
The Holon Approach for Simultaneously Tuning Multiple
Components in a Self-Driving Database Management System

with Machine Learning via Synthesized Proto-Actions
William Zhang
wz2@cs.cmu.edu

Carnegie Mellon University

Wan Shen Lim
wanshenl@cs.cmu.edu

Carnegie Mellon University

Matthew Butrovich
mbutrovi@cs.cmu.edu

Carnegie Mellon University

Andrew Pavlo
pavlo@cs.cmu.edu

Carnegie Mellon University

ABSTRACT
Existing machine learning (ML) approaches to automatically opti-
mize database management systems (DBMSs) only target a single
configuration space at a time (e.g., knobs, query hints, indexes).
Simultaneously tuning multiple configuration spaces is challenging
due to the combined space’s complexity. Previous tuning methods
work around this by sequentially tuning individual spaces with a
pool of tuners. However, these approaches struggle to coordinate
their tuners and get stuck in local optima.

This paper presents the Proto-X framework that holistically
tunes multiple configuration spaces. The key idea of Proto-X is
to identify similarities across multiple spaces, encode them in a
high-dimensional model, and then synthesize “proto-actions” to
navigate the organized space for promising configurations. We eval-
uate Proto-X against state-of-the-art DBMS tuning frameworks on
tuning PostgreSQL for analytical and transactional workloads. By
reasoning about configuration spaces that are orders of magnitude
more complex than other frameworks (both in terms of quantity
and variety), Proto-X discovers configurations that improve Post-
greSQL’s performance by up to 53% over the next best approach.
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1 INTRODUCTION
The complexity of DBMSs has increased in tandem with the com-
plexity of applications’ workloads. This is evident in the number of
configurable options that share subtle interactions: system knobs,
query knobs, object knobs (e.g., table/index knobs), and indexes.
We refer to each set of such options as a configuration space.

Heuristic and cost-based search approaches for knob and index
tuning are well-studied [2, 9]. These techniques rely on derived
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costs via a “what-if” mechanism [20] instead of gathering workload
telemetry (e.g., pages fetched). These heuristics struggle when the
solution is complex [77] or the costs are erroneous [44].

The last decade saw the rise of using ML to tune a single DBMS
configuration space [31, 35, 39, 59, 70, 82, 83]. These approaches
pass the DBMS’s representation to a model to obtain a suggested
configuration, deploy the suggestion, and evaluate the user’s objec-
tive function (e.g., query latency) to obtain a reward. They then feed
the reward back to the model to refine future recommendations.

Tuning individual configuration spaces is inadequate to achieve
a fully autonomous (i.e., self-driving [59]) DBMS. A self-driving
DBMS leverages its understanding of the system’s internals to find
an objective-maximizing workload-specific configuration without
user intervention. This search requires the self-driving DBMS to
select actions (e.g., change a system knob, build an index, alter a
query knob/hint) across multiple configuration spaces.

Applying existing techniques directly to the combination of
spaces (i.e., the holistic configuration space) suffers from the curse
of dimensionality [84]. In a holistic space, the landscape of beneficial
configurations becomes sparser. Due to this, these approaches de-
grade and spend too much time evaluating unpromising solutions.

Recent work has proposed using multiple tuners [74, 84] to man-
age this complexity, with each tuner focusing on a separate config-
uration space. However, these approaches suffer from the coordi-
nation problem (i.e., prisoner’s dilemma) where an individual tuner
will never make a locally suboptimal decision even though that
might enable a subsequent tuner to find the global optima.

Given this, we introduce the Proto-X DBMS tuning framework
that handles large solution spaces by exploiting similarities between
configurations: structural (e.g., similar indexes or knobs) and objec-
tive (e.g., similar performance). Proto-X uses this similarity to shape
the holistic space into neighborhoods and navigates them to find
promising configurations. We evaluate Proto-X against other state-
of-the-art methods to tune PostgreSQL for OLAP and OLTP work-
loads. By supporting more diverse spaces (e.g., system/table/index
knobs, indexes, and query hints) and orders of magnitude more
options, Proto-X discovers configurations up to 54% over the next
best approach.

We lay out the remainder of the paper as follows. We provide
background into tuning multiple configuration spaces and the ML
methods underpinning our technique in Sec. 2. We then provide an
overview of Proto-X in Sec. 3, discuss shaping the holistic space in
Sec. 4, and describe the agent’s action selection process in Sec. 5.
We evaluate Proto-X against other techniques in Sec. 6 and present
sensitivity studies in Sec. 7.
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Figure 1: Motivating Example – JOB workload runtime when running a
knob tuning agent (K), an index tuning agent (I), and a query knob tuning
agent (Q) in isolation, sequentially, and our technique Proto-X that holisti-
cally optimizes knobs, indexes, and query knobs/hints for 30h.

2 BACKGROUND
A self-drivingDBMS optimizes itself within user-defined constraints
(e.g., resource limits) without human intervention [58, 59]. The
DBMS first performs workload forecasting to predict future work-
loads (e.g., time series of SQL queries) [50]. It then builds behavior
models [51, 55] to estimate the user’s objective function (i.e., perfor-
mance) for a given configuration. The DBMS’s tuning agent then
chooses actions to maximize the objective function on the future
workload. For example, an action can build an index, change a table
knob, or modify a query plan.

Existing work tunes a specific category of DBMS options (i.e.,
a configuration space) in isolation. For instance, different tuners
target system knob tuning [70, 82], query knob tuning [13, 53], and
physical design [60, 65]. As we now discuss, running these tuners
one at a time is not optimal due to interactions between the spaces.

2.1 Sequential Tuning and Coordination
DBMS tuners [74, 84] that support multiple configuration spaces
repeatedly invoke the same steps: (1) choose a single space to tune,
(2) fix other spaces to their current configuration, and (3) tune the
target space for a fixed amount of time. For example, UniTune [84]
may tune knobs for an hour, then indexes, and then back to knobs.

As sequential tuning cannot consider actions across spaces and
fails to find optimal solutions, deployments incur wasted resources
from repeating workloads [78] or undesirable latency [13]. Fig. 1
illustrates the runtime on the JOB workload [44] of the best configu-
ration discovered by sequential methods and our holistic technique
Proto-X in 30h. Proto-X finds the best configuration (36s), which
executes 42s (53%) faster than that found by the next best method.

We analyze JOB’s Q26c to illustrate this problem in more detail.
From an initial configuration, we alternate index and query tuners
to obtain a search tree of <index set, query knobs> configurations
along with Q26c’s corresponding performance in Fig. 2. Each tuner
locally maximizes its component and prunes suboptimal actions
(the red X). This process simplifies the search. However, the pruning
prematurely eliminates paths to the global optima <I2,H2>.

2.2 Holistic Optimization and Action Similarity
To our knowledge, no prior approach optimizes the entire config-
uration space simultaneously due to the resulting holistic space’s
complexity [47, 65, 84]. For instance, there are at least 246 candidate
indexes from TPC-DS [68]. This complexity further compounds
when considering other spaces in conjunction, such as query knobs.
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Figure 2: JOB Q26c Sequential Tuning Tree – Search tree explored by
sequentially tuning indexes and query knobs. Each node represents a <index
set, query knob> configuration with Q26’s corresponding performance. The
tuners prune branches indicated in red (X). Sequential tuning finds a local
optima at <I1,H1> but will not find the global optima in black (<I2,H2>).

Although the number of unique actions in a space is large,
many share properties that it may not be necessary to consider
each one individually. Two actions are similar if they target the
same database objects and have roughly the same effect on the
agent’s objective function. Consider two candidate actions that
add indexes to the TPC-H LINEITEM table [3]: (1) Cand-A builds
an index on (l_partkey), and (2) Cand-B builds an index on
(l_partkey,l_commitdate). Both actions have similar expected
changes to the DBMS’s performance and are structurally similar
(i.e., the indexes target the same table and share the first key).

