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ABSTRACT

Data dependency mining plays a crucial role in understanding data
relationships. To address the increasing complexities of real-world
data, Approximate Functional Dependencies (AFDs) have been in-
troduced, building upon traditional FD. However, existing AFD
approaches use static relaxation coefficients, limiting their effec-
tiveness in capturing dependencies in noisy data. We propose a
dynamic AFD variant, DAFD, which incorporates attribute error
rates. We establish a bijection between DAFD and FD, develop
its inference system, and introduce DAFDiscover, an algorithm
for mining dependencies directly on noisy data. DAFDiscover
matches the time and space complexity of SOTA AFD mining meth-
ods while offering superior performance. We theoretically prove its
correctness, provide a method for calculating DAFD probabilities
(DAFD-𝑝𝑟𝑜𝑏), and derive a lower bound for DAFD’s validity on
dirty data. Experimental results on multiple public datasets demon-
strate the semantic superiority of DAFD and the effectiveness of
DAFDiscover compared to existing SOTA AFD mining techniques.
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1 INTRODUCTION

Ensuring a high degree of reliability in data quality rules is essential
for achieving effective data cleaning results. Automatic discovery
techniques have been developed to fully uncover the implicit depen-
dencies from large-scale historical data, which also extract valuable
hidden rule models from the data [9, 13, 20, 35]. Functional de-
pendencies (FDs) [16, 19], which constitute a pivotal category of
integrity constraint languages, have witnessed the implementation
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of diverse and efficient mining methodologies. These have been em-
ployed in tasks encompassing violation detection, data repair, and
schema normalization, thereby facilitating a more comprehensive
and rigorous approach to data quality management (see surveys
[7, 15, 35]).

Conventionally, exact FDs are utilized to describe the relation-
ship models between data. With the rapid accumulation of data
in information systems, issues such as noise, vacancies, and re-
dundancies are prevalent in real-world datasets. To enhance the
applicability of FDs in the context of big data, relaxed functional
dependencies (RFDs) have been introduced, allowing for some de-
gree of relaxation (e.g., the extent of dependency satisfaction) [7].
An RFD can be concisely represented as 𝑋Φ1

Ψ≤𝜖−−−−→ 𝑌Φ2 [7, 14].
Here, 𝑋 and 𝑌 represent attribute sets, while Φ1 and Φ2 capture
the relaxation in terms of comparison methods. Ψ reflects the relax-
ation approach in terms of satisfaction degree, and 𝜖 denotes the
relaxation limit in satisfaction.Compared to exact FDs, RFDs exhibit
greater adaptability to real-world big data in many scenarios [8, 35].
Specifically, RFDs offer the following key advantages: (1) greater
flexibility in defining relationships between attributes, (2) stronger
fault tolerance in data quality management due to less stringent ac-
curacy requirements, (3) obvious time savings by reducing the need
for rigorous data verification and correction, and (4) the potential to
uncover associations and patterns that might be overlooked under
traditional FDs due to their allowance for more data variation.

The dependency 𝑋
Ψ≤𝜖−−−−→ 𝑌 , which allows relaxation in satis-

faction degree, is commonly referred to as approximate functional
dependency (AFD). It provides a mechanism that can enhance tol-
erance for noise in large datasets. However, we have observed that
existing AFD mining algorithms typically rely on a fixed hyperpa-
rameter 𝜖 [5, 23], for determining and mining dependencies from
datasets. The limitation of such a static relaxation coefficient in
AFD becomes apparent when dealing with complex, low-quality
big data. It is reflected in the following aspects. Firstly, dirty data
is often unevenly distributed across datasets, and a uniform toler-
ance level cannot adapt to varying proportions of dirty data that
change with dependency patterns. This results in difficulty achiev-
ing accurate performance for mining results. Secondly, the uniform
tolerance level fails to adapt to changes in the number of dependent
attributes. Even if the proportion of dirty data is the same across all
attributes, a fixed 𝜖 cannot accommodate dependency candidates
with different numbers of attributes. This leads mining algorithms
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Table 1: A dataset containing dirty values

Time 𝐼0 𝑈0 𝑅0 𝐼1
𝑡1: 1 1 5 5 1
𝑡2: 2 1 5 5 1
𝑡3: 3 0.5 5 10 0.5
𝑡4: 4 0 (0.5) 5 10 0.5
𝑡5: 5 0.5 15 30 1 (0.5)
𝑡6: 6 1 20 20 1
𝑡7: 7 1 5 5 1
𝑡8: 8 1 15 (5) 5 1
𝑡9: 9 3 15 5 0 (3)
𝑡10: 10 0 15 5(100) 0

to tend towards either missing multi-attribute dependencies or mis-

judging dependencies with fewer attributes. A motivated example
illustrates this issue.

Example 1.1. Table 1 presents monitoring records for an electri-
cal appliance, recording the resistance value 𝑅0 of a resistor, the
voltage 𝑈0 across its terminals, and the current values 𝐼0 and 𝐼1
measured before and after the resistor. Due to equipment limita-
tions, the current meters recording 𝐼0 and 𝐼1 may have errors of
up to 10% and 20%, respectively. The red-colored data represents
erroneous observations, while the data in parentheses denotes the
corresponding ground truth. Similarly, the voltmeter for 𝑈0 and
the ohmmeter for 𝑅0 can each have a maximum error of 10%. In
physics, the current through a resistor is expected to be the same
at both ends, giving rise to the 𝐹𝐷1: 𝐼0 → 𝐼1. Additionally, 𝐼0 is
determined by both𝑈0 and 𝑅0, leading to 𝐹𝐷2:𝑈0𝑅0 → 𝐼0. When
attempting to mine these dependencies using existing AFD formu-
lations, the selection of the threshold 𝜖 poses a challenge. If 𝜖 is

chosen to be no less than 0.3, an AFD 𝑅0
Ψ(𝑅0,𝐼0) ≤𝜖−−−−−−−−−→ 𝐼0 is incor-

rectly identified, which is not a valid dependency in reality. On the
other hand, if 𝜖 is set below 0.3, the AFD forms of 𝐹𝐷1 and 𝐹𝐷2 are
incorrectly deemed invalid. These discrepancies are caused by the
mining method being misled by a portion of the noisy data. This
exemplifies the limitations of using a static value for 𝜖 .

Addressing the limitations of the static threshold in AFD, we
aim to propose dynamic approximate functional dependency

(DAFD) to better support the effective expression and discovery
of dependency relationships in real and noisy data. DAFD can
characterize the tolerance level for low-quality data using a function
based on the dependency and tailored to the data source of each
attribute. It employs varying thresholds for judging dependency
candidates. However, conducting reliable dependency mining on
dirty data using dynamic AFD is not a straightforward task. The
difficulties arise from two main sources. Firstly, DAFD inherits the
same challenges as AFD mining, such as a vast solution space and
difficulties in pruning, posing challenges to the time performance of
the mining algorithm. Secondly, due to its support for more flexible
and dynamic relaxation thresholds, DAFD mining faces unique
challenges, primarily including the following aspects.
⊲ Additional threshold calculation: As an extension of AFD,
DAFD requires threshold computation for each candidate during
mining, incurring an extra 𝑂 (𝑚2 · 2𝑚) time cost for a dataset with
𝑚 attributes. Optimizing these threshold computations to minimize
this overhead is a challenge in designing DAFD mining algorithms.
⊲ Evaluation of the mining results on dirty data: Executing
mining algorithms on inherently noisy data poses a challenge in
accurately determining genuine dependencies. Ignoring data source
information, such as attribute error rates, can lead to inaccurate
evaluations. Therefore, evaluating DAFD mining results in the pres-
ence of dirty data is crucial for algorithm design.

Contributions. Motivated by this, we introduce dynamic func-
tional dependencies to solve the problem of direct dependency
mining on dirty data. Contributions include:

(1)We introduce DAFD, an extended AFD variant, which is better
suited to represent the quality rules underlying data containing
dirty values in attributes. We establish the bijective relationship
between DAFD on dirty data and FD on clean data, and prove the
reflexivity, augmentation, and transitivity properties of DAFD.

(2) We propose the mining algorithm named DAFDiscover. It
accurately captures dependencies on dirty data with the proposed
DAFD form, and has the same time and space complexity with the
classical AFDmining algorithmTane.DAFDiscover+ is introduced
to optimize the threshold calculation process and reduces the time
complexity of threshold calculation from 𝑂 (𝑚2 · 2𝑚) to 𝑂 (2𝑚).

(3)We introduce a method, denoted asDAFD-prob, to validate the
mining results’ validity probability on dirty data. We prove that, un-
der basic assumptions, this probability is at least 12+

∫ 𝑛 ·∑︁𝐴𝑖 ∈𝑋∪𝑌 𝛼𝑖
𝑛𝑝0

𝑓0 (𝑥)𝑑𝑥 ,
where 𝑛 is the total number of tuples and 𝑋 ∪ 𝑌 covers all depen-
dency elements.

(4) Comparative experiments on public datasets with 6 bench-
mark algorithms indicate that our proposed DAFDiscover effec-
tively mine high-quality dependencies from dirty data. Case studies
further corroborate the rationality and robustness of DAFDiscover,
demonstrating its practical applicability in real-world scenarios.
Organization. In the rest of the paper, Section 2 presents related
work. Section 3 introduces the definition and properties of DAFD.
Section 4 introduces the DAFD mining algorithm and provides the-
oretical analysis and examples. Section 5 reports the experimental
results, and Section 6 draws the conclusion.

2 RELATEDWORK

FD discovery. Functional dependencies are key integrity con-
straints in databases. Broadly, the automation of FD mining al-
gorithms includes schema-driven, instance-driven, and hybrid ap-
proaches [20]. Schema-driven strategies explore the dependency
candidate space, evaluating each candidate while pruning the search
space. Methods employing this strategy often leverage stripped par-
titions to assess FD candidates and utilize Armstrong’s axioms to
prune the search space effectively. Representative algorithms in-
clude Tane[19], Fun[32], and FD_Mine[43], and dFD[2]. Instance-
driven strategies focus on comparing attribute differences between
tuple pairs to simultaneously gather evidence for multiple depen-
dencies within the search space. Algorithms include FDep[18],
FastFD, and Dep-Miner[26]. Hybrid strategies aim to combine
the strengths of both schema-driven and instance-driven meth-
ods. These algorithms maintain high efficiency in confirming or
eliminating FD candidates, e.g., HyFD [33] and DhyFD[40].

Mining complete FDs often has exponential time complexity,
limiting real-world use. Approximate and dynamic FD mining are
explored as potential solutions, sacrificing minimality accuracy for
efficiency, e.g., via methods like Aid-FD [5] and EulerFD[24].
Approximate FD discovery. Tane[19] also proposes AFD discov-
ery solution, which calculates the minimum number of tuples to be
deleted using stripped partitions. It employs a breadth-first strategy
to traverse the search space effectively. Pyro[23] constructs a left-
hand side search space for each attribute, enabling the discovery
of all AFDs in the dataset. Pyro utilizes two phases, ascend and
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trickle-down, to traverse the search space efficiently. Both phases
incorporate a sampling-based error estimation strategy to reduce
traversal time. In addition, Cords[21], utilizes a sampling strat-
egy for mining soft functional dependencies (SoFD). Meanwhile, a
method for computing partial FD (PFD) is introduced in [38]. Fur-
thermore, Domino [6] and RFDiscover [14] are efficient mining
approach for relaxed FDs.

