′

𝑗
, we can directly compute the relatedness

score. For possible views that consist of at least one table outside of

those 2𝑑 tables, we estimate their relatedness score. Specifically, if

we denote the unseen table as 𝑡∗, i.e., 𝑖𝑛𝑑𝑒𝑥 (Σ′
𝑗
, 𝑡∗) > 𝑑 , we compute

the lower bound of the relatedness score by replacing 𝑟𝑒𝑙 (𝑆 𝑗 , 𝑡∗)
with 0, and compute the upper bound by replacing 𝑟𝑒𝑙 (𝑆 𝑗 , 𝑡∗) with
𝑟𝑒𝑙 (𝑆 𝑗 , 𝑡◦),where 𝑖𝑛𝑑𝑒𝑥 (Σ′𝑗 , 𝑡

◦) = 𝑑 . For possible views that consist
of only tables that do not belong to those 2𝑑 tables, they must have

a lower relatedness score than other views. Then, we can use the

lower and upper bounds as thresholds to find the top-𝑘 views. More

specifically, we maintain a priority queue of 𝑘 highest lower bounds.

If the 𝑘 highest lower bound exceeds the upper bound of all other

candidate views, we then get the top-𝑘 views for the two-table

search object. We can use the same proof of the No-Random-Access

algorithm [12] to prove the optimality. If we cannot detect the top-𝑘

views after accessing all tables that have been read, we then read the

next 𝑑 tables from Σ′
𝑖
and Σ′

𝑗
respectively, update the corresponding

lower and upper bounds for related views, and check if the updated

bounds can lead to top-𝑘 results. If this effort still fails to detect

the top-𝑘 expressions, we then read tables again from both lists to

continue the exploration. We will keep reading 𝑑 tables from the

input streams stage by stage until we successfully obtain the top-𝑘

expressions. Note that in this process, the expressions (views) are

constructed based on the join expression exploration graph defined

in Section 3.2.1, and the detection, indexing, and maintenance of

relations in the graph will be introduced in Section 5.

4.2 Generalizing to Multiple Streams
We then extend the algorithm from the previous section to the gen-

eral case, considering multiple streams for search objects with more

than two tables. Similarly, it starts with reading 𝑑 tables from each

stream through top-𝑑 queries. Then it sequentially works on tables

from each stream to generate top-𝑑 partial expressions, starting

from a single relation, building join expressions, until generating

complete expressions that can be mapped to all sub-relations from

the query. For example, if search query 𝑉𝑞 includes 𝑆1, 𝑆2, 𝑆3, we

first detect the top-𝑑 sub-expressions for ⟨𝑆1, 𝑆2⟩. Then in the next

step, the list of candidate sub-expressions becomes one of the input

streams, until the final top-𝑘 join-nest queries, here

⟨︁
⟨𝑆1, 𝑆2⟩, 𝑆3

⟩︁
,

are identified. If there is any intermediate step where we fail to de-

tect the top-𝑑 sub-expressions, it means that more tables should be

3351

read from the “base” input streams. We will then read the next 𝑑 ta-

bles from those related streams, use them to update the correspond-

ing lower bounds and upper bounds, until top-𝑑 sub-expressions

are derived, so that we can use them to continue the detection of

the top-𝑘 complete expressions.

5 INDEXING EVOLVING DATASETS
A major challenge in supporting standard data lake search is the

computational and I/O costs: matching between a single search

table and 𝑛 tables conceptually requires 𝑛 schema matching oper-

ations; and if such schema matching takes into account the data

instances, that may involve up to 𝑂 (𝑛𝑟𝑘2) computations, where

𝑟 is the average number of rows and 𝑘 is the average number of

columns. Once we extend this to consider searching for a hierar-

chical data 𝑆 that may be comprised of 𝑞 sub-relations, where new

tables are constantly being added to the system — this problem

is significantly exacerbated. Thus, we not only need to leverage

sketching and indexing techniques from the literature, but also

need to extend them to handle scale and dynamicity.

Data profiles. As noted in Juneau [46], when multiple table-

similarity metrics are incorporated into data lake search — it be-

comes essential to rapidly find data that provides effective thresh-

olds for pruning. The intuition behind was to compare 𝑆 against

tables for which we can find good partial matches: namely, on

attributes that are likely to appear in semantically similar tables.

Therefore, we developed an indexing mechanism for Juneau called

data profile that captured, for important columns and domains,

the sets of tables containing this column. This notion can also be

generalized to combinations of columns, e.g., streets and cities.

A table search in Juneau always starts with a match from search

table 𝑆 against any existing data profiles, which typically allows it

to start with a “tight” bound for exploring matches. Unfortunately,

Juneau relies on a human expert to identify and generate good data

profiles, thus only a very small number of these exist. These have

relatively easy-to-define patterns: phone numbers within a specific

country code, dates, bank account numbers, etc. As new data con-

tinues to be added to the data lake, the set of columns most useful as

data profiles may gradually shift. We develop innovative techniques

to address the problem of data profile selection in Section 5.1.

Data sketches for estimating domain overlap. Second, as we com-

pare tables to see if their instances overlap, we want to avoid fetch-

ing the actual tables. Zhu et al. [48] and others proposed that,

instead we should use sketching and hashing techniques. LSH tech-

niques allow us to estimate value overlap for strings and discrete

information [16, 48]. Spoth et al. proposed that numeric attributes

can be matched using distributional information [42]. Section 5.2

describes how we extend this work from its initial in-memory ver-

sions, to an in-database implementation that can be incrementally

updated and can also be incorporated into SQL queries.

5.1 The Data Profile Selection Problem
Data profiles have been proposed to index columns (and associated

tables) belonging to a given domain [46]. A primitive data profile can
be defined for any given semantic type, e.g., a phone number or a

bank account number. Unlike an index, it captures a domain, which

can be represented as a triple ⟨𝑡𝑦𝑝𝑒,𝑚𝑎𝑡𝑐ℎ𝑒𝑟, 𝑖𝑛𝑥⟩, where 𝑡𝑦𝑝𝑒 is
the semantic type,𝑚𝑎𝑡𝑐ℎ𝑒𝑟 is a function that predicts whether an

instance of a table’s column conforms to the semantic type, and 𝑖𝑛𝑥

is an index of all columns from tables in the data lake that satisfies

the matching function (above some threshold). From this, we can

define a lattice of composite data profiles, consisting of combinations
of primitive (or simpler composite) data profiles. For instance, given

profiles for first and last names and street addresses, we can build

a composite profile for full names, and another for last names with

street addresses. Importantly, each composite profile contains a

superset of the attributes connected to it at the lower levels of the

lattice, but contains a subset of the entries within the index.