Such similarity allows a tuning agent to infer the performance of
one action from a similar action. Rather than running the workload
once each for Cand-A and Cand-B, the agent can estimate Cand-
B’s benefit by only evaluating the workload with Cand-A and vice
versa. This similarity suggests that agents should not consider
actions alone. Instead, an agent should consider an action and its
neighborhood of similar actions together.

2.3 Proto-Actions and Neighborhoods
We combine actions that modify the DBMS’s configuration into a
holon comprised of multiple fields [41, 66]. Each holon field is an
independent action corresponding to a configuration space under
tuning. We illustrate an example holon in Fig. 3 1 . K sets a system
knob that sets the buffer pool size (shared_buffers); Q-c sets a
query knob that disables nested loop joins on Q1 of the workload;
Q-e sets a query hint that forces Q2 to scan region in parallel; I
builds an index on LINEITEM (l_partkey,l_suppkey).

An encoder (e.g., neural network) maps the holon to a point in
a multidimensional continuous latent space. We shape the latent
space by training the encoder to place holons of similar structure or
expected performance in nearby points (i.e., close to each other) [52].
The latent space’s dimensionality captures a trade-off between the
accuracy of holon representations and ease of exploration.

Unlike other tuners that directly suggest deployable actions,
Proto-X’s agent suggests a latent space point (i.e., a proto-action).
A proto-action represents a neighborhood of holons with similar
structure or performance. Directly decoding the proto-action may
not yield a valid holon (e.g., 2 the proto-action sets a integer
knob shared_buffers to 519.9). Instead, the agent decodes and 3
searches the proto-action’s neighborhood to obtain a candidate set,
from which it selects the most promising holon to evaluate [28].
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Figure 3: Proto-Actions and Neighborhoods – A holon passes through an encoder (e.g., neural network) to obtain a point (filled-in circle) in latent space
where holons of similar performance or structure are nearby. A proto-action is a point (X) in latent space chosen by a tuning agent. Decoding the proto-action
does not necessarily result in a valid holon. Instead, the agent searches the proto-action’s neighborhood for a valid holon and selects the most promising one.

3 OVERVIEW
We present the architecture of the Proto-X automated tuning frame-
work in Fig. 4. Like other offline tuning tools [51, 53, 70, 74, 82, 84],
Proto-X assumes access to a representative or historical workload
sample [22, 78], an isolated environment for tuning [47], and in-
frastructure (e.g., proxy) for applying query options, such as those
exposed by PostgreSQL’s pg_hint_plan [5]. Proto-X operates in two
phases. First, it creates the latent space based on the DBMS schema,
sample workload, and target configuration spaces. Then, in the
second phase, Proto-X exploits the created latent space to tune the
DBMS. We now describe each phase in more detail.

3.1 Phase I: Latent Space Creation
Proto-X begins by collecting each configuration space’s metadata:
(1) system knobs, (2) table knobs, (3) indexes and per-index knobs, (4)
query knobs, and (5) query hints. A query knob alters the DBMS’s
behavior by changing a system knob for a specific query (e.g., hash
join memory allocation). A query hint injects commands to control
how the DBMS generates a plan (e.g., index scan for a table).

Proto-X obtains the tunable system knobs either from the user,
through a DBMS-specific method, or from externally derived knob
constraints [85]. For each system knob, Proto-X obtains themin/max
values and whether the knob should be restricted to a limited value
range [59] (e.g., quantization). Next, it connects to the DBMS to ob-
tain the database schema to identify candidate table knobs. Proto-X
defines its candidate index domain by extracting all referenced at-
tributes from the predicates of the user’s workload [65]and obtains
tunable per-index knobs from the user’s specification.

Lastly, Proto-X parses the workload to identify query knobs and
hints. For each query, Proto-X identifies (1) query knobs based
on a user-supplied list or by mining the system knobs for appli-
cable knobs, (2) a query hint for each referenced table that forces
a specific access method, and (3) a query hint specified once per-
query that forces a parallel scan on a selected table. For example,
TPC-H [3]’s Q14 accesses the LINEITEM and PART tables, and thus
Proto-X generates the Q14_lineitem_scan and Q14_part_scan
hints that control whether the DBMS should use an index scan for
those tables. Proto-X also identifies a Q14_Parallel hint. Setting
this hint forces the DBMS to scan the referenced table in parallel.

After obtaining metadata, in Fig. 4, Proto-X 1 samples a batch of
holons and their estimated benefits for the target workload. 2 Us-
ing the batch, Proto-X trains the latent space to place holons of sim-
ilar benefit at nearby locations. For example, if an index t (a,b,c)
has approximately the same benefit as an index t (a,c,b), their
corresponding actions will be close to each other in the latent space.
Proto-X repeats this process several times to refine the latent space.
We elaborate further in Sec. 4.

DBMS
Batch of <Holons, Performance>

Sample

Phase I: Latent Space Creation

Deploy and Execute Workload
Coordinator

Proto-Action

Phase II: Action Recommendation

Actor

Holon Set

Current DBMS
Representation

Decoder
Neighbor

Search

Critic

DBMS

Workload Result (Reward)

Update with reward

Agent
Selected Holon

,

Latent Space

Encoder Decoder

Exploration Bias

Figure 4: Architecture – An overview of the two phases of Proto-X. In
Phase I, Proto-X creates the necessary latent space. In Phase II, Proto-X
recommends holons to optimize the DBMS.

3.2 Phase II: Holon Recommendation
Proto-X then instantiates an agent to tune the user’s DBMS. The
coordinator handles interfacing with the DBMS, from deploying
holons to evaluating the user’s objective function on the sample
workload. The agent is based on theWolpertinger Architecture [28],
which uses an actor network to emit a proto-action, refines the
proto-action to obtain a neighborhood of candidate holons, and
employs a critic network to select the most promising holon.

In Fig. 4 3 , Phase II starts with the agent passing the current
DBMS representation through its actor network to obtain a proto-
action. The representation is either the deployed configuration
(e.g., knobs, indexes) or internal metrics data (e.g., tuples processed,
pages read) [82]. The agent then augments the proto-action with an
exploration bias that Proto-X tweaks with small adjustments over
time to encourage the exploration and coverage of less promising
regions. We provide a further analysis of this in Sec. 7.6.

The agent then decodes the augmented proto-action, searches
its neighborhood (see Sec. 5.2) to obtain a holon set, and 5 uses
its critic network to select the most promising candidate. 6 The
coordinator deploys the selected holon, runs the sample workload,
and 7 evaluates the user’s objective function to obtain a reward.
8 The coordinator updates the actor and critic networks with the
reward and advances the agent to the next tuning step. The agent
and coordinator repeat this process until the agent reaches an illegal
state (e.g., an invalid configuration) or a fixed number of steps has
elapsed. At this point, the coordinator resets the environment to the
initial or a previously discovered configuration before resuming.
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Figure 5: Latent Space Creation – Illustrates how Proto-X defines and creates the latent space for all supported configuration spaces depending on the
space’s type. Knobs includes system knobs, table knobs, and query knobs. In Fig. 5b, “P(X)” refers to the probability function. We illustrate indexes in Fig. 5c
using an example from TPC-H [3].

The coordinator always creates a candidate index. Existing tun-
ing frameworks [22, 74, 84] could drop indexes by treating them as
discrete actions, with a bit vector entry that indicates existence, or
by using workload statistics. Even though Proto-X could use these
patches, an agent should instead discern an index’s value across all
explored configurations and leverage configuration neighborhoods
to find opportunities to drop. We defer this as future work.

4 LATENT SPACE CREATION
Proto-X constructs separate smaller latent spaces to exploit the
nature of each configuration space with its own estimated benefits
and to avoid sampling directly from high-dimensional space. Proto-
X stitches these smaller spaces together into a holistic space through
proto-actions in Phase II to explore and refine its decision-making.
We now discuss the spaces’ construction for each action type: (1)
knobs, (2) query hints, and (3) discrete (e.g., indexes).