AFD exhibits stronger mining capabilities in complex and dy-
namic big data environments due to their relaxed satisfaction crite-
ria. However, in scenarios where the data inherently contains errors,
the use of a static and fixed relaxation threshold demonstrates limi-
tations. Consequently, to accommodate the characteristics of dirty
data, researchers have also excluded non-RFD mining approaches.
[27] introduces RFI, a top-𝑘 mining technique based on a branch-
and-bound strategy. It utilizes a mutual information-based metric
to characterize dependency relationships between attributes and
discover top-𝑘 dependencies based on the metric. However, since
the number of dependencies is often not known, the top-𝑘 strategy
fail to provide a completeness set of dependencies. cannot find all
dependencies. FDx [44] is proposed to target noisy data, by framing
the FD mining problem as a structure learning task. Note that FDx
only find a dependency for each attribute, it cannot ensure to find
all dependencies on the dirty data.

AFD semantics often struggle to adapt to real-world data con-
taining erroneous information. Additionally, the few algorithms
capable of directly mining on dirty data still lack solid theoretical
guarantees. As obtaining sufficient and entirely clean data is often
challenging in practice, there is an urgent need for methods that
can effectively mine dependencies directly from dirty data.

3 OVERVIEW OF DAFD

3.1 Preliminaries

𝐴𝑡𝑡𝑟 (R) = (𝐴1, ..., 𝐴𝑚) represents the set of attributes in a database
relation R. I is an instance of R containing 𝑛 tuples, each of which
belongs to the domain 𝐷𝑜𝑚(𝐴1) × · · · ×𝐷𝑜𝑚(𝐴𝑚). 𝐷𝑜𝑚(𝐴) repre-
sents the domain of attribute𝐴. 𝑡 [𝐴] records the data value of tuple
𝑡 on attribute 𝐴. One FD on R is defined as 𝜑 : R(𝑋 → 𝑌 ), where
𝑋,𝑌 ⊆ 𝐴𝑡𝑡𝑟 (R). 𝜑 is regarded to be in normal form iff 𝑋 ∩ 𝑌 = ∅,
and 𝑌 only consists of a single attribute 𝐴. 𝑋 and 𝑌 are denoted as
the left-hand side (LHS) and the right-hand side (RHS) of 𝜑 . One
AFD on R is defined as 𝜑 : 𝑋

Ψ≤𝜖−−−−→ 𝑌 , where 𝑋,𝑌 ∈ 𝐴𝑡𝑡𝑟 (R). Ψ is
a coverage measure that quantifies the amount of tuples violating
or satisfying 𝜑 , and 𝜖 is a threshold indicating its upper bound.

Aiming to better support the discovery of dependency patterns
in low-quality data containing dirty values, we introduce a dynamic
relaxation (e.g., 𝛼 (𝑋,𝑌 )) instead of a fixed one from the perspective
of satisfaction degree. Definition 3.1 formalizes our DAFD form.

Definition 3.1. Dynamic Approximate Functional Depen-

dencies (DAFD). Given I𝐷 as a low-quality data instance of R
containing dirty values, 𝑋

Ψ(𝑋,𝑌 ) ≤𝛼 (𝑋,𝑌 )
−−−−−−−−−−−−−−→ 𝑌 represents a DAFD

on I𝐷 . This DAFD holds true if at least one of the following con-
ditions is satisfied: (1) When |𝑌 | = 1 and Ψ(𝑋,𝑌 ) ≤ 𝛼 (𝑋,𝑌 ), or (2)
When |𝑌 | > 1 and ∀𝑦 ∈ 𝑌 , Ψ(𝑋,𝑦) ≤ 𝛼 (𝑋,𝑦).

Here, the degree of dependency satisfaction is measured by

Ψ(𝑋,𝑌 ) =
min

{︁
|I𝑣 | |I𝑣 ⊆I𝐷 and𝑋→𝑌 holds in I𝐷\I𝑣

}︁
|I𝐷 | . It denotes the

ratio of the minimum number of tuples that need to be removed
for the dependency 𝑋 → 𝑌 to hold in a subset of tuples I𝑣 from
I𝐷 , to the total number of tuples in the dataset (i.e., |I𝐷 |).

And 𝑎𝑖 is the upper bound on the proportion of erroneous data
for the corresponding attribute in data I𝐷 , which reflects the inher-
ent nature of the data source itself. The error threshold 𝛼 (𝑋,𝑌 ) =∑︁
𝐴𝑖 ∈𝑋∪𝑌 𝑎𝑖 denotes the upper bound of the threshold for the allow-

able proportion of dirty data, whichmeans that at most a proportion
of

∑︁
𝐴𝑖 ∈𝑋∪𝑌 𝑎𝑖 of the total tuples in the attribute set 𝑋 ∪ 𝑌 corre-

sponding to 𝑋 → 𝑌 can contain erroneous data.
Note that the definition of DAFD based on |𝑌 | could be reflected

to the set of FDs behind the dirty dataset one by one, which is
beneficial to the accurate discovery for the FDs behind the dirty
dataset. We prove this characterization in Theorem 3.3.

Example 3.2. For the dependency 𝜑 : 𝐼0 → 𝐼1 in Example 1.1,
given the maximum error limits for these two attributes as 𝑎𝐼0 = 0.1
and 𝑎𝐼1 = 0.2, the upper limit for tolerable dirty data proportion is
𝛼 (𝐼0, 𝐼1) = 𝑎𝐼0 + 𝑎𝐼1 = 0.3. We calculate the proportion of records
that do not satisfy 𝜑 as Ψ(𝐼0, 𝐼1) = 3

10 = 0.3 from Table 1. Since

Ψ(𝐼0, 𝐼1) ≤ 𝛼 (𝐼0, 𝐼1), DAFD 𝐼0
Ψ(𝐼0,𝐼1)<𝛼 (𝐼0,𝐼1)−−−−−−−−−−−−−−→ 𝐼1 holds on this

dataset. In contrast, the general AFD takes the form 𝐼0
Ψ(𝐼0,𝐼1)<𝜖−−−−−−−−−→ 𝐼1,

where 𝜖 is a predefined threshold. If improperly set, such as 𝜖 = 0.1,
we may easily overlook a dependency like 𝐼0 → 𝐼1.

3.2 The nature of DAFD

3.2.1 The fundamental assumption regarding datasets containing

dirty values. Regarding our research subject, which involves a dataset
I𝐷 containing dirty values, we first provide a formal description
and make the following assumptions based on real-world scenarios
[22, 44]: (𝑎) The error probability of each attribute’s data source is
relatively low, thus implying the existence of a small upper bound
on the proportion of erroneous data for each attribute. (𝑏) If a FD
candidate does not hold in a particular low-quality dataset, the pro-
portion of tuples violating this FD candidate significantly exceeds
(e.g., by more than 10 times) the proportion of tuples containing
erroneous attribute values.

We believe that the assumptions regarding dirty datasets pos-
sess applicability and rationality in real-world scenarios. Regarding
assumption (𝑎), information systems have evolved over the years,
and in many contexts (such as the Internet of Vehicles, patient vital
sign monitoring, and air quality monitoring systems [22, 36]), data
acquisition technology has achieved relatively stable performance.
Although erroneous records cannot be avoided due to environ-
mental changes or transmission interruptions, the proportion of
incorrect data in information systems remains relatively small. As
for assumption (𝑏), we adopt the underlying logic of approximate
dependency mining, which trusts the patterns or regularities re-
flected by the majority of the data while treating minor outliers
or errors as exceptions. Hence, when considering datasets con-
taining erroneous values, if an FD candidate does not hold in this
low-quality dataset, and the proportion of tuples violating this FD
significantly exceeds the proportion of tuples containing erroneous
attribute values, it indicates that the number of tuples violating the
FD has far surpassed what can be explained solely by data errors.
In other words, such a high proportion of violations is more likely
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due to the invalidity of the FD candidate itself, rather than merely
being caused by data errors.

3.2.2 DAFD vs. FD. For the DAFD in Definition 3.1, when setting
the allowable threshold 𝛼 (𝑋,𝑌 ) = ∑︁

𝐴𝑖 ∈𝑋∪𝑌 𝑎𝑖 , we obtain the rela-
tionship between DAFD and its corresponding FD below.

Theorem 3.3. Let I be a completely clean dataset on the relation

schema R, and I𝐷 be the low-quality version of I on R which sat-

isfies the assumptions above, a DAFD holds on I𝐷 if and only if the

corresponding isomorphic FD holds on I.
Here, an FD is isomorphic w.r.t a DAFD if and only if the terms ( i.e.,

attributes) in their LHS and RHS are identical, as shown in Figure 1.

Proof. Given a DAFD 𝜑 , (𝑖) when |𝑅𝐻𝑆 (𝜑) | = 1, if 𝜑 does not
hold on I𝐷 , even if all tuples with erroneous data in I𝐷 violate
𝜑 , there must still be some tuples with entirely correct data that
violate 𝜑 (otherwise, 𝜑 would hold on I𝐷 ). Consequently, these
tuples violate the corresponding FD on I, and thus the FD on I
does not hold. If 𝜑 holds on I𝐷 , assume that the corresponding
FD does not hold on I. Then, at most Σ𝐴𝑖 ∈𝑋∪𝑌 2𝑎𝑖𝑛 tuples in I
violate the FD. This means that the number of tuples violating
the dependency cannot satisfy the condition of being significantly
larger than the number of tuples with erroneous data, contradicting
the assumption (𝑏). Therefore, the FD must hold on I.

(𝑖𝑖) When |𝑅𝐻𝑆 (𝜑) | > 1, if 𝜑 holds on I𝐷 , then ∀𝑦 ∈ 𝑅𝐻𝑆 (𝜑), 𝜑
formed by the LHS and 𝑦 holds. By the argument in (𝑖), this implies
that for all 𝑦 ∈ 𝑅𝐻𝑆 (𝜑), the FD having the same shape with DAFD
formed by the LHS and 𝑦 holds on I. Thus, the FD holds on I. If 𝜑
does not hold on I𝐷 , then there exists a 𝑦 ∈ 𝑅𝐻𝑆 (𝜑) such that 𝜑
formed by the LHS and 𝑦 does not hold. By (𝑖), ∃𝑦 ∈ 𝑅𝐻𝑆 (𝜑) such
that the FD formed by the LHS and 𝑦 does not hold on I. Since
for FDs, 𝑋 → 𝑌 holds if and only if for all 𝑦 ∈ 𝑅𝐻𝑆 (𝜑), 𝐿𝐻𝑆 → 𝑦

holds, it follows that 𝑋 → 𝑌 does not hold on I.
Thus, an FD holds on the clean data I if and only if the corre-

sponding DAFD holds on the dirty data I𝐷 . □

Figure 1: The isomorphism of FDs on I and DAFDs on I𝐷 .
3.2.3 DAFD reasoning. Theorem 3.4 introduces the inference sys-
tem of DAFD, which is crucial for the mining of DAFD from data.

Theorem 3.4. Let I𝐷 be the dirty version of the clean data I,
DAFD satisfies the Armstrong axiom system on I𝐷 . That is, DAFD
satisfies the law of reflexive, augmentation, and transitive on I𝐷 .

