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ABSTRACT

Potential harms from the under-representation of minorities in data,

particularly in multi-modal settings, is a well-recognized concern.

While there has been extensive effort in detecting such under-

representation, resolution has remained a challenge.

With recent generative AI advancements, large language and

foundation models have emerged as versatile tools across various

domains. In this paper, we propose Chameleon, a system that ef-

ficiently utilizes these tools to augment a dataset with minimal

addition of synthetically generated tuples to enhance the cover-

age of the under-represented groups. Our system applies quality

and outlier-detection tests to ensure the quality and semantic in-

tegrity of the generated tuples. In order to minimize the rejection

chance of the generated tuples, we propose multiple strategies to

provide a guide for the foundation model. Our experiment results,

in addition to confirming the efficiency of our proposed algorithms,

illustrate our approach’s effectiveness, as the model’s unfairness

in a downstream task significantly dropped after data repair using

Chameleon.
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1 INTRODUCTION

łThe Chameleon changes color to match the earth, the earth doesn’t

change color to match the chameleon.ž ś Senegalese Proverb

The importance of the dataset as the first product of the data

analysis pipeline [49, 62] is now well-recognized. In particular, there

is increasing awareness of the unfairness of machine learning (ML)

models towards minorities and other marginalized groups on ac-

count of their under-representation in training data [10]. Such is-

sues also appear in other contexts, such as information retrieval [11].

There is now a growing body of work on detecting lack of coverage

of minorities in a dataset [5, 60, 74].
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Of course, detecting under-representation does not in itself ad-

dress the problem: we then need to fix it somehow. If additional data

could be collected or suitable external sources [61], that would be

ideal, but this is frequently not possible. An alternative approach to

generate synthetic data has been explored for regular alphanumeric

relational tables [18, 22, 37, 46].

Multi-modal data is increasingly being used for analysis, exploit-

ing huge recent technological advances such as image recognition.

In fact, the under-representation-related issues for multi-modal data

have been noticed for quite some time. In data retrieval, for example,

search engines returned images belonging to certain demographic

groups for specific queries [40, 86]. A famous example is the łCEO

Gender Biasž where the returned images for CEO-related queries

are mostly (white) male [40]. The harms of under-representation in

data used for training multi-modal ML models are also well-known.

For example, HP webcams were not able to detect black faces [77]

due to inadequate coverage of black faces in the training data: the

face images used to train the software were collected from (mostly)

white engineers [83]. This begs the question, what can we do once

we have detected that a multi-modal dataset is biased, with insuffi-

cient representation of certain groups? There is no obvious way we

can apply techniques developed for alphanumeric relational data.

Therefore, our objective in this paper is to resolve inadequate

coverage of minorities in a multi-modal dataset. Ensuring proper

representation of minorities can help prevent false stereotypes

such as <CEOs being white-male> in contexts such as information

retrieval. In the context of ML, as we shall experimentally illustrate

in ğ 6, improving the coverage of minorities in a dataset can help

reduce unfairness in the downstream model training.

Our central idea is to use generative AI to create synthetic data

for this purpose. While this idea has immediate appeal, particularly

given the spectacular recent advances in foundation models, actu-

ally getting it to work requires overcoming many challenges. First,

we have to determine the minimal set of synthetic tuples that can be

added to the original dataset to resolve under-representation issues.

Second, we need to ensure the semantic integrity of the dataset,

that the synthetically generated tuples are in the same context as

the original dataset. That is, they are not outliers based on the un-

derlying distribution represented by the input dataset. Third, we

have to ensure the generated tuples are of high quality so they look

realistic to a human evaluator. Lastly, given the (often monetary)

cost associated with the queries to the foundation model, we should

ensure the cost-effectiveness of the dataset repair process.

To address the first challenge, using the notion of data cover-

age [5, 74] for identifying under-representation, we formally define

the Combination-Selection problem, which minimizes the total

number of synthetic tuples for resolving lack of coverage of minori-

ties at the most general level. We show the problem is NP-hard, and
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propose a greedy approximation algorithm for it. For the second

challenge, we view each tuple in the dataset D as an independent

and identically distributed (iid) random sample from the underly-

ing distribution 𝜉 it represents. We use the vector representations

(embeddings) space to describe the distribution. Then, a newly gen-

erated tuple is discarded if it fails the outlier test, i.e., if it is unlikely

to be generated by 𝜉 . To address the third challenge, we model

quality evaluation as hypothesis testing and reject the samples with

a higher chance of being labeled as łunrealisticž by a random hu-

man evaluator. Finally, to minimize the number of queries to the

foundation model, we provide a guide tuple (and a mask) and the

prompt to the foundation model. We propose multiple strategies

for guide selection to maximize the chance of passing the outlier

and the quality tests.

Summary of contributions. We introduce Chameleon, a system

that uses foundation models to augment multi-modal datasets to

enhance their representation of minorities in the form of data cov-

erage. In summary, our contributions are the following:

• We propose fairness-aware data augmentation using foundation

models to resolve the lack of coverage in multi-modal data (ğ 2).

• We propose rejection tests to ensure the augmented tuples are

not outliers according to the underlying data distribution and

have as high quality as the real tuples in the dataset (ğ 3).

• We propose the Combination-Selection problem, which speci-

fies the description of the tuples to be generated to resolve the

lack of coverage with a minimum amount of augmentation to the

dataset. We prove that the Combination-Selection problem is

NP-hard, and propose a greedy approximation algorithm with

the logarithmic approximation ratio for it (ğ 4).

• We propose the Guide-selection problem that provides a guide tu-

ple and a mask as the input to the foundation model to maximize

the chance of passing the rejection tests. We propose multiple

strategies for guide selection, including a solution based on a

contextual multi-armed bandit (ğ 5).

• We conduct comprehensive experiments on several real datasets

to evaluate the efficiency of the proposed algorithms in com-

parison to the baselines and to study their effectiveness using

human evaluators. Our proof of concept experiments using differ-

ent datasets/tasks showcase the reduction in unfairness (perfor-

mance disparity) achieved by Chameleon. Among other experi-

ments and in addition to image datasets, we evaluateChameleon

on textual data on a sentiment analysis task with an alternative

metric for measuring coverage, which confirms the extensibility

of our system for different settings (ğ 6).

2 PRELIMINARIES

2.1 (Input) Data Model

We are given a dataset of multi-modal tuples (e.g., images) D =

{𝑡1, · · · , 𝑡𝑛}, as a collection of independent and identically dis-

tributed (iid) samples, taken from an (unknown) distribution 𝜉 .

The tuples are associated with 𝑑 ≥ 1 attributes of interest x =

{𝑥1, · · · , 𝑥𝑑 } (e.g., gender, race, age-group, etc.), that are used to

identify (demographic) groups. Without loss of generality, we as-

sume the attributes of interest are categorical (we assume the con-

tinuous attributes are properly bucketized). Attributes of interest

can be unordered (e.g., gender and race) or ordinal (e.g., age-group).

Each attribute has a cardinality of two or more. For example, an

attribute sex (biological sex) with values {male, female} partitions

the individuals into two non-overlapping groups. We use 𝑑𝑜𝑚(𝑥𝑖 )
to represent the domain of the attribute 𝑥𝑖 ∈ x, i.e., the set of

valid values for 𝑥𝑖 . The cartesian product of values on a subset of

attributes x′ ⊆ x, form a set of (demographic) subgroups. For exam-

ple, {white male, white female, black male , · · · } are the subgroups
defined on the attributes (race,gender). We refer to the number of

attributes used to specify a subgroup as the level of that subgroup.

For example, the level of the subgroup white male is 2, while the

level of the subgroup male is 1. We use ℓ (g) to refer to the level of

a subgroup g. Similarly, we say a subgroup g′ is a subset of g, if the
groups specifying g′ are a superset of the ones for g. For example,

{white male preschooler} is a subset of the more general group

{white male}. That is, the set of individuals in group {white male

preschooler} is a subset of {white male}. Moreover, we say a sub-

group g is a parent of the subgroup g′, if g′ ⊂ g and ℓ (g) = ℓ (g′) +1.
For example, the subgroup {white male} is a parent of the subgroup

{white male preschooler}. Finally, slightly abusing the terms, we

call a subgroup a combination if ℓ (g) = 𝑑 .