4.1 Knobs
This type covers system, table, and query knobs. Existing DBMSs
expose knobs of different types: integral (e.g., buffer pool size), float
(e.g., page fetch cost), and boolean (e.g., enable hash joins). Proto-X
treats them all as continuous-type knobs. Prior techniques observed
that similar knob values produce similar observations [35, 59, 85].
For example, a buffer pool size of 1024 MB will have comparable
performance to 1025 MB.Proto-X quantizes a knob’s value range
into equal-width buckets (default is 100 buckets). For knobs with
large ranges and non-linear performance (e.g., optimizer cost knobs,
memory-related knobs), Proto-X log transforms and quantizes the
range to better represent the space.Increasing the quantization
trades convergence speed for a finer granularity. Fig. 5a shows
how Proto-X obtains each knob’s latent space value. Using the
knobs’ metadata from the DBMS (see Sec. 3.1), Proto-X quantizes
and normalizes each knob’s values into [-1,1] to ensure those
knob values are placed nearby in the latent space.

4.2 Query Hints
Fig. 5b illustrates how Proto-X represents query hints. Proto-X first
obtains the query hint’s metadata (see Sec. 3.1), which includes the
allowed values. 1 It then represents the hint in the latent space as
a probability distribution. This representation allows the agent to
express preference towards each value, such that 2 more similar
preferences are located nearby in latent space.

We also observe that query hints can interfere with the opti-
mizer’s ability to generate optimal plans [59]. For instance, in Post-
greSQL, TPC-H [3] Q13 normally executes with parallel scans.
However, attaching a pg_hint_plan [5] hint to force a parallel scan
causes Q13 to execute without parallelism. To address this, Proto-X
adds a special “Null” value to each query hint. The agent picks this
special value to instruct the coordinator to omit the query hint.

4.3 Discrete
These objects require a specification (e.g., index keys) to create
in the DBMS. Proto-X currently supports indexes. We defer more
complex discrete types (e.g., materialized views, partial indexes)
for future work. Prior approaches represent indexes with encoding
schemes [63, 74] (e.g., one-hot). These encodings are decoded into
CREATE INDEX when deployed. However, these schemes do not
guarantee that indexes of comparable performance have nearby
representations. Therefore, we construct a learned latent space to
enforce this [19, 54]. We illustrate this process in Fig. 5c.

Proto-X uses a custom encoding scheme to support arbitrary in-
dexes. This scheme allows Proto-X to consider orders of magnitude
more varied indexes (see Table 1) than prior techniques that use
a pre-curated list [74, 84]. 3 Using the database’s metadata (see
Sec. 3.1), Proto-X first augments each table’s indexable attribute list
with a “Null” value. 4 Proto-X then encodes each index by one-hot
encoding the table, followed by one-hot encoding each key.

5 Proto-X then obtains the index’s benefit score, which ranks
candidates [25, 90] on their potential improvement to the target
workload. Proto-X uses the workload’s estimated cost as the benefit
score and estimates it for read-only OLAP workloads through the
query optimizer’s what-if mechanism [20]. For OLTP workloads,
Proto-X employs behavior models [51] since the optimizer does not
account for maintenance operations (e.g., index inserts).

With the index representations and associated benefit scores,
6 Proto-X then trains an encoder-decoder [32] network. The en-
coder maps representations (e.g., 140-dim for TPC-H) to points in
a low-dimensional (e.g., 32-dim for TPC-H) latent space, and the
decoder transforms points back to their original representations.
To force indexes with similar scores closer, we introduce a band
constraint [36] that restricts each index’s latent space point to a
range of values based on its score. This constraint improves Proto-
X’s efficacy by placing candidates in bands based on their estimated
benefit, with more beneficial candidates close to the origin.
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7 Proto-X decodes the raw representation vector from the de-
coder to obtain a deployable index. Proto-X interprets each index
component as a probability distribution and selects the most proba-
ble option. Proto-X first decodes the table (e.g., to LINEITEM) and
then keeps decoding key columns until reaching the “Null” value.

5 HOLON RECOMMENDATION
After building its latent space in Phase I, Proto-X moves on to
Phase II. In this phase, Proto-X actively recommends holons to tune
the DBMS. We first describe how the agent represents the current
DBMS configuration to output a proto-action. We then discuss how
the agent selects a holon and conclude with optimizations that
assist the agent in reliably finding promising configurations.

5.1 State Representation
In Fig. 4 3 , Proto-X outputs a proto-action from its actor network
based on the current DBMS configuration. There are two choices
for how to represent this information:

Telemetry Representation: This approach uses the DBMS’s
internal performance counters [16] (e.g., pages fetched) that it gen-
erates while executing the workload as a substitute for the actual
DBMS configuration (e.g., knob values). Prior work commonly em-
ploys this representation [70, 84].

Structural Representation: This directly embeds the DBMS’s
configuration [84]. For example, fields in the representation contain
system knobs’ values. However, the challenge with this representa-
tion is variable-length sets (e.g., existing indexes). Prior work [84]
uses a bit vector to encode whether a given object (e.g., index) exists
from a pre-determined list, which Proto-X does not use. Concate-
nating each object’s representation is also inadequate, as it requires
limiting the set size to ensure a fixed-length representation. Instead,
Proto-X constructs a set’s representation by obtaining each object’s
latent space representation and averaging them [81].

Proto-X supports either representation to find promising config-
urations. The telemetry-based representation is simpler and more
readily exploitable by an agent than the structural representation.
However, the structural representation is more resilient to the
DBMS’s background processes, which might distort the collected
metrics. We elaborate further in Sec. 7.4.

5.2 Candidate Neighborhood Generation
Using the DBMS’s state representation, the agent passes it through
its actor network (Fig. 4 3 ) to obtain a proto-action. The agent then
breaks the proto-action into slices and independently generates a
neighborhood for each using similarity. Each slice corresponds to
some configuration space (e.g., knobs, query hints, discrete). We
next discuss how each space is processed below.

Knobs: Recall from Sec. 4.1 that Proto-X handles all knobs as
continuous-type knobs. Based on the knob’s metadata, the agent
projects the proto-action slice out of the latent space [−1, 1] and
quantizes the result to obtain a neighborhood center. Consider again
PostgreSQL’s shared_buffers system knob. Assume that this knob
only takes on size values (in GB) within the set {1, 2, 3, 4, 5} and
that its neighborhood center is 3 GB. Then 2 and 4 GB lie within a
radius 𝑟 = 1 neighborhood, while 1 and 5 GB have a radius 𝑟 = 2.

Using an offset −1, we obtain a similar candidate 2 GB. To generate
𝑘 candidates within a radius 𝑟 , the agent generates 𝑘 integral offsets
between [−𝑟, 𝑟 ]. The agent shifts the center with each offset to
obtain a candidate value. We found a radius of 1–3 and candidate
size {10,100} to balance coverage and how quickly the configuration
can change. We provide a sensitivity analysis in Sec. 7.5.

QueryHints: Recall from Sec. 4.2 that Proto-X represents query
hints in the latent space as a probability distribution. As such, the
agent first interprets the proto-action slice as a probability distribu-
tion over the value set. The agent then takes the most likely value
from the distribution as the center and samples the distribution to
obtain a neighborhood of 𝑘 candidates.

