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ABSTRACT
The schemalessness, one of the major advantages of JSON represen-

tation format, comes with high penalties in querying and operations

by denying various critical functions such as query optimizations,

indexing, or data verification. There have been continuous efforts

to develop an accurate JSON schema discovery algorithm from a

bag of JSON documents. Unfortunately, existing schema discovery

techniques, being top-down algorithms, face challenges from the

lack of visibility into children nodes of JSON tree. With absence

of the information about lower-level JSON elements, top-down

algorithms need to employ assumptions and heuristics to decide

the schema type of nodes. However, such static decisions are often

violated in datasets which causes top-down algorithms to perform

poorly. To overcome this, we propose an algorithm, called ReCG,
that processes JSON documents in a bottom-up manner. It builds

up schemas from leaf elements upward in the JSON document tree

and, thus, can make more informed decisions of the schema node

types. In addition, we adopt MDL (Minimum Description Length)

principles systematically while building up the schemas to choose

among candidate schemas the most concise yet accurate one with

well-balanced generality. Evaluations show that our technique im-

proves the recall and precision of found schemas by as high as 47%,

resulting in 46% better F1 score while also performing 2.11× faster

on average against the state-of-the-art.

PVLDB Reference Format:
Joohyung Yun, Byungchul Tak, and Wook-Shin Han. ReCG: Bottom-Up

JSON Schema Discovery Using a Repetitive Cluster-and-Generalize

Framework. PVLDB, 17(11): 3538 - 3550, 2024.

doi:10.14778/3681954.3682019

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at

https://github.com/postechdblab/VLDB2024_ReCG.

1 INTRODUCTION
JSON (JavaScript Object Notation) is a widely used data represen-

tation format that has become de-facto standard for RESTful Web

API’s data exchanges [2, 23, 30, 44] and big data analytics [5, 10, 16,

27, 31, 40, 41]. Accordingly, efficient processing of massive volumes

of JSON data and querying has become critical for services and
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(a) Example true schema (b) Likely schema found by top-down algorithm
[ {"Library": "0", "Proxy": "200", "Runs": "1"},
   {"Library": "1", "Proxy": "200", "Runs": "10"},
   {"Library": "2", "Proxy": "404", "Runs": "2"} ]

[ {"address": "0xba9b", "data": "0x0000"},
   {"address": "0x891a", "data": "0x0001"} ]

(c) 2 Example JSON document instances

[ {"Library": "0", "Proxy": "304", "Runs": "4"},
  {"Library": "5", "Proxy": "200", "Runs": "8"},
  {"address": "0x534e", "data": "0x0010"} ]

(d) Example JSON document instance 
accepted by incorrect schema

* *

Figure 1: Illustration of top-down approach’s limitation. It
may lead to incorrect results (b) due to lack of visibility.

operations. However, the efficiency of these operations is often

hindered by the lack of schemas for the JSON documents at hand.

Although the lack of strict schema enforcement of JSON format

offers flexibility and rapid deployability, it instead exacerbates the

data management costs by making it difficult to apply various op-

erations [42]. Schemas are essential for many important use cases

such as JSON validation [3, 34], JSON parsing acceleration [27, 31],

migration of two data sources with different schemas [43], query

formulation [15, 48], query optimizations [7, 9, 18, 33], fine-grained

access control [42], JSON-to-relational data translation [13, 25, 46],

and query answering [47]. Despite these practical benefits, JSON

schemas are often nonexistent or unavailable to the users and, thus,

have to be derived from a given set of JSON documents.

Due to the importance of JSON schemas, the JSON schema dis-

covery (JSD) problem and topics related to the JSON schema formal-

ization have been investigated [3, 4, 6, 11, 16, 21, 34, 38, 42]. Despite

many efforts, deriving correct JSON schemas from JSON documents

remains difficult due to several reasons. First, the ground truth

schema set we want to derive may not exist in the first place for the

given JSON documents. It is not uncommon that JSON documents

are created without explicit schemas defined in advance. Users of

JSON data prefer to create, load, and use the data quickly without

the burden and delay from the schema construction task [32, 39].

The lack of a predefined schema also implies that the representation

of objects in JSON can be inconsistent and has a high degree of

variability [24]. Second, the derivation of a huge number of correct
and valid schema sets is possible for a given JSON document set,

but with varying degrees of generality. If the derived schemas are

too general, the data validation becomes ineffective [38]. Moreover,

the specific details of the schemas have to be eventually encoded

into the query which increases the query processing overhead dur-

ing the execution. On the other hand, if too specific, the size of

the schema set increases and the schema handling costs rise sig-

nificantly. A working solution to JSD problem should be able to

find the schema with the right balance between representational

simplicity and details within the vast search space of valid schemas.
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A JSON schema can be viewed intuitively as having a tree-like

hierarchical structure as shown in Figure 1 (a). The intermediate

nodes in this tree structure are either objects or arrays that re-

cursively hold other objects, arrays, or primitive types. The goal

of the JSON schema discovery (JSD) problem is to learn this tem-

plate structure from a given bag of JSON documents. Two example

JSON documents are shown in Figure 1 (c). The top-down style

of JSON schema discovery, adopted by the state-of-the-art algo-

rithms [4, 6, 38], starts processing from the root and it proceeds

down to the subsequent child levels repeatedly. However, this top-

down approach faces the following nontrivial challenges. When a

new node is encountered, it can be difficult to determine the correct

node types (e.g., ARR, OBJ, ANYOF) since it has to be done without the
knowledge of yet unseen lower-level nodes. This inevitably leads

to the use of heuristics to make the best-effort decision of what the

true type of the current node is. For example, at the shaded region

of Figure 1 (a), it illustrates one possible case where the top-down al-

gorithm failed to differentiate two types of objects and, thus, comes

up with the incorrect (and overly general) schema as shown in (b)

which accepts a mixture of objects. In addition, existing algorithms

make a decision of node types rigidly even when there are other

possible candidates at each decision point. This leaves little chance

to rectify incorrect decisions made at the upper level when the

processing reaches the descendant nodes where decision errors

become evident.

To overcome the limitations of top-down approaches, we have

developed a methodology, called ReCG, that employs three tech-

niques. First, we systematically explore candidate JSON schema sets
comprehensively by incrementally generalizing them from specific
schemas to the most general ones.As Figure 2 illustrates, there can be
schema sets with varying generality for the same JSON document

sets at some point during the JSON schema discovery. We do not at-

tempt to guess the correct one during processing as any choice has

the potential to grow to be the true schema when schema discovery

is completed. Second, we employ the MDL (Minimum Description
Length) metric to our JSON schema discovery problem as a metric that
guides us to select the most promising candidate schema set during
the navigation of the search space. The MDL metric, used success-

fully in XTRACT [22] for computing DTD’s information size, can be

used here to compute the number of bits required to represent the

schema and the data (JSON document) instances. We demonstrate

in our evaluation its validity as a metric for assessing the good-

ness of JSON schema set. Third, we design a novel bottom-up style
JSON schema discovery algorithm that departs from the existing

approaches. We argue that the bottom-up style of processing is

inherently better suited to the JSON schema discovery problem. At

any intermediate node, the determination of a node type is better

informed since the knowledge of descendant nodes is already ac-

quired. Any two nodes of identical type can actually be disparate

when their children and descendants are taken into account. By

using this bottom-up style approach, we can expect to reduce the

uncertainty in making decisions and the reliance on heuristics.

We have designed and implemented the prototype of our tech-

nique and evaluated it using 20 real-world JSON datasets. Our eval-

uation showed that ReCG delivered the 42.57 ∼ 47.80% improved

F1 score compared to the state-of-the-art technique. We observed

this was due to 39.36 ∼ 46.84% improvements in recall and 15.55
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Figure 2: Schema sets with varying generality. More general
schema sets are created by merging more specific sets.

𝐽 ::= 𝑃 | 𝑂 | 𝐴
𝑃 ::= null | true | false | 𝑛 | 𝑠 (𝑛 ∈ Number, 𝑠 ∈ String)
𝑂 ::= { 𝑘1:𝐽1,. . . ,𝑘𝑛:𝐽𝑛 } (𝑛 ≥ 0, 𝑖 ≠ 𝑗 =⇒ 𝑘𝑖 ≠ 𝑘 𝑗 )
𝐴 ::= [ 𝐽1,. . . ,𝐽𝑛 ] (𝑛 ≥ 0)

Figure 3: Grammar of JSON documents

∼ 23.33% improvements in precision. In terms of the algorithm

running time, ReCG outperformed the state-of-the-art by 2.11×.
We make the following contributions. First, we design a novel

bottom-up algorithm, called ReCG for the JSON schema discovery

problem that addresses major issues of existing algorithms. Accom-

panied by a technique for systematic search of schema sets by the

specificity and the metric for assessing the goodness, our technique

exhibits much-improved precision and recall against competing

algorithms. Second, we provide supporting evidence that demon-

strates the effectiveness of our technique using real-world data sets.

Third, we make a prototype implementation of our technique as

well as the dataset publicly available for the research community.

2 BACKGROUND
2.1 Definition
2.1.1 JSON document. We adopt the definition of JSON document

introduced in the work by Baazizi et al. [6]. JSON documents are

a set of strings that are derived from the grammar described in

Figure 3. The derivation starts from a non-terminal 𝐽 . It transitions

to either 𝑃 (primitive JSON document),𝑂 (object), or 𝐴 (array). The

non-terminal 𝑃 further transitions to one of the following:

• Number type JSON document: C-like number. The set of these

numbers is denoted as Number.
• String type JSON document: double-quoted sequence of zero

or more Unicode characters. The set of such double-quoted

sequences is denoted as String.
• Boolean type JSON document: true or false

• Null type JSON document: null

The non-terminal 𝑂 is derived to an object, which is an unordered

set of (key, JSON document) pairs. An object begins with ‘{’ and
ends with ‘}’, and the pairs are separated by ‘,’. We denote the

pairs within an object as key-value pairs. 𝐴 is derived to an array,

which is an ordered sequence of JSON documents. We call the JSON

documents within the sequence of array as elements. An array

begins with ‘[’ and ‘]’, with elements separated by ‘,’. The JSON
document can be recursively defined. That is, JSON documents

derived from 𝐽 can recursively occur within objects and arrays.
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2.1.2 JSON Schema. JSON schemas are a set of strings in the Backus-
Naur form grammar, introduced by Pezoa et al. [34]. We adopt a

subset of Pezoa et al.’s production rules since real-life schemas use

only a limited subset of grammars, as introduced specifically by

Spoth et al. [38]. The grammar of our interest is shown in Figure 4,

and we denote a JSON schema as S. In this grammar, non-terminals

are expressed in italic, and the terminals are expressed in consolas.

