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ABSTRACT
Public transportation plays a vital role in mitigating traffic conges-

tion and reducing carbon emissions. The Top-k Nearest Neighbor
(𝑘NN) search in public transportation networks is a fundamental

problem in location-based services, which aims to find 𝑘 nearest

objects from a given query point. The traditional method, Dijkstra’s

algorithm has been employed to tackle the 𝑘NN problem, however,

it is notably inefficient in processing queries. While other works

precompute an index to speed up query processing. However, they

are still slow in processing queries. Furthermore, they cannot scale

to large graphs due to their reliance on resource-intensive path

indexes. To address these limitations, we introduce a novel index-

based approach that utilizes a simple yet effective index structure

to handle 𝑘NN queries with a near-optimal time complexity. The

index does not rely on a path index, making it efficient to construct

and scalable to large graphs. Extensive experiments are conducted

on real-world datasets to demonstrate the efficiency and scalability

of our approach. The results show that our approach outperforms

existing solutions by up to four orders of magnitude in query pro-

cessing and two orders of magnitude in index construction.
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1 INTRODUCTION
Public transportation plays a vital role in modern cities, providing

a convenient and efficient way of transportation while reducing

traffic congestion and pollution [27, 29]. The public transportation

network (PTN) consists of a large number of stations and vehicles

operating on a fixed schedule. It can be modeled as a directed

multi-graph 𝐺 = (𝑉 , 𝐸), where 𝑉 is the set of all stations and 𝐸 is

the set of individual trips with fixed departure and arrival times
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Figure 1: An example of a public transportation network 𝐺
between adjacent stations. The Top-k Nearest Neighbor (𝑘NN) search
in public transport networks is a fundamental problem in location-

based services. Let P ⊂ 𝑉 be a set of objects in the network 𝐺 ,

given a query point (vertex) 𝑞, a departure time 𝑡 and a positive

integer 𝑘 , the 𝑘NN query aims to find the 𝑘 objects in P that are

closest to 𝑞 in terms of their arrival times.

𝑘NN search has numerous applications across different domains.

In property rental services such as Domain and Beike, a tenant

usually prefers houses with shorter public transportation commute

times to work or school. These platforms can use the house in-

formation and the commute times to offer recommendations for

users according to their office or school locations, making their

house-hunting process more efficient. In travel guidance service

platforms like TripAdvisor and Dianping, 𝑘NN search in PTNs can

significantly enhance user experience. When tourists seek nearby

attractions accessible by public transportation, the platforms can

provide recommendations of these attractions based on the location

of the tourists by conducting a 𝑘NN search of these attractions. In

the above examples, the objects, like the houses and attractions, are

typically fixed points of interest in their platforms.

Existing Solutions. Numerous solutions have been proposed to

solve the 𝑘NN problem in transportation networks [7, 8, 13, 15–

18, 21, 23, 24, 26, 33, 36]. While most of them are designed for road

networks, only a few of them are specifically tailored for public

transportation networks. Li et al. [18] employs Dijkstra’s algorithm

[9] to find 𝑘 objects that are closest to the query point. This method

is inefficient since it might traverse a large number of vertices and

edges, especially when the graph is large and objects are far from

the query point. Several works [10, 14, 17] resort to an index to

speed up the 𝑘NN query. We review them as follows.

Huang et al. [14] proposed the TFS for the top-𝑘 nearest keyword
search problem in public transportation networks. It can be used for

the 𝑘NN query by limiting the number of keywords to 1. TFS is built
on a path index [28] designed for the Earliest Arrival Path queries.

When answering a query, TFS computes the earliest arrival time
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of each object 𝑜 ∈ P using TTL and returns the 𝑘 objects with the

earliest arrival times. Efentakis et al. [10] proposed PTLDB for the

𝑘NN query in PTN. PTLDB is also built on a path index [28]. Unlike

the TFS algorithm that computes the earliest arrival time of each

object in P, PTLDB creates an auxiliary index for each hub vertex

ℎ to store the 𝑘NN of ℎ. When answering a 𝑘NN query, PTLDB
uses the 𝑘NN of each hub ℎ of the query vertex 𝑢 to find the 𝑘NN

of 𝑢, where the earliest arrival paths from 𝑢 to ℎ are stored in the

TTL index. Li et al. [17] proposed TD-GLAD for the 𝑘NN queries in

time-dependent road networks, which can be applied to PTNs. Like

TFS, TD-GLAD also contains a path index for the earliest arrival

time query, but it partitions the graph into grids according to the

geographical information and stores an objects list for each grid.

During the 𝑘NN query, the path queries are only conducted for the

objects in the grid, the search space is limited to the grids that are

close to the query vertex.

Limitations of Existing Solutions. The limitations of the existing

solutions are summarized as follows. These limitations exist not

only in the works for public transportation networks but also in the

works for road networks. However, they are not well addressed.

Query efficiency. The query efficiency of existing solutions is

not satisfactory. Dijkstra’s algorithm based methods or traversal-

based methods with heuristics can handle queries in large graphs,

but they are notably slow in processing queries. The index-based

methods, for example, TFS and PTLDB for PTNs, TD-GLAD [17]

for time-dependent networks, GLAD [13], TOAIN [21] and TEN-

index [23] for road networks, are also inefficient in processing

queries. These index-based methods either rely on the path indexes

for distance/earliest arrival time computation or build partial 𝑘NN

indexes on path indexes for faster query processing. They still

require considerable time to answer queries.

Scalability. As analyzed above, almost all existing methods rely

on the path index for fast query processing. However, the path

index is resource-intensive and requires a large amount of time to

construct and space to store. As a result, they cannot scale to large

graphs. For example, both TFS and PTLDB failed to construct the

index for large PTNs in Buenos Aires and the UK in our experiments

(see Section 8). This is because their underlying TTL index requires

too much time to construct. The index-based methods for road

networks also suffer from the same problem.

Challenges and Our Solution. In light of the limitations of exist-

ing works, we make the following observations: the 𝑘NN query is

different from the path queries, the 𝑘NN query is centered at the

query vertex 𝑞, while the path query is between two vertices 𝑢 and

𝑣 ; the number of possible path queries is quadratic to the number

of vertices in𝐺 , while the number of possible 𝑘NN queries is linear

to the number of vertices in 𝐺 . From this perspective, building

an index for the 𝑘NN problem based on a resource-intensive path

index is too cumbersome.

Based on the above observations, we propose a novel index,

named TNN-Index, for efficient 𝑘NN query in public transportation

networks. The main idea of TNN-Index is simple: for each vertex

𝑣 in 𝐺 , it stores the 𝑘NN of 𝑣 for some critical departure times 𝑡𝑑 .

When processing a query 𝑄 (𝑣, 𝑡, 𝑘), TNN-Index finds the 𝑘NN of 𝑣

with the minimum critical departure time 𝑡𝑑 such that 𝑡 ≤ 𝑡𝑑 , then

the corresponding result is directly returned. Although the index

seems simple, how to construct it efficiently is non-trivial:

• One solution is to employ the Tree Decomposition technique

as it has been widely used for constructing indexes in graphs

[5, 17, 18, 22, 23, 31, 34, 35] for path and 𝑘NN queries. However,

the existingmethods that use tree decomposition for𝑘NNqueries

contain heavy path indexes and constructing a path index using

tree decomposition is time-consuming. Hence, how to employ

tree decomposition to build a 𝑘NN index way more efficiently

than building a path index remains an open problem.

• In PTN, there are hundreds of multi-edges between two vertices,

how to handle them efficiently is challenging, as is also noted

in the last paragraph of Section 6.2.1 in literature [17]: the index

size and index construction time may increase significantly as

the number of multi-edges increases.

To address these challenges, we propose a novel and efficient

index construction framework based on the planarity property of

PTN and implement the framework with efficient algorithms based

on the notion of Tree Decomposition.

Contributions.We summarize our contributions as follows:

• A new index for efficient 𝑘NN queries in large public transportation
networks.We propose a simple but effective index, TNN-Index,
with which, the query processing achieves exceptional speed.

Compared with the existing solutions, our algorithm is up to

four orders of magnitude faster in query processing time.

• An efficient index construction algorithm.We design a novel in-

dex construction framework to exploit the planarity property

of PTN and implement it efficiently using Tree Decomposition.

The empirical evaluation shows that the index construction time

outperforms existing methods by up to two orders of magnitude

and scales well in large graphs.

• Extension of TNN-Index and index compression. To incorporate

the scenarios where objects have specified opening hours, we ex-

tend TNN-Index by exploring a new notion of Earliest Accessible
Time. Additionally, we introduce an index compression technique

to reduce the index size while preserving query efficiency.

• Extensive empirical studies. We conduct comprehensive exper-

iments on 8 real-world PTNs and 2 synthetic networks which

verify the efficiency and scalability of our approach.

Organization. Section 2 presents the preliminary and Section 3

reviews existing solutions. Section 4 introduces our index structure

and query processing algorithm. The index construction algorithm

is elaborated in Section 5. Section 6 extends the index. Section

7 presents an index compression technique. Section 8 evaluates

the proposed algorithms. Related works are discussed in Section 9.

Section 10 concludes the paper.

2 PRELIMINARY
A Public Transportation Network (PTN) can be modeled as a di-

rected multi-graph 𝐺 = (𝑉 , 𝐸) with 𝑛 = |𝑉 | vertices and𝑚 = |𝐸 |
edges. Each vertex 𝑣 ∈ 𝑉 represents a station, and each edge

𝑒 = ⟨𝑢, 𝑣, 𝑡𝑑 , 𝑡𝑎⟩ ∈ 𝐸 represents a vehicle departing from station 𝑢 at

time 𝑡𝑑 and arriving at station 𝑣 at time 𝑡𝑎 . Multiple edges may exist

between two vertices, which corresponds to multiple trips with

different departure and arrival times. We say that 𝑒 = ⟨𝑢, 𝑣, 𝑡𝑑 , 𝑡𝑎⟩
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Table 1: Notations
Notation Description

𝐸𝑜𝑢𝑡 (𝑢) / 𝐸𝑖𝑛 (𝑢) set of all edges that start from 𝑢 / end at 𝑢

𝑑+ (𝑢) / 𝑑− (𝑢) out-degree / in-degree of 𝑢

𝑉𝑘 (𝑢, 𝑡) 𝑘NN of 𝑢 departing no sooner than 𝑡

𝑇𝑑 (𝑢) set of departure times of 𝑢

K(𝑢) TNN-Index of 𝑢
𝑇𝐺 tree decomposition of 𝐺

𝑋 (𝑣) tree node of 𝑣 in 𝑇𝐺
Ep (𝑢, 𝑣) edge profile from 𝑢 to 𝑣

is an outgoing edge of 𝑢 and an incoming edge of 𝑣 , accordingly, 𝑣

is an out-neighbor of 𝑢 and 𝑢 is an in-neighbor of 𝑣 . We use 𝐸𝑜𝑢𝑡 (𝑣)
(resp. 𝐸𝑖𝑛 (𝑣)) to denote the set of all edges that start from 𝑣 (resp.

end at 𝑣). Similarly, we use 𝑁𝑜𝑢𝑡 (𝑣) and 𝑁𝑖𝑛 (𝑣) to denote the set

of all out-neighbors and in-neighbors of 𝑣 , respectively. If the sub-

scripts of these notations are omitted, they represent the union

of the notations with subscripts, i.e., 𝐸 (𝑣) = 𝐸𝑜𝑢𝑡 (𝑣) ∪ 𝐸𝑖𝑛 (𝑣) and
𝑁 (𝑣) = 𝑁𝑜𝑢𝑡 (𝑣) ∪ 𝑁𝑖𝑛 (𝑣). The out-degree and in-degree of 𝑣 are

denoted as 𝑑+ (𝑣) = |𝐸𝑜𝑢𝑡 (𝑣) | and 𝑑− (𝑣) = |𝐸𝑖𝑛 (𝑣) |, respectively.
We use 𝑑+ and 𝑑− to denote the average out-degree and in-degree

of the graph, respectively. Notations are summarized in Table 1.