Discrete: The agent passes the proto-action slice through the
decoder and selects the most probable discrete action (e.g., index)
representation as the neighborhood center. The agent then applies
domain knowledge rules to obtain a neighborhood. For indexes,
these structural rules generate candidates based on the index’s defi-
nition (e.g., table, key) and do not imply similar expected perfor-
mance. We found that rules that guarantee similar performance
enable the agent to find better configurations more readily. We
illustrate four example rules below.
(Rule 1) The first is the leading prefix rule. From an example cen-

ter index of (a,b,c), we obtain candidate indexes (a,b) and (a)
by incrementally relaxing the index’s specificity until we reach a
single-column index [15]. The DBMS can use each candidate index
to satisfy the same queries, albeit with fewer index predicates.
(Rule 2) The second is the index type rule that controls what data

structure to use for an index. By default, Proto-X generates only
B+tree indexes. With this rule, Proto-X generates candidate indexes
of different types (e.g., hash table, block range index) that share the
same key as the center B+tree index.
(Rule 3) The third rule targets index INCLUDE columns. With this

feature, the DBMS stores non-key attributes in an index to increase
the likelihood of not having to retrieve tuples for some queries (i.e.,
covering indexes). Proto-X analyzes the workload to obtain jointly
accessed attribute sets and attaches them to applicable indexes. Con-
sider a center index (a,b) with co-accessed attribute sets (a,b,c)
and (a,d,e). Proto-X will then generate two additional candidates:
“(a,b) INCLUDE (c)” and “(a,b) INCLUDE (d,e)”.
(Rule 4) The fourth rule targets per-index knobs that the DBMS

exposes to alter a specific index’s behavior. For example, PostgreSQL
supports specifying a B+Tree’s fillfactor, which controls how
fully the DBMS packs each B+Tree index page. From each candi-
date index, Proto-X generates additional candidates with different
knob settings specified apriori by the user. Consider a candidate
index (a,b). Proto-X will then generate an additional candidate
“(a,b) WITH (fillfactor=100)”.

5.3 Candidate Holon Selection
After the agent generates a neighborhood for each proto-action
slice, it combines all the neighborhoods using a Cartesian prod-
uct to produce a candidate holon set. However, this candidate set
may have holons with different performance characteristics. Using
each holon’s latent space representation, the agent’s critic network
selects the most promising holon to evaluate.
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5.4 Agent Optimizations
Although the agent finds promising configurations, its search pro-
cess is inherently noisy. Proto-X employs three optimizations to
guide exploration with prior experience.

Maximal Query Optimization: Proto-X’s tuning space be-
comes drastically more complex when considering all query op-
tions for a workload due to the increased number of query plans,
range of performance outcomes, and sparsity of optimal plans. The
coordinator assists the agent’s decision-making at each step by sup-
plementing the agent’s selected query options with query option
sets from the DBMS’s query optimizer or prior experience. The
coordinator then maximizes over those query option sets under the
same global configuration (e.g., system knobs, indexes). Proto-X
only applies this optimization to OLAP and not OLTP workloads, as
the framework assumes that OLAP queries are more complex than
OLTP queries (e.g., point-lookup queries) and that OLAP workloads
have no dependencies between queries (e.g., INSERT followed by
SELECT). We provide a sensitivity analysis of this in Sec. 7.2.

Exploiting Resets: To balance exploration and exploitation,
Proto-X’s coordinator periodically resets the DBMS environment
after a fixed number of steps. When asked to reset, the coordinator
must select a configuration to restore. Restoring the initial config-
uration maximizes exploration by allowing the agent to explore
completely different trajectories. In contrast, restoring to a known
configuration (i.e., a checkpoint) [33] forces the agent to continue ex-
ploiting its neighborhood to discover a better configuration. Proto-X
supports resetting to the initial or best-discovered configuration.
This tweak allows the agent to build upon prior configurations
more readily to discover more complex configurations.

Timeouts: As DBMS tuning tools explore configurations, they
often encounter suboptimal ones. Proto-X minimizes the time spent
there with two strategies using the application’s SLA requirements:
(1) query timeout [53, 75] limits a bad query’s runtime, and (2)
workload timeout [84] limits a suboptimal configuration’s time.
Proto-X decreases the workload timeout as it discovers better con-
figurations. Based on empirical trials and prior work [75, 84], we
utilize query timeouts of 15–30s and workload timeouts of 5–10m.

6 EVALUATION
We evaluate Proto-X’s ability to optimize a DBMS’s configuration
for analytical and transactional workloads. We target PostgreSQL
v15.1 running on a server with two Intel Xeon Gold 5218R CPUs (20
cores) and a 960 GB Samsung NVMe SSD. We restrict the DBMS to
32 GB of RAM and 20 worker processes. To support tuning indexes
and query options in PostgreSQL, we install the HypoPG [4] v1.4
and a patched version of pg_hint_plan [5] v1.6 extensions.

We evaluate three OLAP workloads and configure all agents to
minimize the overall workload runtime. JOB [44] is a benchmark
that stresses the query optimizer with 21 tables and 113 queries.
TPC-H SF10 [3] models a business analytics workload with eight
tables and 22 queries. DSB SF10 [24] is Microsoft’s extension of
TPC-DS [68] that introduces additional challenges (e.g., data dis-
tributions, join patterns) with 25 tables and 53 queries. We omit
four queries (Q18, Q32, Q81, Q92) due to PostgreSQL’s query opti-
mizer’s limited ability to unnest subqueries [29]. We unsuccessfully

attempted to rewrite those queries with Apache Calcite [14] so that
PostgreSQL could complete them in a reasonable time.

We also evaluate TPC-C [1] SF100 with 40 terminals but modify
it to remove all secondary indexes and the unique index on the
OORDER table. We sample 1m runs through BenchBase [23] and
configure agents to maximize throughput.

We first discuss the configurations for Proto-X (Sec. 6.1) and
other baselines (Sec. 6.2). We then present our results in Secs. 6.3
to 6.5. We defer sensitivity studies into Proto-X to Sec. 7.

6.1 Proto-X Configuration
We configure Proto-X to tune indexes and global knobs for all the
workloads. We allow Proto-X to extract indexable attributes from
workload predicates [65] and to generate arbitrary index candidates.
We discuss OLAP- and OLTP-specific workload settings below:

OLAP: Proto-X tunes 45 system-wide knobs and tunes indexes
using all structural rules from Sec. 5.2. We allow Proto-X to build
hash, B+Tree, and block range indexes. For B+Tree indexes, it tunes
how full the DBMS packs each page by setting fillfactor to 90
(default) or 100 (full). For block range indexes, it tunes the sum-
marization granularity (pages_per_range) by setting it to 64, 128
(default), or 256 pages. Proto-X tunes for each query 12 optimizer-
related knobs1, per-table access methods2, and a query hint in-
structing which table to scan in parallel3. For our maximal query
optimization (Sec. 5.4), the coordinator runs supplemental query
option sets in the following order: (1) the prior step’s, (2) the opti-
mizer’s, (3) the agent’s, and (4) optional domain knowledge-based
sets (e.g., index nested loop join, table scans into hash joins).

OLTP: Proto-X tunes 47 system-wide knobs in PostgreSQL and
a fillfactor table knob that controls how much space the DBMS
leaves in a page for updates. Proto-X does not enable the index
type or include rules (Sec. 5.2) for two reasons: (1) PostgreSQL can-
not build multi-column hash indexes, and (2) attaching INCLUDE
columns to an index orchanging its type to prevent point-lookups
(e.g., block range index) degrades OLTP performance. Proto-X
tunes how full the DBMS packs each B+Tree index page by set-
ting fillfactor to 90 (default) or 100 (full). Some PostgreSQL
knobs have externalities that agents cannot capture [59, 70]. For in-
stance, increasing max_wal_size will improve throughput but also
increase recovery time. As such, we set commit_delay to 0 to make
transactions immediately durable, restrict max_wal_size to 16 GB,
and do not tune autovacuum knobs due to sampling constraints.

