
A Spark Optimizer for Adaptive, Fine-Grained Parameter Tuning
Chenghao Lyu

University of Massachusetts, Amherst
chenghao@cs.umass.edu

Qi Fan, Philippe Guyard
Ecole Polytechnique

qi.fan@polytechnique.edu
philippe.guyard@polytechnique.edu

Yanlei Diao
Ecole Polytechnique

University of Massachusetts, Amherst
yanlei.diao@polytechnique.edu

ABSTRACT
As Spark becomes a common big data analytics platform, its grow-
ing complexity makes automatic tuning of numerous parameters
critical for performance. Our work on Spark parameter tuning is
particularly motivated by two recent trends: Spark’sAdaptive Query
Execution (AQE) based on runtime statistics, and the increasingly
popular Spark cloud deployments that make cost-performance rea-
soning crucial for the end user. This paper presents our design
of a Spark optimizer that controls all tunable parameters of each
query in the new AQE architecture to explore its performance bene�ts
and, at the same time, casts the tuning problem in the theoretically
sound multi-objective optimization (MOO) setting to better adapt to
user cost-performance preferences. To this end, we propose a novel
hybrid compile-time/runtime approach to multi-granularity tun-
ing of diverse, correlated Spark parameters, as well as a suite of
modeling and optimization techniques to solve the tuning problem
in the MOO setting while meeting the stringent time constraint
of 1-2 seconds for cloud use. Evaluation results using TPC-H and
TPC-DS benchmarks demonstrate the superior performance of our
approach: (8) When prioritizing latency, it achieves 63% and 65%
reduction for TPC-H and TPC-DS, respectively, under an average
solving time of 0.7-0.8 sec, outperforming the most competitive
MOO method that reduces only 18-25% latency with 2.6-15 sec
solving time. (88) When shifting preferences between latency and
cost, our approach dominates the solutions of alternative methods,
exhibiting superior adaptability to varying preferences.

PVLDB Reference Format:
Chenghao Lyu, Qi Fan, Philippe Guyard, and Yanlei Diao. A Spark
Optimizer for Adaptive, Fine-Grained Parameter Tuning. PVLDB, 17(11):
3565-3579, 2024.
doi:10.14778/3681954.3682021

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/udao-moo/udao-spark-optimizer.

1 INTRODUCTION
Big data query processing has become an integral part of enter-
prise businesses and many platforms have been developed for this
purpose [3, 6, 7, 12, 15, 36, 41, 51, 56, 63, 64, 69, 70]. As these
systems are becoming increasingly complex, parameter tuning of

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 17, No. 11 ISSN 2150-8097.
doi:10.14778/3681954.3682021

big data systems has recently attracted a lot of research atten-
tion [23, 25, 27, 28, 47, 62]. Take Apache Spark for example. It o�ers
over 180 parameters for governing amixed set of decisions, including
resource allocation, the degree of parallelism, shu�ing behaviors,
and SQL-related decisions. Our work on parameter tuning of big
data query systems is particularly motivated by two recent trends:

Adaptive Query Execution. Big data query processing systems
have undergone architectural changes that distinguish them sub-
stantially from traditional DBMSs for the task of parameter tuning.
A notable feature is that a SQL query is compiled into a physical
plan composed of query stages and a query stage is the granular-
ity of scheduling and execution. The stage-based query execution
model enables the system to observe the precise statistics of the
completed stages at runtime. Recently, Spark has taken a step fur-
ther to introduce Adaptive Query Execution (AQE), which upon
the completion of each query stage, considers runtime statistics
and re-optimizes the logical query plan to a new physical plan us-
ing parametric rules. Spark, however, does not support parameter
tuning itself and instead, executes AQE based on the default or
pre-speci�ed con�guration of the parameters. Hence, it can su�er
from suboptimal performance of AQE when the parameters are not
set to appropriate values. On the other hand, recent work on Spark
tuning [23, 25, 27, 28, 47, 62] has limited itself to the traditional set-
ting that the parameters are set at query submission time and then
�xed throughout query execution, hence missing the opportunity
of exploring AQE to improve the physical query plan.

Cost-performance reasoning in cloud deployment. As big data
query processing is increasingly deployed in the cloud, parameter
tuning in the form of cost-performance optimization [32, 42] has
become more critical than ever to end users. Prior work [25, 66, 73]
has used �xed weights to combine multiple objectives into a sin-
gle objective (SO) and solve the SO problem to return one solu-
tion. However, the optimization community has established the-
ory [35] pointing out that solving such a SO problem is unlikely to
return a solution that balances the cost-performance as the speci-
�ed weights intend to express (as we will demonstrate in this work).
The theoretically sound approach to adapting between cost and
performance is to treat it as a multi-objective optimization (MOO)
problem [9, 35, 38, 39], compute the Pareto optimal set, and return
one solution from the set that best matches the user preference as
re�ected by the weights set on the objectives [32, 47].

Therefore, our work in this paper aims to design a Spark optimizer
that controls all tunable parameters (collectively called a “con�gura-
tion”) of each Spark application in the new architecture of adaptive
query execution to explore its performance bene�ts and, at the same
time, casts the tuning problem in the multi-objective optimization
setting to better adapt to user cost-performance needs. This Optimizer
for Parameter Tuning (OPT) complements Spark’s cost and rule-
based optimization of query plans, where the optimization rules

3565

https://doi.org/10.14778/3681954.3682021
https://github.com/udao-moo/udao-spark-optimizer
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3681954.3682021
https://www.acm.org/publications/policies/artifact-review-and-badging-current

use default or pre-speci�ed values of Spark parameters. Our OPT
can be implemented as a plugin in the current Spark optimizer
framework and runs each time a query is submitted for execution.

Designing the optimizer for parameter tuning, as de�ned above,
faces a few salient challenges:

Complex control of amixed parameter space. One may won-
der whether parameter tuning can be conducted solely at runtime,
as an augmented AQE process. Unfortunately, Spark parameter
tuning is more complex than that due to the need to control a
mixed parameter space. More speci�cally, Spark parameters can be
divided into three categories (see Table 1 for examples): the context
parameters,)2 , initialize the Spark context by specifying (shared)
resources to be allocated and later controlling various runtime be-
haviors; the query plan parameters,)? , govern the translation from
the logical to physical query plan; and the query stage parameters,
)B , govern the optimization of the query stages in the physical plan.
The)? and)B parameters are best tuned at runtime to bene�t from
precise statistics, but they are strongly correlated with the context
parameters,)2 , which control shared resources and must be set
at query submission time to initialize the Spark context. How to
best tune these mixed parameters, correlated but under di�erent
controls in the query lifetime, is a nontrivial issue.