Automated data profile generation. Each time our data lake

search system is given a new table 𝑇 to load, we first decompose

it into a series of primitive tables, as described earlier in this pa-

per. Subsequently, we match the columns of 𝑇 against all existing

profiles, to determine whether that column belongs to an existing

profile. If it does not, we mark it as a candidate for a new (not yet

computed) data profile. Periodically, in a background thread the

system will go through all candidate data profiles, looking for the

most suitable ones.

Identifying primitive data profiles based on value-overlap. Next,
we develop amechanism for identifying common-yet-easy-to-identify

data domains that (potentially) represent meaningful semantic

types, and are thus suitable for profiling. To do this, we need to

track the distributions of each column in the data lake; see which

columns seem domain-compatible, contain common representative

instances and are suitable to be merged; and repeat. (Note that, in

this case, we will be able to detect domain-compatible columns but

not identify the name of the domain. It is acceptable in our case,

because we use data profiles as indices.)

The basic test for domain compatibility is based on the sketches

mentioned earlier in this section: two sketches matching above a

threshold are considered to belong to the same domain. As will be

described in Section 5.2, we maintain a persistent sketch for each

column of a compatible type; once two columns’ sketches overlap

beyond a threshold, we map them together into the same single-

column data profile, which is updated with a composite sketch that

is the union of the columns’ sketches.

Basic approach to composite data profiles. Composite data (multi-

attribute) profiles can be defined using multiple primitive profiles

that frequently co-occur. For example, “street name”, “city”, “states”
and “postal code” can jointly represent a “U.S. address”.

Given the lattice structure of composite data profiles, there is a

natural synergy with the apriori algorithm used to find frequent

itemsets [1]. Leveraging the apriori algorithm, we establish a thresh-

old for the minimum number of matches for a primitive candidate

data profile. Next, we build upwards in our lattice, considering all

pairwise combinations of profiles that exceed our threshold; and so

on, for combinations of three, four, and more profiles.

Simpson’s Paradox and the principle of optimality. The statistical
phenomenon known as Simpson’s Paradox notes that an association

between variables may emerge, disappear, or reverse when the

population is divided into subpopulations. In our empirical results,

we discovered a high overlap between columns only when those

3352

columns co-occurred with another column with specific sub-domains.
For example, there is an overlap between the street names in Seattle

and New York. However, if there is an attribute “postal code” in

the same table, the difference of the values in the “postal code” can

help us distinguish between a profile of street names in Seattle

versus one with street names in New York. The fact we can discover

new correlations by increasing the set of attributes means that the

principle of optimality, assumed bythe apriori algorithm, is violated

in certain cases.

We adopt a simple heuristic. As we iteratively combine primi-

tive candidate profiles based on overlap, we set up two thresholds

{𝜏1, 𝜏2}, where 𝜏1 < 𝜏2. For a pair of candidate profiles 𝐶1,𝐶2, if

their similarity 𝑠𝑖𝑚(𝐶1,𝐶2) > 𝜏2 , we combine these candidates

into a single primitive data profile. If this condition is unsatisfied,

yet 𝑠𝑖𝑚(𝐶1,𝐶2) > 𝜏1, we then look for a pair of attributes, 𝐴1, 𝐴2,

such that if

• 𝐴1 co-occurs in tables with 𝐶1, and 𝐴2 co-occurs with 𝐶2,

and

• 𝑠𝑖𝑚(𝐴1, 𝐴2) exceeds a third threshold 𝜏3 (𝜏3 < 𝜏2), i.e., 𝐴1

and 𝐴2 have substantially overlapping domains

then we instead merge𝐶1,𝐶2 into a candidate profile, and similarly

for 𝐴1, 𝐴2, even though they do not separately satisfy the apriori

threshold condition. Then we create the composite profile, which

does satisfy the threshold.

5.2 Incrementally Maintainable Sketches
Many aspects of ranking in table search rely on a test for value

overlap between columns. Sketching has shown to provide a good

approximation [42, 48] to value-overlap (join cardinality) scores for

both numerical and string attributes, while enjoying a significant

reduction in runtime versus doing the exact overlap computation.

This motivates us to use existing sketching techniques to scale up

creating and matching profiles.

Two of the most successful techniques have been shown to be

LSHE [48] for string columns, and Kolmogorov-Smirnov (KS) [42]

for numerical columns with similar distributions. However, prior

work focused on establishing the effectiveness of these measures

in relatively restricted, main-memory-only settings that were not

incrementally updated. Our context introduces several new chal-

lenges that require incremental updates and out-of-memory stor-

age.

First, given the dynamic nature of our data lake, the system must

be able to augment sketches with data from new incoming tables

on-the-fly. We are able to compute sketches incrementally and store

them to speed up similarity score queries.

Incremental LSHE and KS. The LSHE algorithm, based on locality-

sensitive hashing and ensembles, consists of distinct hashing and

partitioning stages. Hashing can be done independently over each

column from each table. However, partitioning is done holistically

over all columns in the same sketch. Therefore, we developed a two-

stage process in which hashes are computed for each column and

stored persistently; and as new columns are added to the sketch,

partitioning is re-run over the stored hashes. This sped up our

computations by roughly 100 times.

Similar techniques were also applied to the KS algorithm: a

histogram of each column/ profile can be computed independently

and persisted. Then, partitioning is done over all histograms based

on the largest value/ bucket of the histograms. The hashes and

histograms computed and stored are then readily available to speed

up online queries for similarity scores.

Sampling for KS. Additional optimizations were needed to speed

up the construction of histograms for KS. Given that KS attempts

to profile the distribution of numeric values, we can reduce the

required space and time by computing sketches over a sample of
values from a column. Therefore, we uniformly sample at random a

fixed number of values from each column (in our work: we achieved

about 450 × speedup by sampling only 10,000 values). We also

found that for many domains, we could drop the least significant

digits to get better coarse-level clustering (e.g., postal codes vary

widely across cities, and by small amounts within cities). Both opti-

mizations greatly helped improve the running times of numerical

profiling, as well as the estimates of overlap. We further optimize

querying KS by pruning away partitions which have largest value

too far from the query distribution. For instance, a distribution

represented by a histogram which has values on the scale of 1000

does not overlap with a distribution represented by a histogram

which has largest value of 10, and thus we can prune away the

partition of histograms with largest value of 10.

Finally, as we describe in more detail in Section 6, we imple-

mented the sketch creation and value overlap estimation algorithms

as user-defined functions in a relational DBMS.

6 SYSTEM IMPLEMENTATION
The algorithms described in the previous sections have all been

implemented in an extension to the open-source version of Juneau.

Ourmodifications focused on themiddleware layer for indexing and

search; and on the relational repository, with services implemented

within PostgreSQL.