Before tuning, Proto-X creates the latent space for discrete in-
dexes. We sample B+tree indexes without INCLUDE columns and
aim for reasonable coverage of the space. Using 40 parallel instances
and the target workload, we sample each benchmark with the fol-
lowing counts:
• JOB: 2048 per-table.
• TPC-H: 2048 per-table, except 2(16−1) for LINEITEM.
• DSB: 1024 on small (less than seven indexable attributes) tables.

Otherwise, we generate 8192 per (table, attribute).

1Query Knobs: enable_sort ,enable_memoize ,enable_hashjoin ,enable_nestloop,
enable_mergejoin ,enable_gathermerge ,enable_hashagg ,enable_material,
enable_parallel_hash ,random_page_cost ,seq_page_cost ,hash_mem_multiplier
2Query Hint: NoSeqScan(t),SeqScan(t)
3Query Hint: Parallel(t)
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Table 1: Configuration Space Size – Number of choices considered by each tuning method in our evaluation. “N/A” indicates that the method does not
support those options. “Q.Knobs” refers to query knobs, and “Q.Hints” refers to query hints.

JOB TPC-H DSB TPC-C
Knob Index Q.Knobs Q.Hints Knob Index Q.Knobs Q.Hints Knob Index Q.Knobs Q.Hints Knob Index Table Knobs

P+DTA-S+A N/A 73 1356 N/A N/A 76 264 N/A N/A 183 588 N/A N/A 9 N/A
P+DTA-F+A N/A 201 1356 N/A N/A 183 264 N/A N/A 542 588 N/A N/A 36 N/A

UDO 24 181 N/A N/A 24 65 N/A N/A 24 4561 N/A N/A 33 80 N/A
UniTune 61 59 N/A N/A 61 53 N/A N/A 61 263 N/A N/A 47 91 9
Proto-X 45 2740 1356 1090 45 228 264 108 45 247 588 426 47 217 9

• TPC-C: 1024 per-table using behavior models [51] to account
for maintenance costs from index updates.

We build latent spaces that balance reconstruction loss and sim-
ilarity to the benefit score distribution. The reconstruction loss
measures how accurately the decoder reconstructs actions from
latent space points. Proto-X estimates distribution similarity by
sampling 8192 points from each latent space band, decoding them,
and measuring the (table,key) distribution. We set all agent pa-
rameters (e.g., networks, learning rate) based on prior techniques
and existing ML literature [12, 55, 82]. We disclose them here [8].

6.2 Other Tuning Frameworks
Next, we describe the other state-of-the-art automated tuning frame-
works we use in our comparison with Proto-X.

PGTune+Dexter (P+D): This baseline first runs PGTune [2], a
heuristics-based knob tuner.We then run Dexter [34] to recommend
indexes based on HypoPG [4] and PostgreSQL optimizer’s workload
costs. For TPC-C, we provide a representative query trace to Dexter.

PGTune+DTA-S+AutoSteer (P+DTA-S+A): This runs PGTune,
followed by Microsoft’s Anytime Database Tuning Advisor (DTA)
algorithm [21]. DTA-S uses Hyrise’s implementation with their set-
tings [38]: (1) no storage budget, (2) 30m tuning budget, and (3) only
two-column indexes. After DTA-S finishes, we run AutoSteer [13],
which tunes query knobs by greedily toggling and merging boolean
knobs. We configure AutoSteer to tune the same knobs as Proto-X
and add toggles to infuse the prior domain knowledge utilized by
our maximal query optimization.

PGTune+DTA-F+AutoSteer (P+DTA-F+A): We replace DTA-S
in P+DTA-S+A with DTA-F. In DTA-F, we allow DTA to consider
more indexes without a time limit. Due to OOM issues and Post-
greSQL’s inability to optimize queries with 1000s of hypothetical
indexes, we limit DTA-F to indexes with three, five, three, and four
columns for TPC-H, JOB, DSB, and TPC-C, respectively.

UDO: This is a holistic framework that supports tuning both
system knobs and indexes [74]. We use UDO’s open-source imple-
mentation [6] to construct each benchmark’s candidate index list
and configure the agent with their default parameters. To ensure
a fair comparison, we extended UDO’s PostgreSQL knob list to
include (1) 24 knobs related to query optimization and resource
management and (2) fillfactor table knobs for TPC-C. We alter
UDO to obtain TPC-C samples through BenchBase [23] and em-
ploy 30s, 30s, and 60s query timeouts for JOB, DSB, and TPC-H,
respectively. We poll UDO every 15m for the best configuration.

UniTune: Lastly, we compare against Alibaba’s UniTune frame-
work [7, 84]. We modified it to support PostgreSQL and obtain
samples through BenchBase. We use the same parameters released

by the authors. UniTune optimizes the same system knobs as Proto-
X, and UniTune+QOpts uses the same query options as Proto-X
with the same prior domain knowledge. We also enable UniTune’s
query rewriting via Calcite to match their paper. UniTune only
constructs single-column indexes because complex indexes lead to
a combinatorial explosion in its one-hot representation. We made
two improvements to UniTune. First, we run queries serially and
set the target objective to minimize workload runtime. We set Uni-
Tune’s space budget to a high value (2 TB) for comparative fairness
and to allow it to more consistently find promising configurations.

6.3 OLAP Performance Comparison
We start by comparing Proto-X to the other frameworks regarding
their ability to optimize OLAP workloads. We run the frameworks
on the same hardware for multiple trials (i.e., independent tun-
ing period) with different random seeds. At the start of each trial,
we initialize PostgreSQL with its default configuration and load
the database. We then run each agent for 30h to tune the DBMS.
As agents utilize timeouts during exploration, we evaluate each
discovered configuration without timeouts to obtain their actual
performance. After deploying each configuration, we empty the OS
page cache, run the workload three times, and report the min [43].

We run four trials of each agent and report results for all trials. In
Fig. 6, we plot the mean performance of each agent’s best configura-
tion.We also report the best andworst performance achieved by any
agent’s trial in Table 2. The baseline for all trials is PGTune+Dexter
(P+D), as this represents the easiest and fastest method for tuning a
DBMS since there is no learning. Our analysis focuses on whether
a method generates better configurations than P+D.

JOB: In Fig. 6a, all methods start with the same performance.
UDO flattens after 5h and fails to improve over P+D because it does
not pick the correct indexes. Although UDO considers 181 index
candidates, only 3–5 indexes improve the workload by a measurable
amount. Whereas Proto-X’s latent space considers the expected
benefit of indexes, UDO initially considers all indexes equally. Thus,
UDO is unable to reliably pick the correct indexes.

UniTune builds an average of 29 out of 59 index candidates. In
Fig. 6a, UniTune surpasses P+D after 12h and flattens after 15h
due to the limited tuning options available. UniTune+QOpts has
more potential as it tunes query options, but it does not manage
the additional complexity and fails to surpass P+D.

Proto-X builds its latent space and surpasses P+D within 2h.
After 5h, Proto-X matches P+DTA-S+A and P+DTA-F+A and finds
better configurations. Proto-X quickly identifies a high-value set of
2–5 indexes and continues to improve it with additional indexes
and query options. We attribute the descent smoothness in part
to Proto-X’s maximal query optimization (see Sec. 5.4): the agent
exploits prior knowledge about promising query option sets while
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Figure 6: OLAP Performance Comparison – The DBMS’s performance achieved using the frameworks’ configurations over time on JOB, TPC-H, and DSB.
We plot the mean performance obtained by four trials of each agent. The shaded region for Proto-X is the time spent constructing the latent space.

Table 2: OLAP Performance Spread –The best and worst performance
achieved by a framework’s four trials in Fig. 6 on JOB, TPC-H, and DSB.