Proof. Reflexive. Based on the property of FD [19], 𝑋 → 𝑋 is

always true. Furthermore, according to Theorem 3.3,𝑋
Ψ(𝑋,𝑋 ) ≤𝛼 (𝑋,𝑋 )
−−−−−−−−−−−−−−→

𝑋 holds true consistently onI𝐷 .Augmentation. If𝑋
Ψ(𝑋,𝑌 ) ≤𝛼 (𝑋,𝑌 )
−−−−−−−−−−−−−−→

𝑌 is valid on I𝐷 , then according to Theorem 3.3, 𝑋 → 𝑌 is valid

on I. Further, based on the properties of FD, 𝑋𝐴 → 𝑌𝐴 (∀𝐴 ∈
𝐴𝑡𝑡𝑟 (R)) on I. Thus, 𝑋𝐴

Ψ(𝑋𝐴,𝑌𝐴) ≤𝛼 (𝑋𝐴,𝑌𝐴)
−−−−−−−−−−−−−−−−−−−→ 𝑌𝐴 is also valid on

I𝐷 . Transitive. Let 𝑋
Ψ(𝑋,𝑌 ) ≤𝛼 (𝑋,𝑌 )
−−−−−−−−−−−−−−→ 𝑌 and 𝑌

Ψ(𝑌,𝑍 ) ≤𝛼 (𝑌,𝑍 )
−−−−−−−−−−−−−−→ 𝑍

be two DAFDs that hold true on I𝐷 . Accordingly to Theorem 3.3,
𝑋 → 𝑌 and 𝑌 → 𝑍 are valid on the corresponding clean dataset I.
Due to the transitivity property of FD, 𝑋 → 𝑍 is also valid on I.
Consequently, 𝑋

Ψ(𝑋,𝑍 ) ≤𝛼 (𝑋,𝑍 )
−−−−−−−−−−−−−−→ 𝑍 is valid I𝐷 . □

3.2.4 A comparative analysis of the properties of DAFD and other

FD variations. Table 2 summarizes FD and several of its variations,
alongside their representative mining algorithms.In comparison,
DAFD offers the following advantages: (1) The dependency semantic

expression: While AFD, PFD, and SoFD support a fixed level of error
tolerance in terms of satisfiability, the proposed DAFD supports
a more flexible threshold that takes into account the probability
of attribute value errors. This allows for a better capture of data
dependency patternswithin dirty datasets, thereby reflecting the un-
derlying FDs more accurately. (2) Reasoning properties: Compared to
the existing AFD, DAFD possesses clearer and more explicit reason-
ing properties. (3) Theoretical guarantees of the mining algorithm:
The mining approach for DAFD, specifically DAFDiscover intro-
duced in Section 4, not only achieves competitive time and space
complexity but also theoretically ensures the validity, minimality,
and completeness of the mining results. This provides a significant
advantage for the efficient mining of DAFD.

4 DISCOVERING DAFDS

Section 4.1 presents the mining problem of DAFD, while Section
4.2 details the specific steps of the algorithm. Section 4.3 provides
a theoretical analysis of the results, and Section 4.4 discusses the
algorithms’ time and space complexity, as well as the robustness.

4.1 The DAFD discovery problem

We first formalize the problem of mining DAFDs in Problem 1.
Problem 1. Given a dirty dataset I𝐷 of schema R(𝐴1, ..., 𝐴𝑚)

and known upper bounds on the proportion of erroneous data within

each attribute, denoted by 𝑎𝑖 , 𝑖 ∈ [1,𝑚], the DAFDmining problem
aims to find all valid, minimal and non-trivial DAFDs from I𝐷 .

Here, (i) one DAFD 𝜑 is identified to be valid w.r.t I𝐷 iff ∀𝜑 ∈
ΣDAFD, 𝜑 hold true in I𝐷 . (ii) One DAFD 𝜑 : 𝑋

Ψ(𝑋,𝑌 ) ≤𝛼 (𝑋,𝑌 )
−−−−−−−−−−−−−−→ 𝑌 is

minimal iff ∀𝑋 ′ ⊂ 𝑋 , 𝑋 ′
Ψ(𝑋 ′,𝑌 ) ≤𝛼 (𝑋 ′,𝑌 )
−−−−−−−−−−−−−−−→ 𝑌 is not valid, and (iii)

one DAFD 𝜑 : 𝑋
Ψ(𝑋,𝑌 ) ≤𝛼 (𝑋,𝑌 )
−−−−−−−−−−−−−−→ 𝑌 is non-trivial iff 𝑌 ∉ 𝑋 .

According to Theorem 3.3, there exists a one-to-one correspon-
dence between DAFD on I𝐷 and FD on the corresponding clean I.
Therefore, Theorem 4.1 holds true for the DAFD mining problem.

Theorem 4.1. Let ΣDAFD denote the mining result for DAFDs on

a dirty dataset I𝐷 . ΣFD represents the set of FDs that are isomorphic

to the DAFDs in ΣDAFD, then ΣFD corresponds to the mining result

for FDs on the associated clean dataset I from which I𝐷 originates.

Complexity discussion. The time complexity of FDmining is bounded
by 𝑂 (𝑛2 (𝑚2 )

22𝑚), where 𝑛 is the number of tuples and 𝑚 is the
number of attributes [25]. DAFD mining introduces additional com-
putational overhead due to dynamic threshold calculations. It tra-
verses the search space analogously to FD mining, with each depen-
dency requiring 𝑂 (𝑛) time for evaluation. Its total time complexity,
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Table 2: Summary of DAFD and other potential FD variations for expressing data dependencies on dirty data.

Data dependencies Definition

Violation

tolerance

Reasoning Representative methods Time complexity Space complexity Results

FD

no
tolerance FD X→Y No Armstrong

rules

Exact
Discovery

TANE[19] 𝑂 (2𝑚 (𝑛 +𝑚2.5)) 𝑂 ( (𝑛+𝑚)2
𝑚

√
𝑚
) All FDs

FastFD[42] - 𝑂 ( |Difference_set|𝑚) All FDs
HYFD[33] 𝑂 (𝑚𝑛2 +𝑚22𝑚) - All FDs

Approximate
Discovery

EulerFD[24] almost linearly
with row expansion - All FDs

AID-FD[5] - - All FDs

extent of
satisfaction

AFD 𝑋

|I𝐷 |−max
{︁
|𝑡 | |𝑡⊆I𝐷 and𝑋→𝑌 holds in 𝑡

}︁
|I𝐷 |

≤𝜖
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ 𝑌 Fixed 𝑋 → 𝑌 ⇒

𝑋𝐴→ 𝑌
TANE[19] 𝑂 (2𝑚 (𝑚𝑛 +𝑚2.5)) 𝑂 ( (𝑛+𝑚)2

𝑚

√
𝑚
) All AFDs

𝑋

|{ (𝑡1,𝑡2 )∈I𝐷 2 |𝑡1 [𝑋 ]=𝑡2 [𝑋 ]∧𝑡1 [𝑌 ]≠𝑡2 [𝑌 ]}|
|I𝐷 |2−|I𝐷 |

≤𝜖
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ 𝑌 Fixed 𝑋 → 𝑌 ⇒

𝑋𝐴→ 𝑌
PYRO[23] - - All AFDs

PFD[38] 𝑋

∑︁
𝑥∈𝑑𝑜𝑚 (𝑋 ) 𝑃 (𝑋→𝑌,𝑉𝑥 )

|𝑑𝑜𝑚 (𝑋 ) | ≥1−𝜖
−−−−−−−−−−−−−−−−−−−−−−−→ 𝑌 Fixed unknown extension of TANE[38] - - -

SoFD[21] 𝑋

|𝑑𝑜𝑚 (𝑋 ) |I𝐷
|𝑑𝑜𝑚 (𝑋,𝑌 ) |I𝐷

≥1−𝜖
−−−−−−−−−−−−−−−−→ 𝑌 Fixed 𝑋 → 𝑌 ⇒

𝑋𝐴→ 𝑌
CORDS[21] - - SoFDs with single

attribute in LHS

DAFD 𝑋

min
{︁
|𝑡 | |𝑡⊆I𝐷 and𝑋→𝑌 holds inI𝐷 \𝑡

}︁
|I𝐷 |

≤𝛼 (𝑋,𝑌 )
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ 𝑌 Dynamic Armstrong

rules
DAFDiscover
DAFDiscover+ 𝑂 (2𝑚 (𝑛𝑚 +𝑚2.5)) 𝑂 ( (𝑛+𝑚)2

𝑚

√
𝑚
) All DAFDs

Mutual information MI score various definitions based
on mutual information Fixed varying with

specific definitions
RFI[27] - - Top-k FD

discoverySMI[34] - -

Structure learning

𝑋 → 𝑌 , with the set of attributes 𝑋
in R that correspond to non-zero
entries in autoregression matrix[44]

based on the
process of learning - FDX[44]

quadratic complexity
with respect to the
number of columns

- One FD for each
RHS attribute

including dependency evaluation and threshold computations, is
𝑂 (𝑛3 (𝑚2 )

22𝑚 +𝑇 (𝑚,𝑛)), where 𝑇 (𝑚,𝑛) represents the cumulative
time for threshold computations.

DAFD discovery, like FD and AFD, faces challenges in effectively
pruning the 𝑂 (𝑚 · 2𝑚) search space. However, DAFD’s relaxed sat-
isfaction criteria, allowing minor data violations (i.e., dirty values),
complicate simultaneous evaluation and pruning of multiple depen-
dency candidates. Each DAFD candidate requires threshold compu-
tation, adding𝑇 (𝑚,𝑛) to mining time. A brute-force approach yields
𝑇 (𝑚,𝑛) = 𝑂 (𝑚22𝑚), emphasizing the need for effective pruning
strategies to reduce 𝑇 (𝑚,𝑛).

4.2 DAFDiscover algorithm

4.2.1 The holistic design of DAFDiscover. Insights from Section
3.2.4 reveal that DAFDs are semantically akin to AFDs, differing
only in that DAFDs use a dependency function in place of AFDs’
𝜖 . This suggests that state-of-the-art AFD mining algorithms can
be suitably adapted for DAFD mining. Specifically, replacing 𝜖
with the function 𝛼 (𝑋,𝑌 ) = ∑︁

𝐴𝑖 ∈𝑋∪𝑌 𝑎𝑖 within any AFD mining
algorithm could facilitate DAFD discovery. Notably, unlike AFDs,
DAFDs adhere to the Armstrong axiom system, enabling more
aggressive pruning strategies for efficient search space reduction.
This offers potential improvements in the efficiency and efficacy
of DAFD mining. Accordingly, the DAFD mining consists of two
pivotal steps: (𝑖) Substituting the hyperparameter 𝜖 of the AFD
mining algorithm with function 𝛼 (𝑋,𝑌 ) = ∑︁

𝐴𝑖 ∈𝑋∪𝑌 𝑎𝑖 , and (𝑖𝑖)
Employing pruning strategies, which include those based on the
Armstrong axiom system, to efficiently prune the search space.

Next, we present our mining algorithm in Section 4.2.2, followed
by further optimization algorithms in Section 4.2.3.

4.2.2 The specific steps of DAFDiscover. In a review of the preva-
lent AFD mining algorithms, Tane [19] stands out as a schema-
driven approach that employs a breadth-first strategy to traverse the
search space of AFD candidates, ultimately uncovering all AFDs
within a dataset. During the exploration of the AFD candidate
space, Tane incorporates three pruning strategies to optimize its

performance: (i) If 𝑋
Ψ(𝑋,𝐴) ≤𝜖
−−−−−−−−−→ 𝐴 holds, then ∀𝐵 ∈ 𝐴𝑡𝑡𝑟 (R),

𝑋𝐵
Ψ(𝑋𝐵,𝐴) ≤𝜖
−−−−−−−−−−→ 𝐴 holds. (ii) If 𝑋

Ψ(𝑋,𝐴) ≤𝜖
−−−−−−−−−→ 𝐴 is a valid FD, then

∀𝐵 ∈ 𝐴𝑡𝑡𝑟 (R), 𝑋𝐵
Ψ(𝑋𝐵,𝐴) ≤𝜖
−−−−−−−−−−→ 𝐴 cannot be a minimal AFD. (iii) If

𝑋 is a superkey i.e., ∀𝑡1, 𝑡2 ∈ I, 𝑡1 [𝑋 ] ≠ 𝑡2 [𝑋 ], then ∀𝐵 ∈ 𝐴𝑡𝑡𝑟 (R),
𝑋

Ψ(𝑋,𝐵) ≤𝜖
−−−−−−−−−→ 𝐵 holds. The pruning strategies (i) and (ii) in Tane

are facilitated by the utilization of the 𝐶+ (𝑋 ) set, which is defined
as 𝐶+ (𝑋 ) = {𝐴 ∈ 𝐴𝑡𝑡𝑟 (R)|∀𝐵 ∈ 𝑋 : 𝑋 {𝐴, 𝐵} → {𝐵}is not valid}.
𝑋 can be pruned when 𝐶+ (𝑋 ) = ∅.