2.1.3 Homogeneity and Heterogeneity of Object and Array Schemas.
For object schemas, derivations from ℎ𝑜𝑚𝑂 and ℎ𝑒𝑡𝑂 impose con-

straints on the key-value pairs of an object. Derivation from ℎ𝑜𝑚𝑂

imposes objects to be homogeneous; keys that can be present within

an object’s key-value pairs are determined as 𝑘𝑒𝑦s. Also, the corre-

sponding value for each 𝑘𝑒𝑦 must be validated against the schema

derived by 𝐽𝑆 (look 𝑘𝑒𝑦 : 𝐽𝑆 at the right-hand side of 𝑝𝑟𝑜𝑝). 𝑟𝑒𝑞 is

used to list the keys that must be present in an object. Meanwhile,

derivation from ℎ𝑒𝑡𝑂 imposes objects to be heterogeneous. The
number of key-value pairs is unconstrained and the keys may be

any random string. However, the values must be validated against

the schema derived from 𝐽𝑆 . We name object schemas that have

ℎ𝑜𝑚𝑂 non-terminal derived as homogeneous object schemas, and
ℎ𝑒𝑡𝑂 derived as heterogeneous object schemas. Object schemas with

derivations from both ℎ𝑜𝑚𝑂 and ℎ𝑒𝑡𝑂 are composite object schemas.
For array schemas, derivation from ℎ𝑜𝑚𝐴 imposes arrays to be

homogeneous; the number of elements within an array must be

fixed, and each element at index 𝑖 must be validated against the

𝑖𝑡ℎ schema paired by the key "items". Whereas, derivation from

ℎ𝑒𝑡𝐴 imposes arrays to be heterogeneous. The number of elements

may vary for an array, but its elements should all be validated

against the schema derived from the non-terminal 𝐽𝑆 paired by

the key "items". We name array schemas that have ℎ𝑜𝑚𝐴 non-

terminal derived as homogeneous array schemas, and ℎ𝑒𝑡𝐴 derived

as heterogeneous array schemas.
Lastly, derivation from 𝑎𝑛𝑦𝑂𝑓 is named as anyOf schema. It

can have many schemas derived from 𝐽𝑆s paired by the keyword

"anyOf". An anyOf schema validates against a JSON document 𝑗 if

and only if one or more of its derivations can validate against 𝑗 .

2.2 JSON Document Instance and Schema
Representation

2.2.1 JSON Instance Tree. We model JSON documents as JSON
instance trees, which are node-typed, node-labeled and edge-labeled
trees. Instance trees are extensions from JSON trees introduced
by Hutter and Augsten et al. [16]. We define an instance tree as

𝐼 = (𝑉𝐼 , 𝐸𝐼 ,Ψ𝐼 ,Λ𝐼 , Γ𝐼 ) with the following notations.

• 𝑉𝐼 is a set of nodes.

• 𝐸𝐼 ⊆ 𝑉𝐼 ×𝑉𝐼 is a set of edges.
• Ψ𝐼 : 𝑉𝐼 → {𝑜𝑏 𝑗, 𝑎𝑟𝑟, 𝑝𝑟𝑚} maps each node to its node type.

• Λ𝐼 : 𝑉𝐼 → Number ∪ String ∪{true,false,null, 𝜖} maps a

node to its label. 𝜖 means an empty label.

• Γ𝐼 : 𝐸𝐼 →String ∪{𝜖} maps each edge to its edge label.

We transform a JSON document to a JSON tree as follows. Prim-

itive JSON documents each become nodes with the type of 𝑝𝑟𝑚.

The nodes are further labeled with the values of JSON documents.

Objects become nodes of type 𝑜𝑏 𝑗 (labeled as 𝜖) with the nodes of

its values as children. The edge connecting an object node to its

𝐽 𝑆 ::= { 𝑆𝑐ℎ𝐶𝑜𝑛𝑡 } 𝑝𝑟𝑜𝑝 ::= , "properties": { (𝑘𝑒𝑦 : 𝐽 𝑆, )∗ }

𝑆𝑐ℎ𝐶𝑜𝑛𝑡 ::=
𝑠𝑡𝑟𝑆𝑐ℎ | 𝑛𝑢𝑚𝑆𝑐ℎ | 𝑏𝑜𝑜𝑙𝑆𝑐ℎ | 𝑛𝑢𝑙𝑙𝑆𝑐ℎ 𝑟𝑒𝑞 ::= , "required": [ (𝑘𝑒𝑦 , )∗ ]
| 𝑜𝑏 𝑗𝑆𝑐ℎ | 𝑎𝑟𝑟𝑆𝑐ℎ | 𝑎𝑛𝑦𝑂𝑓 𝑘𝑒𝑦 ::= 𝑠 (𝑠 ∈ String)

𝑠𝑡𝑟𝑆𝑐ℎ ::= "type": "string" ℎ𝑒𝑡𝑂 ::= , "additionalProperties": 𝐽 𝑆

𝑛𝑢𝑚𝑆𝑐ℎ ::= "type": "number" 𝑎𝑟𝑟𝑆𝑐ℎ ::= "type": "array" (ℎ𝑜𝑚𝐴 | ℎ𝑒𝑡𝐴)
𝑏𝑜𝑜𝑙𝑆𝑐ℎ ::= "type": "boolean" ℎ𝑜𝑚𝐴 ::= , "items": 𝐽 𝑆

𝑛𝑢𝑙𝑙𝑆𝑐ℎ ::= "type": "null" ℎ𝑒𝑡𝐴 ::= , "items": [ ( 𝐽 𝑆,)∗ ]
𝑜𝑏 𝑗𝑆𝑐ℎ ::= "type": "object" ℎ𝑜𝑚𝑂? ℎ𝑒𝑡𝑂? 𝑎𝑛𝑦𝑂𝑓 ::= "anyOf": [ ( 𝐽 𝑆,)+ ]
ℎ𝑜𝑚𝑂 ::=𝑝𝑟𝑜𝑝 𝑟𝑒𝑞?

Figure 4: BNF grammar of JSON schemas.

child is labeled with the key corresponding to the value of the child.

An array is converted to an 𝑎𝑟𝑟 (labeled as 𝜖) node with the 𝑖-th

element becoming the 𝑖-th child subtree.

2.2.2 Schema Tree. We also model a JSON schema as a tree, as it

is expressed in recursive forms that can be captured well as a tree.

A schema tree is a node-labeled, edge-labeled, and edge-typed tree

defined as 𝑠 = (𝑉𝑆 , 𝐸𝑆 ,Λ𝑆 , Γ𝑆 ,Φ𝑆 ) with the following definition.
• 𝑉𝑆 is a set of nodes. Each node represents a JSON schema.

• 𝐸𝑆 ⊆ 𝑉𝑆 ×𝑉𝑆 is a set of edges.

• Λ𝑆 : 𝑉𝑆 → { NUM,STR,BOOL,NULL,OBJ,ARR,ANYOF } maps

each node to its node label which corresponds to the type of

the schema.

• Γ𝑆 : 𝐸𝑆 → String ∪{ * , 𝜖 } maps each edge to its edge label.

An edge label expresses either the derivation from 𝑘𝑒𝑦 part in

the right side of 𝑝𝑟𝑜𝑝 , or an "additionalProperties" of ℎ𝑒𝑡𝑂
part with a Kleene star *. Edge label * indicates the heterogene-
ity of the schema node being the source node of that edge, while

𝑘𝑒𝑦 indicates homogeneity.

• Φ𝑆 : 𝐸𝑆 → { Required, Optional, 𝜖 } maps each edge to

its type. The type of edge is only meaningful when Λ𝑆 (𝑣) of
its source node 𝑣 is OBJ. It indicates whether a key of a ho-

mogeneous object schema is Required, or Optional. In our

visualization, edges of Required type are expressed as solid

lines, and edges of Optional are expressed as dotted lines.

For both instance trees and schema trees, we define an operator

𝑣 [𝑙] for a node 𝑣 and a label 𝑙 .

𝑣 [𝑙] =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑣 ′ if ∃𝑙 ∈ String , 𝑒 = (𝑣, 𝑣 ′) , Γ(𝑒) = 𝑙

𝑣 ′ else if ∃𝑙 ∈ Z+ , 𝑒 = (𝑣, 𝑣 ′) , 𝑣 ′ is 𝑙𝑡ℎ child of 𝑣

𝜖 otherwise

(1)

It is an operator that returns 𝑣 ′, the child subtree of 𝑣 such that

an edge 𝑒 = (𝑣, 𝑣 ′) exists which Γ(𝑒) is 𝑙 , or the 𝑙𝑡ℎ child subtree

of 𝑣 if Γ(𝑒) are all null. If such an edge does not exist, the return

value is 𝜖 . We denote 𝑒𝑙 as an edge of which Γ(𝑒) = 𝑙 . We denote

𝑒𝑑𝑔𝑒𝑙𝑎𝑏𝑒𝑙𝑠 (𝑣) as a set of labels of 𝑣 ’s outgoing edges.

2.3 Schema Assessment Metric: MDL Cost
The ideal set of JSON schemas should be general enough to accept all

given positive JSON document instances and be specific enough to

reject all negative JSON document instances. We need a method to

quantify such quality of a set of JSON schemas to navigate through

the search space. For this, we adopt the Minimum Description

Length (MDL) principle [22, 35, 36] to our JSD problem.

The MDL principle, based on the information theory, offers a

way to evaluate the adequacy of models inferred from a data set. It

states that the best theory to infer a model from a set of data is the

one that minimizes the sum of two components — Schema Repre-
sentation Cost (SRC) and Data Representation Cost (DRC). The best
model (i.e., set of JSON schemas in our problem settings) inferred
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from a set of data is the one that minimizes i) the number of bits

required to express the model and ii) the number of bits required to

encode the data using the model. The former tells us how general

the set of schemas is since, intuitively, the more general it is the

smaller the number of bits needed to represent it. However, if the

set of schemas is too general, the cost of the latter (i.e., data rep-

resentation) increases. The sum of both is referred to as MDL cost.
The set of schemas with a smaller MDL cost is considered better.