JOB TPC-H DSB
Min Max Min Max Min Max

PGTune+Dexter 162s 162s 154s 154s 116s 116s
P+DTA-S+AS 77s 79s 81s 93s 43s 46s
P+DTA-F+AS 78s 80s 72s 87s 40s 40s

UDO 189s 400s 144s 250s 188s 200s
UniTune 132s 146s 176s 200s 117s 125s

UniTune+QOpts 126s 237s 250s 250s 98s 100s
Proto-X 36s 41s 66s 69s 31s 35s

simultaneously exploring unevaluated query option sets, indexes,
and global knobs. From Table 2, both Proto-X’s worst (41s) and best
(36s) trials yield a 46–53% speedup over the next best P+DTA-S+A.

TPC-H: Unlike the previous workload, the results in Fig. 6b
show that only Proto-X, P+DTA-S+A, and P+DTA-F+A surpass the
baseline P+D for TPC-H. One of this workload’s most important
actions is to find the high-value LINEITEM (l_partkey) index that
all frameworks find. However, both UDO and UniTune do not find
system knobs better than PGTune. UDO does not correctly tune
the number of parallel workers. UniTune dedicates more time to
query rewriting and indexes when it should tune system knobs.

P+DTA-S+A and P+DTA-F+A find their best configuration after
2h and 6h, respectively. Proto-X mostly plateaus after 10h, but
Proto-X still outperforms P+DTA-S+A and P+DTA-F+A by tuning a
query hint that selects a table to scan in parallel. From Table 2, the
worst (69s) and best (66s) trial of Proto-X yields a 4–8% speedup
over P+DTA-F+A’s best run (72s).

DSB: From Fig. 6c, UDO and UniTune do not surpass P+D. Sim-
ilar to prior workloads, UDO struggles to pick an adequate index
set from 4561 candidates, and UniTune does not find promising
knob configurations due to misallocating time to index tuning and
query rewriting. However, in this case, UniTune+QOpts finds better
configurations than P+D by building indexes on STORE_SALES and
utilizing Proto-X’s prior domain knowledge.

P+DTA-S+A and P+DTA-F+A find better configurations after 3h
and 14h, respectively, before plateauing. Proto-X spends the first
2h constructing its latent space, surpasses P+DTA-S+A within 6h,
maintains its lead over P+DTA-F+A, and continues to find better

configurations by building more indexes and tweaking query op-
tions. Table 2 shows that Proto-X’s worst (35s) and best (31s) trial
has a 13–23% speedup over P+DTA-F+A’s best run (40s).

6.4 OLTP Performance Comparison
We next compare Proto-X to the other frameworks on their ability
to improve TPC-C. Each agent tunes the DBMS for 8h. We report
the average of three 1m BenchBase [23] runs for each discovered
configuration. We plot the mean performance of the best config-
uration across the four trials of each agent. We also present each
agent’s worst, median, and best performance in Table 3.

The results in Fig. 7 show that UDO does not exceed P+D because
it does not identify the correct indexes or knob configurations.
For OLTP, picking indexes on tables with data actively modified
negatively impacts throughput due to additional index maintenance
operations. UDO picks indexes that hinder performance, such as
indexes on OORDER or ORDER_LINE.

In comparison, UniTune and Proto-X exceed the performance
of P+D by tuning table knobs and avoiding a bad index on OORDER
that Dexter suggests. From Table 3, Proto-X’s best run (13.8k) is
better than UniTune’s (12.9k) by 7%. Proto-X picks an index on
CUSTOMER that includes c_last. This index improves performance
in 47% of TPC-C’s transactions (i.e., Payment, OrderStatus). Proto-
X maintains this 7% improvement over P+DTA-S+A (12.9k tps).
P+DTA-S+A picks the correct CUSTOMER index but also picks bad
indexes on OORDER. This behavior worsens for P+DTA-F+A (9.1k
tps), as DTA considers more (13) but mostly bad indexes.

6.5 Configuration Time Analysis
To better understand Proto-X’s tuning behavior, we examine the
configurations it generates over time. This analysis shows how
Proto-X exploits proto-actions to find impactful configurations
despite the high dimensionality of the solution space.

Using Proto-X’s best-performing trial on JOB from Sec. 6.3, we
track the normalized deviation of configurations over time. We com-
pute deviation as the average absolute difference (e.g., L1-distance)
between each configuration and the final configuration’s values.
For indexes, we track the percentage of indexes that are missing
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Figure 7: OLTP Performance Comparison – The DBMS’s performance
achieved using the frameworks’ configurations over time on TPC-C. We
plot the mean performance obtained by four trials of each agent. The shaded
region for Proto-X is the time spent constructing the latent space.

Table 3: OLTP Performance Spread of Frameworks – The worst, me-
dian, and best performance achieved by a framework’s four trials in Fig. 7.

TPC-C
Min Median Max

PGTune+Dexter 11.3k 11.3k 11.3k
P+DTA-S+A 12.9k 12.9k 12.9k
P+DTA-F+A 9.1k 9.1k 9.1k

UDO 5.7k 6.3k 7.6k
UniTune 12.7k 12.8k 12.9k
Proto-X 13.1k 13.4k 13.8k
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Figure 8: Configuration Time Analysis – Normalized deviation from the
final configuration over time for 12 resource-related system knobs, indexes,
and query options using Proto-X’s best JOB trial. A configuration’s deviation
is the average difference of values from the final configuration.

from the final configuration. We only consider 12 resource-related
knobs (e.g., workers, memory) for the system knob deviation.

We see in Fig. 8a that the system knobs deviation is about the
same after an initial correction in the first hour. Instead of changing
them further, the agent focuses on indexes and query options. Fig. 8b
shows that Proto-X finds a preliminary set of good indexes after
6h and comes to a final index set after 21h. Contrast this with its
behavior in Fig. 8c, where it starts with most of the query options
being different and gradually alters them over the course of 30h.

7 SENSITIVITY EXPERIMENTS
We next analyze aspects of Proto-X in more detail. We begin with an
ablation study on Proto-X’s holistic approach in Sec. 7.1, followed
by sensitivity experiments in Secs. 7.2 to 7.6. We conclude with an
experiment on generalizing Proto-X’s latent space in Sec. 7.7.

7.1 Ablation on Holistic Approach
We first evaluate whether Proto-X outperforms other agents be-
cause it holistically reasons across all configuration spaces. We use
Proto-X’s JOB and DSB configurations from Sec. 6.3 and run three
modes: (1) tune each component in 30m intervals (A-30), (2) tune
each component in 60m intervals (A-60), and (3) holistic mode (H!).

A-30: Alternate 30 min A-60: Alternate 60 min H!: Holistic
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Figure 9: Ablation on Holistic Approach – DBMS performance using
holistic versus sequential tuning of components over time on JOB and DSB.
We plot the mean performance obtained by four trials of each mode.

We run each mode four times and plot the mean performance of
the best configuration achieved so far over the 30h tuning period
in Fig. 9. We discuss each benchmark below.

JOB: In Fig. 9a, H! (39s) finds configurations that are 73.6% and
68.5% better than those found by A-30 (148s) and A-60 (124s), respec-
tively. Both A-30 and A-60 are prone to missing beneficial indexes,
with some trials failing to add any indexes at all. We attribute this
to the coordination problem: if the query tuner turns off index
scans, then the index tuner will not observe an index’s benefit. By
considering the spaces holistically, H! avoids this problem.

DSB: In Fig. 9b, H! (33s) finds configurations that are 29.8% and
32.7% better than those found by A-30 (47s) and A-60 (49s), respec-
tively. We note that A-30 outperforms A-60 on DSB but performs
worse on JOB. Refining this tuning interval may lead to different
outcomes. Next, we analyze the composition of each trial’s rec-
ommended indexes by examining the number of unique one- and
two-column indexes. On average, H! builds 13 single-column and
23 two-column indexes, whereas A-30/A-60 builds eight and 11,
respectively. By exploring and constructing more diverse indexes,
H! finds better configurations than both A-30 and A-60.