The Juneau middleware layer, written in Python on Tornado

in order to maintain compatibility with the Jupyter backend, is

invoked by the user through a Jupyter Notebook web environ-

ment. When loading data, it receives a serialized copy of a Pandas

dataframe, JSON document, or other data structure. For querying,

it receives a serialized copy of the (hierarchical) query table of in-

terest. We replaced significant components of the Juneau code for

both functionalities, in accordance with the algorithms described

elsewhere in this paper. In addition to incorporating KS and LSHE

sketches for measuring value overlap, we leveraged Juneau’s exist-

ing scoring metrics for schema matching as a key component of

finding union-compatible tables [46].

Our work pushes significant functionality into the underlying

DBMS layer, rather than the middleware. We load our data into

PostgreSQL, which we use to manage and index the tables in our

corpus as well as the sketches.

Storing and using sketches in Postgres. Wemake heavy use of Post-

greSQL’s support for user-defined functions to integrate sketches.

We re-implemented LSHE (the original reference implementation

was done in-memory in GO) and other sketches using a combi-

nation of C user-defined and PL/pgSQL functions. For each table

representing a sketch, heavily-queried columns were indexed. The

use of functions and indices substantially reduces costs of loading

results from the database, passing them to our middleware layer,

3353

and subsequently executing the algorithms in a high-level language

such as Python.

Storing normalized data in Postgres. As described in Section 2, the
problem of storing hierarchical data in relations was heavily studied

for XML in the early 2000s. We directly leverage those concepts in

our implementation for XML data, and further adapt them for JSON.

The JSON data model is significantly simpler than that of XML. It

represents a composition of dictionaries, which are key-value pairs;

lists, which are sequences of items; and scalars. In principle, JSON

data could be shredded along similar lines to XML. However, JSON

does not have a native schema language, and we must often infer
the structure on-the-fly. Moreover, data developers use several

conventions that introduce relational-mapping challenges seldom

encountered in XML.

Dictionaries represent key-value pairs, but do not particularly

differentiate between keys representing schema columns and keys
representing entry IDs. In the common case, the keys represent

schema elements, and scalar values can be mapped to individual

columns within a relational table. At other times the key of a dic-

tionary may simply represent a unique identifier for the associated

value — in other words, a key for each row. Here, our relational

schema might simply be the pair (𝑘𝑒𝑦, 𝑣𝑎𝑙𝑢𝑒).

Example 6.1. Consider the fragment:

{ "A. Rojas": ["paper2", ...]
"A. Yan": ["paper1", ...],
"D. Singh": ["paper2", ...]
"J. Doe": ["paper1", ...],

}

Here, the dictionary’s keys are not in fact column names in a 5-

column relation schema, but rather author names, i.e., belong in a

2-column key-value schema! Thus, an appropriate storage format

(if we do not wish to introduce a special token per author) might

be 𝑝𝑎𝑝𝑒𝑟𝑠 (𝑑𝑖𝑐𝑡_𝑖𝑑, 𝑎𝑢𝑡ℎ𝑜𝑟_𝑛𝑎𝑚𝑒, 𝑖𝑛𝑑𝑒𝑥, 𝑙𝑎𝑏𝑒𝑙) where𝑑𝑖𝑐𝑡_𝑖𝑑 repre-
sents the node ID given to the dictionary structure itself.

More generally, there may be multiple nested dictionaries, per-

haps even as siblings in the JSON hierarchy, with similar structure

and typing. Storing each dictionary in a separate table would make

reconstruction of the JSON unnecessarily complex (since each dic-

tionary would require a separate join). Thus, rather than create

a separate table for each nested dictionary, we might create one

𝑘𝑒𝑦_𝑠𝑡𝑟𝑙𝑖𝑠𝑡 (𝑝𝑎𝑟𝑒𝑛𝑡_𝑖𝑑, 𝑠𝑡𝑟𝑢𝑐𝑡_𝑖𝑑, 𝑘𝑒𝑦, 𝑖𝑛𝑑𝑒𝑥, 𝑙𝑎𝑏𝑒𝑙) table, which han-
dles many dictionaries in a generic way. The 𝑠𝑡𝑟𝑢𝑐𝑡_𝑖𝑑 can be used

to determine which elements belong to the same dictionary; the

𝑝𝑎𝑟𝑒𝑛𝑡_𝑖𝑑 allows them to be joined to the appropriate parent.

7 EXPERIMENTAL ANALYSIS
In this section, we evaluate our system against a collection of web

tables and real data science workflows with hierarchical source

datasets. We also compare our system against alternative ranking

strategies based on heuristics. We consider four main questions

about performance:

(1) Runtime: As we increase the complexity of queries, how

does execution time vary in our correlated top-𝑘 algorithmic

framework?

(2) Generalizability: Can the correlated top-𝑘 framework be

applied to different individual table ranking modules and

achieve improvement in execution time?

(3) Effectiveness: How often would our top-𝑘 framework re-

turn compatible hierarchical data with new information?

How much would the result data quality downgrade (versus

optimality as guaranteed by our system) if we instead use

heuristics to compute top-𝑘 results?

(4) Usability: How would the results returned by our system

help with a user’s data science tasks?

Table 1: Statistics: Number of Joins v.s. Number of Views

Joins 1 2 3+

Views 900 191 35

7.1 Experimental Setup
7.1.1 Workloads, Datasets andWeb Tables. We consider two classes

of datasets in our data lake: (1) data used in real data science work-

flows, as found on kaggle.com; and (2) data occurring on the web

at much larger scale, as collected in work on web tables [28].

Real data science workflows and derived tables. The data
science workflows in our collection are manually analyzed, and are

comprised of (1) 102 Jupyter Notebooks with their source data used

in [46]; (2) 227 new Jupyter Notebooks with their source data, which

is either in JSON format or include multiple CSV tables that natu-

rally map into JSON objects. The new workloads included cover a

variety of tasks and data domains. We describe some of them in Ta-

ble 2. Since we focus on searching for complementary data sources,

we identify some specific fields in the data (listed in Table 2), and

categorize the data into different domains based on the values of

these fields, to support the evaluation. Specifically, the field infor-

mation enables verifying whether our algorithm and alternatives

can return related expressions covering different domains.

To obtain queries and a corpus of tables for our data lake, we re-

executed all of these notebooks and loaded all source, intermediate

and final tables derived by the notebooks. Whenever we identified

collection-valued or hierarchical data objects (i.e., nested list, dictio-

nary) in a running cell, we parsed them and obtained the data. If it

was a hierarchical data object, we further identified its base tables

from the parsing result, and re-wrote the data object as a view over

these base tables. We then stored and indexed all these base tables

and other standard tables (Pandas dataframes) in PostgreSQL.

Web tables. It is difficult to scale manually-inspected collections

of workflows, but we wanted to test the scalability of our system

and introduce more new-yet-common tables. Thus, we further aug-

mented our data lake with web tables collected in prior work, which

are available as a large public data set [28].