2.3.1 Applying MDL Cost to the JSD Problem: Given a JSON docu-

ment set 𝐷 , we define our cost function𝑀𝐷𝐿𝐶𝑜𝑠𝑡 as:

𝑀𝐷𝐿𝐶𝑜𝑠𝑡 (Z, 𝐷) = 𝑆𝑅𝐶 (Z) + 𝐷𝑅𝐶 (Z, 𝐷) (2)

whereZ is a set of schemas. SRC corresponds to component i) and
DRC corresponds to component ii) of the above.

SRC(Schema Representation Cost): We calculate SRC for

each S inZ and sum them all. We take two steps to encode a node-

labeled, edge-labeled tree into a string of bits. First, we encode S to

an equivalent string of symbols 𝑆𝑡𝑟 (S), then encode 𝑆𝑡𝑟 (S) again
to an equivalent string of bits. To encodeS to 𝑆𝑡𝑟 (S), we follow the

method used by Fishman et al. [19], and extend it by expressing edge

labels within the string. Specifically, a parent-children relationship

is expressed with parentheses (, and ). Each edge label 𝑙 is written

left to its corresponding child as a (edge label, child) pair. Each pair

is separated with a comma ‘,’. Second, we encode a sequence of
symbols into a sequence of bits [22]. Let Σ be the set of symbols

in sequences in 𝑆𝑡𝑟 (S).M is the set of metacharacters { OBJ, ARR,
NUM, STR, BOOL, NULL, ANYOF, (, ), ,, *, !, ? }. The length of 𝑆𝑡𝑟 (S)
is denoted with 𝑛. Then, 𝑆𝑅𝐶 (Z) can be defined as follows.

𝑆𝑅𝐶 (Z) =
∑︂
S∈Z

𝑆𝑅𝐶 (S)

𝑆𝑅𝐶 (S) = 𝑛 ⌈𝑙𝑜𝑔( |Σ ∪M|)⌉
(3)

The log term is the number of bits needed to encode a symbol in

Σ ∪M. This number of bits is needed for all 𝑛 symbols.

DRC(Data Representation Cost): DRC is defined in terms of

the minimum number of bits needed to express 𝐷 usingZ.

𝐷𝑅𝐶 (Z, 𝐷) =
∑︂
𝑗∈𝐷

min

S∈Z
𝐷𝑅𝐶 (S, 𝑗)

𝐷𝑅𝐶 (S, 𝑗) = |𝑠𝑒𝑞(S, 𝑗) |
(4)

Let 𝑠𝑒𝑞 be a function that returns the sequence of bits needed to

express 𝑗 using S. Since these choices are dependent on the schema

node’s type, we defined 𝑠𝑒𝑞 differently for each type of schema.

3 PROBLEM DEFINITION
Given a set of JSON documents 𝐷 , there can be a large number of

JSON schema sets with varying degrees of generality (or specificity)

that can accept𝐷 . At one extreme, the most specific set consists of a

set of schema whose set size equals the number of JSON documents,

and each schema accepts only one JSON document instance. On the

other side, we can have a set comprised of a single, most general

schema that universally accepts any JSON documents. A true set

of schemas we seek lies between these two extremes. Let 𝑗 be a

JSON document ( 𝑗 ∈ 𝐷),Z a set of schemas, and S an element of

Z. We adopt the ‘|=’ symbol such that 𝑗 |= S means 𝑗 satisfies S
as defined by Pezoa et al. [34] (Also see §2.1.2). We extend ‘|=’ to 𝑗

andZ, where 𝑗 |= Z ⇐⇒ ∃ S ∈ Z 𝑠 .𝑡 . 𝑗 |= S.

Algorithm 1 High-level outline of ReCG’s Algorithm

In 𝐷+ := A bag of JSON documents

In 𝑏 := beam width

Out Z𝐷+ := A discovered set of JSON schemas

1: 𝑠𝑖𝑛𝑖𝑡 ← 𝐷+, 𝑠𝑔𝑜𝑎𝑙 ← ∅, 𝑏𝑒𝑎𝑚 ← {𝑠𝑖𝑛𝑖𝑡 }
2: while true do
3: if 𝑏𝑒𝑎𝑚.Begin().IsLeafState() then
4: 𝑠𝑔𝑜𝑎𝑙 ← GetLowest(𝑏𝑒𝑎𝑚, 𝑘𝑒𝑦 =𝑀𝐷𝐿𝐶𝑜𝑠𝑡 )

5: break
6: 𝑛𝑒𝑥𝑡𝑆𝑡𝑎𝑔𝑒𝑆𝑡𝑎𝑡𝑒𝑠 ← ∅
7: for 𝑠 ∈ 𝑏𝑒𝑎𝑚 do
8: 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛𝑆𝑡𝑎𝑡𝑒𝑠 ← GenerateChildrenStates(𝑠)

9: 𝑛𝑒𝑥𝑡𝑆𝑡𝑎𝑔𝑒𝑆𝑡𝑎𝑡𝑒𝑠 ← 𝑛𝑒𝑥𝑡𝑆𝑡𝑎𝑔𝑒𝑆𝑡𝑎𝑡𝑒𝑠 ∪ 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛𝑆𝑡𝑎𝑡𝑒𝑠
10: SelectLowestK(𝑛𝑒𝑥𝑡𝑆𝑡𝑎𝑔𝑒𝑆𝑡𝑎𝑡𝑒𝑠 , 𝑘 = 𝑏, 𝑘𝑒𝑦 =𝑀𝐷𝐿𝐶𝑜𝑠𝑡 )

11: 𝑏𝑒𝑎𝑚 ← 𝑛𝑒𝑥𝑡𝑆𝑡𝑎𝑔𝑒𝑆𝑡𝑎𝑡𝑒𝑠

12: return GetDerivedSchemas(𝑠𝑔𝑜𝑎𝑙 )

We define JSON schema discovery (JSD) problem as the problem

of deriving a set of schemasZ from a given set of JSON documents

in such a way that the F1-score is maximized. Let𝐷+ and𝐷′+ be two
sets of JSON documents that are comprised of documents accepted

by the ground truth set of schemasZ𝐺 . Informally we call 𝐷+ and
𝐷′+ positive JSON document sets, and two may not necessarily

be the same set. Also, let Z𝐷+ be a set of schemas derived from

𝐷+. Similarly, we introduce a negative set 𝐷− as a set of JSON

documents that are not accepted byZ𝐺 .

Z = argmax

Z𝐷+
𝐹1(Z𝐷+ , 𝐷

′+, 𝐷−)

= argmax

Z𝐷+

2 × 𝑅𝑒𝑐𝑎𝑙𝑙 (Z𝐷+ , 𝐷
′+) × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(Z𝐷+ , 𝐷

′+, 𝐷−)
𝑅𝑒𝑐𝑎𝑙𝑙 (Z𝐷+ , 𝐷

′+) + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(Z𝐷+ , 𝐷
′+, 𝐷−)

(5)

In Equation 5, we define ‘Recall’ of a given schema setZ𝐷+ as:

𝑅𝑒𝑐𝑎𝑙𝑙 (Z𝐷+ , 𝐷
′+) = |𝐽 ′ |

|𝐷′+ | (6)

where 𝐽 ′ = { 𝑗 | 𝑗 ∈ 𝐷′+, 𝑗 |= Z𝐷+ }. That is, we regard the ratio

of positive JSON documents accepted by Z𝐷+ against the entire

given JSON documents 𝐷′+ as the recall. Ideally, all input JSON
documents 𝐷′+ should be accepted byZ𝐷+ .

We also define ‘Precision’ of a given schema setZ𝐷+ as:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(Z𝐷+ , 𝐷
′+, 𝐷−) = |𝐽

′ |
|𝐽 ′′ | (7)

where 𝐽 ′′ = { 𝑗 | 𝑗 ∈ {𝐷′+ ∪ 𝐷−}, 𝑗 |= Z𝐷+ }. If the derived set of

schemas ZD+ is imperfect, 𝐽 ′′ may contain both true and false

positive JSON documents together. In computing the precision, we

assume that we apply both 𝐷′+ and 𝐷− toZ𝐷+ .

4 DESIGN OF RECG
4.1 Terminologies
We define a few terms specific to our ReCG algorithm needed in the

rest of the paper. We use the term ‘instance’ to mean a tree-form

JSON document instance where the context is unambiguous.

4.1.1 level. The term ‘level’ of a node is defined to be the length of

the path from the root node of an instance tree to the target node.

The root node of an instance is considered to be level 1.

4.1.2 PD-instance. It stands for ‘Partially-Derived’ instance and
refers to a JSON document instance that is partially transformed
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Figure 5: The concepts of PD-instances and CD-instances.

(through our schema derivation process) into a schema form. Thus,

any nodes below some level 𝑙 in the instance tree have nodes con-

verted into schema nodes. We use 𝑝 symbol to represent a PD-

instance and P to represent a bag of PD-instances. Figure 5 shows

examples of PD-instances. It depicts three PD-instances at different

stages of derivation toward schema forms. PD-instance 𝑝1 is made

entirely of instance nodes but is trivially a PD-instance with no

schema nodes. PD-instances 𝑝2 and 𝑝3 have parts of their nodes

converted into schema node types.

4.1.3 CD-instance. We introduce the concept of CD-instancewhich

stands for ‘Children-Derived’ and the symbol 𝑐 is used to represent

an individual CD-instance. It is a partial instance tree whose root

node is the only instance node and all the descendant nodes are of

schema node types as shown in Figure 5 with annotations 𝑐1, 𝑐2
and 𝑐3. We use C to indicate a bag of CD-instances. We also define a

function 𝐿 that returns the level at which the root of CD-instances

are located within a PD-instance, i.e., 𝐿 : P → Z≥0.

4.2 Schema Search Space
Our search space consists of states that represent various stages

of a schema discovery process. The initial single state is made en-

tirely of JSON document instances (i.e., instance forest). As the

schema discovery progresses, the search space fans out with dif-

ferent candidate states that contain partially derived schema sets,

the PD-instances. At each stage of ReCG’s bottom-up processing, it

generates a spectrum of candidate schema sets that have a varying

degree of generalities.

4.2.1 Definition of State. We define a state as a set of PD-instances

whose 𝐿(𝑝) values are identical for those in which CD-instance

exists. A state is denoted as 𝑠𝑖, 𝑗 with two designators 𝑖 and 𝑗 .

• 𝑖: The stage number. (Stage is defined below.)

• 𝑗 : A state identifier within a stage. At 𝑖𝑡ℎ stage, there can be

multiple states that contain PD-instances. PD-instances in these

states at the same stage differ by the degree of generality.