Definition 2.1 (Path). A path 𝑝 in 𝐺 is a sequence of edges

(𝑒1, 𝑒2, · · · , 𝑒𝑘 ), such that for any 𝑖 ∈ [1, 𝑘 − 1], the ending ver-

tex of 𝑒𝑖 equals the starting vertex of 𝑒𝑖+1, and 𝑡𝑎 (𝑒𝑖 ) ≤ 𝑡𝑑 (𝑒𝑖+1).
The departure (resp. arrival) time of 𝑝 is defined as 𝑡𝑑 (𝑝) = 𝑡𝑑 (𝑒1)
(resp. 𝑡𝑎 (𝑝) = 𝑡𝑎 (𝑒𝑘 )).

Definition 2.2 (Earliest Arrival Time/Path). Given two vertices

𝑢 and 𝑣 in 𝐺 and a starting time 𝑡 , the Earliest Arrival Time (𝐸𝐴𝑇 ),
denoted as 𝐸𝐴𝑇 (𝑢, 𝑣, 𝑡), is defined as the earliest time one can arrive

at 𝑣 from 𝑢 departing no sooner than 𝑡 , the corresponding path

is called the Earliest Arrival Path. If there is no path from 𝑢 to 𝑣

departing no sooner than 𝑡 , then 𝐸𝐴𝑇 (𝑢, 𝑣, 𝑡) = ∞.
We consider a set of objects P in the 𝐺 , representing the points

of interest (POI), which function as the goal of the 𝑘NN search.

To simplify the discussion, we assume that each object 𝑜 ∈ P is

located at a vertex 𝑣 ∈ 𝑉 . For objects that are not located at a vertex,
we can add a vertex at the location of the object and add edges

between the objects and other vertices that are reachable to the

object (e.g., the stations within walking distance of the object). The

edge is labeled by the time 𝑡 (e.g., walking time) required to reach

the object, denoting that anyone starting from the vertex at time 𝑡𝑑
can reach the object at time 𝑡𝑑 + 𝑡 . For the sake of simplicity, we

also assume that there is at most one object located at a vertex. If

there are multiple objects at the same vertex 𝑣 , we can view them

as different vertices with 0 walking distance from 𝑣 .

Problem Statement. In this paper, we abuse the term 𝑘NN to

refer to the k-Earliest Arrival Neighbors and aim to answer the 𝑘NN

queries efficiently.

Definition 2.3 (kNN Query). Given a graph 𝐺 = (𝑉 , 𝐸) contain-
ing a set of objects P ⊂ 𝑉 , a 𝑘NN query 𝑄 (𝑢, 𝑡, 𝑘) specifies a query
vertex 𝑢, a starting time 𝑡 , an integer 𝑘 , and aims to compute a set,

denoted as 𝑉𝑘 (𝑢, 𝑡), containing 𝑘 vertices and their corresponding

earliest arrival times, such that:

(1) |𝑉𝑘 (𝑢, 𝑡) | = 𝑘 ;
(2) for any 𝑣 ∈ 𝑉𝑘 (𝑢, 𝑡) ⇒ 𝑣 ∈ P;
(3) ∀𝑣 ∈ 𝑉𝑘 (𝑢, 𝑡), 𝑣 ′ ∈ P\𝑉𝑘 (𝑢, 𝑡), 𝐸𝐴𝑇 (𝑢, 𝑣, 𝑡 ) ≤ 𝐸𝐴𝑇 (𝑢, 𝑣 ′, 𝑡 ).

Example 2.4. Figure 1 is an example of a public transportation

network with 7 vertices and 23 edges. Among these vertices, 𝑜1, 𝑜2
and 𝑜3 are objects. The edge ⟨𝑣4, 𝑣1, 7, 8⟩ indicates that a vehicle de-
parts from 𝑣4 at time 7 and arrives at 𝑣1 at time 8. 𝐸𝐴𝑇 (𝑣1, 𝑣2, 3) = 8

since the earliest arrival time from 𝑣1 to 𝑣2 departing no sooner than

time 3 is 8, which is achieved by the path (⟨𝑣1, 𝑣4, 4, 6⟩, ⟨𝑣4, 𝑜3, 6, 7⟩,
⟨𝑜3, 𝑣2, 7, 8⟩). Given a query vertex 𝑣1, a starting time 𝑡 = 1, the

𝑘NN query with 𝑘 = 2 returns 𝑉𝑘 (𝑣1, 1) = {(𝑜2, 3), (𝑜3, 7)}.

For ease of presentation, we assume that the outgoing (resp.

incoming) edges of the same vertex have different departure (resp.

arrival) times. With this assumption, the earliest arrival time is

associated with a unique path. The result of any 𝑘NN query is also

unique. In scenarios where timestamps are not inherently unique,

a practical workaround is to introduce a small random increment

(resp. decrement) to each departure time (resp. arrival time). This

minor adjustment guarantees uniqueness without compromising

the integrity of the results.

3 EXISTING SOLUTIONS
3.1 Index-Free Approach
A straightforward method for processing the 𝑘NN query is to use

an online search algorithm to traverse the graph. A Dijkstra-based

algorithm INE [24] has been proposed for the 𝑘NN query in road

networks and [18] adapted this algorithm to address the 𝑘NN query

in public transportation networks. Given a query vertex 𝑢 and a

starting time 𝑡𝑑 , the INE visits vertices in order of their earliest

arrival time from 𝑢 and terminates once 𝑘 objects are collected.

Limitations of INE. The INE algorithm needs to traverse the graph

for 𝑘NN query processing. If there are many objects in the graph,

then the INE algorithm can find the 𝑘NN efficiently as the algorithm

can terminate by visiting only a small number of vertices. However,

if the number of objects is small, then the objects are likely to be

distant from the query vertex 𝑢, and the INE algorithm needs to

traverse a large portion of the graph to find the 𝑘NN.

3.2 Index-Based Approaches
To improve the 𝑘NN query efficiency, several index-based ap-

proaches have been proposed [10, 14, 17]. As all of these approaches

are based on the 2-hop indexes [22, 28] for path queries, we first

introduce the 2-hop index.

2-hop index [6] has beenwidely used for path queries in graphs [4,

11, 12, 19, 20, 22, 28] andwas extended for PTNs and time-dependent

networks by Wang et al. [28] and Li et al. [17], respectively. Given

a graph 𝐺 , the 2-hop path index assigns to each vertex 𝑣 ∈ 𝑉 an

out-label 𝐿𝑜𝑢𝑡 (𝑣) and an in-label 𝐿𝑖𝑛 (𝑣). Each entry (𝑤, 𝑡𝑑 , 𝑡𝑎) in
𝐿𝑜𝑢𝑡 (𝑣) (resp. 𝐿𝑖𝑛 (𝑣)) indicates an earliest arrival path 𝑝 from 𝑣 to𝑤

(resp. from𝑤 to 𝑣) departing at time 𝑡𝑑 and arriving at time 𝑡𝑎 ,𝑤 is

called a hub of 𝑣 . The hub𝑤 is selected for covering as many paths

as possible to reduce index size. To achieve this goal, one of the

commonly adopted heuristics is to rank the vertices based on their

degrees and select the vertices with higher ranks (larger degrees)

as hubs, a path entry (𝑤, 𝑡𝑑 , 𝑡𝑎) is added to 𝐿𝑜𝑢𝑡 (𝑣) if and only if it

is an earliest arrival path from 𝑣 to𝑤 and𝑤 has the highest rank

among all the vertices on the path.

Given an 𝐸𝐴𝑇query 𝐸𝐴𝑇 (𝑢, 𝑣, 𝑡), the TTL employs 𝐿𝑜𝑢𝑡 (𝑢) and
𝐿𝑖𝑛 (𝑣) to compute the earliest arrival time of 𝑣 departing at 𝑡 with

the following two steps:

3404



1. if 𝑣 is in 𝐿𝑜𝑢𝑡 (𝑢) or 𝑢 is in 𝐿𝑖𝑛 (𝑣), then find entires (𝑣, 𝑡𝑑 , 𝑡𝑎) in
𝐿𝑜𝑢𝑡 (𝑢) or entries (𝑢, 𝑡𝑑 , 𝑡𝑎) in 𝐿𝑖𝑛 (𝑣) such that 𝑡 ≤ 𝑡𝑑 and 𝑡𝑎 is

minimized, and

2. enumerate each entry (𝑤, 𝑡𝑑 , 𝑡𝑎) in 𝐿𝑜𝑢𝑡 (𝑢) and each entry (𝑤, 𝑡 ′𝑑
, 𝑡 ′𝑎) in 𝐿𝑖𝑛 (𝑣) of their common hubs𝑤 such that 𝑡 ≤ 𝑡𝑑 , 𝑡𝑎 ≤ 𝑡 ′𝑑
and 𝑡 ′𝑎 is minimized.

If both steps find a feasible path, then the earliest arrival time is

the minimum of the two arrival times. If none of the steps find a

feasible path, then the earliest arrival time is∞.
TFS. Based on TTL, Huang et al.[14] developed the Temporal For-

ward Search (TFS) algorithm. TFS is designed for top-k Nearest

keyword Searches in public transportation networks, but it can

also be used for the 𝑘NN query. Given a query, TFS operates in

three phases: (1) acquiring the list of vertices P where the objects

are located, (2) computing the earliest arrival time between the

query vertex 𝑞 and each vertex 𝑣 in P using TTL, and (3) sorting

and returning the top-k results. Although TTL-Query is capable of

rapid responses, the need to conduct |P | such queries can become

a bottleneck in efficiency, especially when the size of P is large.

PTLDB. Efentakis [10] proposed PTLDB (Public Transportation

Labeling on Databases) framework with TTL as the underlying

layer. Different from TFS, PTLDB creates an auxiliary inverse label

𝐿−1
𝑖𝑛
(ℎ) for each hub ℎ. Specifically, given the TTL index, for each

object 𝑜 ∈ P and each entry (ℎ, 𝑡𝑑 , 𝑡𝑎) ∈ 𝐿𝑖𝑛 (𝑜), it adds an entry

(𝑜, 𝑡𝑑 , 𝑡𝑎) to 𝐿−1𝑖𝑛
(ℎ). Then it groups the entries in 𝐿−1

𝑖𝑛
(ℎ) by 𝑡𝑑

and sorts the entries in each group by 𝑡𝑎 , only the top-k entries

are kept in each group. To answer a 𝑘NN query 𝑄 (𝑢, 𝑡, 𝑘), PTLDB
enumerates each entry (ℎ, 𝑡𝑑 , 𝑡𝑎) in 𝐿𝑜𝑢𝑡 (𝑢) where 𝑡 ≤ 𝑡𝑑 and each

entry (𝑜, 𝑡 ′
𝑑
, 𝑡 ′𝑎) in 𝐿−1𝑖𝑛

(ℎ) where 𝑡𝑎 ≤ 𝑡 ′𝑑 , and returns the 𝑘 objects

with the smallest 𝑡 ′𝑎 . This method removes the need to conduct |P |
queries, but it is still inefficient as it is built on the expensive TTL
index which requires a large amount of space and time to construct.