Overall, we stored and indexed over 2.5 million tables, among

which 12k tables are derived from Jupyter notebooks, with an over-

all size of approximately around 200GB. For each table stored, we

also computed and stored its sketches, and in total the size of the

sketches of all tables in the corpus is around 37GB.

Data profiles and indices were created periodically for the tables

generated by our notebooks. In the end, we identified 259 individual

profiles and 5548 composite data profiles. The size of the sketches

3354

kaggle.com

Table 2: Samples from experimental workflows

Task Dataset Example Data Complementary Fields (Domains)

Citation network analysis DBLP citation network
4

Papers published by ACM and IEEE
Peek into the Airbnb activity Airbnb Seattle

5
and Boston

6
Open Data Airbnb activities in Seattle and Boston

Explore key education statistics World Bank: Education Data
7
& GHNP Data

8
Topics including Education, Global Health, Nutrition, Population

Predict flight delays 2015 Flight Delays and Cancellations
9

Flights depart from LAX, LAS and JFK
Simulate a specific market strategy Daily stock market prices

10
Stocks of listed companies in NASDAQ, S&P500, NYSE, Forbes 2000

of data profiles for matching is around 3.6 MB. Examples of data

profiles include neighbourhood, longitude, country code, airline, etc.

7.1.2 Environment. We conducted experiments on an AWS EC2

t2.large node, running PostgreSQL 12 on Ubuntu Linux 20.04.

Our middleware layer was implemented in Python 3.8. Our data

science IDE was Jupyter Notebook, although for experiments we

made direct web service calls to Juneau.

7.1.3 Queries and Evaluation Metrics. We developed queries to

study the efficiency and the quality of our results. The queries

consist of JSON data objects used in and derived by the notebooks,

which in turn can be specified as join-union-nest queries over

“shredded” relations as we have described previously in this paper.

We detail the queries and evaluation metrics for the key questions.

RQ1 & RQ2: Query Answering Efficiency and its General-
izability over Table Ranking Modules. To study the efficiency

and scalability varying query complexity, we divide the queries

into groups based on the number of joins required, i.e., queries

with 1, 2, and more than 3 joins. Statistics are reported in Table 1.

Since we have merged the tables with the same schema as described

in Section 6, there are only a few views deeper than 3 joins. We

then report the average running time of queries to evaluate the effi-

ciency. Specifically, for each group of queries, we randomly sample

10 views from it as queries to be issued, and compare the average

running time with alternatives.

To answer RQ2, we incorporate different individual table ranking

modules and report the average query execution time, respectively,

to demonstrate the generalizability of our algorithm. We will de-

scribe the details in Section 7.2.

RQ3: Effectiveness of Top-Scoring Results. To evaluate the

effectiveness of the results returned by our query-answering algo-

rithms, we consider two different types of metrics. The first one is

data domain coverage, which is obtained by checking whether the

returned queries recall data in complementary domains (Example

domains are listed in Table 2.). Specifically, we reported the mean
recall of complementary domains of the results. For example, as

shown in Table 2, if our search data is about publications whose

publisher is ACM, returned results that include publications by IEEE
will increase the mean recall of complementary domains.

The other metric is relatedness score, with respect to the scor-

ing function, of returned queries. Due to the large table corpus

size, enumerating all possible combinations of tables to obtain the

optimal solutions is infeasible. Therefore, we consider heuristics

approaches as baselines. We compare the quality of the results re-

turned by our algorithm against the heuristics baselines, reporting

the percentage of improvement of the relatedness score varying

𝑘 (position). If our algorithm is correctly designed, the scores of

queries returned by our algorithms should be higher than those

returned by the alternatives.

RQ4: Usability of Top-Scoring Results. To evaluate the us-

ability of the results returned by our algorithm from a data scien-

tist’s perspective, we leveraged datasets from kaggle.com, which

have been actively used by Kaggle users. We created a set of data sci-

ence tasks for these datasets, such as classification and regression,

and benchmarked the performance on a subset of the correspond-

ing dataset (called source data). Then, we used the source data

(typically, a JSON object) as a query to search for unionable views

and then combined them with the source data to derive new data

for the data science task. We then evaluated the usability of the

results by checking whether the data science task performance had

been improved. Details will be discussed in the next section.

7.2 Efficiency of Query Answering
To evaluate the efficiency of our correlated top-𝑘 algorithm, we con-

ducted the experiments under three different setups corresponding

to different individual table ranking modules. The first one is Na-
tive Setup, where we used the relatedness function proposed in this

paper, and applied our data profiling techniques. The other two are

Customized Setups, where we used other popular individual table

ranking modules to show the generalizability of our algorithm.

7.2.1 Native Setup. We use the relatedness function proposed in

Section 3.2.2 as our query ranking function, where we can evaluate

the full suite of the techniques we have developed, including the

correlated top-𝑘 algorithm as well as the automatically selected

data profiles as indices.

7.2.2 Customized Setups. We consider two different ways to search

for individual tables.

𝐷3L: 𝐷3
L
11

[2] is based on LSH techniques. As a ranking func-

tion, it ensembles a broad set of features, which are all implemented

by an individual LSH-based index.

HNSW : In light of recent advances in embedding models [29, 38]

and vector databases [36], we experimented with table embeddings

plus HNSW [30] as our individual table ranking module. The goal

is to show that our computational framework can also be applied

to a vector database backend, take advantage of its supported ap-

proximate KNN algorithms, and answer the queries efficiently with

our correlated top-𝑘 algorithm. We use pgvector
12

as our vector

database, and a BERT-based embedding model
13

to encode tables.

For customized setups, we cannot exploit data profiles as indices,

because they are used in table relatedness computation; but we do

take advantage of the correlated top-𝑘 algorithm.

7.2.3 Baselines. We set up baselines using the heuristics with

existing individual table ranking modules over data lake, such

as [2, 38, 46]. Specifically, we break a hierarchical dataset into its

11
https://github.com/alex-bogatu/d3l/tree/main

12
https://github.com/pgvector/pgvector

13
https://www.sbert.net/

3355

kaggle.com

constituent relations, separately search for top matches to each,

and then rank the top-scoring join expressions over these. More

specifically, we compare the running time of the search with (1) our

full system (SJ) including the data profiles serving as indices and

the multi-stream correlated top-𝑘 algorithmic framework (in Native

Setup); (2) the multi-stream correlated top-𝑘 algorithm without us-
ing data profiles as indices (NPS); (3) the strawman top-𝑘 algorithm

introduced in Section 4 that fetches 𝑧 · 𝑘 tables from each input

stream, and computes the best top-𝑘 sets of tables by conducting a

Cartesian product of the top-𝑧 · 𝑘 tables from each stream (here we

vary 𝑧 from 2-4, denoted as BL-2, BL-3 and BL-4, respectively). All

of our implementations for Native Setup leverage the sketches of

Section 5.2 to map columns and tables.