4.2.2 stage. Within our search space of candidate schemas, the

stage of a state 𝑠 is defined as the length of the path from the initial

state 𝑠0,1 to 𝑠 minus one. Thus, a stage number starts from 0. The

stage of a state can also be computed by the following equation:

𝑠𝑡𝑎𝑔𝑒 (𝑠) =𝑚𝑎𝑥𝐻𝑒𝑖𝑔ℎ𝑡 (𝐷+) − 𝐿(𝑝′) + 1 (8)

where 𝑝′ is any PD-instance in the state that has one or more CD-

instances. The stage number increments as the schema derivation

proceeds whereas the 𝐿 value decrements.

The initial state is 𝑠0,1 and it contains a bag of input JSON docu-

ment instances, 𝐷+ with no levels yet converted into schema node

types. ReCG produces a final set of candidate solution states when

it reaches 𝐿(𝑝) = 0 for all 𝑝 in a state.

Algorithm 2 GenerateChildrenStates Function

In 𝑠𝑖𝑛 := An input state

Out 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛𝑆𝑡𝑎𝑡𝑒𝑠 := A set of children states

1: 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛𝑆𝑡𝑎𝑡𝑒𝑠 ← ∅
2: C ← GetCDInstances(𝑠𝑖𝑛 )

3: C𝑝𝑟𝑚, C𝑎𝑟𝑟 , C𝑜𝑏 𝑗 ← GroupByType(C)
4: Z𝑝𝑟𝑚 ← DerivePrimitiveSchemaSet(C𝑝𝑟𝑚 )

5: Z𝑎𝑟𝑟 ← DeriveArraySchemaSet(C𝑎𝑟𝑟 )
6: {Z𝑜𝑏 𝑗1 , . . . ,Z𝑜𝑏 𝑗𝑛 } ← DeriveCandObjSchemaSets(C𝑜𝑏 𝑗 )
7: for Z𝑜𝑏 𝑗𝑖 ∈ {Z𝑜𝑏 𝑗1 , . . . ,Z𝑜𝑏 𝑗𝑛 } do
8: 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛𝑆𝑡𝑎𝑡𝑒𝑠 .Insert(GenerateState(𝑠𝑖𝑛,Z𝑝𝑟𝑚,Z𝑎𝑟𝑟 ,Z𝑜𝑏 𝑗𝑖

))

9: return 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛𝑆𝑡𝑎𝑡𝑒𝑠

4.3 ReCG Algorithm
ReCG’s main algorithm follows a breadth-first beam search with

configurable beam width (default=3) as in Algorithm 1 and 2. Our

search is guided by the MDL principle [22, 35, 36] (See §2.3) and its

cost valuation technique that gives preference to the one requiring a

smaller amount of bits to express the schemas and the instances. The

end goal is to come up with a state that contains the most concise

and accurate set of schemas for the given input JSON document

instances. The schemas produced by ReCG must accept all JSON

documents in the input dataset. Throughout the ReCG algorithm,

we hypothesize that the set of schemas that shows low MDL cost

will show a high F1 score.

4.3.1 Algorithm Overview. At the high level, ReCG proceeds by

processing CD-instances stage by stage in a bottom-up manner

from the lowest level of the JSON document trees. At each level,

it converts the instance nodes into schema nodes. In determining

the schema node types, ReCG performs clustering of CD-instances

to identify homogeneous, composite, and heterogeneous schema

node types. These partially-formed schemas constitute one state,

and other states are generated by iteratively generalizing this initial

set of schemas into incrementally more general schema sets. These

states belong to the same stage. The MDL cost for each state is

calculated using the set of schemas derived so far and ReCG performs

a beam search with them. For each selected state from the beam

search, it repeats the above steps for the next level to generate

subsequent stages until the top level of the input JSON documents

is reached. The outline of ReCG is expressed in Algorithm 1. Time

complexity analysis of ReCG algorithm is available in the technical

report [1]. We refer interested readers to it for detailed analysis.

The complications of the ReCG algorithm mainly arise from the

consideration of various candidates in deriving schema. For each

stage in the search, ReCG enumerates candidate states that show

varying generality in derived schemas and chooses the states that

show low MDL cost. This process involves clustering similar CD-

instances, and hierarchically merging these clusters to generate

sets of schemas that incrementally get more general.

4.3.2 Illustrative Example. Figure 6 shows a schema discovery pro-

cess of ReCGwith three simplified JSON instances 𝑗+
1
, 𝑗+
2
and 𝑗+

3
. The

root node 𝑠0,1 is initialized with input JSON document instances, or

PD-instances with no nodes yet converted to schema nodes. ReCG’s
bottom-up schema discovery process starts from the nodes of the

instance trees at the lowest level. The transition from 𝑠0,1 to 𝑠1,1
shows that the instance nodes at level 3 corresponding to the prim-

itive types are first converted to respective schema nodes of STR
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Figure 6: An illustration of ReCG’s search space using JSON documents picked from the Wikidata dataset and simplified. The
resolution of schema nodes proceeds from the leaf to the root (i.e., bottom-up) as the state transitions from top to bottom.

and NUM. Once all nodes at level 3 are resolved of their schema node

types, it proceeds to nodes at level 2, transitioning from 𝑠1,1 to 𝑠2,1
and 𝑠2,2. Nodes at level 2 of PD-instances include a mix of primitive

data, object nodes, and array nodes. These object nodes are, by our

definition, CD-instances (labeled in the figure as 1 , 2 and 3 ). To

resolve the object nodes’ schema types, we perform clustering of

CD-instances by their structural similarities. Each resulting cluster

is considered to represent a distinct object node type. We determine

the object node types ( a and b ) and this completes the schema

derivation at level 2 of 𝑠2,1.

However, the schemas a and b just derived in 𝑠2,1 are not the

only way to satisfy the CD-instances 1 , 2 and 3 . From this clus-

tering result, we perform an incremental merging of the schemas

to produce more general schemas. The state 𝑠2,2 (generalized from

𝑠2,1) in the figure shows an outcome of this schema generalization.

The MDL cost of each state guides the search for the goal schema.

It is calculated by summing the SRC for the schemas derived until

that stage, and DRC with the partial instances accepted by the

schemas. In Figure 6, 𝑠0,1 shows an MDL cost of 0 as no schemas

are derived yet. State 𝑠1,1 shows 10 for SRC of derived schemas of

STR and NUM, and 55 for DRC to express the primitive documents

using these schemas. The goal state would be the leaf state with the

least MDL cost, which is 𝑠3,3 with the smallest MDL cost of 360 in

the figure. All inputs 𝑗+
1
, 𝑗+

2
and 𝑗+

3
are derived into a single schema

S4, and thus the set of discovered schema becomesZ𝐷+ = {S4}.

4.4 Schema Node Type Resolution
4.4.1 Schema Node Type Resolution of Object Type. Among the

three types of nodes, determining the schema node type for an ob-

ject node is the most involving. Suppose the current processing is at

level 𝑙 where all nodes below 𝑙 are already resolved of their schema

node types. The goal here is to determine a correct composition of

schema node types of the object nodes at level 𝑙 that produced all

observed CD-instances. Only the object nodes and CD-instances

attached to them (e.g., 1 , 2 , 3 of Figure 6) are of interest for now.

The array and primitive nodes are handled separately.

Our handling of object nodes is based on the following line of

reasoning. Given a set of CD-instances, we can treat each distinct

CD-instance’s tree structure as one separate schema node type.

It represents the least general schemas. On the other hand, there

exists the most general ‘singleton’ schema that accepts all the CD-

instances. The true composition of schema nodes lies somewhere

in-between. We enumerate all possible schema node sets from the

most specific to the most general following these two steps.

• Initial clustering of CD-instances:Wefirst cluster the CD-instances.

These initial clusters are the most specific set of schema nodes

and also the basis for generating more general schema sets. For

each cluster, one schema tree is generated.

• Repetitive generalization of schema nodes: From the initial schemas

in the previous step, we perform incremental generalization.

This generalization occurs in a hierarchical manner until no

more generalization is beneficial. This expands our search space

and ReCG algorithm explores them in a breadth-first manner.

Further details of this repetitive generalization are given in §4.7.

These steps are expressed in Algorithm 3.

4.4.2 Schema Node Type Resolution of Array Type. We observe

that arrays in the real-world datasets are typically heterogeneous

as shown in the ‘HomArr’ column of Table 1. Out of 20 datasets,

only three contained homogeneous array types. Thus, we assume

that arrays are heterogeneous by default. To derive array schemas,

we generalize (i.e., all labels of edges connected to array elements

are turned into ‘∗’) the arrays. Generalization reduces the array

schema to the form of a single ‘∗’ edge per a unique subschema tree

attached to it. Then, we perform the clustering once rather than

repetitively as was done for objects.

We derive a homogeneous array for a cluster when array CD-

instances within a cluster satisfy a few conditions. First, the number
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Algorithm 3 DeriveCandObjSchemaSets Function Definition

In C𝑜𝑏 𝑗 := Object CD-instances

Out {Z1, . . . ,Z𝑛 } := A set of set of derived schemas

1: 𝑐𝑎𝑛𝑑𝑆𝑐ℎ𝑆𝑒𝑡𝑠 ← ∅; 𝑐𝑎𝑛𝑑𝐶𝑙𝑢𝑠𝑡𝑆𝑒𝑡𝑠 ← ∅
2: /* STEP 1 : CD-instance Clustering */

3: {C1, . . . , C𝑘 } ← ClusterCdInstances(C𝑜𝑏 𝑗 )
4: 𝑐𝑎𝑛𝑑𝐶𝑙𝑢𝑠𝑡𝑆𝑒𝑡𝑠 .Insert({C1, . . . , C𝑘 })
5: /* STEP 2 : Repetitive Generalization */

6: 𝑐𝑎𝑛𝑑𝐶𝑙𝑢𝑠𝑡𝑆𝑒𝑡𝑠 .InsertAll(RepetitivelyGeneralize({C1, . . . , C𝑘 }))
7: for {C1, . . . , C𝑖 } ∈ 𝑐𝑎𝑛𝑑𝐶𝑙𝑢𝑠𝑡𝑆𝑒𝑡𝑠 do
8: Z ← ∅
9: for C𝑗 ∈ {C1, . . . , C𝑖 } do
10: S ← DeriveSchemaFromCluster(C𝑗 )
11: S.AssignCDInstances(C𝑗 )
12: Z.Insert(S)
13: 𝑐𝑎𝑛𝑑𝑆𝑐ℎ𝑆𝑒𝑡𝑠 .Insert(Z)

14: return 𝑐𝑎𝑛𝑑𝑆𝑐ℎ𝑆𝑒𝑡𝑠

of elements in the array should be the same for all CD-instances.