TD-GLAD. Li et al. [17] extended He et al.’s work [13] and proposed
TD-GLAD to answer 𝑘NN queries on time-dependent networks.

TD-GLAD can also be used for PTNs as the PTN is a special type

of time-dependent networks where the cost function is a disjoint

piecewise linear function. Like TFS and PTLDB, TD-GLAD is also

based on a 2-hop path index, but it partitions the network into grids

using geographical information and stores a list of objects for each

grid. When answering a 𝑘NN query, it first computes the earliest

arrival time of objects in the grid where the query vertex is located

and then expands to neighbor grids to find more objects. The search

will be terminated if the earliest arrival time of the 𝑘-th nearest

object currently found is no later than the possible earliest arrival

time between the query vertex and the boundary of the explored

grids. Although TD-GLAD can reduce the number of earliest arrival

time queries and the search space, it has similar drawbacks as TFS
and PTLDB in that it is built on the expensive 2-hop path index.

4 A NEW INDEX-BASED APPROACH
As discussed in Section 3, the existing solutions for the 𝑘NN prob-

lem in public transportation networks are either based on online

search, which is slow in processing queries, or building an index

in advance to make the query faster, which requires considerable

time to construct and a large space for storing the index. To over-

come these limitations and fill the research gaps, we present a

new index-based approach, termed as TNN-Index (Timetable graph

𝑘NN index), with a low preprocessing time and space cost, while

also ensuring real-time query response time. In this section, we

will introduce the TNN-Index and the query algorithm. The index

construction algorithm will be presented in Section 5.

4.1 TNN-Index
To facilitate efficient 𝑘NN queries, a straightforward idea is to

store the result set 𝑉𝑘 (𝑣, 𝑡) for each possible 𝑘NN query 𝑄 (𝑣, 𝑡, 𝑘)
in the index, and return 𝑉𝑘 (𝑣, 𝑡) directly when 𝑄 (𝑣, 𝑡, 𝑘) is issued.
However, this approach is not practical due to the infinite possible

departure times in a query𝑄 (𝑣, 𝑡, 𝑘). Considering the graph is a real
public transportation network, we have the following observations:

• Avertex has a finite set of departure times𝑇𝑑 (𝑣) = {𝑡𝑑 | (𝑣,𝑢, 𝑡𝑑 , 𝑡𝑎)
∈ 𝐸}, a passenger can only leave at these times. Therefore, con-

sidering only the departure times of a vertex is sufficient.

• Consider two queries 𝑄 (𝑣1, 2, 2) and 𝑄 (𝑣1, 4, 2) in Figure 1, their

query results are the same: 𝑄 (𝑣1, 2, 2) = 𝑄 (𝑣1, 4, 2) =

{(𝑜3, 7), (𝑜2, 9)}. This is because no matter whether we depart 𝑜1
at time 2 or 4, we have to wait at 𝑣4 until time 6 since 6 is the

earliest departure time of 𝑣4 after time 4. In this case, although

time 2 is a valid departure time for 𝑣1, it is not critical for 𝑣1 in
the sense that removing it from the index does not affect the

𝑘NN query result.

Definition 4.1 (TNN-Index). Given a graph𝐺 , the TNN-Index of
𝐺 maintains a data structureK(𝑣) for each vertex 𝑣 ∈ 𝑉 (𝐺), which
is defined for two scenarios:

• If 𝑣 ∉ P, K(𝑣) stores the 𝑘NN 𝑉𝑘 (𝑣, 𝑡𝑑 ), referred as K(𝑣, 𝑡𝑑 ), of
𝑣 for some selected departure times 𝑡𝑑 ∈ 𝑇𝑑 (𝑣) such that there is

no 𝑉𝑘 (𝑣, 𝑡 ′𝑑 ) ∈ K(𝑣) with 𝑡
′
𝑑
> 𝑡𝑑 but 𝑉𝑘 (𝑣, 𝑡 ′𝑑 ) = 𝑉𝑘 (𝑣, 𝑡𝑑 ).

• Otherwise, K(𝑣) stores 𝑉𝑘 (𝑣, 𝑡𝑑 ) \ {(𝑣, 𝑡𝑑 )}, referred as K(𝑣, 𝑡𝑑 ).
We don’t store (𝑣, 𝑡𝑑 ) in K(𝑣, 𝑡𝑑 ) if 𝑣 ∈ P because whenever the

departure time is, the passenger can always reach 𝑣 immediately.

Whereas the index only considers a small set of departure times and

cannot store infinite possible departure times 𝑡 in a query𝑄 (𝑣, 𝑡, 𝑘).

Example 4.2. Table 2 presents the TNN-Index for graph𝐺 in Fig-

ure 1 with 𝑘 = 3. For 𝑣4, there are 3 vertex sets in K(𝑣4), each asso-

ciated with its respective departure times 𝑡𝑑 = 3, 6, 7. But for 𝑣1 with

𝑇𝑑 (𝑣1) = {1, 2, 4}, the index omits 𝑡𝑑 = 2 due toK(𝑣1, 2) = K(𝑣1, 4).
The indexes for objects 𝑜1, 𝑜2, and 𝑜3 do not include themselves.

Theorem 4.3. The size of TNN-Index is bounded by𝑂 (𝑛 · 𝑑+ · 𝑘).
Proof. There are 𝑛 vertices in total. For each vertex 𝑣 , the aver-

age size of 𝑇𝑑 (𝑣) is limited by 𝑑+, which is the average out-degree.

Furthermore, for each of these departure times, we maintain a set

of size 𝑂 (𝑘). Hence, the size of TNN-Index is 𝑂 (𝑛 · 𝑑+ · 𝑘). □

4.2 Query Processing
With the TNN-Index in place, we introduce the query algorithm,

named TNN-Query, in Algorithm 1. The query process is straight-

forward owing to the comprehensive data structures stored for each

vertex in the TNN-Index. Specifically, given a query with a vertex𝑢,

a departure time 𝑡 and an integer 𝑘 , we first check if 𝑢 is an object

vertex, and if it is, we add it to the result with the departure time 𝑡

(lines 2-3). Subsequently, we identify the smallest 𝑡𝑑 such that 𝑡𝑑 is
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Table 2: TNN-Index of 𝐺 with 𝑘 = 3

v td K(𝑣, 𝑡𝑑 )

K(𝑣1)
1 (𝑜2, 3), (𝑜3, 7), (𝑜1, 8)

4 (𝑜3, 7), (𝑜2, 9), (𝑜1, 11)

K(𝑣2)

3 (𝑜3, 4), (𝑜2, 6), (𝑜1, 8)

4 (𝑜2, 6), (𝑜3, 7), (𝑜1, 8)

5 (𝑜1, 8)

9 (𝑜1, 11)

K(𝑣3)
4 (𝑜2, 6), (𝑜3, 7), (𝑜1, 8)

5 (𝑜2, 6), (𝑜3, 7), (𝑜1, 11)

8 (𝑜2, 9), (𝑜1, 11)

K(𝑣4)
3 (𝑜3, 4), (𝑜2, 6), (𝑜1, 8)

6 (𝑜3, 7), (𝑜2, 9), (𝑜1, 11)

7 (𝑜2, 9), (𝑜1, 11)

K(𝑜1) 1 (𝑜3, 4), (𝑜2, 6)

K(𝑜2) 3 (𝑜3, 7), (𝑜1, 8)

K(𝑜3)
4 (𝑜1, 8), (𝑜2, 9)

7 (𝑜1, 11)

not earlier than 𝑡 and K(𝑢, 𝑡𝑑 ) exists (line 4). If such a 𝑡𝑑 is found,

we add 𝑉𝑘 (𝑢, 𝑡𝑑 ) to the result (lines 5, 6). Otherwise, it means that

there is no departure time 𝑡𝑑 that is not earlier than 𝑡 that can reach

other objects from 𝑢. Finally, we return the result (line 7).

Algorithm 1: TNN-Query(𝑢, 𝑡, 𝑘)
1 𝑉𝑘 ← ∅;
2 if 𝑢 ∈ P then
3 𝑉𝑘 ← {(𝑢, 𝑡)};
4 𝑡𝑑 ← min{𝑡𝑑 |∀K(𝑢, 𝑡𝑑 ), where 𝑡𝑑 ≥ 𝑡};
5 if 𝑡𝑑 ≠ ∞ then
6 𝑉𝑘 ← 𝑉𝑘 ∪ K(𝑢, 𝑡𝑑 );
7 return 𝑉𝑘 ;

Theorem 4.4. The time complexity of Algorithm 1 is𝑂 (log𝑑++𝑘).
Proof. The time required to search for 𝑡𝑑 is 𝑂 (log𝑑+) by a

binary search. Subsequently, retrieving 𝑘NN incurs a cost of 𝑂 (𝑘).
Therefore, the time complexity of TNN-Query is𝑂 (log𝑑+ +𝑘). □

5 INDEX CONSTRUCTION
In this section, we first introduce two baselines for index con-

struction in Section 5.1. Then we present a new index construction

framework in Section 5.2 followed by the detailed efficient imple-

mentation of the framework in Sections 5.3 to 5.5.

5.1 Baselines
From the definition of TNN-Index in Definition 4.1, the construction
of TNN-Index is essentially computing the 𝑘NNs of each vertex

𝑣 ∈ 𝑉 for each departure time 𝑡𝑑 ∈ 𝑇𝑑 (𝑣). Hence, two traversal

algorithms can be easily devised to construct the TNN-Index.
Forward Search. A straightforward method for building TNN-
Index is to run the INE algorithm (Section 3.1) from each vertex

𝑢 ∈ 𝑉 for each departure time 𝑡𝑑 ∈ 𝑇𝑑 (𝑢) to compute the 𝑘NN

𝑉𝑘 (𝑢, 𝑡𝑑 ). If 𝑢 is not an object, we store𝑉𝑘 (𝑢, 𝑡𝑑 ) in the TNN-Index,
otherwise, we store 𝑉𝑘 (𝑢, 𝑡𝑑 ) \ {(𝑢, 𝑡𝑑 )}. If two sets K(𝑢, 𝑡𝑑 ) and
K(𝑢, 𝑡 ′

𝑑
) are identical and 𝑡𝑑 < 𝑡 ′

𝑑
, we remove K(𝑢, 𝑡𝑑 ) from the

TNN-Index. We refer to this algorithm asDijkF. Given that the time

Algorithm 2: Naive-Cons-Framework(𝐺)
1 𝐶 ← a vertex cut of 𝐺 ;

2 𝐶𝐶𝑠 ← connected components of 𝐺 \𝐶;
3 foreach 𝑣 ∈ 𝐶 do // Phase 1
4 Compute K(𝑣) on 𝐺 ;
5 foreach 𝐺𝑠 ∈ 𝐶𝐶𝑠 do // Phase 2
6 foreach 𝑢 ∈ 𝑉 (𝐺𝑠 ) do
7 Compute K(𝑢) with {K(𝑣) |𝑣 ∈ 𝐶};

complexity for a single execution of the Dijkstra’s algorithm is

𝑂 ((𝑛 +𝑚) · log𝑛), the average size of 𝑇𝑑 (𝑣) is 𝑂 (𝑑+), hence the
time complexity of DijkF is 𝑂 (𝑛 · 𝑑+ · (𝑛 +𝑚) · log𝑛).
Reverse Search. The forward search method requires the exe-

cution of the INE algorithm many times, which has a significant

computational overhead. To address this issue, another method is

to perform reverse Dijkstra searches along the opposite direction

of the edges from each object to the vertices in 𝑉 . Specifically, it

constructs the TNN-Index with the following steps: (1) for each

object 𝑜 ∈ P and each arrival time 𝑡𝑎 ∈ {𝑡𝑎 |⟨𝑣, 𝑜, 𝑡𝑑 , 𝑡𝑎⟩ ∈ 𝐸}, it
uses reverse Dijkstra search from 𝑜 with arrival time 𝑡𝑎 to compute

the latest departure time 𝑡𝑑 for each vertex 𝑣 ∈ 𝑉 such that one

can reach 𝑜 before 𝑡𝑎 , then it adds (𝑜, 𝑡𝑎) to 𝑉𝑘 (𝑣, 𝑡𝑑 ); (2) for each
𝑉𝑘 (𝑣, 𝑡𝑑 ) obtained in step (1), it sorts the elements in 𝑉𝑘 (𝑣, 𝑡𝑑 ) by
𝑡𝑎 and keeps only the top-𝑘 elements; (3) it constructs the TNN-
Index using the 𝑉𝑘 (𝑣, 𝑡𝑑 ) obtained in step (2). We refer to this al-

gorithm as DijkR. Similar to DijkF, the time complexity of DijkR is

𝑂 (|P |·𝑑− · (𝑛 +𝑚) · log𝑛).