Stringent MOO Solving time for cloud use. The second chal-
lenge is solving the MOO problem over a large parameter space
of Spark while obeying stringent time constraints for cloud use,
e.g., under 1-2 seconds to avoid delays in starting a Spark applica-
tion in serverless computing [1, 32, 46]. Prior work on MOO for
Spark tuning [47] has reported the running time of the Evolutional
method [9] to be about 5 seconds for query-level control of 12 Spark
parameters. In our work, when we allow the)? parameters to be
tuned separately for di�erent subqueries, the time cost of Evolu-
tional increases beyond 60 seconds for some TPC-H queries, which
is unacceptable for cloud use.

To address the above challenges, we propose a novel approach to
multi-granularity tuning of mixed Spark parameters and a suite of
modeling and optimization techniques to solve the tuning problem
in the MOO setting e�ciently and e�ectively. More speci�cally, our
contributions include the following:

1. A hybrid approach to OPT (Section 3): Our OPT is designed
for multi-granularity tuning of mixed parameters: while the con-
text parameters)2 con�gure the Spark context at the query level,
we tune the)? and)B parameters at the �ne-grained subquery
level and query stage level, respectively, to maximize performance
gains. To cope with Spark’s di�erent control mechanisms for these
parameters, we introduce a new hybrid compile-time/runtime opti-
mization approach to multi-granularity tuning: the compile-time
optimization �nds the optimal) ⇤2 , by leveraging the correlation
between)2 and �ne-grained {)? } and {)B }, to construct an ideal
Spark context for query execution. Then the runtime optimization
adjusts �ne-grained {)? } and {)B } based on the precise statistics of
the completed stages. Both compile-time and runtime optimization
are cast in the setting of multi-objective optimization.

2. Modeling (Section 4): Solving the MOO problem for parame-
ter tuning requires precise models for the objective functions used.
Our hybrid approach requires accurate models for both compile-
time and runtime optimization, which use di�erent representations
of query plans. The Spark execution environment shares resources

among parallel stages, which further complicates the modeling
problem. To address all of these issues, we introduce a modeling
framework that combines a Graph Transformer Network (GTN)
embedder of query plans and a regression model that captures the
interplay of the tunable parameters (decision variables) and critical
contextual factors (non-decision variables) such as query and data
characteristics and resource contention. We devise new techniques
to construct compile-time and runtime models in this framework.

3. MOO Algorithms (Section 5): Solving the MOO problem for
multi-granularity tuning needs to conquer the high-dimensionality
of the parameter space while obeying the time constraint, which is
especially the case at compile-time when we consider the correla-
tion of all the parameters together. We introduce a novel approach
for compile-time optimization, named Hierarchical MOO with Con-
straints (HMOOC): it breaks the optimization problem of a large
parameter space into a set of smaller problems, one for each sub-
query, but subject to the constraint that all subquery-level problems
use the same Spark context parameters,)2 . Since these subproblems
are not independent, we devise a host of techniques to prepare a
su�ciently large set of candidate solutions for the subproblems and
e�ciently aggregate them to build global Pareto optimal solutions.
Then our runtime optimization runs as part of AQE to adapt)?
and)B e�ectively based on precise statistics.

Evaluation results using TPC-H and TPC-DS benchmarks demon-
strate the superior performance of our techniques. (1) Our compile-
time MOO algorithm for �ne-grained parameter tuning outper-
forms existing MOO methods with 4.7%-54.1% improvement in
hypervolume (the dominated space by the Pareto front) and 81%-
98.3% reduction in solving time. (2) Our compile-time/runtime opti-
mization, when asked to prioritize latency, achieves 63% and 65%
reduction for TPC-H and TPC-DS, respectively, under an average
solving time of 0.7-0.8 sec, whereas the most competitive MOO
method reduces only 18-25% latency with high solving time of 2.6-
15 sec. When shifting preferences between latency and cost, our
approach dominates the solutions of alternative methods by a wide
margin, exhibiting superior adaptability to varying preferences.

2 RELATEDWORK
DBMS tuning. Our problem is related to a body of work on perfor-
mance tuning for DBMSs. Most DBMS tuning systems employ an
o�ine, iterative tuning session for each workload [55, 58, 66, 67],
which can take long to run (e.g., 15-45 minutes [55, 66]). Otter-
tune [55] builds a predictivemodel for each query by leveraging sim-
ilarities to past queries, and runs Gaussian Process (GP) exploration
to try other con�gurations to reduce query latency. ResTune [67]
accelerates the GP tuning process (with cubic complexity in the
number of training samples) by building a meta-learning model
to weigh appropriately the base learners trained for individual
tuning tasks. CDBTune [66] and QTune [25] use Deep Reinforce-
ment Learning (RL) to predict the reward of a con�guration, as
the weighted sum of di�erent objectives, and explores new con-
�gurations to optimize the reward. These methods can take many
iterations to achieve good performance [62]. UDO [58] is an o�ine
RL-based tuner for both database physical design choices and pa-
rameter settings. OnlineTuner [68] tunes workloads in the online
setting by exploring a contextual GP to adapt to changing contexts

3566

and safe exploration strategies. Our work on parameter tuning aims
to be part of the Spark optimizer, invoked on-demand for each arriv-
ing query, hence di�erent from all the tuning systems that require
launching a separate tuning session for each target workload.
Tuning of big data systems. Among search-based methods, Best-
Con�g [73] searches for good con�gurations by dividing high-
dimensional con�guration space into subspaces based on samples,
but it cold-starts each tuning request. ClassyTune [72] solves the
optimization problem by classi�cation, and Li et al. [26] prunes
searching space with a running environment independent cost
model, both of which cannot be easily extended to the MOO set-
ting. A new line of work considered Spark parameter tuning for
recurring workloads. ReIM [23] tunes memory management deci-
sions online by guiding the GP approach using manually-derived
memory models. Locat [62] is a data-aware GP approach for tuning
Spark queries that repeatedly run with the input data size changing
over time.While it outperforms prior solutions such as Tuneful [11],
ReIM [23], and QTune [25] in e�ciency, it still needs hours to com-
plete. Li et al. [27] further tune periodic Spark jobs using a GP
with safe regions and meta-learning from history. LITE[28] tunes
parameters of non-SQL Spark applications and relies on stage code
analysis to derive predictive models, which is impractical as cloud
providers usually have no access to application code under privacy
constraints. These solutions do not suit our problem as we cannot
a�ord to launch a separate tuning session for each query or tar-
get workload, and these methods lack support of adaptive runtime
optimization and are limited to single-objective optimization.
Resource optimization in big data systems. In cluster comput-
ing, a resource optimizer (RO) determines the optimal resource
con�guration on demand and with low latency as jobs are submitted.
Morpheus [18] codi�es user expectations as multiple Service-Level
Objectives (SLOs) and enforces them using scheduling methods.
However, its optimization focuses on system utilization and pre-
dictability, but not cost and latency of Spark queries. PerfOrator [45]
optimizes latency via an exhaustive search of the solution space
while calling its model for predicting the performance of each
solution. WiseDB [34] manages cloud resources based on a deci-
sion tree trained on minimum-cost schedules of sample workloads.
ReLocag[16] presents a predictor to �nd the near-optimal number
of CPU cores to minimize job completion time. Recent work [24]
proposes a heuristic-based model to recommend a cloud instance
that achieves cost optimality for OLAP queries. This line of work
addresses a smaller set of tunable parameters (only for resource
allocation) than the general problem of Spark tuning with large
parameter space, and is limited to single-objective optimization.
Multi-objective optimization (MOO) computes a set of solutions
that are not dominated by any other con�guration in all objectives,
aka, the Pareto-optimal set (or Pareto front). Theoretical MOO solu-
tions su�er from various performance issues in cloud optimization:
Weighted Sum [35] is known to have poor coverage of the Pareto
front [38]. Normalized Constraints [39] lacks in e�ciency due to
repeated recomputation to return more solutions. Evolutionary
methods [9] approximately compute a Pareto set but su�er from
inconsistent solutions. Multi-objective Bayesian Optimization [5, 14]
extends the Bayesian approach to modeling an unknown function
with an acquisition function for choosing the next point(s) that are