Second, the schemas of children at the same indices should be the

same. If these conditions are met, it is a homogeneous array type.

4.4.3 Schema Node Type Resolution of Primitive Type. Node type
resolution of primitive types is done trivially and unambiguously

by simply converting values into their corresponding types. For

example, we convert as these: 1→NUM, “hello"→STR, true→BOOL
and null→NULL.

4.5 CD-instance Clustering
During the processing at a certain level, we have a bag of CD-

instances generated from a set of schema nodes whose true forms

are unknown yet. The goal of CD-instance clustering is to find out

these source object schema nodes whose type can be homogeneous,

heterogeneous, composite, or a mix of them. The CD-instance clus-

tering described here needs to be performed only once when the
first child state is created for a state.

4.5.1 Distance Measure. To perform effective clustering of CD-

instances, we need to define a suitable distance measure. Although

CD-instance is a tree, we can treat them as a set whose elements are

made of only the immediate children from the root object node. Any

descendants can be ignored since they have already been converted

into singleton schema nodes with unique node IDs assigned from

earlier steps of processing. Thus, CD-instances can be regarded as

a set of (edge label, schema ID) pairs of the flat one-level trees.

This naturally leads our design of distance measure between

CD-instances to be based on the Jaccard distance metric [26]. In-

tuitively, the more edge labels two CD-instances share, the higher

the similarity should be. However, we adopt a more fine-grained

policy by taking into account not just edge information, but also

the schema IDs attached to them. For two given CD-instances, each

edge is assigned the following scores:

• 1 if both the edge labels and the schema IDs match

• 0.5 if only the edge labels match, but schema IDs differ

Let S denote a schema and 𝑐 [𝑙] point to the child node connected

with the edge label 𝑙 in CD-instance 𝑐 . We define 𝐸 (𝑐) and 𝐸𝑆 (𝑐) as:
𝐸 (𝑐) := {𝑙 |𝑙 ∈ 𝑒𝑑𝑔𝑒𝑙𝑎𝑏𝑒𝑙𝑠 (𝑐)}

𝐸𝑆 (𝑐) := {(𝑙,S)|𝑙 ∈ 𝑒𝑑𝑔𝑒𝑙𝑎𝑏𝑒𝑙𝑠 (𝑐),S = 𝑐 [𝑙]}
That is, 𝐸 (𝑐) represents the set of edge labels, and 𝐸𝑆 (𝑐) the set of
(edge label, schema ID) pairs. Then, |𝐸 (𝑐1) ∩ 𝐸 (𝑐2) | is the number

of common edges. And, |𝐸𝑆 (𝑐1) ∩ 𝐸𝑆 (𝑐2) | is the number of com-

mon edge labels that also have matching schema IDs. Our distance

measure D is defined as:

D(𝑐1, 𝑐2) := 1 − |𝐸 (𝑐1) ∩ 𝐸 (𝑐2) | + |𝐸𝑆 (𝑐1) ∩ 𝐸𝑆 (𝑐2) |
2|𝐸 (𝑐1) ∪ 𝐸 (𝑐2) |

(9)

Let us consider two CD-instances 𝑐5, 𝑐6 in Figure 7 as an example.

The parts (edges labels, schema IDs) common to both CD-instances

are colored in red, and otherwise black. The union of edge labels is

full_text, text range, entities, and extended entities. Two
CD-instances have 3 labels full_text, text range, entities in
common. Of those, entities is penalized by 0.5 for not having the

same schema for 𝑐 [entities] in both 𝑐5 and 𝑐6. Then, the distance

between 𝑐5 and 𝑐6 is computed as D(𝑐5, 𝑐6) = 1 − 2.5
4

= 0.375.

4.5.2 Two-Phase Clustering. ReCG performs clusterings in two phas-

es to identify homogeneous, heterogeneous, and composite object

schema nodes. The first clustering is carried out with the goal of

identifying clusters of homogeneous/composite objects and outliers.
We use DBSCAN [17, 45] as our clustering method. It is expected

that if some of the CD-instances are actually from homogeneous or

composite schemas, they would exist in sufficient quantity to form

clusters. For composite objects, a simple preprocessing is necessary

to facilitate the discovery of composite object schema nodes. Recall

that composite object schemas have a mix of fixed edge labels and

the edges with ‘∗’ whereas all edge labels of homogeneous object

schema nodes are fixed. Since ‘∗’ edges manifest as rarely seen la-

bels in JSON document instances, we change any edge labels whose

occurrence is below the threshold count to ‘∗’. The threshold is cur-
rently set to be 10 empirically. With this preprocessing applied, we

run the DBSCAN clustering and obtain the clusters that represent

homogeneous and composite object nodes.

In the second phase of clustering, we set out to find object nodes

of heterogeneous type. Any instances flagged as outliers by DB-

SCAN are the target of the second phase clustering. We assume here

that instances generated from the heterogeneous object schema

nodes would be classified as outliers because of a high diversity

of edge labels and insufficient quantity per edge labels. Thus, in

these outlier instances that are supposedly from heterogeneous

schemas, we generalize objects by converting edge labels to ‘∗’.
This eliminates diversities of edge labels and the only factor that

determines the distance becomes the children schemas. We per-

form the second DBSCAN clustering on them to find clusters of

heterogeneous objects.

4.6 Schema Derivation From Each Cluster
To derive a schema, we collect two metadata from each CD-instance

𝑐 in a cluster: i) Edge labels in 𝑐 with their counts, and ii) Schema

IDs of children for each edge label. A schema is derived by:

(1) Schema node 𝑣 is generated with Λ𝑆 (𝑣) = OBJ.
(2) Edge is generated per edge label present in the metadata.

Each edge 𝑒 is assigned a label in the metadata. We assign

Φ𝑆 (𝑒𝑙 ) = Required if the edge with the label 𝑙 is always

present in all CD-instance 𝑐 in the cluster C.
(3) A schema tree is assigned to the destination of each edge 𝑒𝑙 .

We examine all CD-instances 𝑐 in C for 𝑐 [𝑙], and aggregate

distinct schemas. If there is only a single distinct schema, we

just assign it to the edge’s destination. However, when two

3544



yav

linsky

ARR2

co
or
d type

ful
l_t

ext

te
xt

ra
ng
e

extended
entities

ARR1 OBJ1STRSTRARR1

co
or
d type

STRARR1

co
or
d type

STRARR1

co
or
d type

STRARR1 OBJ2

entities fu
ll
_t
ex
t

te
xt

ra
ng

e

ARR1 NULLSTR

entities fu
ll
_t
ex
t

te
xt

ra
ng

e

ARR1 NULLSTR

entities

fu
ll
_t
ex
t text

range

ARR1STR

na
va
ln
y putin

ARR2ARR2

so
bc
ha
k

ti
to

v

ARR2 ARR2ARR2

grudinin zh
ir
i

no
vs
ky

ARR2

co
or
d type

ful
l_t

ext

te
xt

ra
ng
e

extended
entities

ARR1 OBJ1STRSTRARR1

co
or
d type

STRARR1

co
or
d type

STRARR1

co
or
d type

STRARR1 OBJ2

entities fu
ll
_t
ex
t

te
xt

ra
ng

e

ARR1 NULLSTR

entities

fu
ll
_t
ex
t

te
xt

ra
ng

e

ARR1 NULLSTR

entities

fu
ll
_t
ex
t text

range

ARR1STR

ARR2 ARR2 ARR2
* * *

Cluster

Cluster

GeneralizeLabels𝒞!

co
or
d type

STRARR1

OBJ ful
l_t

ext

te
xt

ra
ng
e

extended
entities

ARR1 ANYOFSTR OBJ2

entities

OBJ

ARR2

*

OBJ

OBJ1 NULL

DeriveSchema
FromCluster

𝒞"

𝒞#
𝒮#𝒮!

𝒮"

𝑐! 𝑐" 𝑐# 𝑐$ 𝑐% 𝑐& 𝑐' 𝑐(

yav

linsky

ARR2

na
va
ln
y putin

ARR2ARR2

so
bc
ha
k

ti
to

v

ARR2 ARR2ARR2

grudinin zh
ir
i

no
vs
ky

ARR2

ARR2 ARR2 ARR2
* * *

𝑐)’ 𝑐!*’ 𝑐!!’

𝑐! 𝑐" 𝑐# 𝑐$ 𝑐% 𝑐& 𝑐' 𝑐( 𝑐) 𝑐!* 𝑐!!

𝑐) 𝑐!* 𝑐!!

𝑐)′ 𝑐!*′ 𝑐!!′

Figure 7: Clustering example that illustrates how homogeneous and heterogeneous schemas are derived.

co
nf
ig

content

S
T
R

General
Specific

*
*

OBJ

co
nf
ig

content

BOOLBOOL NULL

OBJ

en
fo

rc
ed config

content

NUM NUM
th
em
e

mo
du
le

co
nf
ig

BOOL NULL

contentco
nf
ig

BOOL NULL

content

en
fo
rc
ed

BOOL BOOL

config

en
fo
rc
ed

BOOL BOOL

config

th
em
e

BOOLNUM

enforced th
em
e

NUMNUM

mo
du

le

BOOL

enforced

: Object 
  Node

: Schema
  Node

𝒮!

𝒮"𝒮#𝑐! 𝑐"

𝑐# 𝑐$

𝒞"𝒞#
NUM

th
em
e

NUM BOOL

OBJ

mo
du
le

enforced

𝒮$

𝒞!

en
fo
rc
ed

BOOL BOOL

config

en
fo
rc
ed

BOOL BOOL

config

𝑐# 𝑐$

th
em
e

BOOLNUM

enforced th
em
e

NUMNUM

mo
du

le

BOOL

enforced

𝑐%

BOOL

config

S
T
R

*

S
T
R

B
O
O
L

N
U
L
L

co
nf
ig

content

𝑐&

B
O
O
L

N
U
L
L

B
O
O
L

N
U
L
L

config

OBJ

en
fo
rc
ed

config

𝒮%
𝒞%

B
O
O
L

B
O
O
L

en
fo
rc
ed

config

𝑐#

B
O
O
L

B
O
O
L

B
O
O
L

B
O
O
L

en
fo
rc
ed

OBJ

th
em
e

𝒮&𝑐%

N
U
M

B
O
O
L

enforced

B
O
O
L

N
U
M

N
U
M

B
O
O
L

N
U
M

mo
du

le

th
em
e

th
em
e

N
U
M

mo
du
le

enforced

O
B
J

enforced

𝑐'

𝑐(

𝒞$

𝒞&
𝑐$𝑐'

𝑐%𝑐' 𝑐& 𝑐(

Figure 8: Example of repetitive generalization via merging
in the simplified Twitter dataset.

or more distinct schemas exist, we derive another ANYOF
node and assign that node to the edge’s destination.