Hence, our initial approach is to adapt Tane for DAFD mining.
Since DAFDs conform to the Armstrong axiom system, we can
employ TANE’s original pruning techniques for DAFD mining.
However, it is important to emphasize that the key pruning strategy
proposed in Tane is not suitable for mining DAFDs! This is because
it can lead to the omission of dependency relationships during the
mining process. When an attribute set 𝑋 is determined to be a key,
the key pruning strategy in Tane removes 𝑋 from 𝐿𝑙 , resulting in
the pruning of all sets 𝑋 ∪ 𝐴 in 𝐿𝑙+1. For example, let 𝐴𝐵

∗−→ 𝐶

and 𝐵𝐶
∗−→ 𝐴 be DAFDs on I𝐷 , where 𝐵𝐶 is a key but 𝐴𝐵 is not.

According to Tane’s key pruning strategy, since 𝐵𝐶 is a key, when
Prune visits 𝐵𝐶 , it will output 𝐵𝐶 → 𝐴 and remove 𝐵𝐶 from 𝐿𝑙 ,
preventing the generation of node 𝐴𝐵𝐶 . This results in the DAFD
𝐴𝐵 → 𝐶 not being computed. Additionally, because 𝐴𝐵 is not a
key, the algorithm will not output 𝐴𝐵 → 𝐶 during the key check
for 𝐴𝐵. Consequently, 𝐴𝐵 → 𝐶 is lost during the mining process.

Specifically, all DAFD of the form 𝑋
Ψ≤𝛼−−−−→ 𝐴 and (𝑋 ∪ {𝐴}) −

{𝐵} Ψ≤𝛼−−−−→ 𝐵 are pruned. However, in the context of DAFD mining,
when 𝑋 is identified as a key, it only ensures that all DAFDs of the
form𝑋

Ψ≤𝛼−−−−→ 𝐴 are valid and have been discovered in 𝐿𝑙 . It does not
guarantee the validity of DAFD of the form (𝑋∪{𝐴})−{𝐵} Ψ≤𝛼−−−−→ 𝐵,
nor does it ensure that the valid ones can be discovered in 𝐿𝑙 on
attribute sets other than the removed 𝑋 ∪𝐴.

Fortunately, we have discovered that in DAFD mining process,
if an attribute set 𝑋 is determined to be a key, then all DAFD of
the form 𝑋

Ψ≤𝛼−−−−→ 𝐴 are valid. Consequently, if 𝐴 is present in
𝐶+ (𝑋 ∪𝐴), we can remove 𝐴 and any attributes in𝐶+ (𝑋 ∪𝐴) that

3488



Algorithm 1: DAFDiscover
Input :dirty data I𝐷 , the upper limit on the proportion of

erroneous data 𝑎𝑖 for each attribute 𝐴𝑖

Output : the set of DAFDs, ΣDAFD
1 𝐿0 ← {∅},𝐶+ ( ∅) ← 𝐴𝑡𝑡𝑟 (R) , 𝐿1 ←

{︁
{𝐴} |𝐴 ∈ 𝐴𝑡𝑡𝑟 (R)

}︁
;

2 𝑙 ← 1;
3 foreach 𝑋 ∈ 𝐿1 do
4 𝐶+ (𝑋 ) ← ⋂︁

𝐴∈𝑋 𝐶
+ (𝑋 \ {𝐴}) ;

5 while 𝐿1 ≠ ∅ do
6 Compute_dependencies(𝐿𝑙 ) ;
7 Prune(𝐿𝑙 ) ;
8 𝐿𝑙+1 ← Generate_next_level(𝐿𝑙 ) , 𝑙 ← 𝑙 + 1;

are not in 𝑋 . Furthermore, if an attribute set 𝑌 in 𝐿𝑙+1 satisfies the
condition that ∀𝐵 ∈ 𝐴𝑡𝑡𝑟 (R), 𝑌 − {𝐵} is a key, then𝐶+ (𝑌 ) = ∅, and
we can prune the attribute set 𝑌 .

From the above, we propose a DAFD mining algorithm with a
novel key pruning strategy specifically designed for DAFD mining
on dirty data. When 𝑋 in 𝐿𝑙 is identified as a key, we mark 𝑋 as
a key and retain the set. When generating 𝐿𝑙+1, for each newly
generated set 𝑌 , we check if for all 𝐵 ∈ 𝐴𝑡𝑡𝑟 (R). If 𝑌 \ {𝐵} is a
key, we remove 𝐵 and any attributes in 𝐶+ (𝑌 ) that are not in 𝑋 . If
𝐶+ (𝑌 ) = ∅, indicating that all dependencies on 𝑌 have been output
using key attribute sets in 𝐿𝑙 , we can prune 𝑌 from 𝐿𝑙+1.

The overall process is outlined in Algorithm 1. It initializes the
attribute sets with 0 and 1 attributes, along with their correspond-
ing𝐶+ collections, grouping sets with the same number of attributes
into the same level. Subsequently, function Compute_dependencies
(Algo 2) is invoked to calculate the DAFDs that hold true for each
attribute set in every level and update 𝐶+ collections accordingly.
After that, the Prune(𝐿𝑙 ) function (Algo 3) is utilized to prune at-
tribute sets with empty 𝐶+s, filter out the keys from the attribute
sets, and modify the 𝐶+s using a key pruning strategy. Based on
this, the Generate_next_level(𝐿𝑙 ) function (Algo 4) is employed
to generate the attribute sets for the next level from the current
level’s sets and proceed with the mining process for the subsequent
levels until no attribute sets are generated for the next level.

Compute_Dependencies operates on each attribute set 𝑋 in the
current level. It examines every potential DAFD candidate of the

form 𝑋 \ {𝐴}
Ψ(𝑋\{𝐴},𝐴) ≤∑︁𝐴𝑖 ∈𝑋 𝑎𝑖−−−−−−−−−−−−−−−−−−−−→ 𝐴 for 𝑋 . It then outputs the

valid DAFDs and updates 𝐶+ (𝑋 ) for 𝑋 accordingly.

Algorithm 2: Compute_dependencies(𝐿𝑙 )
Input :a set of attribute sets 𝐿𝑙 with 𝑙 attributes
Output : the remaining DAFDs on 𝐿𝑙

1 foreach 𝑋 ∈ 𝐿𝑙 do
2 foreach 𝐴 ∈ 𝑋 ∩𝐶+ (𝑋 ) do
3 if 𝑒 (𝑋 \ {𝐴} → 𝐴) ≤ ∑︁

𝐴𝑖 ∈𝑋 𝑎𝑖 ) then

4 return 𝑋 \ {𝐴}
Ψ(𝑋 \{𝐴},𝐴)≤∑︁𝐴𝑖 ∈𝑋 𝑎𝑖
−−−−−−−−−−−−−−−−−−−−→ 𝐴;

5 remove 𝐴 from𝐶+ (𝑋 ) ;
6 remove all 𝐵 in 𝑅 \𝑋 from𝐶+ (𝑋 ) ;

The Prune function, removes attribute sets from 𝐿𝑙 that have an
empty 𝐶+ set. It identifies and labels attribute sets determined to
be keys and outputs the minimal and non-trivial DAFDs that can

be generated. The key labels of attributes are then utilized in the
generation of attribute sets for the subsequent level.

Algorithm 3: Prune(𝐿𝑙 )
Input :a set of attribute sets 𝐿𝑙 with 𝑙 attributes
Output : the pruned 𝐿𝑙

1 foreach 𝑋 ∈ 𝐿𝑙 do
2 if 𝐶+ (𝑋 ) = ∅ then
3 delete 𝑋 from 𝐿𝑙 ;

4 if 𝑋 is an (super) key then

5 foreach 𝐴 ∈ 𝐶+ (𝑋 ) \𝑋 do

6 if 𝐴 ∈ ⋂︁𝐵∈𝑋 𝐶
+ (𝑋 ∪ {𝐴} \ {𝐵 }) then

7 return 𝑋 → 𝐴;

8 Record 𝑋 as a key;

The Generate_next_level(𝐿𝑙 ) function, generates attribute
sets with 𝑙 + 1 attributes and their corresponding 𝐶+ set based
on 𝐿𝑙 . It performs validity checks on the generated attribute sets
and places those that pass the checks into 𝐿𝑙+1. Within this process,
Prefix_Blocks divides 𝐿𝑙 into multiple blocks (prefix blocks). For
each attribute set in 𝐿𝑙 , after sorting its attributes, if two sets have
the same number of attributes and differ only in their final sorted
attribute, they are considered to be in the same prefix block[29].

Algorithm 4: Generate_next_level(𝐿𝑙 )
Input :a set of attribute sets 𝐿𝑙 with 𝑙 attributes
Output : the next level of attribute sets, 𝐿𝑙+1

1 𝐿𝑙+1 ← ∅;
2 foreach 𝐾 ∈ Prefix_Blocks(𝐿𝑙 ) do
3 foreach {𝑌,𝑍 } ⊆ 𝐾, (𝑌 ≠ 𝑍 ) do
4 𝑋 ← 𝑌 ∪ 𝑍 ,𝐶+ (𝑋 ) ← ⋂︁

𝐴∈𝑋 𝐶
+ (𝑋 \ {𝐴}) ;

5 if 𝑋_is_valid(𝐿𝑙 , 𝑋 ) then
6 𝐿𝑙+1 ← 𝐿𝑙+1 ∪ {𝑋 };

7 return 𝐿𝑙+1;

The determination process for 𝑋_is_valid, as outlined in Al-
gorithm 5, involves assessing the validity of the input 𝑋 . If ∀𝑥 ∈ 𝑋 ,
∃𝑎𝑠𝑒𝑡 ∈ 𝐿𝑙 such that 𝑎𝑠𝑒𝑡 = 𝑋 \ {𝑥}, then 𝑋 is considered a valid
attribute set of length 𝑙 + 1. During this process, it checks the key
labels of the attribute set 𝑎𝑠𝑒𝑡 and performs key pruning on 𝑋 ac-
cordingly. If 𝑋 is ultimately determined to be valid and its 𝐶+ (𝑋 )
is not empty, it concludes that 𝑋 can be included in 𝐿𝑙+1.
4.2.3 Optimization of DAFDiscover. We emphasize that there are
still possibilities for further improvements to DAFDiscover. We
identify two key areas for optimization. (𝑖) DAFDiscover requires
the calculation of the decision threshold

∑︁
𝐴𝑖 ∈𝑋∪𝑌 𝑎𝑖 for eachDAFD

candidate, which involves redundant computations. (𝑖𝑖) the key
pruning strategy employed by DAFDiscover can be made more
aggressive. Addressing these two issues leads to the optimized
version of DAFDiscover, henceforth referred to as DAFDiscover+.