7.2.4 Results. Table 3 reports the runtimes of thesemethods, across

different query complexity classes and setups. Our SJ is faster than

alternatives in all cases when searching for top-20 results, and in

most cases when searching for top-5. Specifically, our system can

get the results 2×, 2.5× and 3× faster than BL-2, BL-3 and BL-4

respectively, when 𝑘 = 20 and queries have 2 joins, and 4×, 14×
and 43× faster, when the queries have 3 or more joins. The speedup

shows that our algorithmic framework is more scalable than base-

lines due to its limited number of explorations for combinations.

Furthermore, we can observe from the NPS column that leveraging

data profiling as indices can consistently bring speed-up, due to

its capability of reducing the times of computing mappings among

the tables. We conclude that our strategy is nearly as efficient as

simpler schemes when we have very simple query expressions, and

that it is dramatically faster once the required query expressions are

more complex. Similar conclusions can also be observed in Table 3

when using third-party table ranking functions. Leveraging our

correlated top-𝑘 algorithm speeds up the query process across all

of the cases, particularly when query expressions are increasingly

more complex.

Figure 2: Performance of query views (Size = 2)

Figure 3: The Performance of Query Views (Size = 3)

Figure 2, 3, 4 further illustrate the contributions of different

components to runtimes under Native Setup. Figure 2 shows that

Figure 4: Performance of query views (size ≥ 4)

when the size of the search query is small, most of the runtime is

spent on searching for relevant tables (sketch time); when search

queries have more joins and need to return more results (Figure 4),

most of the runtime will be used to explore the combinations for

the top-𝑘 results.

Figure 5: Percentage improvement
of SJ, vs BL-2.

Figure 6: Query mean recall @k
of related domains.

7.3 Effectiveness of Query Answering
We next investigate the quality of the results. Since it is infeasible

to annotate “gold” queries that should be returned for each search

object, we instead evaluate the effectiveness of the results from the

following two aspects.

Recall of domains. We study whether our algorithm can find

complementary (not just overlapping) queries for the search data.

To achieve that, for each query listed in Table 2, since we know

what domains they are related to, we check the top-5 sets of tables

returned by SJ and BL-2 to understand whether they return the

complementary data.

Optimality of the results with respect to the scoring function. Since
our algorithm is guaranteed to return optimal results, we compared

the relatedness score of views returned by our full system (un-

der native setup) to the results returned by the greedy baseline,

which is heuristic without any guarantee. Note that here we report

BL-2, because BL-3 and BL-4 may already enumerate all relevant

combinations, when 𝑘 ≥ 5.

We reported the mean recall of related domains we observed

for SJ and BL-2 in Figure 6. As shown in the figure, BL-2 tends to

return fewer new join combinations since it only focuses on the

top ranked tables in each stream. Our system SJ, considers join

combinations while simultaneously finding additional matches at

each level of the hierarchy.

We visualize the ratio of the boost of the relatedness score result

from SJ in Figure 5: clearly, SJ’s top results are always much higher-

scoring than the tables returned by BL-2, which is due to the fact

that BL-2 only explores the combinations of the top-2𝑘 tables from

each input stream. We observed consistent improvement across

using D
3
L and HNSW under customized setups.

3356

Table 3: Mean time (sec) of returning top-5 & 20 join expressions.

Native Setup 𝐷3
L Setup HNSW Setup

𝐷2 BL-4 BL-3 BL-2 NPS SJ BL-4 BL-3 BL-2 NPS BL-4 BL-3 BL-2 NPS

5 3.39 3.27 2.94 3.22 1.84 11.41 11.02 10.64 7.47 26.44 25.23 25.10 24.48
20 4.11 3.49 3.34 3.49 2.29 11.71 11.49 10.73 7.75 25.86 25.43 25.11 25.11

𝐷3 BL-4 BL-3 BL-2 NPS SJ BL-4 BL-3 BL-2 NPS BL-4 BL-3 BL-2 NPS

5 5.58 5.32 4.26 4.05 2.61 23.03 22.25 22.21 18.63 35.66 35.15 35.04 34.64
20 8.28 6.77 5.52 4.10 2.90 29.98 25.84 25.00 21.13 41.94 39.50 36.87 34.90

𝐷4+ BL-4 BL-3 BL-2 NPS SJ BL-4 BL-3 BL-2 NPS BL-4 BL-3 BL-2 NPS

5 11.91 6.35 5.63 8.83 5.74 28.93 23.94 23.65 19.95 47.66 46.73 44.53 38.08
20 263.61 86.75 19.90 8.87 6.22 nan 130.53 48.34 20.27 463.90 180.99 75.91 39.60

7.4 Usability of Top-𝑘 Results
To understand the usability of the results returned by our top-

𝑘 algorithm, we conducted case studies using real datasets from

kaggle.com, and created data analysis tasks for evaluation. Rather

than conducting subjective user studies, we instead focus on demon-

strating the value of our results to actual data science tasks. We

focused on two types of tasks: regression and classification.

Specifically, for regression, tasks are about predicting flight de-

lays
14

and simulating a specific market strategy
15

(where the

benefits can be measured via a loss function). For classification,

tasks are about predicting dental benefit utilization level
16
, airbnb

rating categories
17
, various development index of Global Ecologi-

cal Footprint
18
, and the spending level of marketing campaign

19
,

which can be evaluated by the mean accuracy of predicted labels.

We created a data science task template for each task type: train a

model to predict values or labels of interest. We then use a subset of

the original dataset from Kaggle as the search data, and append the

data derived by returned expressions, equivalent to expanding the

original dataset. Then, we can evaluate the benefit of the augmented

data by measuring the performance difference of the prediction.

The left part of Table 4 reports, for regression tasks of predicting

flight delays and the stock market, the mean absolute error and

mean squared error over the (augmented) datasets. Here, 𝑘 = 0

means there are no suggested data augmented to the original search

object. As we can observe from the table, the top-1 result notably

reduces error, and while benefits are relatively minor as we go

to the top-5 results, we still see improvements. The right part of

Table 4 reports the mean accuracy of predicting labels for each

data science task. It demonstrated that the results returned by our

algorithm significantly boosted the classification accuracy.

Since it is difficult to scale the case study due to the required

manual effort of designing meaningful data science tasks and per-

formance evaluation for each dataset, we believe an automatic data

science task design and evaluation for a given dataset would be an

interesting future work.