4.7 Repetitive Generalization of Schemas
The CD-instance clustering described in previous subsections pro-

duces the most specific schema set that ReCG can generate at a

state. This clustering is performed when the processing reaches a

state and the first child state is to be created. Subsequently, from

this initial schema set, ReCG produces incrementally more general

schema sets to form a series of sibling states. Here, we describe

how ReCG generalizes the schema set repetitively to obtain schema

sets of varying generality up to the highest generality.

4.7.1 Hierarchical Merging. Wegenerate sets of schemaswith vary-

ing generality through hierarchical clustering where the two closest

schemas are merged iteratively. Hierarchical merging is guided by

two criteria: the viableness of the merge and the MDL cost.

Let us first define notations at the cluster level. Recall previously

defined notations for individual CD-instances: 𝑐 [𝑙] points to the

child node connected with the edge label 𝑙 in CD-instance 𝑐𝑖 and

𝐸 (𝑐) is the set of edge labels of 𝑐 .
E𝑐 (C) :=

⋃︂
𝑐∈C 𝐸 (𝑐)

S𝑐 (C) :=
⋃︂

𝑐∈C
⋃︂

𝑙∈𝐸 (𝑐 ) {𝑐 [𝑙]}

T𝑐 [𝑙] (C) :=
⋃︂

𝑐∈C {𝑐 [𝑙]}
(10)

E𝑐 represents the set of all edge labels present within a cluster C,
and S𝑐 the set of children schemas within the cluster C. T𝑐 [𝑙] (C)
returns the set of schemas that are present under edges of label 𝑙 for

all CD-instances in C. For each pair of clusters, we check whether

merging two clusters is viable or not using the following conditions.

Definition 4.1 (viableness). A merge of two clusters C1, C2 is con-
sidered viable if any one of the following conditions holds.(︁

E𝑐 (C1) ∩ E𝑐 (C2) − {∗} ≠ ∅
)︁
∧
(︁
T𝑐 [∗] (C1) == T𝑐 [∗] (C2)

)︁
(11)(︁

S𝑐 (C1) ⊆ T𝑐 [∗] (C2)
)︁
∨
(︁
S𝑐 (C2) ⊆ T𝑐 [∗] (C1)

)︁
(12)

S𝑐 (C1) ∩ S𝑐 (C2) ≠ ∅ (13)

Equation 11 checks whether there is an overlap between the la-

bels of two clusters, except ‘∗’. Merge between two homogeneous

clusters without overlapping any label would result in deriving a

schema that validates objects with unseen combinations of edge

labels. Equation 12 checks if one cluster C1 can be captured en-

tirely by the heterogeneous pattern of another cluster C2. If it is
true, the labels in C1 will be generalized to ‘∗’ once such merge is

performed. Equation 13 checks if two heterogeneous patterns can

be generalized further.

If a merge of two clusters is determined to be viable, we cal-

culate the distance between two clusters using the SRC (Schema

Representation Cost) component within the MDL. The distance

is defined as the difference of SRC before and after merging two

clusters C1, C2 into C𝑚 . The pair with the smallest SRC cost differ-

ence (i.e., the smallest change in generality) is merged. Suppose

the schemas derived from each cluster as S1,S2, S𝑚 . Then, the

distance D between two clusters C1, C2 is defined as:

D𝑐 (C1, C2) :=
|𝑆𝑅𝐶 (S1) + 𝑆𝑅𝐶 (S2) − 𝑆𝑅𝐶 (S𝑚) |

𝑆𝑅𝐶 (S𝑚)
(14)

Figure 8 illustrates the hierarchical merge. Initially there are four

clusters C1, C2, C3, and C4. The edge labels enforced and config
are common among clusters. There are two viable pairs of merges,

(C1, C2) and (C2, C4). Of those, the pair (C1, C2) is merged to cluster

C5 since they show the least distance. In the next step, only (C4, C5)
is viable for merge. They are merged to C6. (C3, C6) is not a viable
pair of merge, and thus the merging phase ends.

4.8 Limitations of ReCG
We identify a few current limitations of ReCG to use as a guide for

improvements. First, ReCGmay incorrectly classify JSON document

instances from homogeneous schemas as outliers and turn them

into generalized heterogeneous object schemas if the number of

instances is below the level our clustering algorithm can group.

Second, if excessively many clusters are formed at a stage, the

performance can be significantly impacted due to high clustering

and merging overheads.
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Table 1: Statistics of 20 datasets used in experiments.
Dataset Schema Instance

# of OBJ # of ARR
# of

Type Name

H
e
i
g
h
t

|𝑉𝑆 |
nodes nodes

ANYOF |𝐷+ | avg( |𝑉𝐼 |)
Hom Het Com Hom Het

nodes

Obj Obj Obj Arr Arr

R
e
a
l
-
l
i
f
e

NYT 6 92 9 0 0 0 3 14 10k 85.21

Twitter ∞ ∞ 20 1 0 12 10 16 10k 206.16

Github 11 3471 171 0 3 0 29 335 10k 116.64

Pharmaceutical 3 12 2 1 0 0 0 0 10k 31.77

Wikidata 14 179 31 7 0 0 8 15 10k 1927.96

Yelp 5 79 7 1 0 0 0 5 10k 12.32

VK 11 335 40 0 0 0 7 2 10k 30.50

ETH 8 112 8 0 0 1 6 6 10k 1004.69

Iceberg 4 9 1 1 0 0 1 0 1523 1288.30

Ember 6 68 8 1 0 0 9 0 10k 902.86

GeoJSON 8 41 6 0 0 2 5 1 10k 52.65

ThaiMovies 8 112 14 0 0 0 11 6 1364 433.79

S
y
n
t
h
e
t
i
c

RDB 3 13 1 0 1 0 1 0 10k 14.76

AdonisRC 7 64 5 2 2 0 9 3 10k 27.77

HelmChart 7 50 4 0 1 0 6 1 10k 33.76

Dolittle 6 52 14 6 0 0 3 1 10k 48.82

Drupal 6 100 10 7 0 0 17 5 10k 47.96

DeinConfig 8 97 3 1 2 0 13 17 10k 44.94

Ecosystem 6 120 5 3 1 0 12 9 10k 132.59

Plagiarize 4 15 2 1 1 0 0 2 10k 8.23

5 EVALUATION
In this section, we present evaluation results about the accuracy,

validity of MDL costs, scalability with dataset sizes, sensitivity of

parameters, and the impact of design factors.

5.1 Experimental Setup
5.1.1 Compared Techniques. ReCG is compared against five
existing techniques - Jxplain, KReduce, LReduce, KSS and FMC.

• Jxplain [38]: The most recently proposed JSD algorithm that

uses a top-down schema generation approach. It uses key-space
entropy to determine the heterogeneity of objects, then performs

Bimax-Merge clustering algorithm based on keys if homogeneity

is confirmed.

• KReduce [4]: A top-down schema generation approach. KReduce
mainly focuses on the efficiency of the algorithm. It tends to

over-simplify the JSD problem by only finding homogeneous

object schemas for objects and heterogeneous array schemas

for arrays. KReduce is expected to be fast but also shows a low

F1 score on datasets that do not conform to its assumptions.

• LReduce [6]: A variant of KReduce with the additional assump-

tion that objects generated from different schemas have different

edge labels. It tends to produce a more specific schema than

KReduce.

• KSS [28]: A top-down style algorithm proposed by Klettke et

al. and we refer to it as KSS for convenience in this work. Its

assumptions are identical to those of KReduce. It builds a single
schema tree by iteratively visiting each JSON document.

• FMC [20]: A top-down algorithm that also makes the same as-

sumptions as KReduce. It first collapses identical schemas, and

they are merged to build a general schema that can accept every

JSON document accepted by the collapsed schemas.

5.1.2 Hardware and Software Settings. We conducted our ex-

periments on a machine with an Intel Xeon E5-2680 v4 @2.40GHz

CPU and 756 GB of RAMwith the OS of Ubuntu 20.04. ReCGwas im-

plemented with C++ and was compiled with gcc 8.3.0. Jxplain [4],
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Figure 9: Accuracy comparison with varying dataset sizes.

KReduce and LReduce [6] were implemented in Scala. KSS [28] and
FMC [20] were written in C++.

5.1.3 Datasets. We employed 20 datasets, of which 12 were real-

life datasets and 8 were synthetic. Real-life datasets contained JSON

document instances with their ground truth schemas.

Synthetic datasets are generated from schemas obtained from

JSON schema store [29], which is a repository storing real-life

schemas. JSON schema store does not provide the corresponding

JSON document instances for each schema, and thus synthetic in-

stances had to be generated. A total of ten thousand instances were

synthesized for each schema using two software tools, DataGen [37]
and json-schema-faker [12].

Various characteristics of the datasets are presented in Table 1. It

shows the characteristics of the ground truth schema setZ𝐺 , and

its corresponding positive document set 𝐷+ for each dataset. For

Z𝐺 , we report the maximum height, the total number of all nodes,

and the nodes of each type. Also for 𝐷+, we show the number of

instances and the average number of nodes for instances.

We generated a negative document set 𝐷− for each dataset from

the ground truth schema setZ𝐺 . The size of 𝐷
−
was made equal to

the size of𝐷+ for each dataset. The generation process of a negative
document set 𝐷− followed the steps described below:

(1) Modification of Z𝐺 into Z−
𝐺
, a set of schemas that can

accept instances thatZ𝐺 rejects.

(2) Generation of synthetic document 𝑗− fromZ−
𝐺
.