scan
fltr
pj

scan
fltr
pj

join

scan

fltr

pj

join

pj

agg

sort

pj

limit

pj

Ex
sort

pj

Ex
sort

SMJ
pj

Ex
sort

SMJ
pj

HashAgg

TakeOrdered&PJ

scan
fltr

scan
fltr

scan
fltr

pj

Ex
sort

HashAgg

457 45P

45Q

45R

45S

!@

!AB

!AC

!AD

!AE

!AF

Spark
Context
!G

&3 Context Parameters
&4 Logical Query Plan Parameters
&,5 Query Stage Parameters

LQP PQP
LQP

PQP

Spark Runtime Engine

!@

!G

!A

RDD

…

Rebalance
Data Partition

Spark Context
- Resources
- Shuffle

Behaviors
- Memory

Management

(a) Mixed control in
query lifetime

scan
fltr
pj

scan
fltr
pj

join

scan

fltr

pj

join

pj

agg

sort

pj

limit

pj

Ex
sort

pj

Ex
sort

SMJ
pj

Ex
sort

SMJ
pj

HashAgg

TakeOrdered&PJ

scan
fltr

scan
fltr

scan
fltr

pj

Ex
sort

HashAgg

QS1 QS2

QS3

QS4

QS5

!E

AG'

AGH

AGI

AGJ

AG,

&5 Query Plan Parameters
&,6 Query Stage Parameters

Join Selection

Skew Join Opt.

Updated LQP

Non-parametric

Non-parametric

Non-parametric
…

!E

!E

Updated PQP

Split Skewed Part.

Coalesce Small Part.

Runtime QS

Non-parametric

Non-parametric
!F

!F

Optimized QS

Non-parametric

0601

(b) Logical query plan (LQP) and physical query
plan (PQP) of TPCH-Q3

Figure 1: Spark parameters provide mixed control through query
compilation and execution

likely to be Pareto optimal. But it is shown to take long to run [47]
and hence lacks the e�ciency required by a cloud optimizer.

In the DB literature, MOO for SQL queries [17, 20, 52–54] �nds
Pareto-optimal query plans by e�ciently searching through a large
set of plans. The problem, essentially a combinatorial one, di�ers
fromMOO for parameter tuning, which is a numerical optimization
problem. TEMPO [50] considers multiple SLOs of SQL queries and
guarantees max-min fairness when they cannot be all met. MOO
for work�ow scheduling [20] assigns operators to containers to
minimize total running time and money cost, but is limited to
searching through 20 possible containers and solving a constrained
optimization for each option.

The closest work to ours is UDAO [47, 65] that tunes Spark con-
�gurations to optimize for multiple objectives. It Progressive Frontier
(PF) method [47] provides the MOO solution for spark parameter
tuning with good coverage, e�ciency, and consistency. However,
the solution is limited to coarse-grained query-level control of
parameters. Lyu et al. extended the MOO solution to serverless
computing [32] by controlling machine placement and resource al-
location to parallel tasks of each query stage. However, its solution
only guarantees Pareto optimality for each individual stage, but
not the entire query (with potentially many stages).

3 PROBLEM STATEMENT AND OVERVIEW
In this section, we provide background on Spark including its adap-
tive query execution extension and present initial results illustrating
the bene�ts and complexity of �ne-grained tuning. We then for-
mally de�ne our Spark parameter tuning problem and provide an
overview of our compile-time/runtime optimization approach.

3.1 Background on Spark
Apache Spark [64] is an open-source distributed computing system
for large-scale data processing and analytics. The core concepts of
Spark include jobs, representing computations initiated by actions,
and stages, which are organized based on shu�e dependencies,
serving as boundaries that partition the computation graph of a
job. Stages comprise sets of tasks executed in parallel, each process-
ing a speci�c data partition. Executors, acting as worker processes,
execute these tasks on individual cluster nodes.

Spark SQL seamlessly integrates relational processing into the
Spark framework [2]. A submitted SQL query undergoes parsing,

3567

Table 1: Example Spark parameters in three categories
)2 Context Parameters (spark.*)

:1 executor.cores
:2 executor.memory
:3 executor.instances

)? Logical Query Plan Parameters (spark.sql.*)

B1 adaptive.advisoryPartitionSizeInBytes
B3 adaptive.maxShuffledHashJoinLocalMapThreshold
B4 adaptive.autoBroadcastJoinThreshold
B5 shuffle.partitions

)B Query Stage Parameters (spark.sql.adaptive.*)
B10 rebalancePartitionsSmallPartitionFactor

analysis, and optimization to form a logical query plan (LQP). In
subsequent physical planning, Spark transforms the LQP to one or
more physical query plans (PQP), using physical operators provided
by the Spark execution engine. Then it selects one PQP using a
cost model, which mostly applies to join algorithms. The physical
planner also performs rule-based optimizations, such as pipelining
projections or �lters into one map operation. The PQP is then di-
vided into a directed acyclic graph (DAG) of query stages (QSs) based
on data exchange dependencies such as shu�ing or broadcasting.
These query stages are then executed in a topological order.

The execution of a Spark SQL query is con�gured by three cat-
egories of parameters, as shown in Table 1, providing di�erent
controls in query lifetime. As Figure 1(a) shows, query plan pa-
rameters)? guide the translation from a logical query plan to a
physical query plan, in�uencing the decisions such as the bucket
size for �le reading and the join algorithms to use via Spark’s para-
metric optimization rules. Figure 1(b) shows a concrete example of
translating a LQP to PQP, where each logical operator is instanti-
ated by speci�c algorithms (e.g., the �rst join is implemented by
sorting both input relations and then a merge join of them), addi-
tional exchange operators are injected to realize data exchanges,
and query stages are identi�ed at the boundaries of exchange opera-
tors. Further, query stage parameters)B control the optimization
of a query stage via parametric rules, such as rebalancing data
partitions. Finally, context parameters)2 , speci�ed on the Spark
context, control shared resources, shu�e behaviors, and memory
management throughout query execution. While they are in e�ect
only at runtime,)2 must be speci�ed at the query submission time
when the Spark context is initialized.