8 CONCLUSIONS AND FUTUREWORK
This paper developed core techniques for query-based data lake
search: our system indexes JSON, XML, or Pandas dataframe re-

sults, by converting them to a relational form; and conversely, when

14
https://www.kaggle.com/code/abhishek211119/2015-flight-delays-and-

cancellation-prediction

15
https://www.kaggle.com/datasets/paultimothymooney/stock-market-data

16
https://www.kaggle.com/datasets/mahdiehhajian/dental-utilization-by-provider

17
https://www.kaggle.com/datasets/zakariaeyoussefi/barcelona-airbnb-listings-

inside-airbnb

18
https://www.kaggle.com/datasets/jainaru/global-ecological-footprint-2023

19
https://www.kaggle.com/datasets/rodsaldanha/arketing-campaign

Table 4: Case Study of Regression and Classification. MAE refers to mean
absolute error and MSE refers to mean squared error.

Rregression Classification

Flight Delays Stock Market

Airbnb Dental Global Eco Marketing

Rating Utilization Footprint Campaign

𝑘 MAE MSE MAE MSE Accuracy

0 11.26 235.39 1.10 21.378 35.92 71.93 62.16 45.09

1 10.79 227.93 1.09 21.377 40.26 71.27 64.86 51.23

2 10.79 227.93 1.09 21.377 42.00 72.46 62.16 48.88

3 10.79 227.93 1.09 21.377 43.66 74.08 64.86 58.48

4 10.51 227.90 1.03 21.373 43.66 83.65 67.57 59.60

5 10.51 227.90 1.03 21.373 42.93 83.65 67.57 59.60

searching for hierarchical content, it assembles relations into appro-

priately structured matches to search datasets that are hierarchical.

This involved several contributions:

• Novel techniques and scoring functions for efficiently per-

forming correlated top-k matching across multiple tables that

can be combined to form a hierarchical, join query result.

• Novel automated index selection techniques, extending ideas

from data profiles, and scaling sketch techniques from prior

work to out-of-memory settings.

• Techniques for incorporating indexing, profiling, and sketch-

ing techniques into robust open-source DBMSes such as the

PostgreSQL system.

Our experimental results demonstrate significant benefits in

terms of both quality and efficiency, when compared to direct ex-

tensions of the prior state-of-the-art. Compared to the baseline

strategy that directly leverages top-𝑘 search over individual tables,

then combines them — we see significant quality improvements

in our answers (as measured by the ranking algorithm). We also

obtain up to 40+x speedups in terms of efficiency, even with higher

quality. Additionally, our mechanisms for generating automated

data profiles provide additional speedup benefits of 30-100%, even

when sketches are available in persistent storage which tends to

slow things down. Finally, we established that our methods are

effective in fairly complex hierarchical documents, yielding fast

running times even over JSON queries of depth 4 or higher.

In future work, we hope to develop a more comprehensive bench-

mark for data lake search, considering both flat and hierarchical

data, over a larger sample of data domains. We also hope to develop

techniques to automatically tune the various weights in our ranking

functions, to return match results that are of most relevance to data

scientists performing real tasks.

ACKNOWLEDGMENTS
The authors thank the anonymous reviewers for their valuable

feedback, particularly with respect to answer quality and with

respect to core functionality. This work was funded in part by NSF

grant III-1910108.

3357

kaggle.com
https://www.kaggle.com/code/abhishek211119/2015-flight-delays-and-cancellation-prediction
https://www.kaggle.com/code/abhishek211119/2015-flight-delays-and-cancellation-prediction
https://www.kaggle.com/datasets/paultimothymooney/stock-market-data
https://www.kaggle.com/datasets/mahdiehhajian/dental-utilization-by-provider
https://www.kaggle.com/datasets/zakariaeyoussefi/barcelona-airbnb-listings-inside-airbnb
https://www.kaggle.com/datasets/zakariaeyoussefi/barcelona-airbnb-listings-inside-airbnb
https://www.kaggle.com/datasets/jainaru/global-ecological-footprint-2023
https://www.kaggle.com/datasets/rodsaldanha/arketing-campaign

REFERENCES
[1] Rakesh Agrawal, Ramakrishnan Srikant, et al. 1994. Fast algorithms for mining

association rules. In Proceedings of 20th VLDB Conference, Vol. 1215. Citeseer,
487–499.

[2] Alex Bogatu, AlvaroAA Fernandes, NormanWPaton, andNikolaos Konstantinou.

2020. Dataset discovery in data lakes. In 2020 IEEE 36th International Conference
on Data Engineering (ICDE). IEEE, 709–720.

[3] Dan Brickley, Matthew Burgess, and Natasha Noy. 2019. Google Dataset Search:

Building a search engine for datasets in an open Web ecosystem. In The World
Wide Web Conference. 1365–1375.

[4] Michael Cafarella, Alon Halevy, Hongrae Lee, Jayant Madhavan, Cong Yu,

Daisy Zhe Wang, and Eugene Wu. 2018. Ten years of Webtables. Proceedings of
the VLDB Endowment 11, 12 (2018), 2140–2149.

[5] Michael J. Cafarella, Alon Y. Halevy, Daisy Zhe Wang, Eugene Wu, and Yang

Zhang. 2008. WebTables: exploring the power of tables on the web. PVLDB 1, 1

(2008), 538–549.

[6] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira

Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman,

et al. 2021. Evaluating large language models trained on code. arXiv preprint
arXiv:2107.03374 (2021).

[7] Dong Deng, Raul Castro Fernandez, Ziawasch Abedjan, Sibo Wang, Michael

Stonebraker, Ahmed K Elmagarmid, Ihab F Ilyas, Samuel Madden, Mourad Ouz-

zani, and Nan Tang. 2017. The Data Civilizer System.. In CIDR.
[8] Xiang Deng, Huan Sun, Alyssa Lees, You Wu, and Cong Yu. 2022. Turl: Table

understanding through representation learning. ACM SIGMOD Record 51, 1

(2022), 33–40.

[9] Alin Deutsch, Mary F. Fernandez, and Dan Suciu. 1999. Storing Semistructured

Data with STORED. In SIGMOD. 431–442.
[10] Yuyang Dong, Kunihiro Takeoka, Chuan Xiao, and Masafumi Oyamada. 2021.

Efficient joinable table discovery in data lakes: A high-dimensional similarity-

based approach. In 2021 IEEE 37th International Conference on Data Engineering
(ICDE). IEEE, 456–467.

[11] Yuyang Dong, Chuan Xiao, Takuma Nozawa, Masafumi Enomoto, and Masafumi

Oyamada. 2023. DeepJoin: Joinable Table Discovery with Pre-Trained Language

Models. Proc. VLDB Endow. 16, 10 (jun 2023), 2458–2470. https://doi.org/10.