5.2 A New Index Construction Framework
The baseline methods are inefficient as they require traversing the

graph many times. To address this issue, we resort to exploiting

the planarity property [22, 30] of PTNs and propose a novel index

construction framework. In this section, we first introduce the

concept of vertex cut and the property of 𝑘NN problem on graphs,

and then present a new index construction framework.

Definition 5.1 (Vertex Cut). Given a graph𝐺 , a vertex set𝐶 ⊂ 𝑉
is a vertex cut of 𝐺 if deleting 𝐶 partitions 𝐺 into multiple disjoint

subgraphs. Given two vertices 𝑢, 𝑣 ∈ 𝑉 , the vertex set 𝐶 is a vertex
cut of 𝑢 and 𝑣 if deleting 𝐶 from 𝐺 makes 𝑢 and 𝑣 in different

connected subgraphs.

Lemma 5.2. Given a graph𝐺 , and a vertex cut𝐶 of vertices𝑢, 𝑣 ∈ 𝑉 ,
any path between 𝑢 and 𝑣 must pass a vertex in 𝐶 .

Lemma 5.3. Given a vertex cut𝐶 separating vertex 𝑢 and an object
𝑜 , if (𝑜, 𝑡𝑎) ∈ 𝑉𝑘 (𝑢, 𝑡𝑑 ), then there must exist𝑤 ∈ 𝐶 and 𝑡 ′

𝑑
such that

(𝑜, 𝑡𝑎) ∈ 𝑉𝑘 (𝑤, 𝑡 ′𝑑 ) and 𝐸𝐴𝑇 (𝑢,𝑤, 𝑡𝑑 ) ≤ 𝑡
′
𝑑
, where𝑉𝑘 (·) is defined in

Definition 2.3.

Proof. Assume that there is no𝑤 ∈ 𝐶 and 𝑡 ′
𝑑
such that (𝑜, 𝑡𝑎) ∈

𝑉𝑘 (𝑤, 𝑡 ′𝑑 ) and 𝐸𝐴𝑇 (𝑢,𝑤, 𝑡𝑑 ) ≤ 𝑡 ′
𝑑
. With Lemma 5.2, as (𝑜, 𝑡𝑎) ∈

𝑉𝑘 (𝑢, 𝑡𝑑 ), there must exists an earliest arrival path from 𝑢 to 𝑜 with

departure time 𝑡𝑑 and arrival time 𝑡𝑎 that passes through a vertex

𝑤 ∈ 𝐶 . Then we can construct a new 𝑘NN 𝑉 ′
𝑘
(𝑢, 𝑡𝑑 ) = 𝑉𝑘 (𝑤, 𝑡 ′𝑑 )

for 𝑢. According to the assumption, it is easy to see that 𝑡𝑎 >

max{𝑡 | (𝑣, 𝑡) ∈ 𝑉 ′
𝑘
(𝑢, 𝑡𝑑 )}, then we have (𝑜, 𝑡𝑎) ∉ 𝑉 ′

𝑘
(𝑢, 𝑡𝑑 ), this

leads to contradictions, lemma holds. □
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Figure 2: Vertex cut property of tree decomposition
The New Index Construction Framework. With Lemma 5.3,

a naive index construction framework for constructing the TNN-
Index is presented in Algorithm 2. Its idea is very simple. Given

a graph 𝐺 , we first obtain a vertex cut 𝐶 of 𝐺 (line 1). Then we

compute the 𝑘NN indexes K(𝑣) for each vertex 𝑣 ∈ 𝐶 (line 3-4),

we refer to it as the first phase. After that, for each connected

component 𝐺𝑠 of 𝐺 \ 𝐶 we compute the 𝑘NN indexes K(𝑢) for
each vertex 𝑢 ∈ 𝐺𝑠 (line 5-7), we refer to it as the second phase.

During the second phase, the search space is limited to𝐺𝑠 with the

help of 𝑘NN indexes of the cut 𝐶 obtained in the first phase. The

correctness of the framework is guaranteed by Lemma 5.3.

The advantage of the Naive-Cons-Framework lies in the utiliza-

tion of the vertex cut 𝐶 for reducing the search space. The naive

framework is inefficient since it requires conducting searches in the

subgraphs. To further optimize it, we can apply this naive frame-

work recursively on the connected components 𝐺𝑠 in 𝐺 \𝐶 until

we reach the base case where 𝐺𝑠 is a single vertex or a clique, and

the search space is reduced to a very small size.

Example 5.4. Figure 2 (a) examplifies a vertex cut𝐶 = {𝑣3, 𝑣4} of
the graph in Figure 1. To create the TNN-Index for𝐺 , we first com-

pute the 𝑘NN indexes K(𝑣3) and K(𝑣4) on 𝐺 . After removing the

cut𝐶 , there are two connected components:𝐺1 = {𝑣1, 𝑜2} and𝐺2 =

{𝑜1, 𝑣2, 𝑜3}. We then compute the𝑘NN indexes for each vertex in the

two connected components. If we apply theNaive-Cons-Framework
recursively on𝐺2, the cut is𝐶2 = {𝑣2}. We can first calculateK(𝑣2)
within 𝐺2 then the 𝑘NN indexes for the remaining vertices in 𝐺2.

In fact, the 𝑘NN indexes of the vertices in 𝐶2 on 𝐺2 can be used to

accelerate the computation of the 𝑘NN indexes of the vertices in 𝐶

by avoiding visiting 𝑜1.

Organization of the subsequent sections. In the subsequent

sections, we will cover the details of the recursive version of the

Naive-Cons-Framework. In particular, we will introduce the notion

of tree decomposition in Section 5.3, which helps to obtain the

vertex cuts in a hierarchical tree structure. Then in Section 5.4, we

will present the algorithm for the EP tree decomposition, which

helps to avoid the Dijkstra searches in the connected components.

Finally, in Section 5.5, we will present the final two-phase index

construction algorithm for the TNN-Index, which is the recursive

version of the Naive-Cons-Framework, and the two phases in the

final algorithm correspond to the two non-recursive phases in the

Naive-Cons-Framework.

5.3 Tree Decomposition
Tree decomposition [25], a technique to map a graph into a tree,

can enhance the efficiency of solving graph-related computational

problems with its vertex cut property. Given a graph 𝐺 , a tree

decomposition of it is defined as follows [3]:

Definition 5.5 (Tree Decomposition). The tree decomposition

𝑇𝐺 of a directed graph 𝐺 (𝑉 , 𝐸) is a rooted tree. For each 𝑣 ∈ 𝑉 (𝐺),
there is a node 𝑋 (𝑣) ∈ 𝑉 (𝑇𝐺 ) containing a subset of vertices in 𝐺 ,
i.e., 𝑋 (𝑣) ⊆ 𝑉 (𝐺). 𝑇𝐺 meets the following three conditions:

(1)

⋃︁
𝑋 ∈𝑉 (𝑇𝐺 ) 𝑋 = 𝑉 (𝐺);

(2) For each edge 𝑒 (𝑢, 𝑣) ∈ 𝐸 (𝐺) in the graph 𝐺 , there exists a

node 𝑋 in 𝑉 (𝑇𝐺 ) such that 𝑢 ∈ 𝑋 and 𝑣 ∈ 𝑋 ;
(3) For any vertex 𝑣 ∈ 𝐺 , {𝑋 |𝑣 ∈ 𝑋 } forms a connected subtree,

which is rooted at 𝑋 (𝑣).

In the remainder of this paper, we refer to every 𝑣 ∈ 𝑉 (𝐺) in the

graph 𝐺 as a vertex and every 𝑋 ∈ 𝑉 (𝑇𝐺 ) in the tree 𝑇𝐺 as a node.

Definition 5.6 (Treewidth and Treeheight). Given a tree de-

composition 𝑇𝐺 of graph 𝐺 , the treewidth 𝑡𝑤 (𝑇𝐺 ) is 1 less than the

maximum size of all nodes in𝑇𝐺 , i.e., 𝑡𝑤 (𝑇𝐺 ) = max𝑋 ∈𝑉 (𝑇𝐺 ) |𝑋 |−1.
The treeheight 𝑡ℎ(𝑇𝐺 ) is the maximum depth of all nodes in 𝑇𝐺 ,

where the depth of a node is the shortest distance from that node

to the root node. The treewidth of 𝐺 is the minimum treewidth of

all tree decompositions of 𝐺 .

Properties of Tree Decomposition. Below we present the vertex

cut properties of the tree decomposition.

Lemma 5.7. Given two nodes 𝑋 (𝑠), 𝑋 (𝑡) ∈ 𝑇𝐺 , if they don’t have
ancestor/descendant relationship, the lowest common ancestor (LCA)
𝑋𝑙𝑐𝑎 of 𝑋 (𝑠) and 𝑋 (𝑡) is the vertex cut of𝐺 and separates 𝑠 and 𝑡 [4].

Lemma 5.8. For any two nodes 𝑋𝑐 , 𝑋𝑝 ∈ 𝑇𝐺 , 𝑋𝑐 is the child of 𝑋𝑝
and 𝑋𝑝 is the parent of 𝑋𝑐 , if there exists 𝑠 ∈ 𝑋𝑐 \𝑋𝑝 and 𝑡 ∈ 𝑋𝑝 \𝑋𝑐 ,
then 𝑋𝑐 ∩ 𝑋𝑝 is a vertex cut of 𝐺 and separates 𝑠 and 𝑡 .

Proof. We assume vertex set 𝐶 = 𝑋𝑐 ∩ 𝑋𝑝 is not a vertex cut.