Adaptive Query Execution (AQE). Cardinality estimation [13,
29, 30, 43, 44, 48, 57, 59–61, 71] has been a long-standing issue that
impacts the e�ectiveness of the physical query plan. To address
this issue, Spark introduced Adaptive Query Execution (AQE) that
enables runtime optimization based on precise statistics collected
from completed stages [10]. Figure 2 shows the life cycle of a SQL
query with the AQE mechanism turned on. At compile time, a
query is transformed to a LQP and then a PQP through query opti-
mization (step 3). Query stages (QSs) that have their dependencies
cleared are then submitted for execution. During query runtime,
Spark iteratively updates LQP by collapsing completed QSs into
dummy operators with observed cardinalities, leading to a so-called
collapsed query plan LQP (step 5), and re-optimizes the LQP (step
7) and the QSs (step 10), until all QSs are completed. At the core of
AQE are runtime optimization rules. Each rule internally traverses
the query operators and takes e�ect on them. These rules are cat-
egorized as parametric and non-parametric, and each parametric

SQL

Compile-time
Optimizer

Solve BE, BF, BG

Logical Query
Plan (LQP)

Physical Query
Plan (PQP)

Spark-submit

Apply %Q

Execution

Collapsed
LQP (789)

QS
finished

Runtime
Optimizer

Solve BG for QS
Solve BF for LQP

Updated
PQP

Runtime
QS

…
Optimized QS

Initial QS

2

3

1

5
6

7

8

9

10

Apply !A

Apply !F

Apply %7

Query Stage (QS) Queue

4

Compile
Time

Runtime

Query
Optimization

Query ReOptimization

Rebalance
Data Partitions

Figure 2: Query life cycle with an optimizer for parameter tuning

rule is con�gured by a subset of)? or)B parameters. The details
of those rules are left to [31].

3.2 E�ects of Parameter Tuning
We next consider the issue of Spark parameter tuning and present
initial observations that motivated our approach.

First, parameter tuning a�ects performance. While Spark sup-
ports AQE through parametric and non-parametric rules, it does
not support parameter tuning itself. The �rst observation that mo-
tivated our work is that tuning over a mixed parameter space is
crucial for Spark performance. Figure 3(a) shows that for TPCH-
Q9, query-level parameter tuning using a prior MOO method [47]
and then running AQE (the middle bar) can already provide a 13%
improvement over AQE with the default con�guration (left bar).

Second, �ne-grained tuning has performance bene�ts over query-
level tuning.While existing work on Spark parameter tuning [23, 25,
27, 28, 47, 62] focuses on query-level tuning, we show in Figure 3(a)
that adapting)? for di�erent collapsed query plans during runtime
can further reduce the latency by 61% (the right bar). Figure 3(b)
shows the simpli�ed query structure of TPCH-Q9, including 6 scan
operators and 5 join operators. Adapting)? for di�erent collapsed
query plans with observed statistics allows us to discover a new
physical query plan with 3 broadcast hash joins (BHJs) and 2 shuf-
�ed hash joins (SHJs), outperforming the query-level tuning result
with 2 sort-merge joins (SMJ) + 3 BHJs.

Third, the parameters that are best tuned at runtime based on
precise statistics are correlated with the parameters that must be
set at submission time. While the)? and)B parameters are best
tuned at runtime to bene�t from precise statistics, they are strongly
correlated with the Spark context parameters,)2 , which control
shared resources andmust be set at query submission timewhen the
Spark context is initialized. Figure 3(c) illustrates that the optimal
choice of B5 in)? is strongly correlated with the total number of
cores :1 ⇤ :3 con�gured in)2 . Many similar examples exist.

3.3 Our Parameter Tuning Approach
We next introduce our approach that supports multi-granularity
parameter tuning using hybrid compile-time/runtime optimization
and formally de�ne the optimization problem in the MOO setting.

3.3.1 Hybrid, Multi-Granularity Tuning. The goal of our work is
to �nd, for each Spark query, the optimal con�guration of all the
)? ,)B , and)2 parameters under multi-granularity tuning. While
the context parameters)2 con�gure the Spark context at the query
level, we tune other parameters at �ne granularity to maximize
performance gains, including setting the query plan parameters

3568

(a) Latency comparison

Scan1Scan2

Join1Scan3

Join2Scan4

Join3Scan5

Join4Scan6

Join5

Default MO-WS HMOOC3+

SMJ SMJ SHJ

SMJ SMJ BHJ

SMJ BHJ BHJ

BHJ BHJ BHJ

SMJ BHJ SHJ

SMJ: Sort-Merge Join
BHJ: Broadcast Hash Join
SHJ: Shuffled Merge Join

(b) Physical query plan choices (c) Correlation in parameters

Figure 3: Pro�ling TPCH-Q9 (12 subQs) over di�erent con�gurations Figure 4: MOO solutions for TPCH Q2

)? distinctly for each collapsed query plan and the query stage
parameters)B for each query stage in the physical plan.

To address the correlation between the context parameters)2
(set at query submission time) and)? and)B parameters (best
tuned at runtime), we introduce a hybrid compile-time / runtime
optimization approach, as depicted by the two red boxes in Figure 2.

Compile-time: Our goal is to (approximately) derive the optimal
) ⇤2 , by leveraging the correlation of all the parameters, to construct
an ideal Spark context for query execution. Our compile-time opti-
mization uses cardinality estimates by Spark’s cost optimizer.

Runtime: With Spark context �xed, our runtime optimization
runs as a plugin of AQE, invoked each time the collapsed query
plan (LQP) is updated from a completed query stage, and adjusts)?
for the collapsed query plan based on the latest runtime statistics.
Then AQE applies)? to its parametric rules to generate an updated
physical query plan (PQP). For the query stages in this new physical
plan, our runtime optimization kicks in to optimize)B parameters
based on precise statistics. Then AQE applies parametric rules with
the tuned)B to optimize data partitions of these stages.

3.3.2 Multi-Objective Optimization. Targeting cloud use, our opti-
mization problem concerns multiple user objectives such as query
latency and cloud cost in terms of CPU hours or a weighted combi-
nation of CPU, memory, and IO resources.