2.2 (Input) Foundation Model

We use a foundation model F (e.g., DALL·E 2
1) for data genera-

tion. We treat F as black-box, which allows the adaptation of both

closed-source and open-source foundation models. For more infor-

mation about the foundation models, please refer to [14, 17, 90]. We

consider the foundation model F with the following inputs that

generate a synthesized output tuple:

• Prompt: a natural language instruction specifying the tuple

details. For example, an image generation prompt could be łA

realistic photo of a white catž.

• Guide: when only provided with a prompt, the foundation model

uses its "imagination" to generate the requested tuple. For exam-

ple, for the previous cat-image example prompt, the breed and

size of the cat, the background, and other details are chosen by

the foundation model. Alternatively, a guide can be provided to

F to influence the generation process. We formalize the guide

as a pair (𝑡,𝑚), where 𝑡 is a tuple and𝑚 is a mask. The mask𝑚

specifies which parts of the guide tuple should change. Continu-

ing with the cat example, 𝑡 can be a cat image, and𝑚 can specify

the foreground to be regenerated.

Cost model: We assume each query to the foundation model has

a fixed cost 𝜐. The cost is monetary when using external foundation

models such as DALL·E 2, and it can be computational when the

model is hosted locally.

2.3 (Objective) Data Coverage

We use the notion of data coverage [5] to identify representation

issues in a dataset D.2 In particular, given a dataset D and a cover-

age threshold 𝜏 (e.g., 𝜏 = 50), we say a subgroup g is uncovered, if

1
Chameleon uses DALL·E 2 as its default image generator. łDALL·E 2 is an AI system
that can create realistic images and art from a description in natural language.ž https:
//openai.com/dall-e-2
2 The modular architecture of Chameleon (Figure 1) allows for alternative metrics, like
representation rate [19], by simply changing the łcombination selectionž component.
This will be demonstrated experimentally in ğ 6, using the representation rate as the
metric.
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Figure 1: Architecture of Chameleon for image generation

|g ∩D| < 𝜏 . That is, the number of samples in D from the group g

is less than 𝜏 .

When studying the lack of coverage in a dataset, we are usually

interested in finding the most general uncovered subgroups. That

is, the collection of subgroups g such that (a) g is uncovered and (b)

all parents of g are covered. We follow the terminology proposed

by Asudeh et al. [5], where these subgroups are called MUPs (max-

imal uncovered patterns). As a toy example, suppose there are 40

black-females in a dataset, while the number of females is 200, and

this number is 150 for blacks. Hence, considering 𝜏 = 50, {black

female} is a MUP as it is a most general subgroup that is uncovered.

2.4 System Architecture Overview

Figure 1 shows the overall architecture of the system, whose com-

ponents we will design in the rest of this paper. The augmentation

process for a dataset D starts with specifying a small set of syn-

thetic tuples (a set of combinations, each with a count) that, once

generated and added to D, resolve problematic lack of coverage

issues (ğ 4). Then, for each combination, an input query is con-

structed and passed to the foundation model. At a minimum, this

query comprises a text prompt describing the desired combination.

However, that leaves too much latitude to the foundation model,

and the result is likely to be an image unsuitable for the dataset

at hand (that is, it would be unlikely to occur in the underlying

distribution of D), even if it satisfies the prompt conditions. To

avoid this, a guide tuple and mask are specified in addition to the

prompt (ğ 5). The foundation model then generates a new tuple

based on this input. Even with the augmented query, the produced

tuple may not be satisfactory. We follow a rejection testing strategy,

where the new tuple should pass an outlier detection test and a

quality test before adding it to the dataset.

3 REJECTION TEST

Our strategy for ensuring the high quality of the augmented dataset

is inspired by rejection sampling [41, 45]. 3 In order to generate a

sample from a distribution with the probability density function

(pdf) 𝑓 , the rejection sampling technique generates sample points

under an upper envelope of 𝑓 and rejects it if the sample point does

not fall under 𝑓 . We use a similar strategy: when the foundation

model generates a new tuple, we accept it only if it passes the outlier

detection test (ğ 3.1) and the quality evaluation (ğ 3.2). Otherwise,

the generated tuple will be rejected, and we will try again.

3.1 Outlier (Novelty) detection test

When augmenting a dataset, it is crucial to ensure that the aug-

mented tuples align with the underlying data distribution 𝜉 and are

not outliers. For instance, if the dataset consists of wide-shot im-

ages in an office workplace, the generated tuples should also fit this

context. The first issue is that 𝜉 is unknown. Besides, it is not clear

how to quantify and represent the distribution, while relying on

the foundation model’s imagination could generate outlier tuples.

We utilize the vector representation (aka embedding) of the

tuples for representing the distribution 𝜉 . Given a tuple 𝑡𝑖 , let 𝑣 (𝑡𝑖 ) =
𝑣𝑖 = ⟨𝑣1, 𝑣2, · · · , 𝑣𝜅 ⟩ be its embedding. We assume the embeddings

are accurate. That is, the cosine similarity between the embeddings

represents the semantic similarity between two tuples. Formally, the

similarity of two tuples 𝑡𝑖 and 𝑡 𝑗 can be computed as S𝑖𝑚 (𝑡𝑖 , 𝑡 𝑗 ) =
cos ∠(𝑣𝑖 , 𝑣 𝑗 ). Now, in the embedding space, let 𝜉 be the probability

distribution from which D is sampled. Hence, the probability that

a tuple 𝑡 is sampled is 𝑃𝑟𝜉 (𝑡). We use 𝜇𝜉 to represent the mean of

𝜉 . Since the tuples in D are iid samples from 𝜉 , those can be used

for estimating 𝜇𝜉 . Let 𝑣𝑐 be the sample mean of the representation

vectors in D. That is, 𝑣𝑐 =
1
𝑚

∑︁

𝑡𝑖 ∈D 𝑣𝑖 . Assuming that 𝑛 (the size

of D) is large enough, based on the central limit theorem, we can

estimate 𝜇𝜉 as 𝑣𝑐 .

To ensure that each generated tuple adheres to the underlying

distribution 𝜉 , i.e., it is not an outlier based on 𝜉 , we employ a

one-class support vector machine (OCSVM) approach proposed by

Scholkopf et al. [70] as a quality control mechanism.

Formally, given a set of training embeddings {𝑣1, 𝑣2, . . . , 𝑣𝑛} rep-
resenting tuples drawn from 𝜉 , the OCSVM aims to learn a decision

boundary that separates the majority of these embeddings from

the origin in the feature space. This boundary implicitly defines a

region that characterizes the "normal" or acceptable embeddings.

To find this boundary (hyperplane), the following optimization

problem is proposed:

min
w,𝜌,𝜖

1

2
∥w∥2 + 1

𝜈𝑛

𝑛
∑︂

𝑖=1

𝜖𝑖 − 𝜌

Subject to w · 𝜙 (𝑣𝑖 ) ≥ 𝜌 − 𝜖𝑖 , 𝜖𝑖 ≥ 0, 𝑖 = 1, 2, . . . , 𝑛

3 We would like to clarify that, while inspired by rejection sampling, the proposed
rejection test is not a rejection sampling approach, and it does not aim to keep the
distribution constant; hence, it provides no guarantee to preserve the distribution.
Please refer to ğ 8.2 for more details.
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where:

• w is the hyperplane normal vector (weight vector)

• 𝜈 is an upper-bound on the fraction of outliers and a lower bound

on the fraction of support vectors (SV)

• 𝜙 is a feature mapping function that maps embeddings into a

higher-dimensional space (e.g., the radial basis function kernel)

• 𝜌 is a parameter controlling the margin of the decision boundary

• 𝜖𝑖 are slack variables allowing for a soft margin

To evaluate a generated tuple 𝑡𝑔 with embedding 𝑣𝑔 , we project

it into the feature space using the kernel function and compute:

𝑓 (𝑣𝑔) = w · 𝜙 (𝑣𝑔) − 𝜌
If 𝑓 (𝑣𝑔) ≥ 0, the tuple is deemed acceptable, falling within the

normal region defined by the OCSVM. If 𝑓 (𝑣𝑔) < 0, it is an outlier

and is rejected.