If we cut the edge (𝑋𝑐 , 𝑋𝑝 ) of the tree, then 𝑇𝐺 breaks into two

subtrees, 𝑇𝑐 (containing 𝑋𝑐 ) and 𝑇𝑝 (containing 𝑋𝑝 ). By Condition

3 of Definition 5.5, it is easy to see that 𝑉𝑐 = 𝑉 (𝑇𝑐 ) \ 𝐶 and 𝑉𝑝 =

𝑉 (𝑇𝑝 ) \𝐶 are two disjoint sets. Since𝐶 is not a vertex cut, then the

𝑉𝑐 ∪𝑉𝑝 induced subgraph 𝐺 [𝑉𝑐∪𝑉𝑝 ] is a connected graph, so there

must exist an edge (𝑢, 𝑣) in 𝐺 [𝑉𝑐∪𝑉𝑝 ] such that 𝑢 ∈ 𝑉𝑐 and 𝑣 ∈ 𝑉𝑝 .
However, it is easy to see that (𝑢, 𝑣) doesn’t belong any tree node,

which contradicts condition 2 of Definition 5.5. □

Example 5.9. Figure 2 (a) is the graph preserving only the topol-

ogy of the graph 𝐺 in Figure 1 and Figure 2 (b) is a tree decompo-

sition 𝑇𝐺 of 𝐺 . Given a vertex 𝑣2 in 𝐺 , the node 𝑋 (𝑣2) is marked

in 𝑇𝐺 . The treewidth 𝑡𝑤 (𝑇𝐺 ) is 2 while the treeheight 𝑡ℎ(𝑇𝐺 ) is 4.
Node𝑋 (𝑜2) is the parent of𝑋 (𝑣1), the intersection𝑋 (𝑣1)∩𝑋 (𝑜2) =
{𝑜2, 𝑣4} is a vertex cut of 𝐺 that separates 𝑣1 and 𝑣3. The LCA of

𝑋 (𝑣1) and 𝑋 (𝑣2), 𝑋 (𝑣3) = {𝑣3, 𝑣4}, is also a vertex cut of 𝐺 .

5.4 Algorithm for EP Tree Decomposition
Based on the definition of treewidth, the size of the vertex cuts

obtained in tree decomposition is bounded by the treewidth. A

smaller vertex cut aids in reducing the computation cost. Given a

graph 𝐺 , determine if 𝐺 has a tree decomposition with treewidth

less than a variable is NP-complete [1]. Therefore, heuristics are
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Algorithm 3: EP-TreeDecomposion(𝐺 (𝑉 , 𝐸))
1 𝐺0 ← 𝐺 ; 𝑇𝐺 ← ∅;
2 for 𝑖 ← 1 to 𝑛 do
3 𝑣 ← argmin𝑣∈𝑉 (𝐺𝑖−1 ) |𝑁 (𝑣,𝐺𝑖−1) |;
4 𝜋 (𝑣) ← 𝑖;

5 create node 𝑋 (𝑣) = {𝑣} ∪ 𝑁 (𝑣,𝐺𝑖−1);
6 add 𝑋 (𝑣) to 𝑇𝐺 ;
7 for 𝑢 ∈ 𝑁𝑜𝑢𝑡 (𝑣,𝐺𝑖−1) do
8 Ep (𝑣,𝑢) ← comput the edge profile of 𝐸 (𝑣,𝑢,𝐺𝑖−1)
9 for 𝑢 ∈ 𝑁𝑖𝑛 (𝑣,𝐺𝑖−1) do
10 Ep (𝑢, 𝑣) ← comput the edge profile of 𝐸 (𝑢, 𝑣,𝐺𝑖−1)
11 𝐺𝑖 ← 𝐺𝑖−1 \ {𝑣};
12 for ⟨𝑢, 𝑣, 𝑡𝑑 , 𝑡𝑎⟩ ∈ 𝐸𝑖𝑛 (𝑣,𝐺𝑖−1) do
13 for ⟨𝑣,𝑤, 𝑡 ′

𝑑
, 𝑡 ′𝑎⟩ ∈ 𝐸𝑜𝑢𝑡 (𝑣,𝐺𝑖−1) s.t. 𝑤 ≠ 𝑢 do

14 if 𝑡𝑎 ≤ 𝑡 ′𝑑 then
15 add ⟨𝑢,𝑤, 𝑡𝑑 , 𝑡 ′𝑎⟩ to 𝐺𝑖

16 foreach 𝑢,𝑤 ∈ 𝑁 (𝑣,𝐺𝑖−1) where 𝑢 ≠ 𝑤 do
17 if 𝑢 ∉ 𝑁 (𝑤,𝐺𝑖−1) then
18 connect 𝑢 and𝑤 by adding ⟨𝑢,𝑤,−∞, +∞⟩ to𝐺𝑖 ;

19 foreach 𝑣 ∈ 𝑉 (𝐺) do
20 if 𝜋 (𝑣) < 𝑛 then
21 𝑢 ← vertex in 𝑋 (𝑣) \ {𝑣} with smallest 𝜋 (·) value;
22 set 𝑋 (𝑢) as the parent node of 𝑋 (𝑣) in 𝑇𝐺 ;
23 return 𝑇𝐺 ;

used to find 𝑇𝐺 with small treewidth [32]; a popular one is the

minimum degree elimination (MDE) [2].

MDE for directed multi-graphs. The MDE algorithm is initially

designed for undirected simple graphs [2]. Here we extend it to

directed multi-graphs. Given a directed multi-graph 𝐺 , we first

eliminate the vertex 𝑣 in 𝐺 with the fewest neighbors, and add

edges between every pair of 𝑣 ’s neighbors such that 𝑁 (𝑣) forms

a clique in 𝐺 , i.e., for each vertex pair 𝑢,𝑤 from 𝑁 (𝑣), we have

𝑢 ∈ 𝑁 (𝑤) and 𝑤 ∈ 𝑁 (𝑢). Then 𝑣 and its neighbors 𝑁 (𝑣) are
collected as a node 𝑋 (𝑣) in the tree. We repeats the above process

until all vertices are eliminated. After that, for each node 𝑋 (𝑣), we
set a node 𝑋 (𝑢) as its parent node, where 𝑋 (𝑢) is the node created
by the first eliminated vertex 𝑢 in 𝑋 (𝑣) \ 𝑣 .
EP Vertex Elimination. In the MDE algorithm, only the topology

of the graph is considered while the multi-edges and their time

intervals are ignored. To facilitate the efficient computation of the

𝑘NN index, we propose the EAT-Preserved (EP) Vertex Elimination,
which preserves the earliest arrival time of the graph:

Given a graph𝐺 and a vertex 𝑣 ∈ 𝑉 (𝐺), the EP Vertex Elimination
for 𝑣 in 𝐺 transforms 𝐺 into another graph as follows: for each

edge ⟨𝑢, 𝑣, 𝑡𝑑 , 𝑡𝑎⟩ in 𝐸𝑖𝑛 (𝑣) and each edge ⟨𝑣,𝑤, 𝑡 ′
𝑑
, 𝑡 ′𝑎⟩ in 𝐸𝑜𝑢𝑡 (𝑣), if

𝑡𝑎 ≤ 𝑡 ′𝑑 , we add a new edge ⟨𝑢,𝑤, 𝑡𝑑 , 𝑡 ′𝑎⟩ to 𝐺 . Then we check if

every pair of vertices (𝑢, 𝑣) in 𝑁 (𝑣) are connected by an edge, if

not, we add a dummy edge ⟨𝑢,𝑤,−∞, +∞⟩ between them to make

them neighbors. Finally, we eliminate 𝑣 and its incident edges from

𝐺 . We denote the graph after EP Vertex Elimination as 𝐺 ′.

Definition 5.10 (EP-Graph). Given two graphs 𝐺 and 𝐺 ′ with
𝑉 (𝐺 ′) ⊆ 𝑉 (𝐺), for any 𝑢, 𝑣 ∈ 𝑉 (𝐺 ′) and any departure time

𝑡𝑑 , if 𝐸𝐴𝑇𝐺 ′ (𝑢, 𝑣, 𝑡𝑑 ) = 𝐸𝐴𝑇𝐺 (𝑢, 𝑣, 𝑡𝑑 ), then we say 𝐺 ′ is an 𝐸𝐴𝑇 -
Preserved Graph (EP-Graph) of 𝐺 and we denote it as 𝐺 ′ ⊑ 𝐺 .
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(b) After eliminating 𝑜3
Figure 3: Example of EP vertex elimination

Lemma 5.11. Given a graph 𝐺 and a vertex 𝑣 ∈ 𝑉 (𝐺), if 𝐺 ′ is the
graph after EP Vertex Elimination for 𝑣 in 𝐺 , then 𝐺 ′ is an EP-Graph
of 𝐺 , i.e., 𝐺 ′ ⊑ 𝐺 .

Proof. Given any 𝑢,𝑤 ∈ 𝑉 (𝐺 ′) and any departure time 𝑡𝑑 , for

the corresponding path of 𝐸𝐴𝑇𝐺 (𝑢,𝑤, 𝑡𝑑 ), we consider two cases:

Case 1: the path does not contain 𝑣 . Then the path is also a path

in 𝐺 ′, so 𝐸𝐴𝑇𝐺 ′ (𝑢,𝑤, 𝑡𝑑 ) = 𝐸𝐴𝑇𝐺 (𝑢,𝑤, 𝑡𝑑 ).
Case 2: the path contains 𝑣 . Then the path must contain an edge

⟨𝑢, 𝑣, 𝑡𝑑 , 𝑡𝑎⟩ in 𝐸𝑖𝑛 (𝑣) and an edge ⟨𝑣,𝑤, 𝑡 ′
𝑑
, 𝑡 ′𝑎⟩ in 𝐸𝑜𝑢𝑡 (𝑣), where

𝑡𝑎 ≤ 𝑡 ′𝑑 . By the definition of EP Vertex Elimination, we add a new

edge ⟨𝑢,𝑤, 𝑡𝑑 , 𝑡 ′𝑎⟩ to 𝐺 ′, so 𝐸𝐴𝑇𝐺 ′ (𝑢,𝑤, 𝑡𝑑 ) = 𝐸𝐴𝑇𝐺 (𝑢,𝑤, 𝑡𝑑 ). □

The EP vertex elimination adds many edges to the graph, some

of them are redundant. Hence, we introduce the concept of Edge
Profile to eliminate the redundant edges.

Definition 5.12 (Edge Dominance). Given two edges ⟨𝑢, 𝑣, 𝑡𝑑 , 𝑡𝑎⟩
and ⟨𝑢, 𝑣, 𝑡 ′

𝑑
, 𝑡 ′𝑎⟩, if 𝑡𝑑 ≥ 𝑡 ′

𝑑
and 𝑡𝑎 ≤ 𝑡 ′𝑎 , then we say ⟨𝑢, 𝑣, 𝑡𝑑 , 𝑡𝑎⟩

dominates ⟨𝑢, 𝑣, 𝑡 ′
𝑑
, 𝑡 ′𝑎⟩.

Definition 5.13 (Edge Profile). Given a set of edges 𝐸 (𝑢, 𝑣) from
𝑢 to 𝑣 , then we define the Edge Profile, denoted as Ep (𝑢, 𝑣), as the
set of edges in 𝐸 (𝑢, 𝑣) that are not dominated by other edges.

Example 5.14. Figure 3 demonstrates the EP vertex elimination

for 𝑜3. The set of edges between 𝑁 (𝑜3), 𝑣4 and 𝑣2, in Figure 3 (b)

is the edge profile of the edges generated during the elimination

process. The red edge ⟨𝑣2, 𝑣4, 3, 5⟩ is generated by connecting the

edge ⟨𝑣2, 𝑜3, 3, 4⟩ and the edge ⟨𝑜3, 𝑣4, 4, 5⟩.
EP Tree Decomposition. Algorithm 3 presents the overall process

of the EP tree decomposition. Given a graph𝐺 , we select the vertex

𝑣 with the smallest number of neighbors to eliminate (line 3) and

use 𝜋 (𝑣) to record the elimination order of 𝑣 (line 4), where 𝜋 (𝑣)
will be used to determine the parent-child relationship between

tree nodes. When eliminating a vertex, we first create a node 𝑋 (𝑣)
containing 𝑣 and its neighbors and add the node to 𝑇𝐺 (line 5-6).