7.2 Maximal Query Optimization
The maximal query optimization allows Proto-X to leverage the
DBMS optimizer’s expertise, past experience, and known priors
to guide its recommendations (Sec. 5.4). In this experiment, we
consider different modes by combining the following option sets:

• Agent (A): Query option set chosen by the agent.
• Previous (P): Query option set from the previous time step.
• Global (G): Query option set from the query optimizer.
• Infusion (IV): Query option sets based on prior domain knowl-

edge about performant query plans to guide the agent. We utilize
one option set that enforces index nested loop joins and another
that enforces table scans into hash joins.

Using these option sets, we construct the five modes in Table 4 by
increasing the amount of guidance. We begin withM1 (A), which
only uses the agent’s chosen query options. We augment M1 with
P (previous) and G (query optimizer expertise) to obtainM2 and
M3, respectively. M4 combines both M2 and M3. Lastly, we derive
M5 by augmenting M4 with IV to infuse prior knowledge about
performant query plans. We use the same Proto-X configuration

3381



Table 4: Maximal Query Optimization – Proto-X’s worst, mean, and
best TPC-H performance under different maximal optimization modes.

Mode Min Mean Max

M1 (A) 250s 250s 250s
M2 (P,A) 74s 84s 98s
M3 (G,A) 91s 93s 94s

M4 (P,G,A) 69s 74s 84s
M5 (P,G,A,IV) 66s 68s 69s

for tuning TPC-H from Sec. 6.3. As Proto-X’s search plateaus in
Fig. 6b after 10h, we run each mode for only 10h (four trials each).

Table 4 shows that executing only the agent’s query option
set (M1) does not find a good configuration. In contrast,M2,M3,
and M4 find configurations outperforming the baseline P+D (154s).
SomeM4 configurations (69s) yield a 4% improvement over P+DTA-
F+A (72s) in 8h. Using the G and P sets, the agent leverages the
expert query optimizer and past experience to guide its recom-
mendation of query options (e.g., per-table access methods). This
optimization further allows us to imbue the agent with priors from
domain knowledge. From Table 4, M5’s use of query option sets
(IV) enables the agent to reduce the best trial’s runtime from 69s to
66s and the range of workload runtimes from 15s to 3s.

7.3 Actor-Critic Sensitivity
As discussed in Sec. 3, the agent’s actor network outputs a proto-
action, and the critic network selects the best holon. To understand
their impact, we vary five actor and five critic networks of increas-
ing complexity [12, 55, 71, 82]. We run four 30h trials for each pair
using Proto-X’s JOB configuration from Sec. 6.3. We report the
mean performance and percent improvement over P+D in Fig. 10
at 8h and 30h.

From the 8h grid in Fig. 10a, the lower-center network pairs have
a similar 64–69% improvement over P+D. However, for small (64-
64) and large actor networks (1024-1024) and large critic networks
(8192), the performance is more varied, with ranges of 37–66%,
18–68%, and 18–62%, respectively. We attribute these differences
primarily to network stochasticity due to limited samples.

By 30h in Fig. 10b, all pairs achieve at least 71% improvement over
P+D with a 7% spread, except for (1024-1024, 8192)’s 62%. These
results illustrate that the agent’s performance tends to worsen for
overly simple (e.g., actor 64-64) or complex networks (e.g., critic
8192).Whereas overly simple networks lack reasoning ability, larger
networks have more parameters that require more exploration data
to learn. Although Proto-X finds promising configurations with
a range of actor-critic networks given enough time, Proto-X may
benefit from hyperparameter optimization [12] in situations with
limited tuning budgets and available idle instances [49].

7.4 State Sensitivity
We next analyze the impact of Proto-X’s state representation. Recall
from Sec. 5.1 that Proto-X utilizes either a telemetry (e.g., work-
load metrics) or structural (e.g., embed knob values and indexes)
representation. Better representations enable the agent to under-
stand the current DBMS configuration and make more targeted
recommendations. We run four 30h trials of Proto-X using each
representation. In Fig. 11, we report the performance of the best
configuration discovered by Proto-X from all trials.
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Figure 10: Actor-Critic Sensitivity – Proto-X’s performance on JOB with
different actor-critic network pairs at 8h and 30h. Each cell contains the
mean performance and percent improvement over P+D across four runs.
Lighter colors correspond to lower workload runtimes.
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Figure 11: State Sensitivity – Workload performance after 30h with four
runs of each agent using different state representations. The box plot repre-
sents min/max and the red dot indicates the sample mean.

On average, for TPC-H (Fig. 11a) and JOB (Fig. 11b), telemetry
performs marginally better than structural by 1s (1.4%) and 0s,
respectively. For DSB, Proto-X with telemetry representation finds
a configuration 4s (11%) faster than any found by structural, which
we attribute to the simpler telemetry-based representation.

Fig. 11d shows that Proto-X’s state representation matters the
most for TPC-C. Although both representations find good configu-
rations, telemetry has a wider range (2.2k tps) than the structural
representation (0.5k tps). When executing OLTP workloads, we do
not have fine-grained control over when PostgreSQL runs its back-
ground autovacuum worker. Thus, the telemetry representation
may be unstable due to these background processes.

7.5 Neighborhood Sensitivity
We next examine Proto-X’s neighborhood exploration to find valid
candidate holons. To manage combinatoric overhead, Proto-X ap-
proximates the neighborhood process with three parameters: (1)
knob span or radius (1, 2, 3), (2) number samples (10, 100), (3) the
enabled structural rules (leading prefix only, all rules). We introduce
a base case that emits the closest valid action (direct), which sets
the knob span to 0, number of samples to 1, and disables all struc-
tural rules. We run four 30h tuning trials for each configuration
using Proto-X’s configuration for JOB and DSB from Sec. 6.3. We
report the mean performance of each neighborhood and its percent
improvement over P+D in Fig. 12.

In Fig. 12, picking the closest valid (direct) action is not the best
decision. Constructing a neighborhood allows Proto-X to discover
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Figure 12: Neighborhood Sensitivity – Performance of Proto-X on JOB
and DSB with different neighborhood construction parameters. Each cell
contains the mean performance and percent improvement over P+D across
four runs. Lighter colors correspond to lower runtimes.

better configurations with further improvements over P+D of up to
10% (JOB) and 8% (DSB). Comparing Fig. 12c to Fig. 12b for JOB and
Fig. 12f to Fig. 12e for DSB, enabling more structural rules tends to
lead to further performance improvements over P+D: 1–3% (JOB)
and 2–7% (DSB). Additional structural rules help facilitate a richer
selection of candidate actions (e.g., INCLUDE columns, index type).
Proto-X benefits fromusingmore structural rules, particularlywhen
they produce candidates with similar or better performance.

For knob span and number of samples in Fig. 12, Proto-X’s perfor-
mance on JOB and DSB slightly degrades as the knob span increases
for a given number of samples. Increasing the knob span makes the
neighborhood sparser, which increases the agent’s stochasticity and
hinders materializing beneficial candidates. Although increasing
the number of samples can counteract this effect, it makes it more
difficult for the critic to differentiate between choices early on. For
our experiments, we use a knob span of 1 across TPC-H, DSB, and
JOB. We use 10 samples for TPC-H and DSB due to the smaller
query knob space and 100 samples for JOB to ensure reasonable
neighborhood approximation.

7.6 Exploration Sensitivity
Proto-X augments its proto-action with a bias to encourage ex-
ploration (Sec. 3). To measure its impact, we vary the bias’s two
parameters: (1) initial distribution over the starting episode and
(2) shift size at the end of each episode. We choose shift sizes of
slow (1), medium (2), and fast (5) to capture a range of speeds
and initial distributions of uniform (e.g., 0...), step (e.g., 0,1,2,...),
and slow-step (e.g., 0,0,1,...). We run four 30h tuning trials using
Proto-X’s JOB and DSB configurations from Sec. 6.3. We report the
mean performance of each compared to P+D in Fig. 13.