(1) Reducing redundant threshold calculations. DAFDis-
cover computes the allowance threshold

∑︁
𝐴𝑖 ∈𝑋∪𝑌 𝑎𝑖 for each un-

pruned DAFD candidate, leading to𝑂 (𝑚22𝑚) in time in the overall
mining. However, there is redundancy in these summations. For
all 𝐴 ∈ 𝑋 , computing the decision threshold for 𝑋 \ {𝐴} → 𝐴
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Algorithm 5: 𝑋_is_valid(𝐿𝑙 , 𝑋 )
Input :a set of attribute sets 𝐿𝑙 with 𝑙 attributes, and a candidate

attribute set 𝑋 for validation
Output :a boolean flag indicating true or false

1 for 𝑥 ∈ 𝑋 do

2 𝑐ℎ𝑒𝑐𝑘 ← 0;
3 for 𝑎𝑠𝑒𝑡 ∈ 𝐿 do

4 if 𝑎𝑠𝑒𝑡 = 𝑋 \ {𝑥 } then
5 𝑐ℎ𝑒𝑐𝑘 ← 1;
6 if 𝑎𝑠𝑒𝑡 is key then

7 remove 𝐴 from𝐶+ (𝑋 ) ;
8 remove all 𝐵 in 𝐴𝑡𝑡𝑟 (R) \𝑋 from𝐶+ (𝑋 ) ;
9 Break;

10 if 𝑐ℎ𝑒𝑐𝑘 = 0 then
11 return False;

12 if 𝐶+ (𝑋 ) = ∅ then
13 return False;

14 return True;

using
∑︁
𝐴𝑖 ∈𝑋\{𝐴}∪𝐴 𝑎𝑖 will yield the same result, namely

∑︁
𝐴𝑖 ∈𝑋 𝑎𝑖 .

Since DAFDiscover traverses all DAFD candidates under 𝑋 in
the pattern 𝑋 \ {𝐴} → 𝐴 for each 𝑋 , we can optimize by com-
puting the corresponding threshold only once when generating 𝑋
and reusing it for all DAFD candidates under 𝑋 . This optimization
reduces redundant threshold calculations, resulting in a reduced
time complexity of 𝑂 (𝑚22𝑚) to 𝑂 (𝑚2𝑚), which is implemented in
Compute_dependencies, and requires only a minor modification
to the first four lines in Algorithm 2 as follows.

1’: foreach 𝑋 ∈ 𝐿𝑖 do
2’: 𝜖𝑋 =

∑︁
𝐴𝑖 ∈𝑋 𝑎𝑖 ;

3’: foreach 𝐴 ∈ 𝑋 ∩𝐶+ (𝑋 ) do
4’: if 𝑒 (𝑋 \ {𝐴} → 𝐴) ≤ 𝜖𝑋 then

5’: return 𝑋 \ {𝐴}
Ψ(𝑋\{𝐴},𝐴) ≤𝜖𝑋−−−−−−−−−−−−−−→ 𝐴;

That is, when calculating the DAFDs for any set 𝑋 in 𝐿𝑙 , we first
compute the corresponding threshold 𝜖𝑋 for that attribute set and
then use this 𝜖𝑋 directly in subsequent DAFD calculations for 𝑋 .

Further, we optimize the efficiency of Generate_next_level(𝐿𝑙 ).
It is worth noting that each attribute set at level 𝐿𝑙+1 is derived by
appending an attribute to a specific attribute set at level 𝐿𝑙 . Corre-
spondingly, the threshold

∑︁
𝐴𝑖 ∈𝑋 𝑎𝑖 for𝑋 at 𝐿𝑙+1 can be obtained by

adding the tolerance limit of the appended attribute to
∑︁
𝐴𝑖 ∈𝑌 𝑎𝑖 of

its prefix𝑌 at 𝐿𝑙 . With this optimization, the computing of
∑︁
𝐴𝑖 ∈𝑋 𝑎𝑖

for each set 𝑋 becomes 𝑂 (1), and the overall time complexity for
computing thresholds in the entire algorithm reduces to 𝑂 (2𝑚).

This optimization shifts the computation of
∑︁
𝐴𝑖 ∈𝑌 𝑎𝑖 from Compute_

dependencies to Generate_next_level(𝐿𝑙 ). Consequently, for
function Compute_dependencies, by directly utilizing the precom-
puted threshold 𝜖𝑋 , the modification in Algorithm 2 (line 3) is:

3’: if 𝑒 (𝑋 \ {𝐴} → 𝐴) ≤ 𝜖𝑋 then

Accordingly, in Algorithm 4, the fifth line is modified as follows:
5’: if 𝑋_is_valid(𝐿𝑙 , 𝑋 ) then
6’: 𝜖𝑋 ← 𝜖𝑌 + 𝜖𝑋\𝑌 ;

While generating 𝑋 in 𝐿𝑙+1, 𝜖𝑋 is produced by leveraging the
threshold 𝜖𝑌 of its prefix attribute set 𝑌 and the threshold related
to the additional part of 𝑋 compared to 𝑌 , denoted as 𝑋 \𝑌 (which,

due to the properties of Prefix_Blocks, should contain only one
attribute). Since Prefix_Blocks is maintained beforehand, the sets
𝑌 and 𝑍 in line 3 of Algorithm 4 differ by only one attribute, and
when the attributes in the sets are sorted, the differing attribute is
always the last one. This allows us to compute the threshold for
a new attribute set using the threshold of a known set, with 𝑂 (1)
time for a single 𝜖𝑋 calculation.

(2) More Aggressive Pruning Strategy. DAFDiscover exe-
cutes pruning solely for exact superkeys. If 𝑋 is an approximate

superkey, meaning it can Transform into a superkey by eliminat-
ing a small fraction of tuple, i.e., ≤ ∑︁

𝐴𝑖 ∈𝑋 𝑎𝑖 , its violating tuples
as a DAFD candidate will not exceed this proportion. Hence, for
any 𝑌 ∗ ∈ 𝐴𝑡𝑡𝑟 (R) added to 𝑋 , this proportion remains valid. This
guarantees𝑋 can form a valid DAFD as the LHS. So, pruning approx-
imate superkeys is viable, allowing for a more aggressive pruning
strategy than DAFDiscover.

This optimization is implemented within the Prune(𝐿𝑙 ) proce-
dure by relaxing the condition in line 4 of Algorithm 3 from strictly
checking for superkeys to allowing for approximate superkeys.

4’: if 𝑋 is an approximate_(super)key then

The determination of whether𝑋 is an approximate super key can
be achieved by calculating the proportion of the minimum number
of tuples that need to be removed from𝑋 ’s stripped partition[19] to
make it a key, relative to the total number of tuples. This proportion
is then compared to

∑︁
𝐴𝑖 ∈𝑋 𝑎𝑖 to assess if it exceeds the threshold.

From the above, we derive DAFDiscover+, an improved version
of DAFDiscover. The general framework of DAFDiscover+ re-
sembles the original DAFDiscover, with the only adjustment being
the initialization step in Algorithm 1 line 1 as follows:

1’: 𝐿0 ← {(∅, 0}, 𝐶+ (∅) ← 𝐴𝑡𝑡𝑟 (R), 𝐿1 ← {(𝐴𝑖 , 𝑎𝑖 }|𝐴𝑖 ∈ 𝐴𝑡𝑡𝑟 (R)};

Example 4.2. Fig. 2 illustrates the mining process for the data in
Example 1.1. DAFDiscover+ initializes 𝐿0, 𝐿1, 𝑙 , and the set𝐶+ and
performs a layer-by-layer traversal to mine DAFDs. During each
traversal of a layer, DAFDiscover+ computes dependencies in the
form𝑋 \{𝐴} → 𝐴 for each attribute set in 𝐿𝑙 (i.e., attribute sets with
𝑙 attributes at level 𝑙 ) using Compute_dependencies, e.g., 𝐼𝑅0 → 𝑈

in the attribute set 𝐼𝑈𝑅0. It then prunes the𝐶+ set of each attribute
set based on the discovered dependencies. Subsequently, Prune
removes attribute sets with empty 𝐶+s from the current 𝐿𝑙 (e.g.,
𝐼𝑈𝑅0 in 𝐿3 shown in green in Fig. 2) and identifies and marks key
attribute sets (e.g., 𝑇 in 𝐿1 and 𝐼𝑈 in 𝐿2 in red). The corresponding
DAFDs for the key attribute sets are output.

Next, Generate_next_level generates attribute sets with 𝑙 +
1 attributes along with their corresponding 𝐶+ sets. It performs
key pruning on the generated 𝐶+ sets based on the marked key
attribute sets in 𝐿𝑙 and adds attribute sets with non-empty 𝐶+ sets
to 𝐿𝑙+1 (shown in black). Finally, it updates 𝑙 and passes 𝐿𝑙+1 to the
next iteration of Compute_dependencies for mining the next layer
of attribute sets. The iteration continues until 𝐿𝑙 becomes empty,
indicating the completion of the mining process.

4.3 Theoretical analysis of the mining results

Theorem 4.3 outlines the quality of the mining results obtained by
DAFDiscover+ utilizes a more robust pruning optimization strat-
egy, is capable of achieving the same outcomes as DAFDiscover.

Theorem 4.3. For the same dataset I𝐷 , the mining results of

DAFDiscover+ are identical to those of the DAFDiscover.
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Figure 2: Demonstration of the DAFD discovering process from dirty data

Proof. Denoting the output sets of DAFDiscover and DAFDis-
cover+ as Σ and Σ+ respectively, we observe that DAFDiscover+
incorporates two enhancements: refined threshold computation
and the extension of key pruning to include approximate keys.
The refined threshold process eliminates redundant calculations
without altering the threshold values, ensuring Σ and Σ+.

In the second enhancement, approximate key pruning, which is
a generalized form of key pruning, ensures that all dependencies
identified through key pruning are included in the output. If an at-
tribute set𝑋 qualifies as an approximate key, removing a maximum
of

∑︁
𝐴𝑖 ∈𝑋 𝑎𝑖 tuples converts it into a key. This implies that for any

DAFD candidate 𝑋 → 𝐴, Ψ(𝑋,𝐴) ≤ ∑︁
𝐴𝑖 ∈𝑋 𝑎𝑖 ≤

∑︁
𝐴𝑖 ∈𝑋∪𝐴 𝑎𝑖 , sat-

isfying the DAFD criteria. Therefore, all pruned candidates adhere
to the DAFD definition and would be captured by DAFDiscover+.
The optimization does not cause differences between Σ and Σ+.

In summary, the optimizations in DAFDiscover+ maintain the
equivalence of Σ and Σ+, ensuring consistent mining results be-
tween both algorithms. □

Since the mining results of these two algorithms are identical, we
analyze the properties of the mining results obtained by DAFDis-
cover with Theorem 4.4-4.6.