Then we compute the edge profile and remove the redundant edges

between 𝑣 and its neighbors (line 7-10). Next, we apply EP Vertex

Elimination to remove 𝑣 and its incident edges from 𝐺 to form 𝐺𝑖

(line 11-18). After all the vertices are eliminated, for each vertex

𝑣 , we find the vertex 𝑢 ∈ 𝑋 (𝑣) \ {𝑣} with the smallest value of

𝜋 (𝑢), and make the corresponding 𝑋 (𝑢) the parent node of 𝑋 (𝑣)
(Line 19-22). As a result, the tree nodes 𝑋 (𝑣) with larger 𝜋 (𝑣) will
be on the upper part of the tree and the tree node with the largest

𝜋 (𝑣) will be the tree root.
Lemma 5.15. For any 𝐺𝑖 generated in Algorithm 3, 𝐺𝑖 ⊑ 𝐺 .
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Theorem 5.16. The running time of Algorithm 3 is bounded by
𝑂 (𝑛 · (log𝑛 + 𝑡𝑤2 · 𝑑− · 𝑑+))).

Proof. For each loop, finding the vertex with the smallest num-

ber of neighbors takes 𝑂 (log𝑛) time. For each EP vertex elimina-

tion, the dominant cost is to create the clique in line 12-18, which

takes 𝑂 (𝑡𝑤2 · 𝑑− · 𝑑+) time. Hence, the total time complexity is

𝑂 (𝑛 · (log𝑛 + 𝑡𝑤2 · 𝑑− · 𝑑+))). □

Example 5.17. Figure 2 (b) is the tree decomposition of the graph

in Figure 1 generated by Algorithm 3.

5.5 Two-Phase Index Construction Algorithm
Our proposed index construction algorithm relies on the edge pro-

files that are generated during the EP tree decomposition of a PTN.

Before introducing the details of the algorithm, we first introduce

the Operator Join ⊙ and the Operator Union ⊔ which will be used

in the index construction algorithm.

Operator Join ⊙. Given Ep (𝑢, 𝑣) and K(𝑣), the Join operator ⊙
enables 𝑢 to acquire 𝑘NNs from its neighbor 𝑣 . The basic procedure

involves matching (𝑡 ′
𝑑
, 𝑡 ′𝑎) ∈ Ep (𝑢, 𝑣) and K(𝑣, 𝑡𝑑 ) ∈ K(𝑣) with

𝑡 ′𝑎 ≤ 𝑡𝑑 to obtain K(𝑢). Specifically, for each K(𝑣, 𝑡𝑑 ) ∈ K(𝑣), we
examine Ep (𝑢, 𝑣) to identify the latest possible departure time
𝑡 ′
𝑑
such that (𝑡 ′

𝑑
, 𝑡 ′𝑎) ∈ Ep (𝑢, 𝑣) and 𝑡 ′𝑎 ≤ 𝑡𝑑 . If such a time exists, we

can establish a 𝑘NN entry for 𝑢 from 𝑣 , where K(𝑢, 𝑡 ′
𝑑
) = K(𝑣, 𝑡𝑑 ).

In cases where no such time exists, e.g., no journey from 𝑢 to 𝑣

arrives before 𝑡𝑑 , thenK(𝑣, 𝑡𝑑 ) is discarded by 𝑢. By identifying the
latest possible departure time from Ep (𝑢, 𝑣) for each K(𝑣, 𝑡𝑑 ), the
redundancy like K(𝑢, 𝑡𝑑1) = K(𝑢, 𝑡𝑑2) and 𝑡𝑑1 < 𝑡𝑑2 will not occur.

Because we only keep 𝑡𝑑2 which is the latest possible departure

time for K(𝑢, 𝑡𝑑2) and 𝑡𝑑1 is omitted.

Operator Union ⊔. GivenK1 (𝑢) andK2 (𝑢) of 𝑢 that are obtained

from different sources, e.g., two neighbors of 𝑢 , the operator Union
⊔ helps 𝑢 to calculate its aggregated 𝑘NN index K(𝑢) by merging

K1 (𝑢) and K2 (𝑢). This process has two steps:

Step 1. Merge. In the first step, we directly merge items in K1 (𝑢)
and K2 (𝑢) and obtain a tentative K(𝑢). Specifically, if a depar-

ture time 𝑡𝑑 only exists in one of K1 (𝑢) and K2 (𝑢), the respective
K1 (𝑢, 𝑡𝑑 ) or K2 (𝑢, 𝑡𝑑 ) is assigned to K(𝑢, 𝑡𝑑 ). Otherwise, if 𝑡𝑑 ap-

pears in both K1 (𝑢) and K2 (𝑢), we keep top-k objects from them

in K(𝑢, 𝑡𝑑 ) based on their 𝐸𝐴𝑇 .

Step 2. Compensation. Given a departure time 𝑡𝑑 from 𝑢, if we

don’t depart immediately but wait a little while for another bus,

we may reach some objects with earlier arrival times or have more

choices of objects. For instance, if K(𝑢, 3) = {(𝑜1, 6), (𝑜3, 10)}
and K(𝑢, 6) = {(𝑜2, 9), (𝑜1, 11)}, then (𝑜2, 9) should be inserted

to K(𝑢, 3). Such situation occurs when merging K(𝑢) from differ-

ent neighbours. In order to cope with the above situation, we need

to use the 𝑘NN with a later departure time to update the 𝑘NN with

a earlier departure time. This can be efficiently implemented by a

linear scan of K(𝑢) from the latest to the earliest departure time.

Example 5.18. To illustrate the above operators, we take the

procedure of Phase 1 in Table 3 as an example. The blue dotted line

in the graph from 𝑣3 to 𝑣2 indicates the Ep (𝑣3, 𝑣2). The second row of

the equation demonstrates the process of Ep (𝑣3, 𝑣2) ⊙ K(𝑣2) which
returns the 𝑘NNs of 𝑣3 obtained from 𝑣2. In particular, K(𝑣2, 3)
is discarded because 𝑡𝑑 = 3 cannot be caught up by any edge in

Algorithm 4: Index-Construction(𝐺 (𝑉 , 𝐸))
1 𝑇𝐺 ← EP-TreeDecomposion(𝐺);
2 foreach 𝑣 ∈ 𝑉 (𝐺) do K(𝑣) ← ∅;
// Phase 1

3 for 𝑖 ← 1 to 𝑛 do
4 𝑣 ← vertex with 𝜋 (·) = 𝑖;
5 for 𝑢 ∈ 𝑋 (𝑣) \ {𝑣} do
6 K(𝑢) ← K(𝑢) ⊔ (Ep (𝑢, 𝑣) ⊙ K(𝑣));
7 if 𝑣 ∈ P then
8 K(𝑢) ← K(𝑢) ⊔

{(𝑡𝑑 , {(𝑣, 𝑡𝑎)}) |(𝑡𝑑 , 𝑡𝑎) ∈ Ep (𝑢, 𝑣)};
// Phase 2

9 for 𝑖 ← 𝑛 to 1 do
10 𝑣 ← vertex with 𝜋 (·) = 𝑖;
11 for 𝑢 ∈ 𝑋 (𝑣) \ {𝑣} do
12 K(𝑣) ← K(𝑣) ⊔ (Ep (𝑣,𝑢) ⊙ K(𝑢));
13 if 𝑣 ∈ P then
14 K(𝑣) ← K(𝑣) \ {𝑣};
15 if 𝑢 ∈ P then
16 K(𝑣) ← K(𝑣) ⊔ {(𝑡𝑑 , {(𝑢, 𝑡𝑎)}) |(𝑡𝑑 , 𝑡𝑎) ∈

Ep (𝑣,𝑢)};
17 return TNN-Index;

Ep (𝑣3, 𝑣2). Subsequently, 𝑡𝑑 = 5 and 9 are connected with edge

⟨𝑣3, 𝑣2, 4, 5⟩ and ⟨𝑣3, 𝑣2, 8, 9⟩, respectively. By replacing with new

departure times, we obtain the result, denoted as K′ (𝑣3).
The third row of the equation demonstrates the process ofK(𝑣3)⊔

K′ (𝑣3). The items with the same departure time are marked in yel-

low. The first step of ⊔ operator is to directly merge these items,

the items in the merge result are marked with colors. We then do

the second step of ⊔ operator. Specifically, we add (𝑜1, 11) from
𝑉𝑘 (𝑣3, 8) to 𝑉𝑘 (𝑣3, 5), which is indicated by the green arrow. Simi-

larly, we add (𝑜2, 6) from 𝑉𝑘 (𝑣3, 5) to 𝑉𝑘 (𝑣3, 4). Finally, we obtain
the final 𝑘NN index K(𝑣3) of 𝑣3 in the graph.

Two-Phase Index Construction Algorithm. Now we are ready

to present the TNN-Index construction algorithm, which is pre-

sented in Algorithm 4. Given a graph 𝐺 , the algorithm first com-

putes the EP tree decomposition𝑇𝐺 of𝐺 (line 1). Then it constructs

the TNN-Index of 𝐺 in two phases: (1) computing the 𝑘NN in sub-

graphs in a bottom-up manner (lines 3-8); (2) computing the 𝑘NN

in the entire graph in a top-down manner (Lines 9-16). Next, we

introduce the details of the two phases:

• Phase 1. Bottom-Up 𝑘NN Computation on Subgraphs. This phase
is to compute the 𝑘NN of each vertex 𝑣 in a subgraph, it corresponds

to Phase 1 of the framework in Section 5.2, where the vertex 𝑣 acts

as a "cut vertex" in the subgraph. Specifically, for each vertex 𝑣 in

the vertex elimination order (line 3-4), we use K(𝑣) to update the

𝑘NN of each vertex 𝑢 in 𝑋 (𝑣) \ {𝑣} (line 5-8). To achieve this, we

first use Ep (𝑢, 𝑣) ⊙K(𝑣) to transfer the 𝑘NN of 𝑣 to𝑢 through edges

from 𝑢 to 𝑣 with the edge profile obtained in Algorithm 3, then use

K(𝑢) ⊔ (Ep (𝑢, 𝑣) ⊙ K(𝑣)) to update the 𝑘NN of 𝑢 (line 6). If 𝑣 is an

object, then we also need to add 𝑣 to the 𝑘NN of 𝑢 (line 8).

Lemma 5.19. For any vertex 𝑣 in 𝐺 , once Phase 1 is completed, let
𝑆 = {𝑢 |𝑋 (𝑢) ∈ 𝑇 (𝑣)}, where𝑇 (𝑣) is the subtree of𝑇𝐺 rooted at 𝑋 (𝑣),
then K(𝑣) is the TNN-Index of 𝑣 on the subgraph 𝐺 [𝑆].