Prior work [25, 66, 73] used �xed weights to combine multiple
objectives into a single objective (SO) and solved it to return one
solution, denoted as the SO-FW method. It is a special case of a
classical MOO algorithm, weighted sum (WS) [35], that repeatedly
applies = weight vectors to create a set of SO problems and returns
a solution for each, denoted as the MO-WS method (i.e., = = 1 in
SO-FW). It is known from the theory of WS that trying di�erent
weights to create SO problems is unlikely to return points that
evenly cover the Pareto front unless the objective functions have
a very peculiar shape [35]. Empirically, MO-WS has been reported
with sparse coverage of the Pareto front in prior work [47]. Figure 4
illustrates this for TPCH-Q2 in the 2D space of query latency and
cloud cost: 11 SO problems generated from evenly spaced weight
vectors return only two distinct solutions (marked by the blue dots),
where 10 of them collide to the same bottom point. Increasing to
101 weight vectors still returns only 3 distinct points. Such sparse
coverage of the Pareto front leads to poor adaptability when the
user shifts preference (e.g., from favoring latency to favoring cost)
because there are not enough points on the Pareto front to capture
the tradeo�s between the objectives.

For this reason, our work casts the optimization problem in the
multi-objective optimization (MOO) framework [9, 35, 38, 39], which
computes the Pareto front properly to capture the tradeo�s and

later allows us to recommend one solution that best matches the
user preference.

Formally, a MOO problem aims to minimize multiple objectives
simultaneously, where the objectives are represented as functions
f = (51, ..., 5:) on all the tunable parameters) .

De�nition 3.1. Multi-Objective Optimization (MOO).

argmin
)

f ()) = [51 ()), 52 ()), . . . , 5: ())]

B .C .
) 2 ⌃ ✓ R3
f ()) 2 � ✓ R:
!8  58 ())  *8 , 8 = 1, ...,:

where) is the con�guration with 3 parameters, ⌃ ✓ R3 denotes all
possible con�gurations, and � ✓ R: denotes the objective space.
If an objective favors larger values, we add the minus sign to the
objective function to transform it into a minimization problem.

De�nition 3.2. Pareto Optimal Set. In the objective space � ✓
R: , a point L 0 Pareto-dominates another point L 00 i�88 2 [1,:], � 08 
� 008 and 9 9 2 [1,:], � 09 < � 009 . For a given query, solving the MOO
problem leads to a Pareto Set (Front) F that includes all the Pareto
optimal solutions {(L ,))}, where L is a Pareto point in the objective
space � and) is its corresponding con�guration in ⌃.

Figure 4 shows a Pareto front for TPCH-Q2. Most con�gurations,
depicted by the grey dots, are dominated by the Pareto optimal
con�gurations, depicted by the red dots, in both objectives. Hence,
the MOO solution allows us to skip the vast set of dominated con-
�gurations. Furthermore, the Pareto points themselves represent
tradeo�s between the two competing objectives. The optimizer can
recommend one of them based on the user preference, e.g., favoring
latency to cost in peak hours with weights 0.9 to 0.1 and vice-versa
in o�-peak hours. The recommendation can be made based on the
Weighted Utopia Nearest (WUN) distance [47] of the Pareto points
from the Utopia point [, which is the hypothetical optimum in all
objectives, marked by the orange dot in the �gure. Figure 4 shows
a few recommendations when we run WUN on the Pareto front
with di�erent weighted preferences on the objectives.

We next de�ne the MOO problem for Spark parameter tuning.

De�nition 3.3. Multi-Objective Optimization for Spark SQL

argmin
)2 ,{)p },{)s }

f ()2 , {)p}, {)s }) =
266664
51 (LQP,)2 , {)p}, {)s },U, V,W)
...
5: (LQP,)2 , {)p}, {)s },U, V,W)

377775

B .C .
)2 2 ⌃2 ,
{)p} = {)?1,)?2, ...,)?C , ...},8)?C 2 ⌃?
{)s } = {)B1,)B2, ...,)B8 , ...},8)B8 2 ⌃B

3569

Table 2: Comparison of Spark parameter tuning methods
Mixed Param.

Space
Adaptive

Runtime Opt.
Multi-

Granularity
Multi-

Objective
ReLocag [16] ⇥ ⇥ ⇥ ⇥
BestCon�g [73] X ⇥ ⇥ ⇥
ClassyTune [72] X ⇥ ⇥ ⇥
LITE [28] X ⇥ ⇥ ⇥
LOCAT [62] X ⇥ ⇥ ⇥
Li et. al [27] X ⇥ ⇥ ⇥
UDAO [47] X ⇥ ⇥ X

Ours X X X X

where LQP denotes the logical query plan with operator cardinality
estimates, and)2 , {)p}, {)s } represent the decision variables con-
�guring Spark context, LQP transformations, and query stage (QS)
optimizations, respectively. More speci�cally, {)p} is the collec-
tion of all LQP parameters, and)?C is a copy of)? for the C-th
transformation of the collapsed query plan LQP. Similarly, {)s } is
the collection of QS parameters, and)B8 is a copy for optimizing
query stage 8 . ⌃2 , ⌃? , ⌃B are the feasible space for)2 ,)? and)B , re-
spectively. Finally, U, V,W are the non-decision variables (not tunable,
but crucial factors that a�ect model performance), representing
the input characteristics, the distribution of partition sizes for data
exchange, and resource contention status during runtime.

3.3.3 Comparison to Existing Approaches. We �nally summarize
our work in relation to existing solutions to Spark parameter tuning
in terms of the coverage of the mixed parameter space, adaptive
runtime optimization, multi-granularity tuning, andmulti-objective
optimization (MOO), as shown in Table 2. More speci�cally, Re-
Locag [16] focuses on individual parameters such as the number of
cores but does not cover the broad set of Spark parameters. Search-
based solutions to parameter tuning [72, 73] and recent Spark tun-
ing systems [27, 28, 47, 62] cover mixed parameter space but do not
support adaptive runtime optimization or multi-granularity tuning.
The only system that supports MOO is UDAO [47] but its parameter
space is much smaller due to query-level coarse-grained tuning.
To the best of our knowledge, our work is the �rst comprehensive
solution to Spark parameter tuning, covering the mixed parameter
space with multi-granularity tuning by leveraging the Spark AQE
mechanism, and best exploring the tradeo�s between objectives in
the multi-objective optimization approach.

4 MODELING
In this section, we introduce our modeling methods that support
both compile-time optimization and runtime optimization with
�ne-grained parameter tuning.

4.1 Compile-time and Runtime Models
We �rst devise models for �ne-grained parameter tuning at both
compile-time and runtime.

Runtime models. The Spark optimizer o�ers the collapsed
logical query plan (LQP) and query stages (QS) in the physical plan
at runtime (see Section 3.1). Hence, we collect these data structures
and build runtime LQP and QSmodels to enable �ne-grained tuning
of query plan ()?) and query stage ()B) parameters, respectively.

Compile-timemodel.At compile time, Spark provides a logical
query plan (LQP) and then a physical plan (PQP), but no other

Figure 5: CDF of analytical
latency over actual latency

scan

fltr

pj

join

pj

agg

sort

Logical
QS

limit

0228

GTN

/*
/3
/2

Collapsed LQP
(LQP)

=
>
?