Theorem 4.4. Given the mining result Σ obtained from DAFDis-

cover, each DAFD in Σ is a non-trivial and minimal DAFD.
Proof. (Non-trivial). From DAFDiscover, each DAFD in Σ

comes from two procedures, Compute_dependencies and Prune.
As the output of Compute_ dependencies, DAFDs are shaped like

𝑋 \{𝐴}
Ψ(𝑋\{𝐴},𝐴) ≤∑︁𝐴𝑖 ∈𝑋 𝑎𝑖−−−−−−−−−−−−−−−−−−−−→ 𝐴, and are decidedly non-trivial. The

form of DAFD output by Prune is like 𝑋
Ψ(𝑋,𝐴) ≤∑︁𝐴𝑖 ∈𝑋∪𝐴 𝑎𝑖−−−−−−−−−−−−−−−−−−→ 𝐴,

where𝐴 ∉ 𝑋 (line 5 in Algorithm 3), so it is non-trivial. In summary,
every DAFD in Σ is a non-trivial DAFD. (Minimal). Assuming

that there exists a DAFD of the form 𝑋
Ψ(𝑋,𝐴) ≤𝛼 (𝑋,𝐴)
−−−−−−−−−−−−−−→ 𝐴 ∈ Σ,

where ∃𝑍 ⊂ 𝑋,𝑍
Ψ(𝑍,𝐴) ≤𝛼 (𝑍,𝐴)
−−−−−−−−−−−−−−→ 𝐴 holds. However, according to

Generate_next_level, which generates 𝐿𝑙 in ascending order of
set cardinality, 𝑍 → 𝐴 will be judged to be true before 𝑋 → 𝐴,
leading to the pruning of 𝑋 → 𝐴. This means that 𝑋 → 𝐴 cannot
appear in Σ, contradicting the fundamental assumption in Section
3.2.1. Thus, there does not exist any subset 𝑍 of 𝑋 such that 𝑍 → 𝐴

holds. In other words, all attributes in 𝑋 → 𝐴 are necessary, and
there are no redundant attributes in any DAFD in Σ. Thus, all
DAFDs in Σ are minimal DAFDs. □

After ensuring that each DAFD in the result set satisfies the
requirements in Problem 1, we prove the correctness and com-

pleteness of the mining results of DAFDiscover in Theorem 4.5.
Theorem 4.5. All DAFDs in Σ are valid on I𝐷 , and any DAFD

that actually holds on I𝐷 can be derived from DAFDs in Σ.

Proof. Each DAFD in Σ comes from two procedures, Prune and
Compute_dependencies. Since the LHS of a DAFD from Prune is a
super key, the LHS value of each tuple is different, so the DAFD will
not be violated. DAFDs output by Prunemust be valid. The DAFDs
from Compute_Dependencies are valid by the DAFD definition, so
they must be valid. In summary, all the DAFDs in Σ are valid.

Since DAFDiscover essentially traverts the whole search space
by three ways: definition determination, key attribute property and
armstrong axiom derivation determination, the mining process vis-
its every valid DAFD and make a decision. Among them, the DAFDs
through definition decision and key attribute property decision is
output to Σ. The DAFDs decided by armstrong axiom system is
pruned directly. Since pruning other than key pruning depends
on armstrong axiom system, the pruned DAFDs can be obtained
from the DAFDs in Σ by armstrong axiom system. In summary, any
DAFD that holds for I𝐷 can be derived from the DAFDs in Σ. □

Synthesizing all theorems of Section 3 and Section 4, Theorem
4.6 holds. We note that this is a significant conclusion for direct
computation on dirty data that the mining results of the proposed
DAFDiscover can accurately reflect the real FDs present in data.
Consequently, bothDAFDiscover andDAFDiscover+ are effective
in mining the dependencies hidden within dirty data.

Theorem 4.6. The corresponding isomorphic FD of every DAFD

in Σ is a nontrivial minimal FD on I𝐷 that actually holds.

4.4 Analysis of the time and space complexity

Considering the time and space performance of both DAFDiscover
and DAFDiscover+, we present the conclusion in Theorem 4.7.

Theorem 4.7. The upper bound on the time complexity and the

space complexity of DAFDiscover and DAFDiscover+ are equivalent

to those of the Tane algorithm.
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Proof. (1) Time complexity. For I𝐷 with 𝑛 tuples and𝑚 at-
tributes, DAFDiscover’s time complexity is 𝑂 (𝑛) per dependency
validation. Compared to Tane, DAFDiscover adds an 𝑂 (𝑚 + 𝑛)
threshold calculation. In large datasets where 𝑛 ≫𝑚, this becomes
𝑂 (𝑛), matching Tane’s complexity.

Moreover, DAFDiscover uses a more efficient pruning based
on Armstrong’s axioms, leading to faster search space traversal
without increasing overall time complexity beyond Tane. DAFDis-
cover+ further optimizes threshold computation from 𝑂 (𝑚) to
𝑂 (1) and employs a more aggressive pruning, ensuring its com-
plexity remains below both DAFDiscover and Tane.

Specifically, the partition component of Tane costs 𝑂 (𝑛2𝑚), the
pruning costs 𝑂 (𝑛2.52𝑚), and both Compute_dependencies and
Generation_ next_ level cost 𝑂 (𝑚2𝑚), Tane spends 𝑂 (2𝑚𝑚𝑛 +
2𝑚𝑚2+2𝑚𝑚3) = 𝑂 (2𝑚 (𝑚𝑛+𝑚2.5)) for AFDmining.DAFDiscover
costs 𝑂 (2𝑚 (𝑚 + 𝑛)𝑚 + 2𝑚𝑚2 + 2𝑚𝑚3) = 𝑂 (2𝑚 (𝑚𝑛 +𝑚2.5)), and
DAFDiscover+ also costs 𝑂 (2𝑚 (𝑚𝑛 +𝑚2.5)) in time.

(2) Space complexity. DAFDiscover needs extra storage for
dirty data proportions of𝑚 attributes. With Tane’s space complex-
ity at 𝑂 ( (𝑚+𝑛)2

𝑚

√
𝑚
), DAFDiscover adds 𝑂 (𝑚) due to these extra

proportions, resulting in a total of 𝑂 ( (𝑚+𝑛)2
𝑚

√
𝑚

+𝑚). However, as
√
𝑚2𝑚 > 𝑚, this simplifies to𝑂 ( (𝑚+𝑛)2

𝑚

√
𝑚
), matching Tane’s upper

bound. DAFDiscover+ requires additional space for storing deci-
sion thresholds per attribute set, potentially adding 𝑂 (2𝑚). How-
ever, using a breadth-first traversal akin to Tane, it is optimized
to 𝑂 ( 2𝑚√

𝑚
)[19]. Thus, DAFDiscover+’s overall space complexity

remains at 𝑂 ( (𝑚+𝑛)2
𝑚

√
𝑚
), again matching Tane’s upper bound. □

4.5 Robustness Analysis

Next, we conduct an in-depth analysis of the robustness of the
algorithm, which is a crucial aspect of the DAFD mining problem.
4.5.1 Overview of the robustness. DAFDiscover utilizes the map-
ping relationship between DAFD and FD to mine data dependencies
within dirty data, leveraging the input metric of the upper limit of

the proportion of erroneous data from each attribute’s corresponding
data source. However, in real-world scenarios, it is often impos-
sible to definitively assert that the proportion of erroneous data
from a specific data source. Instead, it is typically ensured that the
proportion of erroneous data is less than a certain value with a
certain probability. Given the uncertainties inherent in dirty data,
the mining results of DAFDiscover cannot absolutely guarantee
accurate reflections of the underlying dependencies within the dirty
data. Nevertheless, we emphasize that if DAFDiscover can produce
reliable mining results for upper limits on errors that hold with
sufficiently high probability, this would indicate the robustness of
DAFDiscoverw.r.t the upper limit of the proportion of dirty values.

To ensure the rigor of the analysis, we introduce two additional
assumptions based on those in Section 3.2.1: (𝑐) The correctness
of an attribute 𝐴’s values across tuples is independent, and (𝑑) the
erroneousness of any set of attribute values within a tuple does not
reduce the likelihood of another attribute value being erroneous.

We contend that these assumptions are reasonable to some ex-
tent. Regarding assumption (𝑐), in various data entry and collection
scenarios, the occurrence of erroneous data often exhibits random-
ness and does not systematically affect different tuples. For instance,

when entering customer details, an error in one customer’s position
or phone number typically does not influence the data entry for
another customer. Assumption (𝑑), on the other hand, is a lenient
and easily satisfied condition. Our forthcoming robustness analy-
sis relies on these assumptions. However, we emphasize that the
proposed DAFDiscover algorithm does not depend on the dirty
dataset I𝐷 satisfying assumptions (𝑐) and (𝑑).

We propose a novel metric, DAFD-𝑝𝑟𝑜𝑏, to assess the reliabil-
ity of DAFD and evaluate the robustness of mining outcomes. By
considering both support and validity probability, we demonstrate
DAFDiscover produces reliable results for input upper limits with
sufficiently high probability.
4.5.2 DAFD-𝑝𝑟𝑜𝑏: The probability of validity for the mining results.

Recall Example 1.1, it underscores that the reliability assessment of
the same dataset may vary depending on the error probability of
each attribute. Therefore, evaluating the reliability of DAFD neces-
sitates considering the error probability of data sources, and relying
solely on the support and confidence of the dataset is insufficient
for accurate DAFD reliability evaluation.

Given the properties of data sources, one can compute the valid-
ity probability of an FD isomorphic to a DAFD (per Theorem 4.6). A
higher validity probability signifies greater reliability of the corre-
sponding FD, while a lower probability indicates reduced reliability.
Incorporating data source conditions into this probability calcula-
tion makes it a suitable metric for assessing DAFD reliability. Thus,
we introduce DAFD-𝑝𝑟𝑜𝑏 as a metric. Its calculation requires ne-
cessitates scenario-specific data analysis, and we outline a method
for determining DAFD-𝑝𝑟𝑜𝑏 based on the assumptions presented
in this paper, offering a theoretical lower bound expression.

DAFD-𝑝𝑟𝑜𝑏. According to Theorem 3.3, if there exists an upper
bound 𝑘 = 𝑎𝑖𝑛 for erroneous tuples under an attribute, there is
also an upper bound 𝜏 =

∑︁
𝐴𝑖 ∈𝑋∪𝑌 𝑎𝑖𝑛 for erroneous tuples (de-

noted as event 𝐸𝐴) in any DAFD candidate. In this case, if a DAFD
is valid on I𝐷 , its isomorphic FD on the underlying clean data I
is also valid. For an FD candidate 𝜓𝐹𝐷 and its corresponding iso-
morphic DAFD candidate 𝜑 , it has 𝐷𝐴𝐹𝐷-𝑝𝑟𝑜𝑏 = Pr( |= 𝜓𝐹𝐷 ) ≥
Pr( |= 𝜓𝐹𝐷 |𝐸𝐴𝑎𝑛𝑑 |= 𝜑) · Pr( |= 𝜑 |𝐸𝐴) · Pr(𝐸𝐴). By Theorem 4.6,
Pr( |= 𝜓𝐹𝐷 |𝐸𝐴𝑎𝑛𝑑 |= 𝜑) = 1. If DAFDiscover confirms I𝐷 |= 𝜑 ,
then Pr( |= 𝜑 |𝐸𝐴) = 1, leading to Pr( |= 𝜓𝐹𝐷 ) ≥ Pr(𝐸𝐴).

We proceed to compute Pr(𝐸𝐴). For 𝑋 → 𝑌 , let 𝑝 denote the
probability that a tuple being dirty in the projection of the dataset
onto𝑋∪𝑌 . Using the total probability formula, for any attribute sets
𝐴, 𝐵 ⊆ 𝑋∪𝑌 , we have: Pr(𝐵 clean) = Pr(𝐴 clean) Pr(𝐵 clean|𝐴 clean)+
Pr(𝐴𝑖𝑠 dirty) Pr(𝐵 clean|𝐴𝑖𝑠 dirty). Based on assumptions in Sec-
tion 3.2.1, it has Pr(𝐵 clean) ≥ Pr(𝐵 clean|𝐴𝑖𝑠 dirty), which implies
Pr(𝐵 clean) ≤ Pr(𝐵 clean|𝐴 clean). Further, it can be shown that:

𝑝 = 1−
𝑚∏︂
𝑖=1

Pr(𝐴𝑖 clean|𝐴1 . . . 𝐴𝑖−1 clean) ≤ 1−
𝑚∏︂
𝑖=1

𝑃 (𝐴𝑖 clean) = 𝑝0 .