14778/3603581.3603587

[12] Ronald Fagin, Amnon Lotem, and Moni Naor. 2003. Optimal aggregation algo-

rithms for middleware. J. Comput. System Sci. 66(4) (June 2003), 614–656.
[13] Grace Fan, Jin Wang, Yuliang Li, and Renée J. Miller. 2023. Table Discovery in

Data Lakes: State-of-the-art and Future Directions. In Companion of the 2023
International Conference on Management of Data (Seattle, WA, USA) (SIGMOD
’23). Association for Computing Machinery, New York, NY, USA, 69–75. https:

//doi.org/10.1145/3555041.3589409

[14] Grace Fan, Jin Wang, Yuliang Li, Dan Zhang, and Renée J. Miller. 2023. Semantics-

Aware Dataset Discovery from Data Lakes with Contextualized Column-Based

Representation Learning. Proc. VLDB Endow. 16, 7 (mar 2023), 1726–1739. https:

//doi.org/10.14778/3587136.3587146

[15] Ju Fan, Meiyu Lu, Beng Chin Ooi, Wang-Chiew Tan, and Meihui Zhang. 2014.

A hybrid machine-crowdsourcing system for matching web tables. In 2014 IEEE
30th International Conference on Data Engineering. IEEE, 976–987.

[16] Raul Castro Fernandez, Ziawasch Abedjan, Famien Koko, Gina Yuan, Samuel

Madden, and Michael Stonebraker. 2018. Aurum: A data discovery system. In 2018
IEEE 34th International Conference on Data Engineering (ICDE). IEEE, 1001–1012.

[17] Raul Castro Fernandez, Jisoo Min, Demitri Nava, and Samuel Madden. 2019. Lazo:

A Cardinality-Based Method for Coupled Estimation of Jaccard Similarity and

Containment. In 2019 IEEE 35th International Conference on Data Engineering
(ICDE). IEEE, 1190–1201.

[18] GitHub Inc. [n.d.]. Your AI pair programmer. ([n. d.]). https://github.com/

features/copilot

[19] B Granger and J Grout. 2016. JupyterLab: Building blocks for interactive comput-

ing. Slides of presentation made at SciPy (2016).

[20] Alon Halevy, Flip Korn, Natalya F Noy, Christopher Olston, Neoklis Polyzotis,

Sudip Roy, and Steven EuijongWhang. 2016. Goods: Organizing google’s datasets.

In Proceedings of the 2016 International Conference on Management of Data. ACM,

795–806.

[21] Alon Y Halevy, Flip Korn, Natalya Fridman Noy, Christopher Olston, Neoklis

Polyzotis, Sudip Roy, and Steven Euijong Whang. 2016. Managing Google’s data

lake: an overview of the Goods system. IEEE Data Eng. Bull. 39, 3 (2016), 5–14.
[22] Tatsunori B Hashimoto, Kelvin Guu, Yonatan Oren, and Percy Liang. 2018. A

retrieve-and-edit framework for predicting structured outputs. In Proceedings
of the 32nd International Conference on Neural Information Processing Systems.
10073–10083.

[23] Andrew Head, Fred Hohman, Titus Barik, Steven M Drucker, and Robert DeLine.

2019. Managing messes in computational notebooks. In Proceedings of the 2019
CHI Conference on Human Factors in Computing Systems. 1–12.

[24] Andrew Head, Jason Jiang, James Smith, Marti A. Hearst, and Björn Hart-

mann. 2020. Composing Flexibly-Organized Step-by-Step Tutorials from Linked

Source Code, Snippets, and Outputs. In CHI ’20: CHI Conference on Human
Factors in Computing Systems, Honolulu, HI, USA, April 25-30, 2020, Regina
Bernhaupt, Florian ’Floyd’ Mueller, David Verweij, Josh Andres, Joanna Mc-

Grenere, Andy Cockburn, Ignacio Avellino, Alix Goguey, Pernille Bjøn, Sheng-

dong Zhao, Briane Paul Samson, and Rafal Kocielnik (Eds.). ACM, 1–12. https:

//doi.org/10.1145/3313831.3376798

[25] Aamod Khatiwada, Grace Fan, Roee Shraga, Zixuan Chen, Wolfgang Gatterbauer,

Renée J. Miller, and Mirek Riedewald. 2023. SANTOS: Relationship-based Se-

mantic Table Union Search. Proc. ACM Manag. Data 1, 1, Article 9 (may 2023),

25 pages. https://doi.org/10.1145/3588689

[26] Aamod Khatiwada, Roee Shraga, Wolfgang Gatterbauer, and Renée J. Miller.

2022. Integrating Data Lake Tables. Proc. VLDB Endow. 16, 4 (dec 2022), 932–945.
https://doi.org/10.14778/3574245.3574274

[27] Christos Koutras, George Siachamis, Andra Ionescu, Kyriakos Psarakis, Jerry

Brons, Marios Fragkoulis, Christoph Lofi, Angela Bonifati, and Asterios Katsi-

fodimos. 2021. Valentine: Evaluating Matching Techniques for Dataset Discovery.

In 2021 IEEE 37th International Conference on Data Engineering (ICDE). IEEE,
468–479.

[28] Oliver Lehmberg, Dominique Ritze, Robert Meusel, and Christian Bizer. 2016. A

Large Public Corpus of Web Tables Containing Time and Context Metadata. In

Proceedings of the 25th International Conference Companion on World Wide Web
(Montréal, Québec, Canada) (WWW ’16 Companion). International World Wide

Web Conferences Steering Committee, Republic and Canton of Geneva, CHE,

75–76. https://doi.org/10.1145/2872518.2889386

[29] Yibin Lei, Liang Ding, Yu Cao, Changtong Zan, Andrew Yates, and Dacheng

Tao. 2023. Unsupervised Dense Retrieval with Relevance-Aware Contrastive

Pre-Training. In Findings of the Association for Computational Linguistics: ACL
2023, Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (Eds.). Association

for Computational Linguistics, Toronto, Canada, 10932–10940. https://doi.org/

10.18653/v1/2023.findings-acl.695

[30] Yu A Malkov and Dmitry A Yashunin. 2018. Efficient and robust approximate

nearest neighbor search using hierarchical navigable small world graphs. IEEE
transactions on pattern analysis and machine intelligence 42, 4 (2018), 824–836.

[31] Yu A. Malkov and D. A. Yashunin. 2020. Efficient and Robust Approximate

Nearest Neighbor Search Using Hierarchical Navigable Small World Graphs.

IEEE Trans. Pattern Anal. Mach. Intell. 42, 4 (apr 2020), 824–836. https://doi.org/

10.1109/TPAMI.2018.2889473

[32] Renée J. Miller, FatemehNargesian, Erkang Zhu, Christina Christodoulakis, KenQ.

Pu, and Periklis Andritsos. 2018. Making Open Data Transparent: Data Discovery

on Open Data. IEEE Data Eng. Bull. 41 (2018), 59–70. https://api.semanticscholar.

org/CorpusID:49417541

[33] Davide Mottin, Matteo Lissandrini, Yannis Velegrakis, and Themis Palpanas.