Regr.
"@

Figure 6: Model structure (GTN
embedder + regressor) for LQP

data structures that would suit our goal of �ne-grained tuning.
Therefore, we introduce the notion of compile-time subquery (subQ)
to denote a group of logical operators that will correspond to a
query stage (QS) when the logical plan is translated to a physical
plan. In other words, it is a sub-structure of the logical plan that is
reversely mapped from a query stage in a physical plan. Figure 1(b)
illustrates the LQP of TPCH-Q3, which can be divided into �ve
subQs, each corresponding to one QS. As an enhancement, our
work can sample multiple physical plans for each query at compile
time, which will lead to di�erent subQ structures. We collect all
of these subQ structures, and develop a predictive model for each
subQ to enable �ne-grained tuning of)? at compile-time.

4.2 Modeling Objectives
With the objective of optimizing latency and cost, our modeling
work seeks to make these metrics more robust and predictable.

Query latency in Spark, de�ned as the end-to-end duration to
execute a query, bene�ts from Spark’s cluster manager that ensures
a dedicated allocation of cores andmemory to the entire query. Such
resource isolation enhances the predictability of latency, making it
a suitable target for optimizing a query or a collapsed query plan.

However, within a query, Spark shares resources among parallel
query stages, raising two issues in modeling latency at the stage
level. First, the end-to-end latency of a set of parallel stages often
leads to a longer latency than their maximum due to resource con-
tention. Prior work [32] assumed ample resources in industry-scale
clusters and simpli�ed this issue by taking the max latency among
parallel tasks, which is not applicable in the Spark environment of
shared resources. Second, predicting the latency of each stage di-
rectly is very hard due to its variability in a shared-resource setting,
where performance �uctuates based on resource contention.

To address these issues, we propose the concept of analytical
latency, calculated as the sum of the task latencies across all data
partitions divided by the total number of cores. This yields two ad-
vantages. First, it directly links the query latency to its constituent
stages, enabling the computation of query-level latency at compile
time through a sum aggregator over task latencies of all subQs.
Second, it enhances the predictability of query stage latency by
excluding the variability introduced by resource wait times, thus of-
fering a more consistent basis for latency prediction. To validate the
e�cacy of the analytical latency, we compare it with actual query
latencies using TPC-H and TPC-DS benchmarks under the default
Spark con�guration. The results demonstrate a robust correlation
between analytical and actual latencies, with Pearson correlation
coe�cients of 97.2% for TPC-H and 87.6% for TPC-DS. As shown in
Figure 5, analytical latency closely mirrors actual execution time,
with the ratios close to 1 for most of the tested queries.

3570

Cloud costs are mainly based on the consumption of resources,
such as CPU-hour, memory-hour, IO and shu�e sizes [4]. We model
all of these costs to support multi-objective optimization.

To summarize, our models capture 1) end-to-end latency and cost
for collapsed query plans (LQP) at runtime, 2) analytical latency
and cost for query stages (QS) at runtime, in the face of resource
sharing, and 3) analytical latency and cost for subQs at compile
time—the latter two ensure both to be robust targets for modeling.

4.3 Model Formulation for Optimization
We now introduce the methodology for building models for subQ,
LQP, and QS, which will enable their respective �ne-graining later.

Feature Extraction. We extract features to capture query char-
acteristics and the dynamics of their execution environment, con�g-
ured by both decision and non-decision variables. First, we extract
the query plan as a DAG of vectors, where each query operator is
encoded by concatenating i) operator type via one-hot encoding,
ii) its cardinality, represented by row count and size in bytes, and
iii) the average of the word embeddings [40] from its predicates,
providing a rich, multidimensional representation of the opera-
tor’s functional and data characteristics. Second, we capture critical
contextual factors as non-decision variables, including i) input char-
acteristics U , aggregated from the statistics of leaf operators, ii) data
distribution V , quantifying the size distribution of input partitions
with metrics like standard deviation-to-average ratio (f`), skewness
ratio (max �`

`), and range-to-average ratio (max �min
`), and iii) run-

time contention W , capturing the statistics of parallel stages in a
numeric vector, tracking their tasks in running and waiting states,
and aggregating statistics of completed tasks to characterize their
behaviors. Third, we convert the tunable parameters as decision
variables into a numeric vector to represent the Spark behavior.

Model Structures. The hybrid data structure of the query plan,
with a DAG of operator encodings, and other tabular features, poses
a challenge in model formulation. To tackle this, we adopt a multi-
channel input framework [32] that incorporates a Graph Trans-
former Network (GTN) [8] and a regressor to predict our objectives,
as shown in Figure 6. We �rst derive the query embedding using
the GTN [8], which handles non-linear and non-sequential relation-
ships by using Laplacian positional encoding to encode positional
information and attention mechanisms to capture operator correla-
tions. These embeddings are then concatenated with other tabular
data and processed through a regressor, capturing the interplay
among the query characteristics, critical contextual factors, and
tunable parameters. Figure 6 illustrates the architecture of the LQP
model, which has the largest number of feature factors.

5 COMPILE-TIME/RUNTIME OPTIMIZATION
In this section, we present our hybrid compile-time/runtime opti-
mization approach to multi-granularity parameter tuning in the
multi-objective optimization setting.

5.1 Hierarchical MOO with Constraints
Our compile-time optimization �nds the optimal con�guration) ⇤2
of the context parameters to construct an ideal Spark context for
query execution. We do so by exploring the correlation of)2 with

�ne-grained)p and)s parameters for di�erent subqueries (subQs),
under the modeling constraint that the cardinality estimates are
based on Spark’s cost-based optimizer. Despite the modeling con-
straint, capturing the correlation between the mixed parameter
space allows us to �nd a better Spark context for query execution.

The multi-objective optimization problem in Def. 3.3 provides
�ne-grained control of)p and)s at the subQ/query stage level,
besides the query level control of)c . This leads to a large parameter
space, linear in the number of query stages in the plan, which
defeats most existing MOO methods when the solving time must
be kept under the constraint of 1-2 seconds for cloud use.