(3) Validation of instance 𝑗− againstZ𝐺 . If it is not accepted

byZ𝐺 , add it to 𝐷− .
(4) Repeat (1) ∼ (3) until |𝐷− | becomes equal to |𝐷+ |.
GeneratingZ−

𝐺
: We elaborate on the modification process ofZ𝐺

into schema Z−
𝐺
. The objective is to generate a negative schema

set that could pose the highest difficulty for any ‘schema under

test’ in accurately rejecting the negative JSON document instances

generated from this. Since the heavier the modification toZ𝐺 , the

more likely to be easy for any schema to reject the negative JSON

documents, we decided to apply modification operation only once

to a single node in Z𝐺 in each modification. Thus, we randomly

picked a target schema node 𝑣𝑆 inZ𝐺 and a modification operation

from the set of possible operations predefined by the type of 𝑣𝑆 .

5.2 Accuracy Comparison
We measured and compared the accuracy of discovered schemas in

terms of the F1 score. Recall and precision are computed as defined

in § 3 for all 20 datasets in § 5.1.3. Similar to the experiment of

Jxplain, we sampled 1%, 10%, 50%, and 90% of positive sample sets

from 𝐷+, and they were given as input to each algorithm. The test

dataset comprised 10% of instances sampled from 𝐷+ (those that do
not overlap with the input instances), and 90% of instances sampled

from 𝐷− . The ratio of 1:9 was chosen to mimic a realistic situation

of negative samples outnumbering positive samples.
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Table 2: Recall, Precision, and F1 Score for schemas discovered by each algorithm using 10% of all datasets.

Dataset

ReCG Jxplain KReduce LReduce KSS FMC
Recall Precision F1 Recall Precision F1 Recall Precision F1 Recall Precision F1 Recall Precision F1 Recall Precision F1

NYT 1.00 1.00 1.00 Runtime Error 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Twitter 1.00 1.00 1.00 0.02 1.00 0.03 0.99 1.00 1.00 0.90 1.00 0.95 1.00 1.00 1.00 1.00 1.00 1.00

Github 1.00 1.00 1.00 0.48 1.00 0.64 1.00 1.00 1.00 0.98 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00

Pharmaceutical 1.00 1.00 1.00 1.00 1.00 1.00 0.85 1.00 0.92 0.27 1.00 0.43 0.86 1.00 0.92 0.86 1.00 0.92

Wikidata 1.00 1.00 1.00 Time Out 0.47 1.00 0.64 0.00 1.00 0.01 0.47 1.00 0.64 0.47 1.00 0.64

Yelp 1.00 0.70 0.82 0.97 0.77 0.86 1.00 0.36 0.53 0.92 1.00 0.96 1.00 0.36 0.53 1.00 0.36 0.53

VK 1.00 0.99 1.00 0.99 1.00 0.99 0.99 1.00 1.00 0.97 1.00 0.98 1.00 1.00 1.00 1.00 1.00 1.00

Iceberg 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Ember 1.00 1.00 1.00 1.00 1.00 1.00 0.81 1.00 0.89 0.60 1.00 0.75 0.81 1.00 0.90 0.81 1.00 0.90

ETH 1.00 1.00 1.00 0.87 0.34 0.49 1.00 0.33 0.49 1.00 0.50 0.67 1.00 0.31 0.47 1.00 0.31 0.47

GeoJSON 1.00 0.96 0.98 1.00 0.71 0.83 1.00 0.42 0.59 1.00 0.56 0.72 1.00 0.42 0.59 1.00 0.42 0.59

ThaiMovies 0.99 0.99 0.99 0.85 1.00 0.92 0.99 0.95 0.97 0.99 1.00 1.00 0.99 0.92 0.95 0.99 0.92 0.95

RDB 1.00 0.79 0.88 Time Out 0.53 0.85 0.65 0.35 0.86 0.50 0.53 0.85 0.65 0.53 0.85 0.65

AdonisRC 1.00 0.76 0.86 1.00 0.82 0.90 0.34 0.94 0.50 0.22 0.97 0.36 0.34 0.93 0.50 0.34 0.93 0.50

HelmChart 1.00 0.95 0.97 1.00 0.43 0.61 0.57 1.00 0.72 0.33 1.00 0.49 0.57 1.00 0.72 0.57 1.00 0.72

Dolittle 1.00 1.00 1.00 0.33 1.00 0.50 0.67 0.79 0.72 0.67 1.00 0.80 0.67 0.79 0.72 0.67 0.75 0.71

Drupal 1.00 0.93 0.97 0.06 0.82 0.12 0.01 0.12 0.01 0.00 1.00 0.01 0.01 0.12 0.01 0.01 0.12 0.01

DeinConfig 1.00 0.92 0.96 1.00 0.93 0.96 0.33 1.00 0.50 0.16 1.00 0.27 0.33 1.00 0.50 0.33 1.00 0.50

Ecosystem 1.00 1.00 1.00 Runtime Error 0.28 1.00 0.44 0.26 1.00 0.41 0.28 1.00 0.44 0.28 1.00 0.44

Plagiarize 1.00 0.72 0.84 Time Out 0.31 1.00 0.47 0.18 1.00 0.31 0.31 1.00 0.47 0.31 1.00 0.47
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Figure 10: Average MDL cost and accuracy of the ground
truth schema, and the schemas found by six algorithms for
20 datasets. The proportion of the used dataset is 10%. (GT:
ground truth, JX: Jxplain, KR: KReduce, LR: LReduce)

Figure 9 presents the aggregated summary of comparison re-

sults. Raw measurements of 10% of 20 datasets are given in Ta-

ble 2. All algorithms were run using default parameters, in our

case beamWidth=3, 𝜖=0.5,𝑚𝑖𝑛𝑃𝑡𝑠=5%, and sampleSize=500. Over-

all, ReCG gave superior F1 scores against competitors irrespective of

the data set proportions. F1 score of ReCGwas higher than Jxplain,
KReduce and LReduce by 46%, 45%, 60%, respectively. Cases that

Jxplain failed to run were excluded from F1 calculation. Higher

F1 score of ReCG was contributed more by the recall than precision

as confirmed in Figure 9 (b) and (c).

According to our investigation, the lower F1 score of Jxplain,
KReduce and LReduce can be attributed to the following four fac-

tors. First, it was the inability to correctly partition heterogeneous
objects or arrays that should be recognized as different schemas types.
In Jxplain, once a heterogeneous object schema node is derived, it

does not further partition them even though there can be more than

one different type of heterogeneous object schema. In the cases of

KReduce and LReduce, they do not support heterogeneous object

schemas. As a result, Jxplain, KReduce and LReduce all show low

precision on ETH, GeoJSON, and Drupal (only for Jxplain) datasets.
This is due to the generation of a single heterogeneous object (or

array), from multiple heterogeneous objects (or arrays). The re-

sulting discovered schema is more general than the ground truth

schema and thus shows low precision. Second, it is the inability
to correctly derive a schema node. Jxplain, KReduce, and LReduce

use their own heuristics that do not always conform to all datasets.

They derive homogeneous object schema nodes incorrectly where

it is the heterogeneous object schema in the ground truth. This

causes these algorithms to show low recall in Iceberg, Wikidata
datasets. Also, KReduce and LReduce show low recall on Drupal
for this reason. Third, Jxplain, KReduce and LReduce do not han-
dle composite object schemas. They treat composite object schemas

as homogeneous object schema nodes resulting in a descriptive

(i.e., having many schema nodes) homogeneous object schema that

lists all the appearing edge labels within the input instance forest.

Also for LReduce, it partitions the objects using the set of edge

labels of objects and derives a homogeneous schema from each

partition. This results in a more specific schema than the other

two. Fourth, Jxplain, KReduce and LReduce are unable to partition
homogeneous and heterogeneous objects at the same time. KReduce
does not assume ANYOF schema nodes that have two or more ob-

ject schema nodes as children. LReduce and Jxplain only assume

ANYOF schema nodes that have two or more homogeneous object

schema nodes as children. KReduce finds a single homogeneous

object schema, and both LReduce and Jxplain partition the objects
into multiple homogeneous object schemas, resulting in low recall.

5.3 MDL Cost Analysis
We compared and analyzed MDL costs of the schemas produced by

ReCG and competitors to observe the quality of produced schemas.

The measurements were made on all 20 datasets and the input

𝐽𝑖𝑛𝑝𝑢𝑡 was comprised of 10% of 𝐷+. Figure 10 shows the average of
MDL costs and accuracy measures. The numbers from the ground

truth schema are also plotted together for reference.

Figure 10 (a) shows that ReCG obtained the least average MDL

cost. ReCG’s MDL cost came out to be 3.8×, 4.9× and 14.2× smaller

than Jxplain, KReduce, and LReduce, respectively, while main-

taining high F1 score of 0.95. Jxplain, KReduce and LReduce re-

ceived about 29.5%, 31.1% and 37.4% less F1 score than ReCG, re-
spectively. Among the components of MDL costs, the SRC of ReCG
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were superior – 48.26×, 91.08× and 879.53× smaller than Jxplain,
KReduce and LReduce, respectively. This indicates that the schema

discovered by ReCG is more concise without the loss of precision

or recall. In comparison with the ground truth schema, the MDL

cost of ReCG’s discovered schema was very close to that of the

ground truth schema, within 15.9% differences on average. On 14

datasets, ReCG’s schema scored even lessMDL costs than the ground

truth schema due to the following two reasons. First, there were

cases (NYT, Twitter, Github, VK, ThaiMovies, GeoJSON) where the
ground truth schema itself was described as too general according

to the official documentation. Second, ReCG found some frequent

CD-instances and clustered them to derive homogeneous object

schemas, which were originally labeled as heterogeneous objects

according to the ground truth schema (Pharmaceutical, Wikidata,
Yelp, Ember, ETH, RDB, HelmChart, DeinConfig). This resulted in

higher SRC, but much lower DRC compared to the ground truth.

We found that the MDL costs had a strong negative correlation

with F1 scores. The correlation came out to be a strong negative cor-

relation of -0.77 between MDL and F1 score. This was contributed

the most by the strong negativity with Recall (-.82) rather than
with Precision (-.41). SRC and DRC had roughly the same degree of

correlation with recall and precision. These observations indicate

that the conciseness of a schema (i.e., SRC) has a stronger relation

with its generality.