3.2 Quality evaluation

Foundation models have emerged as strong tools for creating high-

quality multi-modal data. Still, due to the randomized nature of

their generation process and the task-specific difficulties of various

queries, some of the generated tuples may not look realistic to

human beings.

Therefore, it is necessary to evaluate the quality of the generated

tuples before augmenting them to the dataset. This evaluation,

however, is qualitative and subjective. That is, the answer to łdoes

this tuple look realistic?ž may vary from one person to the other.

However, if there is a high correlation between raters, the probability

of the answer being positive reflects the quality of the tuple.

Using this observation, we model the quality of a tuple as a

Bernoulli random variable. Specifically, let 𝑝 be the probability that

a human evaluator labels a randomly sampled (real) tuple from

the distribution 𝜉 as łrealisticž. In other words, with probability

(1−𝑝), the evaluator will mistakenly label the tuple as łunrealisticž.

We can then define the Bernoulli variable 𝜙 , which is one of a real

tuple labeled as realistic by a human evaluator and zero otherwise.

Therefore, the pdf of 𝜙 for the randomly sampled (real) tuples is,

𝑓 (𝜙) =
{︄

𝑝 𝜙 = 1

(1 − 𝑝) 𝜙 = 0
(1)

The mean and the variance of this Bernoulli distribution are 𝜇𝜙 = 𝑝

and 𝜎2
𝜙
= 𝑝 (1 − 𝑝), respectively.

Let 𝑝′ be the probability that a randomly selected human eval-

uator labels an AI-generated tuple as realistic. Assuming that the

human evaluator is better than random labeling, 𝑝′ < 𝑝 . We use

this observation to develop hypothesis testing. We discard an AI-

generated tuple if we reject the null hypothesis that 𝑝′ equals 𝑝 , i.e.,
H𝑛𝑢𝑙𝑙 : 𝑝

′
= 𝑝 . Then, considering the lower tail test, the alternative

hypothesis would beH𝑎𝑙𝑡 : 𝑝
′
< 𝑝 .

To do so, we first obtain a sufficiently large sample set 𝑈 of

evaluations, where each sample is drawn using a randomly selected

evaluator and a random (real) tuple from D. Let𝑚𝑈 be the sample

mean of 𝑈 . Since 𝑈 is sufficiently large, we can estimate 𝑝 = 𝜇𝜙
with𝑚𝑈 . Now, for a generated tuple 𝑡 , consider a sample set𝑈𝑡 of

𝑁 evaluations of 𝑡 , each using a randomly selected evaluator. We

assume a (small) fixed-size budget for each generated tuple. Let𝑚𝑡

and 𝑠𝑡 be the sample mean and the standard deviation for𝑈𝑡 . Since

𝑁 is small, we use the Student’s t-test [30]. Specifically,

𝑡𝑁−1 =
𝑚𝑡 − 𝑝
𝑠𝑡/
√
𝑁

Next, using the t-table, we obtain the left-sided p-value and evaluate

its significance level. If the p-value is smaller than a significance

goal 𝛼 , we reject the null hypothesis (discard the generated tuple).

4 COMBINATION SELECTION

Our overall goal is to use the foundation model and generate a min-

imal set of synthetic tuples to resolve inadequate coverage for the

most general subgroups (MUPs with the smallest levels). Therefore,

we consider an iterative approach, where we resolve the MUPs at

the smallest level during each iteration. Given a datasetD, letM be

the set of MUPs, and letM∗ be the set of MUPs with the minimum

level. That isM∗ =
{︂

𝑀 ∈ M | ℓ (𝑀) = min𝑀 ′∈M
(︁

ℓ (𝑀′)
)︁

}︂

. For

each MUP 𝑀 ∈ M∗, let us define its gap 𝛿 (𝑀) = 𝜏 − |D ∩ 𝑀 |;
i.e., the coverage threshold minus the current coverage of𝑀 in D.

In other words, 𝛿 (𝑀) is the minimum number of synthetic tuples

matching𝑀 we need to obtain before it is covered. Also, for each

combination 𝑐𝑖 ∈
✕𝑑

𝑘=1
𝑑𝑜𝑚(𝑥𝑘 ), let 𝜎𝑖 be the number of synthetic

tuples from that combination. Then, the łCombination-Selectionž

problem is to assign the values of 𝜎𝑖 > 0 such that (i) for each MUP

𝑀 ∈ M∗, at least 𝛿 (𝑀) generated tuples match it, and (ii) sum of

all 𝜎𝑖 values is minimized. Formally,

min
∑︂

𝑐𝑖

𝜎𝑖

Subject to
∑︂

𝜎𝑖

𝑐𝑖 ∈match(𝑀 )
≥ 𝛿 (𝑀), ∀𝑀 ∈ M∗

Theorem 1. Combination-Selection is NP-hard.4

Since Combination-Selection is NP-hard, we design an ap-

proximation algorithm for this step. Our algorithm follows the

greedy scheme. The algorithm is iterative, where at each iteration

it finds the combination that matches the maximum number of

remaining MUPs inM∗. We utilize the inverted index and the tree

data structure proposed in [5] for finding 𝑐 . The algorithm then

finds the minimum gap 𝛾 in the MUPs matching 𝑐 and increases the

number of instances from 𝑐 by 𝛾 . It also updates the gaps for the

MUPs matching 𝑐 and remove the ones that reach to a gap of zero

fromM∗. The pseudo-code of the Greedy algorithm is provided in

the technical report [35].

Theorem 2. The approximation ratio of the Greedy approach is

log(𝜂), where 𝜂 =

∑︁

𝑀∈M∗ 𝛿 (𝑀).

5 GUIDE TUPLE SELECTION

Given a combination 𝑐 , we would like to generate a tuple that

matches 𝑐 and is likely to pass the rejection sampling tests. There-

fore, we want to make sure that (a) the generated tuple is not an

outlier according to the distribution 𝜉 represented byD and (b) the

generated tuple has high quality and passes the quality evaluation.

So, instead of relying on the foundation model’s imagination, we

provide a łguidež for the generation process. Recall from ğ 2.2, that

4Proofs are provided in the technical report [35].
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the guide is a pair (𝑡,𝑚), where 𝑡 is a tuple and𝑚 is a mask. In the

following, we propose various guide-tuple selection strategies.

In the image context, a mask indicates the parts of the guide

image to be regenerated. Our mask generation (ğ 5.4) involves crop-

ping the foreground of 𝑡 usingmask𝑚, ensuring that the foundation

model regenerates only the portions specified by the mask𝑚.

5.1 Random-Guide Strategy

The random guide strategy focuses on the first requirement that the

generated tuple should not fall out of the distribution 𝜉 , represented

by D. Hence, it selects the guide tuple uniformly at random from

the dataset without taking into account the target combination 𝑐 .

Theorem 3. Let 𝐷′ be the set of tuples generated by the model

F , using the random-guide strategy. Assume the perturbation by

F on a guide tuple to generate the output is small. Formally, for

an output x, assume |𝑝 (x) − 𝑞(x) | < 𝜖 , where 𝑝 (.) and 𝑞(.) are the
probability density functions of 𝜉 and the distribution 𝜉 ′ represented
by 𝐷′, respectively. Then, the expected KL-divergence between 𝜉 and

𝜉 ′ is bounded by 𝜖 .

While the random-guide strategy is appropriate for passing the

outlier-detection test, it ignores the second requirement of passing

the quality test. We experimentally show in ğ 6, that tuples gener-

ated based on this strategy have a lower chance of passing quality

evaluation. Therefore, we propose strategies that are less random

in their guide-tuple selection. Note that as a result, Theorem 3 is

no longer valid for the subsequent strategies.