To combat the high-dimensional parameter space, we propose a
new approach named Hierarchical MOO with Constraints (HMOOC).
It follows a divide-and-conquer framework to break a large opti-
mization problem on ()c , {)p}, {)s }) to a set of smaller problems
on ()c ,)p ,)s), one for subQ of the logical query plan. However,
these smaller problems are not independent as they must obey the
constraint that all the subproblems must choose the same)c value.
More speci�cally, the problem for HMOOC is de�ned as follows:
De�nition 5.1. HierarchicalMOOwithConstraints (HMOOC)

argmin
)

f ()) =

26666666664

51 ()) = ⇤(q1 (LQP1,)c ,)p1,)s1), . . . ,
q1 (LQP<,)c ,)pm,)sm))

...
5: ()) = ⇤(q: (!&%1,)c ,)p1,)s1), . . . ,

q: (!&%<,)c ,)pm,)sm))

37777777775
B .C .)c 2 ⌃2 ✓ R32 ,)pi 2 ⌃? ✓ R3? ,

)si 2 ⌃B ✓ R3B , 8 = 1, . . . ,<

where LQP8 denotes the 8-th subQ of the logical plan query,)i =
()c ,)pi,)si) denotes its con�guration, with 8 = 1, . . . ,<, and< is
the number of subQs. Most notably, all the subQs share the same
)c , but can use di�erent values of)pi and)si . Additionally, q 9 is
the subQ predictive model of the 9-th objective, where 9 = 1, . . . ,: .
The function ⇤ is the mapping from subQ-level objective values to
query-level objective values, which can be aggregated using sum
based on our choice of analytical latency and cost metrics.

Our main idea is to tune each subQ independently under the
constraint that)c is identical among all subQ’s. By doing so, we aim
to get the local subQ-level solutions, and then recover the query-
level Pareto optimal solutions by composing these local solutions
e�ciently. In brief, it includes three sequential steps: (1) subQ
tuning, (2) DAG aggregation, and (3)WUN recommendation.

Figure 7 illustrates an example of compile-time optimization
for TPCH-Q3 under the latency and cost objectives. For simplicity,
we show only the �rst three subQ’s in this query and omit)s in
this example. In subQ-tuning, we obtain subQ-level solutions with
con�gurations of)c and)p , where)c has the same set of two
values ()1c ,)2c) among all subQ’s, but)p values vary. Subsequently
in the DAG aggregation step, the query-level latency and cost are
computed as the sum of the three subQ-level latency and cost values,
and only the Pareto optimal values of latency and cost are retained.
Finally, in the third step, we use theWUN (weighted Utopia nearest)
policy to recommend a con�guration from the Pareto front.

5.1.1 Subquery (subQ) Tuning. Subquery (subQ) tuning aims to
generate an e�ective set of local solutions of ()c ,)p ,)s) for each

3571

(*%, *&', *&(, *&))

scan

join

fltr
pj

scan

fltr

pj

pj

subQ1 subQ2

subQ3
(#", ##%)

(#", ##$)(#", ##!)

(a) Example subQ

Do
mi
na
tes

Recommended

Default
Configuration

,* *% *& Lat $

,*'' *%' *&'' 5 0.05

,*'(*%' *&'(7 0.04

,*') *%(*&') 8 0.045

subQ1 -- MOO
,* *% *& Lat $

,*(' *%' *&(' 9 0.015

,*((*%(*&((4 0.022

,*() *%(*&() 10 0.013

subQ2 -- MOO
,* *% *& Lat $

,*)' *%' *&)' 3 0.028

,*)(*%(*&)(6 0.012

subQ3 -- MOO

$/0 = [19, 0.083]%& = [#"!, ##!$, ##$! , ##%!]Default
Configuration

,+ - Lat $

,+' *%', *&'' , *&(' , *&)' 17 0.093

,+(*%(, *&') , *&((, *&)(18 0.079

,+) *%(, *&') , *&() , *&)(24 0.07

$/$ = [18, 0.079]
%$ = [#"$, ##!% , ##$$, ##%$]

1) subQ tuning:
get the subQ-level MOO

solutions !!

2) DAG Aggregation:
get the query-level MOO
solutions !"
3) WUN

(b) Approach Overview

Figure 7: Example of the Compile-time optimization of TPCH Q3

Cloud Cost ($)

Qu
er

y L
at

en
cy

 (s
)

Extreme point under one !!
Objective space under one !!

A missed global optimal solution

Figure 8: Boundary approxi-
mation of DAG optimization

subQ1 subQ2 subQ3

4
5

6

6

6
4 4

57
7

1

3

2
2

5

31 2

7

1

3

6 5
4

2
1

3

7
missing
solution

Figure 9: Example of missed global optimal solutions in TPCH Q3

subQ while obeying the constraint that all the subQs share the same
)c . For simplicity, we focus on ()c ,)p) in the following discussion
as)s is treated the same way as)p .

One may wonder whether it is su�cient to generate only the
local Pareto solutions of ()c ,)p) of each subQ. Unfortunately, this
will lead to missed global Pareto optimal solutions due to the con-
straint on)c . Figure 9 illustrates an example with 3 subQs, where
solutions sharing the same index fall under the same)c con�gura-
tion and have achieved optimal)p under that)c value. The �rst
row in Figure 9 showcases subQ-level solutions, where triangle
points represent subQ-level optima and circle points denote dom-
inated solutions. The second row in Figure 9 displays the global
query-level values, where both latency and cost are the sums of
subQ-level latency and cost. Notably, solution 6 is absent from the
local subQ-level Pareto optimal solutions across all subQs. Due to
the identical)c constraint and the sum from subQ-level values to
query-level values, the sum of solution 6’s subQ-level latency and
cost becomes better than solution 4 (a subQ-level Pareto optimal
solution) and is a query-level Pareto point.
1. E�ective)c Candidates. To minimize the chance of missing
global solutions, we seek to construct a diverse, e�ective set of
)c con�gurations to be considered across all subQs.)c can be
initialized by random sampling or grid-search over its domain of
values. Then, we enrich the)c set using a few methods. Drawing
inspiration from the evolutionary algorithms [9], we introduce a
crossover operation over the existing)c population to generate new
candidates. If crossover cannot generate more candidates, e.g., for
some grid search methods used for initial sampling of)c candidates,
then we add random sampling to discover new candidates.
2. Optimal)p Approximation. Next, under each)c candidate,
we show that it is crucial to keep track of the local Pareto optimal
)p within each subQ. The following proposition explains why.

Proposition 5.1. Under any speci�c value) 9
c , only subQ-level

Pareto optimal solutions () 9
c ,)

⇤
p) contribute to the query-level

Pareto optimal solutions.

In the interest of the space, all the proofs in this paper are de-
ferred to [31].