Proof. We prove this lemma by induction. First, if 𝑋 (𝑣) is a
leaf node, then the subgraph only contains 𝑣 , so the lemma holds
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Table 3: Examples of Phase 1 and Phase 2
Current EP-graph 𝑘NN Computation

Phase 1

v3 v2

[3
,4
]

v4

[7
,8
]

[4,5]

[8,9]

v3 v2

[3
,4
]

v4

[7
,8
]

[4,5]

[8,9]

K(v3 ) ← K(v3 ) ⊔ (Ep (𝑣3, 𝑣2 ) ⊙ K (v2 ) )

= K(v3 ) ⊔
⎛⎜⎝
{︃
(4, 5),
(8, 9)

}︃
⊙
⎧⎪⎪⎨⎪⎪⎩
3 : { (o3, 4), (o1, 8) },
5 : { (o1, 8) },
9 : { (o1, 11) }

⎫⎪⎪⎬⎪⎪⎭⎞⎟⎠
=

{︃
5 : { (o2, 6) },
8 : { (o2, 9) }

}︃
⊔
{︃
4 : { (o1, 8) },
8 : { (o1, 11) }

}︃
=

⎧⎪⎪⎨⎪⎪⎩
4 : { (o2, 6), (o1, 8) },
5 : { (o2, 6), (o1, 11) },
8 : { (o2, 9), (o1, 11) }

⎫⎪⎪⎬⎪⎪⎭

Phase 2

[8,9]o2
[5,6]

v3

[3
,4
]

v4

[7
,8
]

v1

[1
,3
]

[8,9]o2
[5,6]

v3

[3
,4
]

v4

[7
,8
]

v1

[1
,3
]

K(v1 ) ← K(v1 ) ⊔ (Ep (𝑣1, 𝑜2 ) ⊙ K (o2 ) )

= ∅ ⊔
(︂{︁
(1, 3)

}︁
⊙
{︁
3 : { (o3, 7), (o1, 8) }

}︁)︂
=
{︁
1 : { (o3, 7), (o1, 8) }

}︁
K(v1 ) ← K(v1 ) ⊔ { (𝑡𝑑 , { (𝑣1, 𝑡𝑎 ) } ) | (𝑡𝑑 , 𝑡𝑎 ) ∈ Ep (𝑣1, 𝑜2 ) }

= K(v1 ) ⊔
{︁
1 : { (o2, 3) }

}︁
=
{︁
1 : { (o2, 3), (o3, 7), (o1, 8) }

}︁
K(v1 ) ← K(v1 ) ⊔ (Ep (𝑣1, 𝑣4 ) ⊙ K (v4 ) )

= K(v1 ) ⊔
⎛⎜⎝
{︃
(2, 4),
(4, 6)

}︃
⊙
⎧⎪⎪⎨⎪⎪⎩
3 : { (o3, 4), (o2, 6), (o1, 8) },
6 : { (o3, 7), (o2, 9), (o1, 11) },
7 : { (o2, 9), (o1, 11) }

⎫⎪⎪⎬⎪⎪⎭⎞⎟⎠ =
{︃
1 : { (o2, 3), (o3, 7), (o1, 8) },
4 : { (o3, 7), (o2, 9), (o1, 11) }

}︃
trivially. Second, if 𝑋 (𝑣) is not a leaf node , and we suppose the

lemma holds for all vertices whose corresponding nodes are de-

scendants of 𝑋 (𝑣), then we prove it for 𝑣 . With EP-tree decom-

position, for any 𝑢 ∈ 𝐶 (𝑣), 𝐺𝜋 (𝑢 )−1 ⊑ 𝐺 , it’s not hard to know

that 𝑣 ’s 𝑘NN on 𝐺 [𝑇 (𝑢)] can be obtained from 𝑢 via Ep (𝑣,𝑢), i.e.,
Ep (𝑣,𝑢) ⊙ K(𝑢) ⊔ {(𝑡𝑑 , {(𝑣, 𝑡𝑎)}) |(𝑡𝑑 , 𝑡𝑎) ∈ Ep (𝑣,𝑢)}. Let 𝐶 (𝑣) de-
note the vertices 𝑢 whose corresponding nodes 𝑋 (𝑢) are the de-
scendant of 𝑋 (𝑣) in 𝑇𝐺 and contain 𝑣 , i.e., 𝐶 (𝑣) = {𝑢 |𝑣 ∈ 𝑋 (𝑢) ∧
𝑋 (𝑢) is a descendant of 𝑋 (𝑣)}. Then 𝐶 (𝑣) is the vertex cut of 𝐺 if

𝐶 (𝑣) ∪ {𝑣} doesn’t contain all the vertices in 𝑆 [23]. Therefore, after

all the vertices in 𝐶 (𝑣) are eliminated, the K(𝑣) is the TNN-Index
of 𝑣 on 𝐺 [𝑆]. The lemma holds by induction. □

Example 5.20. The first row in Table 3 demonstrates the steps

in phase 1 for updating K(𝑣3) with K(𝑣2) with aforementioned

operators. The final result is the updated K(𝑣3) by merging the

𝑘NNs obtained from 𝑣2.

• Phase 2. Top-Down 𝑘NN Computation on the Entire Graph. This
phase corresponds to Phase 2 of the framework in Section 5.2 and

is presented in lines 9-16 of Algorithm 4. We compute the 𝑘NN

of vertices following the reverse order of vertex elimination (lines

9-10). Specifically, for each vertex 𝑣 in the reverse order of vertex

elimination, we use the K(𝑢) of each vertex 𝑢 in 𝑋 (𝑣) \ {𝑣} to
update the K(𝑣) (lines 11-12). If 𝑣 is an object, then 𝑣 could be a

𝑘NN of 𝑢 and it could be added to the 𝑘NN of itself, so we remove

𝑣 from theK(𝑣) (lines 13-14) since we don’t include an object itself

in its index. While if 𝑢 is an object, we have to add 𝑢 to 𝐾 (𝑣) with
line 16 as K(𝑢) doesn’t contain itself. This phase completes when

all the vertices are processed.

Lemma 5.21. For any vertex 𝑣 in𝐺 , once Phase 2 is completed, then
K(𝑣) is the TNN-Index of 𝑣 on the entire graph 𝐺 .

Proof. We prove this lemma by induction. First, if 𝜋 (𝑣) = 𝑛,

then 𝑣 is the last vertex to be eliminated, so the lemma holds accord-

ing to Lemma 5.19. Second, if 𝜋 (𝑣) < 𝑛, assume the lemma holds

for all vertices 𝑢 ∈ 𝑋 (𝑣) \ {𝑣}, then we prove it for 𝑣 . If the condi-

tions hold for Lemma 5.8, 𝑋 (𝑣) \ {𝑣} is the vertex cut of𝐺 , then by

Lemma 5.3 and Lemma 5.19, then K(𝑣) holds the 𝑘NNs of 𝑣 on the

entire graph𝐺 . Otherwise,𝑋 (𝑣) ∪{𝑤 ∈ 𝑋 (𝑢) |𝑋 (𝑢) is a descendant
of 𝑋 (𝑣)} contains all the vertices in 𝐺 , then by Lemma 5.19, it is

easy to know that then K(𝑣) holds the 𝑘NNs of 𝑣 on the entire

graph 𝐺 . Hence this lemma holds by induction. □

Example 5.22. The second row in Table 3 outlines the process of

updating K(𝑣1) with K(𝑜2) and K(𝑣4) during Phase 2. The green

dotted lines indicates Ep (𝑣1, 𝑜2) and Ep (𝑣1, 𝑣4). The first equation
shows of calculation of K(𝑣1) with K(𝑜2). Given that 𝑜2 ∈ P, an
entry (𝑜2, 3) with 𝑡𝑑 = 1 is added, based on Ep (𝑣1, 𝑜2), as illustrated
in the second equation. Following this, 𝑣1 acquires 𝑘NNs from 𝑣4.

For Ep (𝑣1, 𝑣4) ⊙ K(𝑣4), the edge ⟨𝑣1, 𝑣4, 2, 4⟩ becomes redundant

due to the existence of edge ⟨𝑣1, 𝑣4, 4, 6⟩ when joined with the 𝑘NN

with 𝑡𝑑 = 6, as 𝑘NN with departure time 2 is identical to that with

departure time 4. The final result of K(𝑣1) is the index of 𝑣1 in 𝐺 .
Theorem 5.23. The time cost of Algorithm 4 is 𝑂 (𝑛 · 𝑡𝑤 · 𝑑+ · 𝑘).
Proof. Each vertex 𝑣 uses its𝑘NN index to update the indexes of

the vertices 𝑢 ∈ 𝑋 (𝑣), where |𝑋 (𝑣) | is limited by treewidth 𝑡𝑤 . The

⊙ operation scans Ep (𝑢, 𝑣) and K(𝑣) linearly. Therefore, the time

cost of ⊙ is𝑂 (𝑑+ · 𝑘). The ⊔ operation, updating 𝑢’s 𝑘NN, involves

linear scanning and merging of the operands starting from the

largest 𝑡𝑑 . In the worst case, merging 𝑘NN at the same 𝑡𝑑 with later

times costs 𝑂 (𝑘 + 𝑘 + 𝑘), leading to a time complexity of 𝑂 (𝑑+ · 𝑘)
for ⊔. Hence, total time complexity for Phase 1 is 𝑂 (𝑛 · 𝑡𝑤 · 𝑑+ · 𝑘).
The time complexity of Phase 2 is similar to Phase 1. Hence, the

total time complexity of Algorithm 4 is 𝑂 (𝑛 · 𝑡𝑤 · 𝑑+ · 𝑘). □

6 𝑘NN SEARCHWITH OPENING HOURS
Facilities in a city like shops or restaurants, may not always be open.

Users using 𝑘NN queries might find some of them closed upon their

arrival. For example, if the opening hours of a pharmacy are from 9
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am to 4 pm. If a user can arrive at this shop at 8 am but needs to wait

until 8 for access. This raises an important question: should the user

wait for it to open or choose an alternative that the user can arrive

at 8:20 am but is already open? If we consider the accessibility of the

store, the latter should be a better choice. Assume the opening hours

of an object 𝑣 is 𝑇𝑜 (𝑣) = {[𝑡𝑜
1
, 𝑡𝑐
1
], [𝑡𝑜

2
, 𝑡𝑐
2
], ..., [𝑡𝑜𝑛 , 𝑡𝑐𝑛]}. We aim to

help users find top-𝑘 objects that are accessible at the earliest time.

A straightforward method is to adapt the INE algorithm for this

problem. Another method is to update the TNN-Index each time

an object is opened or closed. However, updating the index cannot

guarantee a correct response as an object may be closed during

the journey to it. To address these issues, we strive to encode the

opening hours of objects into the index structure. First, given the

opening hours 𝑇𝑜 (𝑣) of an object 𝑣 and the earliest arrival time 𝑡𝑒𝑎
of 𝑣 , we define the accessible time of 𝑣 as follows:

𝑇𝑎 (𝑣) = 𝑇𝑜 (𝑣) ∩ [𝑡𝑒𝑎,∞] (1)

If𝑇𝑎 (𝑣) is empty, which means is not accessible, then we should

ignore this object. Otherwise, the earliest accessible time of 𝑣 is

obtained with the following equation:

𝑡𝑎 = min{𝑡𝑜 | (𝑡𝑜 , 𝑡𝑐 ) ∈ 𝑇𝑎 (𝑣)} (2)

To encode the opening hours into the index, we can simply

replace the 𝐸𝐴𝑇 with the earliest accessible time in the index.

7 INDEX COMPRESSION
We observed that for certain consecutive departure times of a vertex

in TNN-Index, their 𝑘NNs might consist of the same set of objects

in identical order. For instance, theK(𝑣4, 3) andK(𝑣4, 6) in Table 2

consist of the same object set {𝑜3, 𝑜2, 𝑜1} but with varying 𝐸𝐴𝑇 s. In

such scenarios, we can retain just a single copy of the object set,

while documenting the 𝐸𝐴𝑇 s for each 𝑡𝑑 separately. This results

in a more compact version of TNN-Index, referred to as TNNC-
Index. Table 4 illustrates the TNNC-Index of 𝑣4. For K(𝑣4, 3) and
K(𝑣4, 6), we store a single copy of the object set {𝑜3, 𝑜2, 𝑜1}, while
their earliest arrival times are stored separately.