5.2 Similar-Tuple Strategy

The similar-tuple strategy creates a pool of similar combinations to

the target combination 𝑐 . Combinations 𝑐1 and 𝑐2 are considered

similar if (a) they are siblings (i.e., their values differ in exactly one

attribute) and (b) one of the following conditions is satisfied. Let

𝑑𝑖 be the attribute on which 𝑐1 and 𝑐2 differ. If 𝑑𝑖 is non-ordinal,

then 𝑐1 and 𝑐2 are considered similar. However, if 𝑑𝑖 is ordinal,

then the distance between 𝑐1 and 𝑐2 should be 1 to be considered

similar. Formally, for two sibling combinations 𝑐1 and 𝑐2 that differ

in attribute 𝑑𝑖 :

similar(𝑐1, 𝑐2) =
{︄

false if 𝑑𝑖 is ordinal and |𝑐1 [𝑑𝑖 ] − 𝑐2 [𝑑𝑖 ] | > 1

true otherwise

Subsequently, it selects a guide tuple from the pool of similar

combinations, assigning weights to each element based on the num-

ber of tuples in D that adhere to that particular combination. Let

two combinations be łsiblingž if they differ in exactly one attribute.

Formally, the pool of similar combinations can be defined as follows:

𝑆 =

{︂

𝑐 ∈ sibling(𝑐𝑖 )
|︁

|︁

|︁ similar(𝑐𝑖 , 𝑐) = true
}︂

For each combination 𝑐𝑖 ∈ 𝑆 , let |𝑐𝑖 | be the number of tuples

in D matching it. That is, |𝑐𝑖 | = |𝑐𝑖 ∩ D|. We assign the sampling

weight of each combination proportional to their normalized size:

𝑤𝑖 =
|𝑐𝑖 |

∑︁

𝑐 𝑗 ∈𝑆 |𝑐 𝑗 |
, ∀𝑐𝑖 ∈ 𝑆 . The similar-tuple strategy then selects a

combination 𝑐𝑖 ∈ 𝑆 , randomly with probability𝑤𝑖 . It then returns a

random sample from the pool tuples inD that match 𝑐𝑖 as the guide

tuple. Using𝑤𝑖 as the weight ensures equal sampling probability

for all tuples that match a combination in 𝑆 .

This strategy considers tuples in the selection pool that closely

resemble the target combination, differing in only one attribute of

interest. It also excludes the tuples with the exact combination as

the target combination. This exclusion is intentional to deal with

the fact that the target combination 𝑐 is not well-represented in the

dataset. Hence, picking guide tuples from this group might make

the chosen tuples look too similar. By considering combinations

that are similar but not exactly the same as the target one, the

strategy aims to make sure we get a more varied and representative

set of guide tuples for the generation process.

5.3 Modeling as Contextual Multi-armed Bandit

Our LinUCB strategy models the guide tuple selection problem as

a contextual multi-armed bandit problem [15], and uses Contextual

Upper Confidence Bound for solving it [54]. Specifically, it models

each attribute as a bandit arm. Then given a target combination

𝑐 , it selects an arm to pull (i.e., an attribute to modify), aiming

to maximize the obtained reward. In each iteration, we have the

opportunity to pull only one arm, signifying the ability to alter

one attribute value within the target combination to a new value.

The reward obtained from pulling that arm is then observed. The

objective is to learn the optimal arm to pull for a given combination

𝑐 over successive iterations.

To provide further clarification, let us discuss an example within

the context of images. Consider a dataset with attributes of interest

including gender, race, and age-group. The foundation model F
may perform better in modifying the race of a subject compared to

altering their age group for specific combinations (e.g., Asian female

adults). However, its performance may vary for other combinations.

LinUCB aims to systematically explore different arms to pull (e.g.,

changing race, gender, or age group) and exploit the arm, yielding

the highest reward over time.

Formally, we formulate the guide tuple selection problem as a

contextual multi-armed bandit problem. We consider the attributes

of interest, denoted as x = {𝑥1, 𝑥2, . . . , 𝑥𝑑 }, as arms of the bandit

a = {𝑎1, 𝑎2, . . . , 𝑎𝑑 }. The context, AKA the feature vector, is then

defined as a one-hot vector f representing combinations, where 1

is assigned for the input combination 𝑐 and 0 for all other elements.

Let 𝑘 = |✕𝑑
𝑖=1 𝑑𝑜𝑚(𝑥𝑖 ) | be the number of possible combinations.

The size of the feature vector f𝑠,𝑎 is (𝑘 × 1) where 𝑠 denotes the
time step of the algorithm.

We define the reward function based on whether a generated

tuple passes the rejection sampling tests. Let pass() be a binary

function that is false if a generated tuple is rejected. Then,

𝑟𝑠,𝑎 =

{︄

1 if pass() = true

0 otherwise

We adopt łLinUCB with Disjoint Linear Modelsž [54] to balance

exploration and exploitation. At every iteration 𝑠 , for every arm

𝑎 ∈ a, given the context f𝑠,𝑎 , LinUCB computes confidence intervals

for the expected reward and selects the arm with the maximum

upper bound of reward to be explored next.

We assume that the expected reward of an arm 𝑎 is linear in its

𝑘-dimensional input context f𝑠,𝑎 with some unknown coefficient

vector 𝜃∗𝑠,𝑎 , formally given by: 𝐸 [𝑟𝑠,𝑎 |f𝑠,𝑎] = f⊤𝑠,𝑎𝜃
∗
𝑠,𝑎

Assuming that𝑚 is the number of times arm 𝑎 has been pulled so

far (𝑠 ≥ 𝑚), we define F𝑠,𝑎 with size (𝑚×𝑘) as the matrix consisting
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of all previously observed contexts for arm 𝑎.

F𝑠,𝑎 =

[︁

f⊤1,𝑎, · · · , f⊤𝑚,𝑎

]︁⊤

We also have a vector of observed rewards from pulling arm 𝑎.

Γ𝑎 =

[︁

𝑟1,𝑎, · · · , 𝑟𝑚,𝑎

]︁⊤

Vector b𝑎 is defined as: b𝑎 = F⊤𝑠,𝑎Γ𝑎
Using the Ridge regression estimator, we can estimate the coeffi-

cients of each arm 𝑎 as:
𝜃𝑠,𝑎 = (F⊤𝑠,𝑎F𝑠,𝑎 + I𝑘 )−1b𝑎

Thus, in each iteration 𝑠 of the algorithm, we select arm 𝑎𝑠 using:

𝑎𝑠 = argmax
𝑎∈a

(︁

f⊤𝑠,𝑎𝜃𝑠,𝑎 + 𝛼
√︂

f⊤𝑠,𝑎A−1𝑎 f𝑠,𝑎
)︁

where A𝑎 = F⊤𝑠,𝑎F𝑠,𝑎 + I𝑘 and 𝛼 is a hyper-parameter to balance

exploitation and exploration.

After pulling arm 𝑎𝑠 in iteration 𝑠 , we observe the reward 𝑟𝑠,𝑎𝑠 ∈
{0, 1}where 1 indicates that the generated tuple 𝑡 has passed quality
and data distribution tests. We can update matrices A𝑎𝑠 and b𝑎𝑠 as:

A𝑎𝑠 ← A𝑎𝑠 + f𝑠,𝑎𝑠 f⊤𝑠,𝑎𝑠
b𝑎𝑠 ← b𝑎𝑠 + 𝑟𝑠,𝑎𝑠 f𝑠,𝑎𝑠

The pseudo-code of the LinUCB strategy for guide-tuple selec-

tion is presented in the technical report [35].

5.4 Mask Delineation

In the context of images, once the guide tuple 𝑡 is selected, we

delineate the foreground subject using a mask. This mask serves as

an indicator, specifying the regions to be cropped and regenerated

from the tuple 𝑡 . The delineation of the border around the subject

can be achieved with different levels of precision. A precise border

sketch preserves more space from the original context, potentially

resulting in a higher acceptance rate for the data distribution test.

However, it may limit the foundation model’s imagination capacity

and lead to a lower acceptance rate for the quality evaluation test.

We propose three levels of mask sketch accuracy: accurate,moderate,

and imprecise (Figure 2).

5.4.1 Accurate mask delineation. This represents the highest level

of precision in mask delineation, achieved by utilizing the off-the-

shelf background remover tool rembg.