In fact, each cell is either accurate or inaccurate, and each tuple
can only contain erroneous data or not. It dictates a binomial dis-
tribution for erroneous tuples. Specifically, for dirty data I𝐷 , the
number of erroneous tuples 𝜏0 follows 𝜏0 ∼ 𝐵(𝑛, 𝑝), where 𝑛 is the
total tuples. As 𝑛 → +∞, the Central Limit Theorem allows us to
approximate this binomial distribution with a normal distribution
𝜏0 ∼ 𝑁 (𝑛𝑝, 𝑛𝑝 (1 − 𝑝)).

3492



Table 3: Relationship between𝑚, 𝑎𝑖 , and 𝑠𝑢𝑝 (assuming an

order of magnitude of 𝑛 as 104)
𝑚 10 10 10 102 102 102 103 103 103

𝑎𝑖 : 10−2 10−3 10−4 10−3 10−4 10−5 10−4 10−5 10−6
𝑠𝑢𝑝: 0.87 0.98 0.966 0.8 0.96 0.989 0.6 0.89 0.969

When 𝑛 → +∞, let 𝑆 denote the probability of the event “the
upper bound for the number of tuples with erroneous data is 𝜏". It has
Pr(𝐸𝐴) = 𝑆 =

∑︁𝜏
𝑖=1𝐶

𝜏
𝑛𝑝
𝜏 (1 − 𝑝)𝜏 ≈

∫ 𝜏
−∞ 𝑓 (𝑥)𝑑𝑥, where 𝑓 (𝑥) is the

probability density function of 𝑁 (𝑛𝑝, 𝑛𝑝 (1 − 𝑝)). Let 𝑓0 (𝑥) be the
probability density function of 𝑁 (𝑛𝑝0, 𝑛𝑝0 (1 − 𝑝0)). When 𝜏 ≥ 𝑛𝑝
and 𝑝 ≤ 𝑝0 < 0.5, it holds that:

𝑆 =

∫ 𝜏

−∞
𝑓 (𝑥)𝑑𝑥 =

1
2
+
∫ 𝜏

𝑛𝑝

𝑓 (𝑥)𝑑𝑥 (1)

=
1
2
+
∫ 𝑛𝑝0+ (𝜏−𝑛𝑝 )√

𝑛𝑝 (1−𝑝 )

√
𝑛𝑝0 (1−𝑝0)

𝑛𝑝0

𝑓0 (𝑥)𝑑𝑥 ≥
1
2
+
∫ 𝜏

𝑛𝑝0

𝑓0 (𝑥)𝑑𝑥

Based on the maximum likelihood method, the existence of 𝑛𝑝
tuples with erroneous data in the dataset is considered most proba-
ble. Therefore, 𝜏 < 𝑛𝑝 indicates an unreasonable setting for 𝜏 . In
fact, 𝜏 should be generated by a learning algorithm, rather than
exposed directly to users, to avoid issues with an unreasonable
setting of 𝜏 . Furthermore, since the probability of error for each
attribute is sufficiently small, it is evident that 𝑝0 < 0.5.

In summary, the following conclusion holds:

DAFD-𝑝𝑟𝑜𝑏 = Pr( |= 𝜓𝐹𝐷 ) ≥ Pr(𝐸𝐴) ≥
1
2
+
∫ 𝜏

𝑛𝑝0

𝑓0 (𝑥)𝑑𝑥.

When 𝜏 is known, it is possible to calculate a lower bound for the
probability that𝜓𝐹𝐷 is valid, i.e., a lower bound for DAFD-𝑝𝑟𝑜𝑏.
4.5.3 Robustness evaluation of DAFDiscover . The above equation
establishes the lower bound of the reliability of the mining results,
assuming a constant number of dependency violations in the dirty
dataset. However, data characteristics should factor into reliability
assessments. People often trust dependencies with fewer violations
more, even in dirty datasets. Thus, reliability evaluations should
consider both the support and validity probability perspectives.

Consider a DAFD 𝜑 in the result set Σ with support denoted
as 𝑠𝑢𝑝 . The upper limit of erroneous data proportion for attribute
𝐴𝑖 is set based on the 3𝜎 principle [39]. From the support view-
point, it is evident that the support of 𝜑 satisfies: 𝑠𝑢𝑝 ≥ 1 −∑︁

𝐴𝑖 ∈𝑋∪𝑌 (𝑎𝑖𝑛+3
√
𝑛𝑎𝑖 (1−𝑎𝑖 ))

𝑛 , where 𝑋 ∪ 𝑌 ⊆ 𝐴𝑡𝑡𝑟 (R), and thus |𝑋 ∪
𝑌 | ≤ 𝑚. Therefore, when𝑚 is small and 𝑛 is sufficiently large, based
on assumptions in Section 3.2.1,

∑︁
𝐴𝑖 ∈𝑋∪𝑌 𝑎𝑖 should be sufficiently

small, leading to a sufficiently large 𝑠𝑢𝑝 for 𝜑 . Table 3 illustrates the
relation between𝑚, 𝑎𝑖 , and 𝑠𝑢𝑝 . It highlights a relatively small𝑚,
sufficiently small 𝑎𝑖 , and a sufficiently large 𝑛 yield a large support
for 𝜑 . Thus, from the perspective of support, the result Σ is reliable.

Note that the values of 𝑠𝑢𝑝 in Table 3 actually represent the lower
bounds of the support for 𝜑 , and the actual support is often greater
than the values shown in Table 3. Additionally, in real datasets,
there may be order-of-magnitude differences in 𝑎𝑖 for different
attributes, and Table 3 has been simplified for ease of estimation.
It reports that when the order of magnitude of

∑︁
𝑎𝑖 is not greater

than 10−3, the mining results tend to have relatively ideal support.

Table 4: Summary of datasets

Dataset #Tuples #Attributes #FDs
Abalone[31] 4177 9 137

Chess[4] 28056 7 1
Breast-cancer[41] 699 11 46

Forestfires[12] 517 13 442
Air-quality[37] 9358 15 1765

Bike-sharing[17] 731 16 519
Diabetic[30] 2278 10 55
Raisin[10] 900 8 43

Bitcoinheist[1] 2916697 10 -
Caulkins[11] 1685 12 227
Hughes[11] 400 8 3

From the perspective of DAFD-𝑝𝑟𝑜𝑏, it has:

DAFD-𝑝𝑟𝑜𝑏 =
1
2
+
∫ 𝑛𝑝0+ (𝜏−𝑛𝑝 )√

𝑛𝑝 (1−𝑝 )

√
𝑛𝑝0 (1−𝑝0)

𝑛𝑝0

𝑓0 (𝑥)𝑑𝑥 (2)

≥ 1
2
+
∫ 𝑛𝑝0+3

√
𝑛𝑝0 (1−𝑝0)

𝑛𝑝0

𝑓0 (𝑥)𝑑𝑥 ≥ 0.997 (3)

Here, 𝜏 =
∑︁
𝐴𝑖 ∈𝑋∪𝑌 (𝑎𝑖𝑛 + 3

√︁
𝑛𝑎𝑖 (1 − 𝑎𝑖 )). For a high-probability

input upper bound, DAFDiscover yields mining results with high
validity probability. This confirms the reliability of DAFDiscover’s
mining results and demonstrates the robustness of our proposed
DAFD discovery solution.

5 EXPERIMENTAL EVALUATION

5.1 Experimental setting

Experimental dataset. We employed eleven real-world datasets,
most of which are commonly used and considered classics in the
data dependency mining field, as summarized in Table 4.
ComparisonMethods. We implementDAFDiscover(+) and com-
pare them with the following baseline methods: • Tane, a classical
schema-driven AFD mining algorithm [19]. • Pyro: A SOTA AFD
mining method that traverses the entire search space through as-
cend and trick-down phases, with stripped partitions to mine all
AFDs [23]. • HyFD: A hybrid and full-scale FD mining algorithm
[33]. • FDx: An FD mining method based on structure learning for
noisy data [44]. • MiDD: A brute-force mining algorithm based on
the mutual information score metric 𝐼 (𝑋,𝑌 )

𝐼 (𝑌,𝑌 ) [28]• SoFD: A naive
mining algorithm for soft functional dependencies[21].
Metrics. Algorithm performance is evaluated with: (1) Mining re-
sult quality, assessed by precision 𝑃 =

#𝜑 (valid&discovered)
#𝜑 (discovered) , recall

𝑅 =
#𝜑 (valid&discovered)

#𝜑 (valid) , F1= 2·𝑃 ·𝑅
𝑃+𝑅 , and the number of discovered

dependencies. (2) Scalability, gauged by execution time and maxi-
mum memory. (3) The accuracy of DAFDs in reflecting actual FDs
in error-prone data, evaluated by DAFD-𝑝𝑟𝑜𝑏 and support.
Implementation. Considering the absence of standard datasets
for evaluating dependencies on dirty data, we enhance real datasets
by duplicating them (i.e., data×128) and adopt the noise injection
method of adding "*" from Bart[3] to introduce errors. Noise is in-
troduced into each attribute based on a set upper limit or probability
(noi%), simulating real-world data errors.

It is crucial to mention that for metric (1) calculation, the golden
standard for AFD and DAFD candidates is the mining results from
clean datasets, considered as all valid FDs for dirty datasets. Specif-
ically, HyFD and Pyro use their respective clean dataset mining
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Table 5: Overall performance comparison

Methods Breast-cancer (7K) Chess (10K) Forestfires (6K) Abalone (40K) Raisin (10K)
𝑃 𝑅 𝐹1 𝑁𝑢𝑚 Time 𝑃 𝑅 𝐹1 𝑁𝑢𝑚 Time 𝑃 𝑅 𝐹1 𝑁𝑢𝑚 Time 𝑃 𝑅 𝐹1 𝑁𝑢𝑚 Time 𝑃 𝑅 𝐹1 𝑁𝑢𝑚 Time

DAFDiscover 1 1 1 89 9.84 1 1 1 18 11.88 1 1 1 140 31.69 1 1 1 130 14.93 1 1 1 49 1.27
DAFDiscover+ 1 1 1 89 9.49 1 1 1 18 10.82 1 1 1 140 29.95 1 1 1 130 14.94 1 1 1 49 1.32

Tane 1 0.88 0.94 79 10.52 1 1 1 18 11.17 1 1 1 140 24.59 1 1 1 130 13.75 0.81 0.55 0.67 32 1.76
Pyro 0.01 0.01 0.01 104 1.28 1 1 1 49 0.69 0.03 0.04 0.03 102 5.25 0.01 0.03 0.02 80 2.11 0.02 0.07 0.03 61 0.44
HyFD 0.81 0.51 0.63 49 2.95 1 0.5 0.67 1 6.99 0.79 0.64 0.71 88 1.81 0.60 0.57 0.59 111 11.46 0.8 0.43 0.56 20 0.96
MiDD 0.92 0.71 0.83 71 38.96 1 0.66 0.8 12 28.62 0.93 0.82 0.88 124 114.52 1 0.89 0.94 116 22.31 0.8 0.40 0.54 25 3.83
SoFD 0.63 0.67 0.65 95 15.41 1 0.66 0.8 12 12.89 0.47 0.60 0.53 179 50.66 0.47 0.46 0.47 127 20.76 0.8 0.40 0.54 25 2.06
FDx - - - 10 0.84 - - - 4 5.77 - - - 12 6.38 - - - 8 3.41 - - - 7 0.77

outcomes as a comparison baseline, while FDx lacks a suitable base-
line, thus omitting 𝑃 , 𝑅, and 𝐹1 calculations. For other algorithms,
the Tane FD mining results on clean datasets serve as the baseline.