The (Fast, Uniform) bias setting in Fig. 13a stands out, with its
mean runtime being >14s worse than all other bias settings. Setting
the bias to (Fast, Uniform) prevents the agent from sufficiently cov-
ering the latent space, thus leading it to miss important candidate
indexes. The remaining bias settings result in similar improvements
over P+D, with 73–77% for JOB and 67–71% for DSB. A more tar-
geted bias setting allows the agent to aggressively exploit latent
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Figure 13: Exploration Sensitivity – Performance of Proto-X on JOB
and DSB with different initial bias settings and increment speeds. Each
cell contains the mean performance and percent improvement over P+D in
parentheses across four runs. Lighter colors correspond to lower runtimes.
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Figure 14: Dataset/Workload Drift – Using a latent space built on benefit
scores from DSB SF10 with the 49 query workload, Proto-X tunes different
scale factors (dataset drift) and workload scales (workload drift). We plot
the mean performance of the best configuration discovered from four trials
of P+DTA-F+A and Proto-X after 30h.

space regions while ignoring irrelevant ones. We use slower shift
sizes in our experiments to ensure sufficient space coverage.

7.7 Generalization
In real-world deployments, the DBMS environment under tuning in
Phase II may differ from that in Phase I due to dataset drift, workload
drift, or schema changes. Given this, we now analyze whether
Proto-X’s latent space effectively guides the agent to promising
configurations even when its benefit scores become outdated. We
first discuss dataset/workload drift, followed by schema changes.

Dataset/Workload Drift: We use DSB for this experiment as
it supports dataset scaling (scale factor) and has more complex pa-
rameter distributions. We use Proto-X’s configuration from Sec. 6.3,
with a latent space built on SF10 and the workload’s original 49
queries. We simulate dataset drift by evaluating on SF1/SF20 and
workload drift by generating 2× and 3× the original workload. We
run four 30h trials for each scenario. We use P+DTA-F+A, the next
best agent from Sec. 6.3, as the baseline.

From Fig. 14a, Proto-X is better than P+DTA-F+A across all scale
factors, with improvements of 38% (SF1), 17.5% (SF10), and 21.1%
(SF20), respectively. Indexes that are beneficial at SF10 remain ben-
eficial at SF1/SF20. This continuity allows Proto-X to exploit the
SF10 latent space to improve at smaller and larger sizes.

In Fig. 14b, Proto-X uses a latent space built from a smaller work-
load to tune more complex ones. Proto-X finds better configurations
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Figure 15: Schema Changes – Mean performance on different JOB work-
loads by four trials of P+DTA-F+A and Proto-X in 30h. Proto-X trains its
latent space based on the workload of JOB AB (66 queries) and considers
either 3-tables, 8-tables, or all tables as candidate latent spaces.

than P+DTA-F+A at all workload scales, with improvements of 17.5%
(49 queries), 12.5% (98 queries), and 7.5% (147 queries). Although
more complex workloads distort the benefit scores of multi-column
indexes, Proto-X is hindered more by increased workload runtime,
partly due to our maximal query optimization.

Schema Changes: We use JOB to evaluate Proto-X’s resilience
to schema changes, as its optimal index set touches more tables
than the other workloads (Sec. 6.3). We divide the JOB workload
into two sets. The first set (JOB A / 33 queries) contains all queries
in the benchmark whose name ends with “a” (e.g.,Q1a). The second
set (JOB AB / 66 queries) are the queries that end either “a” or “b”.

We simulate schema changes by constructing the latent space in
Phase I on smaller sets of tables. We build three spaces using the
JOB AB workload: 3-Table4, 8-Table5, and Complete. We then run
four 30h trials and configure Proto-X to tune JOB A, JOB AB, and
JOB Full. We present the mean performance of the best-discovered
configuration for each scenario in Fig. 15 compared to P+DTA-F+A.

From Fig. 15, Proto-X finds better configurations than P+DTA-
F+A in all cases, with improvements of 42–58% (JOB A), 19–44%
(JOB AB), and 30–51% (JOB Full). We focus on the differences
between the three latent spaces. Fig. 15 shows that 3-Table per-
forms worse due to insufficient coverage of the database’s schema
(e.g., MOVIE_COMPANIES), which causes Proto-X to miss beneficial
indexes. Active learning [49] could ensure that the latent space
benefit scores remain current as the schema changes.

8-Table and Complete yield roughly similar outcomes in Fig. 15,
which indicates the limited benefit of incorporating excess informa-
tion into the latent space. We note that 8-Table (39s) is competitive,
andComplete (41s) performsmarginally worse than the latent space
built on JOB Full from Fig. 6a (39s). We attribute this to stochasticity
in the agent and building the latent space.

8 RELATEDWORK
We now discuss existing autonomous DBMS research. Existing
research has broadly focused on tuning agents that target a specific
configuration space, modeling DBMS internals to facilitate planning
decisions, and augmenting DBMS components with ML.

Individual Agents: The literature is rich in individual ML-
based tuning agents that broadly cover resource tuning (Bayesian [18,
35, 70] or gradient-based [45, 82]), capacity planning [11, 17, 61],

4CAST_INFO, MOVIE_INFO, MOVIE_KEYWORD
53-Table, AKA_NAME, MOVIE_COMPANIES, MOVIE_INFO_IDX, PERSON_INFO, TITLE

parametric query optimization [27, 69], query tuning (tree search-
based [87], model-based [13, 53]), and physical design (partition-
ing [31, 88, 91], views [10, 80], and indexes [65, 77]).

Joint Configuration Space Tuning: There is limited work on
tuning multiple configuration spaces by a single agent. HMAB [60]
tunes indexes and materialized views; UDO [74] tunes indexes and
knobs, whereas UniTune [84] is capable of tuning indexes, knobs,
and queries. HMAB treats the problem as a two-tiered bandit prob-
lem where the first tier independently selects views and indexes,
and the second selects the combination. UDO and UniTune decom-
pose the entire configuration space and iteratively tune subspaces.

Behavior Models: Modeling aims to produce small and accu-
rate models that can infer the system’s performance [48, 51, 55, 63,
89]. Behavior models can substitute for actual DBMS evaluations
or prune out parts of the action space [63].

Representations: This work focuses on deriving a query [57,
86] or workload [64, 73] representation that is conducive to down-
stream tasks (e.g., behavior models, tuning). Creating discriminative
representations allow tuning agents to generalize across workloads.

Learned Components: These are traditional DBMS compo-
nents augmented with machine learning. Existing work has focused
on layouts [26], data structures [30, 37], algorithms [40, 62], and
query optimization [46, 53, 54, 76, 79]. Other research on learned
cardinality estimation has a noticeable impact on the quality of
plans the query optimizer generates [42]. Recent work has focused
on correctly answering cardinality-related queries with techniques
resilient to workload and data changes [56, 67, 72].

9 FUTUREWORK
This work presents the first step towards a holistic or “universal”
approach to DBMS optimization. There remain multiple opportuni-
ties for further enhancement on top of the core Proto-X framework:
(1) online adaptation of the latent space in response to schema
changes and drift, (2) incorporating less accurate feedback signals
(e.g., partial workload execution), (3) handling user constraints by
re-using the agent’s exploration trajectories, and (4) improving the
agent’s introspection abilities to explain its decisions.

10 CONCLUSION
Recent work has focused on combining individual DBMS tuning
agents to find better configurations. However, these approaches
struggle to coordinate their individual agents. We introduce the
framework Proto-X that holistically tunes across multiple configura-
tion spaces. Proto-X organizes the configuration space into a latent
space and uses proto-actions to navigate through neighborhoods
of similar configurations. Evaluating against other state-of-the-art
methods on their ability to tune PostgreSQL for OLAP and OLTP
workloads, Proto-X discover configurations that improve up to 53%
over the next best approach.
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