5.4.2 Moderate mask delineation. To obtain a moderately delin-

eated mask, we extend the border of the mask drawn in 5.4.1 by

10 percent of the image size. This extension is implemented using

circles, with each point on the mask border being surrounded by a

circle of radius equal to 10% of the image width.

5.4.3 Imprecise mask delineation. For an imprecise mask delin-

eation, we expand the border of the mask drawn in 5.4.1 to form a

rectangular area. This rectangle encompasses the previous mask,

providing a less precise but more inclusive delineation.

6 EXPERIMENTS

This section presents results from experiments to evaluate the ef-

ficacy of our proposed system, Chameleon. We present proof-of-

concept demonstrations, comprehensive performance evaluations

of our system, and comparison against state-of-the-art baselines

across four distinct tasks. Each task leverages a specific benchmark.

(a) (b) (c) (d)

Figure 2: Illustration of various guide image (a) masks:

(b) Accurate (c) Moderate (d) Imprecise mask

1 We investigate the system’s performance in passing the outlier

test (ğ 3.1) and quality evaluation test (ğ 3.2), using various mask

delineation levels and guide tuple strategies.
2 We analyze the performance of the proposed Greedy approach

for combinations selection.
3 We demonstrate the extensibility of Chameleon by adapting it

to handle (a) textual data and (b) representation rate for detec-

tion lack of representation. We will investigate the impact of

synthetic text augmentation on a (c) sentiment analysis task.
4 Our quality test (ğ 3.2) involves human evaluators. In presence

of automated tools that perform similarly to human evaluators,

this step could be automated. In the technical report [35] we

explore alternative options to replace human evaluators. We

analyze the results obtained from different quality assessment

tools and compare them to the ground truth by human eval-

uators. In our experiments, none of the assessed algorithms

performed satisfactorily in detecting unrealistic images.

6.1 Experimental Setup

Details such as implementation and hardware configurations are

provided in the technical report [35].

6.1.1 datasets. We used three benchmark image datasets and one

textual dataset in our experiments. For image datasets, we used

distinct subsets from UTKFace [89], FERETDB [66], Animal-10

[26]. We used Emotions [63] dataset in our text-based experiments.

UTKFace encompasses over 20,000 face images with annotation

of age, gender, and ethnicity. The images in UTKFace cover large

variations in pose, facial expression, illumination, occlusion, res-

olution, and other factors. Conversely, FERETDB comprises 1199

individual images annotated with gender and ethnicity and serves

as a standardized facial image database for researchers to develop

algorithms and report results. Animal-10 contains approximately

26,000 images of animals belonging to 10 distinct categories. The im-

ages depict animals in their natural habitats. This dataset provides

a valuable resource for tasks related to animal image classification.

To showcase the extensibility of our work beyond image data, we

used Emotions, a collection of English Twitter messages annotated

with six fundamental emotions: anger, fear, joy, love, sadness, and

surprise. The task for this dataset is sentiment analysis.

6.1.2 Foundation Model and the Monetary Cost. We use DALL·E 2

Foundation model for generating images from prompt as it is (at the

time of experiments) the most widely available Image Generation

model with publicAPI KEY available. A total of 3657 distinct images

were generated using DALL·E 2 throughout the development and

experimental phases. For text generation tasks, we used GPT-4with
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Table 1: Demographic groups distribution in FERETDB

Male Female Total

White 247 171 418

Black 29 26 55

Asian 74 41 115

Hispanic 22 18 40

Middle Eastern 27 6 33

Total 399 262 661

Table 2: Demographic groups distribution in UTKFace

Male Female Total

Child (0-7) 551 656 1207

Adolescent (7-20) 356 210 566

Young (20-40) 4440 3463 7903

Adult (40-60) 1563 2524 4087

Elderly (60+) 1060 1229 2289

Total 7970 8082 16052

a total of 40,656 prompts. The total cost for generating these images

and texts amounted to (US)$91.9.

6.1.3 Evaluated Algorithms and Baselines. The following are the

baselines and evaluated algorithms designed for each task.

• We use Reweighing [51] and SMOTE [23] as two baselines for

our experiment. Reweighing adjusts the weight of classes in the

classifier, so in the training process, all classes have the same

amount of training points. SMOTE over-samples the minority

by generating similar synthetic data points in embedding space.

• For Task 1 , we consider no-guide tuple, similar-tuple and

random-guide strategies, as baselines for our experiments to

compare against LinUCB. Additionally, we consider accurate,

moderate, and imprecisemask delineation levels for evaluation.

• For Task 2 , we consider two baselines to compare against the

Greedy algorithm. The first baseline, called random, randomly

selects the next combination to be generated. The second baseline

(Min-Gap), first identifies a MUP 𝑀 that requires the minimum

number of instances to be covered. It then generates a combi-

nation that matches 𝑀 . Both random and Min-Gap baselines

continue until the MUPs at the smallest level are resolved.

• For our proof of concept, we designate the Tensorflow Keras

CNN Model for precision, recall, and F1 score comparisons.

6.1.4 Performance metrics. In Task 1 , our performance metrics

include the Quality Test Acceptance Rate (QTAR) and Outlier de-

tection Test Acceptance Rate (OTAR) of the generated samples. For

Tasks 2 , our primary performance metric is the number of queries

incurred by F , representing the cost of image generation. Finally,

in our proof of concept, our metric focuses on the precision, recall,

and F1 score of the trained model on the test dataset.

6.2 Proof of Concept

Our approach for resolving inadequate coverage of minorities in a

multi-modal dataset is by augmenting it with synthetically generated

data. We start our experiments by investigating the feasibility, ef-

fectiveness, and efficiency of this data-repair approach, and compare

our approach with state-of-the-art baselines. To do so, we illus-

trate the impact of lack of coverage resolution using Chameleon

in several downstream machine learning tasks. We first measure

the overall performance and the unfairness (in the form of perfor-

mance disparity) of each model/task trained on the original dataset

for under-represented groups. Next, we repair each dataset, using

Chameleon (and the other baselines), and repeat the process to

see if the unfairness issues are reduced. Subsequently, we monitor

the so-called łprice of fairnessž, i.e., the reduction in the overall

performance as a result of unfairness reduction (data repair). We

investigated this using two different datasets. The first dataset,

FERETDB, comprises professional headshots of individuals from

various races and genders. The second dataset, Animal-10, includes

images from 10 different animal categories captured in the wild,

with no specific requirements, in contrast to FERETDB.

6.2.1 FERETDB. Our experiment employs the entire FERETDB

dataset as input, with detailed demographic group counts provided

in Table 1. While the dataset has a reasonable coverage for both

male and female genders, the racial groups Black, Hispanic, and

Middle eastern are not covered (using the coverage threshold 𝜏 =

100). We trained a race-predicting Convolutional Neural Network

(CNN) model using this dataset. First, we observed a high overall

performance of the model, with precision, recall, and F1-score being,

0.68, 0.66, and 0.67, respectively. Moreover, the model shows similar

performance on both (covered) genders. However, as reflected in

Table 3 (the łclassifier performance on FERETDBž column), the

model significantly underperforms for the uncovered groups. For

example, while the overall F1-score is 67%, it is as low as 20%, 03%,

and 0%, for the Black, Hispanic, and Middle eastern groups.

To evaluate if resolving the lack of coverage for these groups

using Chameleon helps to reduce the gaps, we employ it with

the Greedy combination selection algorithm, Moderate mask de-

lineation level, and the LinUCB approach to resolve the level-1

MUPs, i.e., the three uncovered racial groups. In total, Chameleon

issued 307 queries to the foundation model, of which 231 pass both

the quality and outlier tests. That is, 75% of the generated images

passed the rejection tests. We refer to the augmented dataset as

łRepairedž. Utilizing DALL·E 2 to generate 307 images incurred a

total cost of $4.91 ($0.016 per image).