5.4 Scalability with Dataset Size
We compared the scalability of techniques by varying data sizes of

10%, 50%, and 100%. Table 3 shows the algorithm execution time

measurements. Overall, ReCG outperformed Jxplain by a signifi-

cant margin (1.54× to 2.11×) on average but KReduce was faster

than ReCG by about 121%. ReCG’s performance is positioned approx-

imately in the middle of KReduce and Jxplain.
Jxplain tends to perform better than ReCG on the datasets if they

contain a small number of distinct keys with only homogeneous

objects. This is because Jxplain determines objects’ heterogeneity

and performs clustering of objects per a distinct labeled path of

edges in input JSON documents. Determination of heterogeneity

and clustering of objects are the main operations of Jxplain, which
comprise 93.6% of total runtime on average. In addition, the number

of distinct labeled path of edges are related to the total number of

distinct keys. The correlation between the number of distinct keys

per dataset and the speedup of ReCG compared to Jxplain was as

high as 0.83. Specifically, Jxplain performed faster than ReCG in
datasets of ETH which showed a small distinct number of keys of

54. On the other hand, ReCG outperformed Jxplain for the rest of

the datasets, which had 7842 distinct number of keys on average.

KReduce, KSS and FMC showed faster execution than ReCG. This
is because ReCG spends time in performing clustering and merging

to derive various sets of schemas, which incurs the main overhead.

LReduce showed smaller execution time than ReCG on 10% and 50%

of the datasets, but similar runtime to ReCG on 100% datasets.

Jxplain exhibited exponential growth in runtime for datasets of

Dolittle and Drupal. It also failed to run to completion on datasets

of Wikidata, RDB, and Plagiarize. This is mainly because of the

O(𝑛2𝑛) time complexity of Jxplain’s Bimax-Merge algorithm that is

used in partitioning homogeneous objects. Jxplain is designed in a
way that first clusters objects, and then iteratively picks the smallest
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Figure 11: Parameter sensitivity to accuracy.

cluster and checks if it is a subset of any other pair of clusters. The

number of clusters is anticipated to be small for homogeneous

objects. However, when heterogeneous objects are falsely detected

as homogeneous objects the number of clusters becomes very big.

Each cluster is checked whether it is a subset of every combination

of clusters, which results in O(𝑛2𝑛) time complexity.

5.5 Parameter Sensitivity
5.5.1 DBSCAN Parameter:𝑚𝑖𝑛𝑃𝑡𝑠 . 𝑚𝑖𝑛𝑃𝑡𝑠 is a parameter of DB-

SCAN that specifies the minimum number of neighbors within 𝜖

distance for a point to be considered in a cluster. Figure 11 (a) shows

the accuracy change (average of 20 datasets) as we vary the𝑚𝑖𝑛𝑃𝑡𝑠

from 1% up to 30% of the total number of points to be clustered. The

𝜖 (See §5.5.2) and beam width were set to 0.5 and 3, respectively.

5.5.2 DBSCAN Parameter: Epsilon. It is another threshold param-

eter of DBSCAN that controls the radius within which the points

are considered 𝜖-neighberhood. Figure 11 (b) shows the average

accuracy from all 20 datasets with𝑚𝑖𝑛𝑃𝑡𝑠 of 5% and beam width of

3. There existed a nonlinear relationship between 𝜖 and accuracies

of the discovered schema with the highest accuracy at 𝜖 = 0.5.

5.5.3 BeamWidth. Wemeasured the effect of various beamwidths

on the accuracy and the average results over 20 datasets are shown

in Figure 11 (c) under 𝜖=0.1 and𝑚𝑖𝑛𝑃𝑡𝑠=1%. The F1 score improve-

ment was 8.13% as the beam width increased from 1 to 5. A sim-

ilar degree of accuracy improvements was observed in several

of our datasets including Twitter, Github, Yelp, VK, AdonisRC,
HelmChart, DeinConfig.

5.5.4 MDLCostWeights. Weexamined the effect of varyingweights

of 𝑆𝑅𝐶 and 𝐷𝑅𝐶 in computing the MDL cost as in𝑀𝐷𝐿𝐶𝑜𝑠𝑡 (Z, 𝐷)
= 𝛼𝑆𝑅𝐶 (Z) + 𝛽𝐷𝑅𝐶 (Z, 𝐷) where 𝛼 + 𝛽 = 1. We set 7 different

ratios for 𝛼 : 𝛽 and measured the accuracies of the discovered

schemas as in Figure 11 (d). The value of DRC is roughly two orders

of magnitude larger than SRC at 5:5 (See Figure 10 (a)). Thus, in-

creasing DRC’s weight beyond 5:5 ratio does not affect the overall

accuracy much. However, larger weights on SRC affect the preci-

sion. At the ratio of 99:1 where SRC values grow to be comparable

to DRC in magnitude, the precision and F1 score decrease to 9.2%

and 6.5%, respectively, compared to the case with 5:5 ratio.

5.6 Impact of Design Factors to Accuracy
We compared the contribution of two key components of ReCG:
bottom-up schema generation and MDL cost model for guiding

the search. We implemented two versions of ReCG. In one version,

ReCG is modified to use Jxplain’s key-space entropy [38] to guide

its search instead of our MDL cost model. The key-space entropy is
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Table 3: Algorithm execution time comparison of ReCG against competitors. The third subcolumn under each algorithm is the
relative speedup of each competitor against ReCG.

Used ReCG Jxplain KReduce LReduce KSS FMC
dataset Avg

Stdev
ReCG
ReCG

Avg

Stdev
ReCG

Jxplain
Avg

Stdev
ReCG

KReduce
Avg

Stdev
ReCG

LReduce
Avg

Stdev
ReCG
KSS

Avg

Stdev
ReCG
FMC

proportion runtime runtime runtime runtime runtime runtime

10% 1489.62 ms 116.30 1.00 3130.67 ms 206.18 0.48 883.99 ms 34.89 1.69 1030.81 ms 58.16 1.45 168.32 ms 12.80 8.85 267.74 ms 73.37 5.56

50% 6571.55 ms 547.28 1.00 10128.23 ms 429.52 0.65 2689.82 ms 130.62 2.44 4892.20 ms 333.83 1.34 856.21 ms 45.51 7.68 1776.20 ms 557.19 3.70

100% 12571.91 ms 448.65 1.00 26479.15 ms 790.02 0.47 5006.07 ms 340.87 2.51 12603.57 ms 761.72 1.00 1748.04 ms 81.56 7.19 4959.49 ms 1644.84 2.53

Table 4: Impact of MDL cost model and bottom-up style to
the overall accuracy of ReCG.

Method Recall Precision F1

ReCG (Key-space entropy as cost model) 1.00 0.83 0.89

ReCG (Top-down schema generation) 1.00 0.88 0.92

ReCG 1.00 0.92 0.95

Jxplain’s function to determine the heterogeneity of objects. In

the second version, we modified ReCG to apply top-down schema

generation. It starts to derive the schema trees from their roots by

transforming the instance nodes into schema nodes. In determining

the child schema types top-down, it heuristically sets the schema

node type to its instance type.

As in Table 4, both versions reported lowered precisions and F1

scores. Between these, the impact of MDL cost model was larger.

The version with key-space entropy cost model showed 10.6% and

6.2% drop in precision and F1, respectively. This was because the

key-space entropy cost model was less effective as a search guide.

6 RELATEDWORK
JSON Schema discovery Techniques: Baazizi et al. [4] proposed

KReduce, made of schema type inference followed by schema fusion.

KReduce assumes the input bag of JSON documents is from a single

schema, record types (or objects) are homogeneous and array types

are heterogeneous. LReduce [6] is another algorithm that follows

the same principle as KReduce, but object schemas are fused only

if two nodes have the same set of edge labels. Thus, LReduce can
discover ANYOF nodes with multiple object schemas as children, but

two children always have different sets of edge labels.

Spoth et al. [38] proposed a top-down algorithm, Jxplain, that
addressed shortcomings of KReduce and advanced the state-of-the-

art. In determining whether objects or arrays were of homogeneous

or heterogeneous type (‘tuple’ or ‘collection’ in their terminology),

they utilized a threshold based on the key-space entropy concept.

To further recognize different object types, Jxplain used a Bimax

& GreedyMerge clustering based only on the set of keys. However,

it did not assume the presence of composite object schemas and

also did not cluster heterogeneous objects.

Klettke et al. proposed a top-down JSD discovery algorithm [28].

It linearly iterates the input set of JSON documents and updates a

single schema that can accept all the instances seen. It updates the

schema by adding schema nodes from the top to the bottom.

Frozza et al. is another top-down JSD algorithm that has a sim-

ilar structure as KReduce. It first derives a schema for each JSON

document by converting values into corresponding types. Then, it

aggregates (i.e., collapses) the schemas having identical tree struc-

tures and forms RSUS (Raw Schema Unified Structure) which is

converted into a final JSON schema. The algorithm lacks handling

of heterogeneous objects and homogeneous array schemas.

Schema Discovery for Semi-structured Data Types: XTRACT [22]

addresses the problem of inferring DTD (Document Type Defini-

tion) from XML documents in regular expressions. XTRACT utilizes

the MDL principle to find the best set of regular expressions that

expresses the set of XML documents. It also favors a set of regular

expressions at the equilibrium point of both conciseness and pre-

ciseness of DTDs. The DTD inference problem in XML leverages

the MDL principle for measuring regular expressions for a single

element, as an element’s DTD is completely independent of the

DTDs for other elements [22]. However, in JSON schema discov-

ery, we must infer tree-structured schemas with arbitrary heights

as a whole. Additionally, our MDL costing must account for the

homogeneity and heterogeneity of object and array schemas.

Bex et al. [8] solves the problem of finding the best regular

expression from a set of strings. Their proposed iDReGex learns

an automaton that (1) accepts all input strings, and (2) shows the

maximum likelihood against the given set of strings. It then strives

to translate the automaton to an equivalent regular expression. The

best regular expression is chosen using both the MDL cost and how

restrictive a regex is. FlashProfile [14] is an algorithm that solves

a similar problem of finding a syntactic profile (disjunction of regex-

like patterns) from a set of strings that minimizes a cost based on

regularization. Themain differencewith ReCG is that FlashProfile
gives a bound for the number of clusters, while ReCG does not. Its
assumption that every symbol within a syntactic profile matches a

symbol within a string, cannot be applied to JSON objects (Schema

nodes that are typed optional may not match any instance node).

7 CONCLUSION
We presented a novel bottom-up algorithm for the JSON schema

discovery problem, called ReCG. We hypothesized that bottom-up

processing could avoid problems of top-down approach and gen-

erate more robust and accurate schemas for real-world datasets.

Treating JSD as a search problem, our algorithm constructs a large

comprehensive set of candidate schemas of varying degrees of gen-

erality and selects the most likely candidate by the MDL criteria.

Our evaluation revealed that ReCG outperformed the state-of-the-

art competitor by 46% in terms of F1 score and showed 2.11× better

performance.
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