Table 4: TNNC-Index of 𝑣4
v td object set EATs

𝑣4

3

𝑜3, 𝑜2, 𝑜1
4, 6, 8

6 7, 9, 11

7 𝑜2, 𝑜1 9, 11

8 EXPERIMENTS
Settings. Experiments are conducted on a Linux server with In-

tel Xeon Gold 6342 CPU and 64GB memory. The algorithms are

implemented in C++ and compiled with GCC 11.4.0.

Methods. We evaluate the performance of the following methods:

• INE, INEo [18]: The Dijkstra-based online search method (Sec-

tion 3.1) and its extension for scenarios with opening hours.

• TFS, TFSo [14]: An index-based method (Section 3.2) and its

extension for scenarios with opening hours.

• PTLDB, PTLDBo [10]: Another index-based method (Section 3.2)

and its extension for scenarios with opening hours.

• TD-GLAD, TD-GLADo
[17]: An index-based method with dis-

tance bounded search for time-dependent graphs (Section 3.2)

and its extension for scenarios with opening hours.

• TNN, TNNo
: Our proposed method and its extension for scenar-

ios with opening hours.

Table 5: Network Statistics
Dataset Region |V| |E| 𝑡𝑤

SLC Salt Lake City 5,278 845,855 22

SYD Sydney 43,790 4,394,307 130

CHI Chicago 11,032 4,938,175 69

SE Sweden 49,018 9,514,878 43

NO Norway 89,922 7,477,992 64

CH Swiss 38,457 16,073,351 107

BA Buenos Aires 44,621 28,024,159 311

UK UK 330,177 68,377,836 246

FLA Florida 1,070,376 226,340,315 94

LKS Great Lakes 2,758,119 323,543,821 264

Table 6: Parameters and their settings
Parameter Values

𝑘 : number of nearest neighbors 10, 20, 30, 40, 50
object density: |P |/|𝑉 | 1‰, 5‰, 1%, 5%, 10%

• TNNC, TNNCo
: Index compressed version of TNN and TNNo

.

• DijkF, DijkR: Two baselines for index construction (Section 5.1).

Datasets. We use 8 real-world public transportation networks

downloaded from TransitFeeds
1
and 2 synthetic networks (FLA

and LKS), which are generated based on the road networks from

9th DIMACS Implementation Challenge
2
. For the synthetic net-

works, we retain the vertices from the original graphs, for each

edge in the original graph, we replace it with a set of edges with

random departure and arrival times. These sets of edges simulate

real-world scenarios by featuring high frequency during the day

and low frequency at night. The details of these datasets are pre-

sented in Table 5. The initial two columns provide the dataset’s

notation and respective regions. This is followed by the number of

vertices, edges, and the treewidth.

Query Sets. We randomly select 1,000 vertices for each dataset to

serve as query vertices. For every selected vertex, query departure

times are set from 7:00 to 21:00, at intervals of 20 minutes.

Parameter Settings. Objects are generated randomly for each

dataset. Table 6 lists the selected query parameter 𝑘 and object den-

sity for our experiments, with the defaults in bold. For experiments

with opening hours, each object is randomly assigned one of three

opening timeframes: open 24 hours, open from 9:00 to 17:00, or

open during the slots [8:00, 11:00] and [13:00, 16:00].

8.1 Query Processing
Exp-1: Query time by varying object density. We evaluate

the query processing time of different methods by varying object

densities. For each dataset, five groups of objects are generated with

density = {1‰, 5‰, 1%, 5%, 10%} and the average query processing

time for each algorithm is reported in Figure 4.

For the large datasets BA, UK, FLA and LKS, path index-based

methods TFS, PTLDB and TD-GLAD failed to construct an index

in eight hours. From the result, as the object density increases,

the query time for INE decreases, while the query time for the

path index-based methods increases. TD-GLAD outperforms TFS
as the density increases. However, at lower densities, its pruning

is less effective, and additional operations such as calculating 𝐸𝐴𝑇

1
https://transitfeeds.com

2
https://www.diag.uniroma1.it//challenge9/download.shtml
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(a) SLC (b) SYD (c) NO (d) UK (e) LKS
Figure 4: Query time by varying density

(a) SLC (b) SYD (c) NO (d) UK (e) LKS
Figure 5: Query time by varying k

(a) SLC (b) SYD (c) NO (d) UK (e) LKS
Figure 6: Query time by varying density (Opening hours)

(a) SLC (b) SYD (c) NO (d) UK (e) LKS
Figure 7: Query time by varying k (Opening hours)

to boundary grids and maintaining the order of results lead to TD-
GLAD taking more time than TFS. In contrast, TNN and TNNC
algorithms not only show consistent query performance across

varying densities but also maintain an outstanding query speed,

they complete all the queries less than 1 microsecond in real-world

networks and less than 2 microseconds in large synthetic networks,

outperforming other algorithms by up to four orders of magnitude.

Exp-2: Query time by varying 𝑘 .We also evaluate different meth-

ods by varying parameter 𝑘 , their average query processing times

are shown in Figure 5. As the value of 𝑘 increases, the running

time of INE also increases due to the need to find enough objects.

TFS and PTLDB maintain a consistent running time regardless of

k’s value. TD-GLAD also exhibits an almost constant query time

due to the ineffective pruning under the default object density.

Our methods, TNN and TNNC, consistently outperform the other

methods. There is a slight increase in running time as 𝑘 increases,

which can be attributed to the result size of the query.

Exp-3: Query time with opening hours. Figure 6 and Figure 7

presents the query processing times of different methods when

considering opening hours with varying object densities and pa-

rameter 𝑘 . Due to space limitations, we only present the results for

five datasets. The results demonstrate that the query processing of

the extension TNNo
is also significantly faster than the extension

of other methods under different parameter configurations.

(a) Index construction time

(b) Index size

Figure 8: Indexing time and index size
8.2 Index Construction
Exp-4: Indexing time and index size. The indexing time and in-

dex size of different methods are reported in Figure 8. Among these

methods, the DijkF, DijkR and TNN are both used for constructing

the TNN-Index. The results show that the index construction of

TNN is significantly faster than other methods. Specifically, TNN
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(a) Indexing time (b) Index size

Figure 9: Indexing time and index size (Opening hours)

(a) Indexing time (b) Index size

Figure 10: Scalability test (UK)
completes the index construction for the SE dataset in 7.08 seconds.

In contrast, PTLDB costs 816.47 seconds and DijkR costs 605.88

seconds. This indicates a significant leap in processing speed. More-

over, TNNC adds a compression step that modestly increases the

indexing time, a trade-off for its compression efficiency. Nonethe-

less, it still vastly outperforms existingmethods in terms of indexing

time. The advantage of TNNC becomes even more evident when

considering index compression. In the SYD dataset, for example,

TNNC achieves a compressed index size of 259.46 MB, compared to

TFS’s 782.19 MB, highlighting substantial gains in space efficiency.

Compared to TFS, TD-GLAD only requires the additional step of

building grids to store the objects. As a result, both methods have

very similar indexing times and index sizes. Notably, the path index-

basedmethods, TFS, PTLDB and TD-GLAD, fail to index the BA, UK,
FLA and LKS datasets within the 8-hour time limit, demonstrating

their inefficiency in handling large-scale datasets. In contrast, TNN
methods successfully index all datasets promptly, demonstrating

their robustness. Especially for the largest synthetic network LKS

with 2.7 million vertices, TNNC can build an index with the size of

11.57 GB in 1.5 hours. Our proposed methods outperform existing

methods with faster indexing times and smaller index sizes.

Exp-5: Indexing time and index size with opening hours. Fig-
ure 9 presents a comparison of the indexing times and the index

sizes of the extensions of different methods that consider the open-

ing hours. The index construction of TNNo
is significantly faster

than TFSo, PTLDBo and TD-GLADo
, achieving a speedup of more

than 170 times, as evidenced in the CH dataset. Additionally, the

sizes of the indexes generated by TNNo
are consistently smaller

than those built by TFSo, PTLDBo and TD-GLADo
.

Exp-6: Scalability test.We also conduct scalability tests for all the

index-based methods using the largest real-world dataset UKBus.

In the experiment, we generated four subgraphs of the UK dataset,

each containing 20%, 40%, 60%, and 80% of the edges from the

UK dataset. Figure 10 reports the indexing times and index sizes

under different graph sizes. The experiment shows that the path

index-based methods TFS, PTLDB and TD-GLAD failed to index the

subgraph with more than 40% edges of the original graph within the

8-hour time limit, revealing their poor scalability on large datasets.

In contrast, our method TNN shows excellent scalability as the

graph size increases.

9 RELATEDWORKS
kNN in road networks. The𝑘NN search problem in road networks

can be solved using traversal-based methods [16, 24, 24, 26, 36].

Other methods [13, 21, 22] leverage the index to accelerate 𝑘NN

queries. TOAIN [21] speeds up 𝑘NN queries in road networks with

the Contraction-Hierarchy (CH) framework. GLAD [13] partitions

a road network into grids and uses the H2H-Index [22] to speed

up distance queries to the objects. TEN-QueryIP [23] is the state-

of-the-art method, it pre-computes a 𝑘TNN index for each vertex,

and processes queries with precomputed 𝑘TNN. These methods

are designed for road networks with constant edge weights, they

cannot be directly applied to PTNs.

kNN in time-dependent networks. In time-dependent networks,

travel times on edges are represented by piecewise linear functions.

TD-NE [8] enhances INE [24] for 𝑘NN search in such networks,

but its search complexity limits its efficiency. Komai et al. [15]

introduced an index method dividing time into intervals with pre-

computed minimum travel times. Demiryurek et al. [7] used a

Voronoi diagram with TNI (Tight Network Index) and LNI (Loose

Network Index) for efficient 𝑘NN queries.Yang et al. [33] developed

a dynamic Voronoi-based index (V-tree) for more efficient querying.

The state-of-the-art method for 𝑘NN queries in time-dependent

networks is TD-GLAD [17]. It extends H2H-Index [22] for time-

dependent networks. These methods are either inefficient in pro-

cessing queries or rely on a path index, which is resource-intensive

and their scalability is limited.

To address the 𝑘NN queries in public transportation networks,

Li et al. [18] adapt Dijkstra’s algorithm to process 𝑘NN queries in

PTNs, but it is inefficient in processing queries. TFS [14] is designed

for the top-k keyword search problem in PTNs, it uses a path index

to compute the earliest arrival time for each object and returns the

top-k objects with the earliest arrival time. [10] focused on SQL

solutions within the PTLDB (Public Transportation Labeling on

Databases) framework with TTL-Index as the underlying layer. It
builds an inverse label for each hub vertex and uses it to speed up

the query processing. However, these methods are inefficient in pro-

cessing queries, and the underlying path index of the index-based

methods is resource-intensive and cannot scale to large graphs.

10 CONCLUSIONS
In this paper, we present an efficient index, TNN-Index, for 𝑘NN
searches in public transportation networks. We show that our ap-

proach can evaluate queries up to four orders of magnitude faster

than existing methods. We present an efficient algorithm for con-

structing the index and a compression technique for minimizing

the index. Furthermore, we extend the index to scenarios where

the opening hours of objects are considered. Extensive experiments

demonstrate the efficiency and effectiveness of our approach.
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