Next, we retrain the CNN using the Repaired dataset. Notably,

the test data remains the same for both experiments and only con-

tains real images. First, as expected, from Table 3 (the łclassifier

performance on Repairedž column), one can notice a slight decrease

in the overall performance of the model as a result of data augmen-

tation. On the other hand, though, it is evident that the performance

of the model significantly increased for all under-represented groups

across all performance metrics. For example, looking at the F1 scores,

the average performance improvement is more than 25%.

We also reran the same experiments using Reweighing and

SMOTE to investigate the effectiveness of these methods in mit-

igating bias. Both methods significantly decrease overall model

performance, with drops of 25% and 18% in F1-Score, respectively.

Despite this substantial trade-off for fairness, the improvement

in performance for minority groups is not as substantial as that

achieved with Chameleon.
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Table 3: Illustration of repairing lack of coverage and its effects on FERETDB

Ethnicity Groups
W/O Augmentation Reweighing SMOTE Chameleon

P R F1 P R F1 P R F1 P R F1

Overall 0.68 0.66 0.67 0.72 0.37 0.41 0.51 0.48 0.49 0.66 0.66 0.66

Black 0.40 0.13 0.20 0.30 0.43 0.36 0.11 0.13 0.12 0.40 0.74 0.52

Hispanic 0.05 0.02 0.03 0.07 0.12 0.09 0.03 0.06 0.04 0.10 0.12 0.11

Middle Eastern 0.00 0.00 0.00 0.14 0.86 0.24 0.09 0.07 0.08 0.40 0.29 0.33
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Figure 3: Unfairness (disparate performance) reduction for the uncovered groups in the FERETDB dataset after data repair using

Chameleon, along with the price of fairness (overall performance reduction).

Figures 3a, 3b, and 3c show the model unfairness in the form

of Disparate Performance (F1-Disparity, Precision-Disparity, and

Recall-Disparity) across the under-represented groups in the FER-

ETDB dataset, before and after the data repair, for Chameleon and

the baselines. The performance disparity for an under-represented

group is computed as its performance ratio gap with the overall

model performance. For example, if the overall performance of the

model for a metric 𝑝 (e.g., F1-score) is 𝜌𝑎𝑙𝑙 and for a group 𝑔 is 𝜌𝑔 ,

the unfairness is computed as

𝑝-Disparity(𝑔) = max
(︁

0, 1 −
𝜌𝑔

𝜌𝑎𝑙𝑙

)︁

The figure demonstrates a clear reduction in disparities for all

underrepresented groups after the repair process, which showcases

the effectiveness of the data augmentation using Chameleon. For

example, the F1-disparity for Black decreased from 70% to 21%.

Price of Fairness. Due to the trade-offs between the model perfor-

mance and fairness, improving fairness is usually associated with a

reduction in the overall model performance, which is known as the

price of fairness. As we saw earlier, our data repair approach using

Chameleon could significantly reduce the model performance dis-

parities for the under-represented groups. This, however, comes at

the cost of a slight model performance reduction. Figure 3 shows

this cost as the reduction in overall Precision, Recall, and F1-Score

after data augmentation. The price of fairness, as reflected in vari-

ous metrics, is modest compared to the substantial improvement in

fairness achieved for under-represented groups.

6.2.2 Animal-10. In this experiment, we utilized the Animal-10

dataset, which contains over 26,000 images across 10 different an-

imal categories. Figure 4 illustrates the demographic distribution

of the input dataset. We trained a CNN classifier (a miniVGGNet)

from scratch to predict the animal type in each image.
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Figure 4: Groups distribution in training subset of Animal-10
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Figure 5: Animal-10: Unfairness comparison with baselines

As indicated in Figure 4, there are four minority groups (Cow,

Sheep, Cat, and Elephant) in the dataset, and the CNN model per-

forms significantly worse for these groups compared to others. We

augmented these minority groups using Chameleon with 𝜏 = 1200
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Table 4: Illustration of repairing lack of coverage and its effects on Animal-10

Animal Type
W/O Augmentation Reweighing SMOTE Chameleon Real Images

P R F1 P R F1 P R F1 P R F1 P R F1

Overall 0.62 0.64 0.61 0.59 0.60 0.59 0.81 0.61 0.65 0.62 0.63 0.62 0.62 0.62 0.62

Cow 0.45 0.23 0.30 0.35 0.30 0.32 0.23 0.41 0.29 0.37 0.38 0.37 0.44 0.31 0.37

Sheep 0.50 0.25 0.33 0.40 0.30 0.34 0.12 0.91 0.21 0.33 0.45 0.38 0.54 0.39 0.45

Cat 0.33 0.01 0.02 0.31 0.02 0.03 0.13 0.17 0.15 0.44 0.23 0.30 0.34 0.30 0.32

Elephant 0.69 0.20 0.30 0.49 0.24 0.32 0.02 0.00 0.01 0.43 0.37 0.40 0.56 0.53 0.55
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Figure 6: UTKFace: Performance and unfairness comparison

and retrained the classifier to observe whether resolving the lack

of coverage with synthetic data can mitigate the unfairness issue.

Additionally, we compared the results of Chameleon augmentation

with Reweighing [51] and SMOTE [23] as baselines. In this experi-

ment, we also introduced an upper bound on model performance by

evaluating the model on a dataset augmented with real images. This

comparison allows us to assess how closely Chameleon-generated

images approximate the quality of real images.

As indicated in Table 4, all approaches yield an overall F1-Score

of approximately 0.6, but the performance for under-represented

groups is significantly worse. The Reweighing approach increases

the performance for minority groups by only 2-3%, while also de-

creasing the overall performance by a similar margin. This minimal

improvement is likely because Reweighing does not provide any

new information about animal types to the classifier.

SMOTE shows mixed results, improving performance for only

one under-represented groups (Cat), while worsening it for others.

This indicates that SMOTE is not a robust solution for addressing

unfairness in imbalanced image datasets. The likely reason is that

SMOTE perturbs in the vector space without knowledge of which

vector values correspond to which image attributes, potentially

generating meaningless images or amplifying irrelevant attributes.

In contrast, augmentation with Chameleon improves results

for all categories by approximately 10% while maintaining over-

all performance. When augmenting the dataset with real images,

the difference of improvements between Chameleon and Real im-

ages across different groups is less than 5%, demonstrating that

Chameleon provides high-quality and inclusive results.

6.2.3 UTKFace. In previous experiments, the task was predicting

the sensitive attribute. In this experiment, the prediction attribute

is different from the sensitive attribute. We used a subset of the

UTKFace dataset to train an age group predictor model and moni-

tored its performance across different genders. We then augmented

Table 5: Performance of various Guide-selection algorithms

Guide
Tuple

Strategy

Mask
Delineation

Level

Quality Test

Acceptance Rate
Outlier Test

Acceptance Rate (𝝂 = 0.3)

𝜶 = 0.1 𝜶 = 0.4 Linear RBF

No Guide - 0.90 0.81 0.53 0.44

Random-Guide

Accurate 0.69 0.51 0.70 0.74

Moderate 0.85 0.70 0.70 0.70

Imprecise 0.90 0.70 0.73 0.62

Avg: 0.81 0.64 0.71 0.69

Similar-Tuple

Accurate 0.88 0.69 0.65 0.67

Moderate 0.90 0.75 0.64 0.58

Imprecise 0.85 0.68 0.65 0.53

Avg: 0.88 0.71 0.65 0.59

LinUCB

Accurate 0.90 0.81 0.63 0.61

Moderate 0.91 0.88 0.64 0.58

Imprecise 0.96 0.96 0.63 0.54

Avg: 0.92 0.88 0.63 0.58

the dataset for the minority group (Female) and retrained the CNN

model to observe improvements in the F1-score for this task. Fig-

ure 6a presents the F1-scores in each age group performance for

both genders. The overall F1-score for this model is 0.78. As shown,

the performance for the Female group is substantially lower than

for the Male group in the Adolescent age group. We generated 200

images of Female Adolescents using Chameleon. We measured

the reduction in disparity for this group using Chameleon and

compared it to Reweighing and SMOTE. As presented in 6b, the

F1-disparity for the Adolescent/Female group decreased the most

using Chameleon. In contrast, the Reweighing approach proved

ineffective, and SMOTE actually worsened the disparity for the

Adolescent group.