2016. Exemplar queries: a new way of searching. VLDB J. 25, 6 (2016), 741–765.
https://doi.org/10.1007/s00778-016-0429-2

[34] Fatemeh Nargesian, Erkang Zhu, Renée J. Miller, Ken Q. Pu, and Patricia C.

Arocena. 2019. Data Lake Management: Challenges and Opportunities. Proc.
VLDB Endow. 12, 12 (2019), 1986–1989. https://doi.org/10.14778/3352063.3352116

[35] Apostol Natsev, Yuan-Chi Chang, John R Smith, Chung-Sheng Li, and Jeffrey Scott

Vitter. 2001. Supporting incremental join queries on ranked inputs. In VLDB,
Vol. 1. 281–290.

[36] James Jie Pan, Jianguo Wang, and Guoliang Li. 2023. Survey of vector database

management systems. arXiv preprint arXiv:2310.14021 (2023).
[37] Rakesh Pimplikar and Sunita Sarawagi. 2012. Answering Table Queries on the

Web using Column Keywords. PVLDB 5, 10 (2012), 908–919.

[38] Nils Reimers and Iryna Gurevych. 2019. Sentence-bert: Sentence embeddings

using siamese bert-networks. arXiv preprint arXiv:1908.10084 (2019).
[39] Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Ellen Tan,

Yossef Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan

Evtimov, Joanna Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori,

Wenhan Xiong, Alexandre Defossez, Jade Copet, Faisal Azhar, Hugo Touvron,

Gabriel Synnaeve, Louis Martin, Nicolas Usunier, and Thomas Scialom. [n.d.].

Code Llama: Open Foundation Models for code. https://ai.meta.com/blog/code-

llama-large-language-model-coding/.

[40] Jayavel Shanmugasundaram, H. Gang, Kristin Tufte, Chun Zhang, David J. De-

Witt, and Jeffrey F. Naughton. 1999. Relational Databases for Querying XML

Documents: Limitations and Opportunities. In VLDB. 302–304.
[41] Jie Song and Yeye He. 2021. Auto-Validate: Unsupervised Data Validation Us-

ing Data-Domain Patterns Inferred from Data Lakes. In Proceedings of the 2021
International Conference on Management of Data. 1678–1691.

[42] William Spoth, Poonam Kumari, Oliver Kennedy, and Fatemeh Nargesian. 2020.

Loki: Streamlining Integration and Enrichment. Human in the Loop Data Analytics
(2020).

[43] Petros Venetis, Alon Y Halevy, Jayant Madhavan, Marius Pasca, Warren Shen, Fei

Wu, and Gengxin Miao. 2011. Recovering semantics of tables on the web. (2011).

[44] Cong Yan and Yeye He. 2020. Auto-Suggest: Learning-to-Recommend Data

Preparation Steps Using Data Science Notebooks. In Proceedings of the 2020
International Conference on Management of Data, SIGMOD Conference 2020, online
conference [Portland, OR, USA], June 14-19, 2020, David Maier, Rachel Pottinger,

3358

https://doi.org/10.14778/3603581.3603587
https://doi.org/10.14778/3603581.3603587
https://doi.org/10.1145/3555041.3589409
https://doi.org/10.1145/3555041.3589409
https://doi.org/10.14778/3587136.3587146
https://doi.org/10.14778/3587136.3587146
https://github.com/features/copilot
https://github.com/features/copilot
https://doi.org/10.1145/3313831.3376798
https://doi.org/10.1145/3313831.3376798
https://doi.org/10.1145/3588689
https://doi.org/10.14778/3574245.3574274
https://doi.org/10.1145/2872518.2889386
https://doi.org/10.18653/v1/2023.findings-acl.695
https://doi.org/10.18653/v1/2023.findings-acl.695
https://doi.org/10.1109/TPAMI.2018.2889473
https://doi.org/10.1109/TPAMI.2018.2889473
https://api.semanticscholar.org/CorpusID:49417541
https://api.semanticscholar.org/CorpusID:49417541
https://doi.org/10.1007/s00778-016-0429-2
https://doi.org/10.14778/3352063.3352116
https://ai.meta.com/blog/code-llama-large-language-model-coding/
https://ai.meta.com/blog/code-llama-large-language-model-coding/

AnHai Doan, Wang-Chiew Tan, Abdussalam Alawini, and Hung Q. Ngo (Eds.).

ACM, 1539–1554. https://doi.org/10.1145/3318464.3389738

[45] Alexandros Zeakis, George Papadakis, Dimitrios Skoutas, and Manolis

Koubarakis. 2023. Pre-trained embeddings for entity resolution: an experimental

analysis. Proceedings of the VLDB Endowment 16, 9 (2023), 2225–2238.
[46] Yi Zhang and Zachary G. Ives. 2020. Finding Related Tables in Data Lakes

for Interactive Data Science. In Proceedings of the 2020 International Conference
on Management of Data, SIGMOD Conference 2020, online conference [Portland,
OR, USA], June 14-19, 2020, David Maier, Rachel Pottinger, AnHai Doan, Wang-

Chiew Tan, Abdussalam Alawini, and Hung Q. Ngo (Eds.). ACM, 1951–1966.

https://doi.org/10.1145/3318464.3389726

[47] Erkang Zhu, Dong Deng, Fatemeh Nargesian, and Renée J Miller. 2019. JOSIE:

Overlap Set Similarity Search for Finding Joinable Tables in Data Lakes. In

Proceedings of the 2019 International Conference on Management of Data. ACM,

847–864.

[48] Erkang Zhu, Fatemeh Nargesian, Ken Q. Pu, and Renée J. Miller. 2016. LSH

Ensemble: Internet-Scale Domain Search. Proc. VLDB Endow. 9, 12 (2016), 1185–
1196. https://doi.org/10.14778/2994509.2994534

3359

https://doi.org/10.1145/3318464.3389738
https://doi.org/10.1145/3318464.3389726
https://doi.org/10.14778/2994509.2994534

	Abstract
	1 Introduction
	2 Prior Work
	3 Enumerating Possible Queries
	3.1 Data Lake Join-nest Query Generation
	3.2 Ranking Candidate Queries

	4 Correlated Top-k Search
	4.1 Top-k Search for Two Streams
	4.2 Generalizing to Multiple Streams

	5 Indexing Evolving Datasets
	5.1 The Data Profile Selection Problem
	5.2 Incrementally Maintainable Sketches

	6 System Implementation
	7 Experimental Analysis
	7.1 Experimental Setup
	7.2 Efficiency of Query Answering
	7.3 Effectiveness of Query Answering
	7.4 Usability of Top-k Results

	8 Conclusions and Future Work
	Acknowledgments
	References