Table 6: Robustness verification (with noise injection)

Dataset #col #row DAFD instances DAFD-𝑝𝑟𝑜𝑏 𝑠𝑢𝑝

Breast-cancer 11 699 Scn,Mitoses→NoNu 0.9986 0.9871
𝑛𝑜𝑖%: Scn,NoNu→Mitoses 0.9986 0.9971
NoNu:0.005 Scn,Mitoses→Class 0.9988 0.9986
Class: 0.001 Scn,ClTh→ NoNu 0.9986 0.9987

Scn,ClTh→ Class 0.9988 0.9986
Caulkins 12 1685 L’n,Drug→ DrCd 0.9999 1
𝑛𝑜𝑖%: Drug,AbPu→ DrCd 0.9987 0.9994
QinG:0.01 Drug,QinG→ DrCd 0.9986 0.9982
HiPu: 0.005 Drug,HiPu→ DrCd 0.9986 1
AbPu:0.001 QinG,Pure→ AbPu 0.9999 0.9958
Hughes 8 401 hr,grp→ confirm 0.9986 0.9776
𝑛𝑜𝑖%: test:0.02 dtime,grp→ dstatus 0.9986 0.9875
dstatus: 0.005 h1,hr,grp→ dstatus 0.9986 0.9825
confirm: 0.005 dtime,grp→ confirm 0.9986 0.9850
result: 0.01 h1,grp,test→ dstatus 0.9986 0.9776

5.2 Overall performance evaluation

We validate the overall performance of the mining results in Table
5, with the labeled the amount of augmented data. It demonstrates
that both DAFDiscover and the DAFDiscover+ yield identical
mining outcomes. Under the fundamental assumptions outlined
in the paper, these algorithms achieve perfect 𝑃 and 𝑅 (both at 1)
in mining dependency relationships from low-quality data. Fur-
thermore, it reveals that Tane performs well in terms of 𝑃 and 𝑅
compared to other SOTA methods. This confirms the reliability
and validity of our choice to use Tane as the foundation for con-
structing the DAFD mining approach. WhileMiDD exhibits high
precision, its recall is relatively low. SoFD andHyFD display moder-
ate performance in both 𝑃 and 𝑅. These observations highlight the
limitations of existing SOTA methods that rely on fixed parameters
to control the tolerance for violating tuples. Even though adjusting
these parameters can potentially improve a 𝑃 and 𝑅, the tuning pro-
cess itself introduces additional operational costs and reduces the
algorithms’ usability. The results further emphasize the necessity
of incorporating dynamic thresholds into AFDs.
5.3 Robustness verification of DAFDiscover

We simulate a noisy data environment by introducing noise with a
fixed probability to several attributes of the dataset. The experimen-
tal results are summarized in Table 6, where we presents part of
mined DAFD results. The results show that the DAFD-𝑝𝑟𝑜𝑏 values
of the DAFDs discovered by DAFDiscover are not less than 0.997,
which aligns with the theoretical analysis presented in Section 4.5.2.
Additionally, the support values of the mining results are not less
than 0.95. These findings indicate that the mining results exhibit
good performance in both DAFD-𝑝𝑟𝑜𝑏 and support metrics, demon-
strating the high reliability of the proposed DAFDiscover when
dealing with low-quality data.

Table 7: Performance comparison on dirty datasets that not

satisfies the assumptions

Chess (×15) Raisin (×15) Bike-sharing (×15)
𝑃 𝑅 𝐹1 Num 𝑃 𝑅 𝐹1 Num 𝑃 𝑅 𝐹1 Num

DAFDiscover 1 1 1 1 0.88 1 0.93 49 0.77 0.57 0.65 111
DAFDiscover+ 1 1 1 1 0.88 1 0.93 49 0.77 0.57 0.65 111

Tane 0.5 1 0.67 2 0.69 0.79 0.74 49 0.58 0.31 0.40 80
MiDD 0 0 - 2 0.88 1 0.93 49 0.22 0.11 0.14 72
SoFD 0.5 1 0.67 2 0.88 1 0.93 49 0.37 0.15 0.22 63

Chess (×20) Raisin (×20) Bike-sharing (×20)
DAFDiscover 0.5 1 0.67 2 0.88 1 0.93 49 0.73 0.52 0.61 107

DAFDiscover+ 0.5 1 0.67 2 0.88 1 0.93 49 0.73 0.52 0.61 107
Tane 0.5 1 0.67 2 0.69 0.79 0.74 49 0.54 0.28 0.37 78
MiDD 0 0 - 1 0.88 1 0.93 49 0.22 0.11 0.14 72
SoFD 0.5 1 0.67 2 0.88 1 0.93 49 0.37 0.15 0.22 63

Chess (×25) Raisin (×25) Bike-sharing (×25)
DAFDiscover 1 1 1 1 0.88 1 0.93 49 0.71 0.50 0.59 106

DAFDiscover+ 1 1 1 1 0.88 1 0.93 49 0.71 0.50 0.59 106
Tane 0.5 1 0.67 2 0.69 0.79 0.74 49 0.70 0.34 0.46 73
MiDD 0 0 - 1 0.88 1 0.93 49 0.22 0.11 0.14 72
SoFD 0.5 1 0.67 2 0.88 1 0.93 49 0.71 0.39 0.50 82

Table 8: Ablation evaluation of the key pruning strategy

Abalone Raisin Bitcoinheist
𝑃 𝑅 𝑁𝑢𝑚 𝑃 𝑅 𝑁𝑢𝑚 𝑃 𝑅 𝑁𝑢𝑚

DAFDiscover 1 1 246 1 1 44 1 1 69
DAFDiscover+ 1 1 246 1 1 44 1 1 69

nTane 0.91 0.75 202 0.89 0.89 44 0.97 0.93 66
nTane+ 0.96 0.87 225 1 0.98 43 1 0.93 64

Tane-base - - 246 - - 44 - - 69
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Figure 3: Scalability evaluation with varying data amounts

To further validate the robustness, we conduct tests on dirty
datasets that do not satisfy the assumptions outlined in this paper.
These tests focused primarily on assessing algorithm performance
under scenarios of amplified attribute error rates and the introduc-
tion of dependent errors. Specifically, compared to the experimental
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Table 9: A case study comparing the effectiveness of dependency mining on dirty data

Dataset Dependencies DAFDiscover HyFD Tane Pyro SoFD FDx MiDD

Air-quality temperature→ temperature_suitability (valid)
√ √ √ √

relative_humidity→ humidity_comfort_level (invalid)
√ √ √ √

Bike-sharing month→ quarter (valid)
√ √ √

weekday→ workingday (invalid)
√ √ √ √

Diabetic RIDAGEYR→ age_group (valid)
√ √

LBXIN→ DIQ010 (invalid)
√ √ √

settings in Section 5.2, we extend the noise levels to 15, 20, and
25 times for three datasets. Additionally, some non-independent
noises are introduced during the noise injection. The experimental
results are reported in Table 7. DAFDiscover(+) still outperforms
other methods overall. Regarding the mining results on Raisin,
our analysis suggests that due to the presence of numerous key
attributes, changes in noise injection effects are not significant with-
out substantial variations in noise injection levels. Consequently,
several algorithms exhibit similar mining performance across differ-
ent noise injection levels. On Bike-sharing dataset, although high
noise rates affect the absolute performance of DAFDiscover(+), its
advantage over other algorithms remains evident.

5.4 Scalability evaluation with varying tuples

We evaluate the scalability performance on five datasets with data
amplification, as the results depicted in Figure 3. Regarding time
performance, DAFDiscover+ exhibits similar trends and compara-
ble time costs across all datasets. The time costs of DAFDiscover+
on Chess increase linearly with the number of tuples, aligning with
our expectations. However, on Abalone and Breast-cancer, while
the time costs initially increase linearly for up to 25𝐾 tuples, there
is a sharp rise in execution time for Abalone at that point, and a
deceleration in growth rate for Breast-cancer beyond 4000 tuples.

In terms of space performance, the trends of DAFDiscover+
change on Abalone and Breast-cancer. Similar patterns appear in
the schema-driven strategies of Tane, MiDD, and SoFD, we hy-
pothesize that these variations are due to alterations in the pruning
process during traversal induced by data amplification and memory
limitations when handling larger tuple counts. Tane exhibits the
lowest time and space costs due to its aggressive pruning strategy
and lack of need to store additional information for attribute sets
at each node. Conversely,MiDD and SoFD incur higher time and
space overhead due to their more conservative pruning approaches.

HyFD shows a decrease in runtime with increasing tuples, at-
tributed to fewer iterations in mining resulting from dependency
variations. The absolute time and space costs of HyFD and Pyro
are also lower. While DAFDiscover+ has higher consumption than
HyFD and Pyro due to the added computational cost of calculat-
ing dynamic thresholds, overall, DAFD more accurately captures
dependencies underlying dirty data compared to FD and AFD.

5.5 Ablation study on pruning step

We conduct an ablation study on the key pruning step, compar-
ing three strategies: (1) nTane, which substitutes the key pruning
approach in DAFDiscover with that of Tane; (2) nTane+, which
modifies the pruning strategy in DAFDiscover+ to immediately
remove nodes in the subsequent level that contain all attributes
of a node deemed as an approximate superkey during pruning.
This mirrors Tane’s pruning principle but extends it to approxi-
mate superkeys. We used the mining results of Tane-base, derived
from DAFDiscover by eliminating key pruning, as the baseline for

comparison. As shown in Table 8, while the Tane’s key pruning
sometimes leads to slightly reduced execution time, it can result in
erroneous pruning (as analyzed in Section 4.2.2). Conversely, the
key pruning strategies employed in DAFDiscover and DAFDis-
cover+ yield identical mining outcomes as the unpruned algorithm,
highlighting the necessity of our proposed key pruning approach
in designing accurate DAFD mining algorithms.
5.6 Case study

We compare the effectiveness of DAFD and other FD forms in dis-
covering dependencies on dirty data. We evaluate various FD forms
based on their ability to correctly discover known semantically de-
pendent relationships and accurately exclude invalid dependencies.

Results in Table 9 show DAFDiscover consistently and accu-
rately identifies valid dependencies while avoiding false positives in
noisy datasets. Other algorithms, however, exhibit varying degrees
of misjudgment or error. HyFD fails to recognize temperature→
temperature_suitability due to dirty data present in the attribute,
highlighting the lack of robustness of the FD rule form against dirty
data. While Tane and Pyromiss the invalidity because the constant
𝜖 used in AFD is significantly higher than the upper limit of erro-
neous data for humiditycomfortlevel. SoFD and MiDD incorrectly
handle these dependencies, reflecting the limitations of using fixed
thresholds to statically determine tolerance for low-quality data in
expressing dependencies. Furthermore, FDx’s failure to correctly
identify the relationships indicates that the structure learning strat-
egy alone cannot fully address these limitations inherent in static
threshold-based approaches.

These results demonstrate that the propose DAFD can effectively
adapt to dirty data with significant variations in the upper limit of
erroneous data proportions across different attributes.

6 CONCLUSIONS

This paper introduces DAFD, a novel AFD form that dynamically
tolerates dirty data by incorporating data source information. We
analyze its properties and establish its mapping relationship with
traditional FDs. We propose DAFDiscover, an algorithm for min-
ing DAFDs, and investigate the characteristics of its mining results.
Experimental results demonstrate the superiority of our approach
in dependency mining from dirty data. Future research directions
include (1) continuously optimizing the time complexity of DAFDis-
cover and (2) extending the concept of dynamic AFD to other more
expressive quality constraints, such as denial constraints.
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