6.3 Performance Evaluation

6.3.1 Investigating the Influence of Mask Levels and Guide Image

Selection on Quality Assessment 1 . This study explores the impact

of different mask delineation levels and guide-tuple selection strate-

gies on the performance of generated tuples in passing rejection

sampling tests. A total of 37 individuals participated as the human

evaluators for the quality evaluation test.

To guarantee an inclusive evaluation, we intentionally constructed

a challenging subset of the UTKFace dataset. This subset was de-

signed to encompass Maximal Uncovered Patterns (MUPs) for all

races and genders. Within each age group, we introduced two dis-

tinct ℓ3 MUPs, each representing a different combination of gender

and race (e.g., White male adult, Indian female adult). This approach

ensures comprehensive coverage of various races, genders, and age

groups during image generation. The exclusive use of ℓ3 MUPs guar-

antees that all experiments will generate identical combinations,
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effectively eliminating any potential randomness or variability in

the results. In total, we introduced 16 MUPs within the UTKFace

subset with 𝜏 = 10. Our objective was to resolve all MUPs in the

subset for all possible combinations of guide tuple selection strate-

gies and mask delineation levels. We then compared the Quality

Test Acceptance Rate (QTAR) and Outlier Test Acceptance Rate

(OTAR) for each combination. We generated a total of 831 images

for these experiments and employed 27 human evaluators to assess

their quality. Each evaluator received 200 images, presented in 8

pages of 25 images each. They were instructed to identify images

that appear unrealistic to human beings.

In a separate experiment, we employed 10 human evaluators to

estimate the probability 𝑝 (Equation 1) that an evaluator labels a real

image as realistic. For UTKFace, the probability 𝑝 was estimated

as 0.86. For each setting, the Quality Test Acceptance Rate (QTAR)

is defined as the number of images passing the quality test (ğ 3.2)

divided by the total number of generated images. To explore the

impact of evaluation stringency on QTAR, we calculated it for two

significance levels, 𝛼 = 0.1 and 𝛼 = 0.4. A higher 𝛼 value signifies a

stricter acceptance policy, demanding a greater agreement among

evaluators regarding the image’s realistic appearance.

For 𝛼 = 0.4, acceptance closely aligns with unanimous agreement

among evaluators, whereas 𝛼 = 0.1 approximates a majority vote,

accepting images deemed realistic by over half of the evaluators.

This distinction results in a trade-off between quality and quantity,

with 𝛼 = 0.4 yielding a smaller pool of images passing the test, with

potentially higher overall quality. Table 5 presents the calculated

QTAR values for the designed UTKFace subset under both signifi-

cance levels. The analysis of Quality Test Acceptance Rate (QTAR)

reveals that the LinUCB guide tuple selection strategy consistently

outperforms No Guide, Similar-Tuple, and Random-Guide across

both significance levels (𝛼 = 0.1 and 𝛼 = 0.4). This performance gap

widens further as the quality assessment becomes stricter (higher

𝛼). Notably, images generated using LinUCB exhibit demonstrably

higher overall quality. Further investigation into the interplay be-

tween guide-tuple selection strategies and mask delineation levels

uncovers interesting trends. For both significance levels, Moder-

ate and Imprecise mask delineation levels achieve superior QTAR

compared to the Accurate level. This finding aligns with our initial

expectations. Precisely cropping the foreground subject restricts

the foundation model’s creative freedom, potentially leading to

unnatural entities generated to fill the cropped space. Conversely,

Moderate and Imprecise levels provide greater flexibility, allowing

the foundation model to generate new objects more naturally and

potentially contributing to improved image quality.

Next, we move to the outlier detection test (ğ 3.1). OTAR, defined

as the proportion of images passing the test, assesses the seman-

tic integrity of generated images with respect to the underlying

data distribution. We useMobileNetV3[47] as the embedder and

OCSVM (𝜈 = 0.3) with two kernels (RBF and Linear) for training.

The choice of the kernel impacts the performance of the OCSVM,

with the RBF kernel often capturing complex relationships in the

data, while the Linear kernel assumes linearity.

The No-Guide strategy does not provide a guide for the image

generation process, leaving the details to the imagination of the

foundation model. As a result, it is anticipated that a larger portion

of the images generated with this strategy should fail the outlier

detection test. This is confirmed in Table 5, where around half of

the images generated with this strategy (using either of the two ker-

nels) could not pass the test. On the other hand, the Random-Guide

strategy is focused on following the data distribution (Theorem 3).

Therefore, viewing the images in the dataset as the random iid sam-

ples from its underlying distribution, it draws a random image from

the dataset and uses it as the guide, irrespective of the description

of the image to be generated. This approach, while having a smaller

chance of passing the quality test, is expected to have the highest

chance of passing the outlier detection test. Our findings in Ta-

ble 5 are consistent with this expectation. While the Random-Guide

strategy outperforms LinUCB and the Similar-Tuple strategy on

the outlier detection test, both of these strategies still demonstrate

acceptable performance. Regarding mask delineation levels, Accu-

rate delineation exhibits marginally higher OTAR than Moderate

and Imprecise levels. This aligns with our expectations, as stricter

cropping likely helps constrain the generated images to closer prox-

imity to the original data distribution. However, the performance

difference is relatively small, suggesting that the advantages of

Moderate and Imprecise delineation in terms of naturalness and

flexibility outweigh the slight decrease in distribution adherence

for tight boundaries.

Overall, since LinUCB outperforms the other approaches on the

quality evaluation test (which involves human evaluators) and shows

an acceptable performance on the outlier detection test, it is the pre-

ferred approach for guide selection.

6.3.2 Greedy Combination Selection Algorithm 2 . In this exper-

iment, we study the impact of employing the Greedy algorithm

for selecting the next combination to generate tuples. The entire

UTKFace dataset serves as input for our investigation, where we an-

alyze the cost of repairing all ℓ1 or ℓ2 MUPs for different thresholds

using various combination selection algorithms. As a baseline, we

employ the Random selection algorithm, which randomly chooses

a combination in each iteration without considering the MUPs’

status. We also introduce theMin-Gap algorithm, which, given a

list of MUPs, first identifies the MUP which has the smallest gap

𝛿 from threshold 𝜏 , then chooses a combination that satisfies this

MUP and generates 𝛿 tuples to satisfy that MUP. Unlike the Greedy

algorithm, the Min-Gap Algorithm only focuses on the distance

from the threshold, disregarding the number of MUPs hit and MUPs

level. We conduct experiments with four distinct values for 𝜏 and

monitor the total number of images each algorithm requires to add

to the dataset for resolving the MUPs. For 𝜏 = 200 and 𝜏 = 350, all

MUPs are at levels ℓ2 and ℓ3. In these experiments we the goal is

to resolve ℓ2 MUPs. For 𝜏 = 1000 and 𝜏 = 2000, where ℓ1, ℓ2, and ℓ3
MUPs are present, our focus is on resolving all ℓ1 MUPs.

Figure 7 shows the associated cost (total number of images to be

generated) for each strategy in different scenarios. We can observe

that in all cases Greedy algorithm significantly outperforms both

Random and Min-Gap baselines. The Gap even becomes more

noticeable when trying to resolve lower-level MUPs. In addition,

theMin-Gap strategy performs better than Random for ℓ2 MUPs

but significantly worse when attempting to satisfy the ℓ1 MUPs.

This is due to the larger pool of MUPs in higher thresholds, as

the Min-Gap algorithm may choose numerous irrelevant MUPs to

satisfy, leaving ℓ1 MUPs unsatisfied for subsequent iterations.
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Figure 7: Comparison of cost across various thresholds for different combination-selection algorithms.
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Figure 8: Experiment results for the Emotions dataset. Figure 8b shows the augmentation-performance saturation point for

each emotion. In Figure 8d, unfairness (disparate performance) is reduced for the uncovered groups.

6.4 Extensions

To demonstrate the adaptability of Chameleon, in this experiment,

we extend it for (a) textual data, (b) representation rate [19] for mea-

suring inadequate coverage, and (c) sentiment analysis as the task.

We modified our combination selection metric from a threshold-

based coverage on the number of elements in each demographic

group to a representation rate [19]. For this experiment, we utilized

the Emotions dataset. Figure 8a presents emotions in the dataset

and their representation rate. We set thresholds of 5%, 10%, and 15%,

and augmented the under-represented groups using Chameleon.

We adapted the masking and generating phases of Chameleon to

handle textual data by selecting sentences with different sentiments

and using the GPT-4 foundation model to change the sentiment of

these sentences to the desired emotion.

Figure 8b illustrates the F1-score improvement for each group

as the representation rate increases. The Chameleon augmenta-

tion process has enhanced classifier performance across all under-

represented groups. The figure also reveals the saturation point

for each emotion, where further augmentation with synthetic data

leads to a decrease inmodel performance. Notably, this performance

decline begins when the number of synthetic samples exceeds the

number of real samples. Notice that we have augmented each emo-

tion independently from the others to remove the effect of multiple

augmentations on the results.

Based on the results in Figure 8b, we augmented each emotion to

its peak performance point and compared the resulting disparities

with those from Reweighing and SMOTE approaches. As shown in

Figure 8d, the F1-disparity is lowest when using Chameleon. The

Reweighing approach is almost ineffective, while SMOTE reduces

the disparity but is not as effective as Chameleon. It is impor-

tant to note that augmenting certain emotions is more challenging

due to their inherent ambiguity. For example, the emotion Love

can easily overlap with Joy, Sadness, or Surprise depending on the

context, whereas Fear has a more distinct boundary from other

emotions. This explains why the disparity for Fear is nearly zero

after augmentation, while Love still exhibits some disparity.

In a separate experiment, we tasked GPT-4 with generating

tweets for a specific sentiment purely from its own imagination,

starting with a dataset that lacked the desired sentiment entirely.

This scenario simulates the absence of a minority group and the

necessity to generate it entirely based on the foundation model’s

imagination. Figure 8c illustrates the model’s performance when

no training data is provided for a particular group, relying solely

on the foundation model. As observed, the F1-score significantly

differs when comparing scenarios with and without training data.

The average F1-score for minority groups with a 2% representa-

tion rate is approximately 0.60 when training data is available but

drops to about 0.10 with only synthetic data. This disparity arises

because the training and test data share the same distribution,

whereas Chameleon-generated data relies entirely on the foun-

dation model’s imagination. Despite this, using Chameleon, we

observe an improvement in the F1-score to up to 0.2 for minor-

ity groups, demonstrating a significant enhancement using solely

synthetic data.
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7 RELATED WORK

While data bias has been a long-standing concern in the statisti-

cal community [64], social data presents unique challenges due

to its inherent complexity and sensitivity [9, 10, 32, 52, 65]. Is-

sues of diversity and representativeness have been studied across

various disciplines, including social science [12, 31, 78], political

science [79], and information retrieval [3].

Efforts to trace machine bias back to its sources involve identify-

ing different types [42, 58, 65] and sources [27, 29, 81] of biases in

data. Existing work to meet responsible data requirements [62] ex-

tend throughout various stages of the data analysis pipeline, includ-

ing data annotation [53, 55], data cleaning and repair [68, 69, 80],

data imputation [57], entity resolution [38, 72], and data integra-

tion [61, 62, 73].
Data Coverage. The notion of data coverage has been proposed

for detecting under-representation issues in a dataset [74]. Related

work in this area can be divided into (a) lack of coverage detection

and (b) lack of coverage resolution. Coverage detection in tabular

data has been studied for both discrete [5] and continuous [6] at-

tributes, whether in single or multiple relations [56], and recently

for image dataset [60]. Efforts for addressing lack of coverage with-

out additional data collection include query rewriting [1, 2, 76] and

generating lack of representation warning [71].

Related work on improving the coverage of minorities falls un-

der two general categories: (1) real data collection/integration [62]

and (2) data augmentation with synthetic data. In the first cate-

gory, Asudeh et al. [5] and Azzalini et al. [7] specify the minimal

additional samples to collect (or remove) to resolve representation

bias in data. On the other hand, Nargesian et al. [61] and Chang

et al. [20] integrate additional data from a data lake to resolve

under-representation issues. Papers in the second category add par-

tially altered duplicates of already existing tuples or generate new

synthetic entries from existing data [19, 23, 48, 75]. For example,

Sharma et al. [75] duplicates the tuples from the majority group

and perturbs them to generate samples from the minority group.

More advanced works in this category train generative adversarial

networks for data augmentation with synthetic data. Some of such

works in the context of time series and healthcare data include

[13, 36, 39, 59]. GANs have also been used for image data augmen-

tation [43, 44, 88]. For more details on the detection and resolution

approaches for representation bias on data with various modalities,

refer to [74]. This paper belongs to the second category, i.e., data

augmentation. To the best of our knowledge, none of the existing

work uses foundation models for fairness-aware data augmentation

to enhance the coverage of minorities in multi-modal datasets.
Foundation Models and Data Management. With recent advance-

ments in LLMs [16, 28, 82] and foundation models, those have been

widely used in various research communities for tasks such as Code

Generation [24], Synthetic Image Generation [67], and Video Gen-

eration [8]. The current state of utilizing these models in the data

management community reflects a growing recognition of their

potential and challenges. Some of the recent works on utilizing gen-

erative AI for data management problems are as follows. LLMs have

shown extraordinary performance in answering natural language

queries [21, 85, 87]. Particularly, ThalamusDB enables answering

complex natural language queries on multi-modal data [50]. LLMs

and foundation models have also been utilized for challenging

tasks such as dataset search [85], predicting data correlations [84],

data-lake profiling [4], and anomaly detection in time-series [25].

Extending data management techniques for LLMs include [33, 34]

that develop sampling-based and query rewriting approaches for

improving the reliability and fairness of the LLMs. To the best of

our knowledge, none of the existing work has utilized foundation

models for fairness-aware multi-modal data augmentation.

8 DISCUSSIONS AND LIMITATIONS

8.1 Reliance on the existing models

Our system relies extensively on foundation models for synthetic

data augmentation. Consequently, its performance is constrained

by the capabilities, limitations, and inherent biases of these models.

Furthermore, our rejection test uses vector representations (em-

beddings) to represent the underlying dataset’s distribution and

determine if a generated tuple is an outlier. We assume these embed-

dings are accurate and that cosine similarity between embeddings

reflects their semantic similarities. However, the accuracy and in-

herent biases of the embeddings are limitations of our approach.

8.2 Distribution preservation

The outlier detection test proposed in ğ 3.1 operates at the individual

level, ensuring each synthetic tuple generated by the foundation

model is not an outlier based on the underlying distribution 𝜉

represented by the dataset D. However, an individual-level out-of-

distribution test cannot guarantee that a generated set collectively

represents the original distribution 𝜉 . Consequently, our test does

not guarantee the preservation of the overall distribution.

Theorem 3 provides a bound on the distribution shift on the gen-

erated set. It, however, assumes that the foundation model does not

significantly perturb the guide tuple. This is hard to measure/verify

and may not always be correct.

Therefore, additional steps are needed to ensure the KL diver-

gence between 𝜉 and 𝜉 ′, the distributions represented by D and

the synthetically generated set, is bounded. Besides the outlier de-

tection test, a stronger set-level distribution test should be applied

before adding synthetic tuples to the dataset. If the KL divergence

exceeds a predefined threshold, a subset of generated tuples should

be removed and regenerated. Determining the minimal set of tuples

for removal is an interesting problem, which we leave for future

investigation and complexity analysis.

9 CONCLUSION

In this paper, we introduced Chameleon for fairness-aware data

augmentation to reduce the under-representation ofminority groups.

Motivated by the recent advancements in the foundation models,

our system efficiently utilizes them for data repair with minimum

addition of synthetically generated data while ensuring the aug-

mented data is of high quality and follows the underlying data

distribution. Our experiment results demonstrated the effective-

ness of our data-repair approach in reducing the unfairness of a

downstream task. This motivates future work to extend the scope

of fairness-aware data augmentation to other settings.
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