The above result allows us to restrict our search of)p to only
the local Pareto optimal ones. However, given the large, diverse
set of)c candidates, it is computationally expensive to solve the
MOO problem for)p repeatedly, once for each)c candidate. We
next introduce a clustering-based approximation to reduce the
computation complexity. It is based on the hypothesis that, within
the same subQ, similar)c candidates entail similar optimal)p
values in the tuning process. By clustering similar)c values into
a small number of groups (based on their Euclidean distance), we
then solve the MOO problem of)p for a single)c representative of
each group. We then use the optimized)p as the estimated optimal
solution for other)c candidates within each group.
Algorithm. Algorithm 1 describes the steps for obtaining an ef-
fective solution set of ()c ,)p) for each subQ. Line 1 initiates by
generating ⇠ ⇥ % samples, where ⇠ and % are the numbers of dis-
tinct values of)c and)p , respectively. The)c candidates are then
grouped using a clustering approach (Line 2), where A4?_2_;8BC
constitutes the list of)c representatives for the = groups, ⇠_;8BC
includes the members within all = groups, and ^ represents the
clustering model. In Line 3,)p optimization is performed for each
representative)c candidate (using the samples from Line 1). Subse-
quently, the optimal)p of the representative)c is assigned to all
members within the same group and is fed to the predictive models
to get objective values (Line 4). After that, the initial e�ective set
is obtained, where ⌦ (0) represents the subQ-level objective values
under di�erent)c , and ⇥(0) represents the corresponding con�gu-
rations. Line 5 further enriches)c using the crossover method or
random sampling, which expands the initial e�ective set to gener-
ate new)c candidates. Afterwards, the cluster model ^ assigns the
new)c candidates with their group labels (Line 6). The previous
optimal)p values are then assigned to the new members within
the same group, resulting in their corresponding subQ-level values
as the enriched set (Line 7). Finally, the initial set and the enriched
set are combined as the �nal e�ective set of subQ tuning (Line 8).
Sampling methods. We next detail the sampling methods used in
Line 1 of the algorithm. (1) We include basic sampling methods, in-
cluding random sampling and Latin-hypercube sampling (LHS) [37]

3572

Algorithm 1: E�ective Set Generation
Require: & , q8 ,=, 88 2 [1,:],U, V,W ,⇠ , % .
1: ⇥(0)

c ,⇥(0)
p = sampling(⇠ , %)

2: A4?_2_;8BC ,⇠_;8BC , ^ = cluster(⇥(0)
c , =)

3: ⇥⇤
p = optimize_p_moo(⇥(0)

p , A4?_2_;8BC , q , U, V,W ,&)
4: ⌦ (0) , ⇥(0) = assign_opt_p(⇠_;8BC , A4?_2_;8BC , ⇥⇤

p , q , U, V,W ,&)

5: ⇥
0
c = enrich_c(⌦ (0) , ⇥(0))

6: ⇠_;8BC
0
= assign_cluster(⇥

0
c , A4?_2_;8BC , ^)

7: ⌦
0
, ⇥

0
= assign_opt_p(⇠_;8BC

0
, A4?_2_;8BC , ⇥⇤

p , q , U, V,W ,&)

8: ⌦, ⇥ = union(⌦ (0) , ⇥(0) , ⌦
0
, ⇥

0
)

9: return ⌦, ⇥

as a grid-search method. (2) To reduce dimensionality, we intro-
duce feature importance score (FIS) based parameter �ltering: we
sort the parameters by the FIS value from the trained model and
leverage the long-tail distribution to drop the parameters at the tail.
Precisely, many parameters at the tail have a low cumulative FIS
and we apply a threshold (e.g., 5% model loss) to remove them from
sampling. (3) We further propose an adaptive grid search method
with FIS-based parameter �ltering. Given the sample budget (⇠ or
%), it goes down the FIS ranking list and progressively covers one
more parameter, including its min, median and max values. If it
reaches the budget before adding all parameters, it ignores those
uncovered ones. Otherwise, it loops over the list again to add more
sampled values of each parameter. (4) We conduct hyperparam-
eter tuning to derive low, medium, and high values for ⇠ and % .
We also employ a simple runtime adaptive scheme to adjust the
sampling budget based on the predicted latency under the default
con�guration. See [31] for more details.

5.1.2 DAG Aggregation. DAG aggregation aims to recover query-
level Pareto optimal solutions from subQ-level solutions. It is a
combinatorial MOO problem, as each subQ must select a solution
from its non-dominated solution set while satisfying the constraint
of sharing the)c con�guration among all subQs. The complexity
of this process can be exponential in the number of subQs. Our
approach below addresses this challenge by providing optimality
guarantees and reducing the computation complexity.
Simpli�ed DAG. A crucial observation that has enabled our e�-
cient methods is that our optimization problem over a DAG struc-
ture can be simpli�ed to an optimization problem over a list struc-
ture. This is due to our choice of analytical latency and cost metrics,
where the query-level objective can be computed as the sum of
subQ-level objectives. The MOO problem over a DAG can be simu-
lated with a list structure for computing query-level objectives.
HMOOC1: Divide-and-Conquer. Under a �xed)c , i.e., satisfying
the constraint inherently, we propose a divide-and-conquer method
to compute the Pareto set of the simpli�ed DAG, which is reduced
to a list of subQs. The idea is to (repeatedly) partition the list into
two halves, solve their respective subproblems, and merge their
solutions to global optimal ones. The merge operation enumerates
all the combinations of solutions of the two subproblems, sums up
their objective values, and retains only the Pareto optimal ones.
Our proof (available in [31]) shows that this method returns a full
set of query-level Pareto optimal solutions.

HMOOC2: WS-based Approximation. Our second technique
approximates the MOO solution over a list structure. For each �xed
)c , we apply the weighted sum (WS) method to generate evenly
spaced weight vectors. Then for each weight vector, we obtain the
(single) optimal solution for each subQ and sum the solutions of
subQ’s to get the query-level optimal solution. It can be proved that
this WS method over a list of subQs guarantees to return a subset
of query-level Pareto solutions (see [31]).
HMOOC3: Boundary-based Approximation. Our next approx-
imate technique stems from the idea that the objective space of
DAG aggregation under each)c can be approximated by : extreme
points, where : is the number of objectives. In our context, the
extreme point under a �xed)c is the Pareto optimal point with the
best query-level value for any objective. The rationale behind this
approximation lies in the observation that solutions from di�erent
)c candidates correspond to distinct regions on the query-level
Pareto front. This arises from the fact that each)c candidate de-
termines the total resources allocated to the query, and a diverse
set of)c candidates ensures good coverage across these resources.
Varying total resources, in turn, lead to di�erent objectives of query
performance, hence resulting in good coverage of the Pareto front
of cost-performance tradeo�s.

Therefore, we consider the degenerated extreme points to sym-
bolize the boundaries of di�erent (resource) regions within the
query-level Pareto front. Figure 8 illustrates an example. Here, the
dashed rectangles with their extreme points under di�erent colors
represent the objective space of query-level solutions under various
)c candidates. The brown dashed line represents the approximate
query-level Pareto front derived by �ltering the dominated solutions
from the collection of extreme points. The star solution indicates a
missed query-level Pareto solution, as it cannot be captured from
the extreme points.

The algorithm works as follows. For each)c candidate, for each
objective, we select the subQ-level solution with the best value
for that objective for each subQ, and then sum up the objective
values of such solutions from all subQs to form one query-level
extreme point. Repeating this procedure will lead to a maximum of
:= query-level solutions, where : is the number of objectives and
= is the number of)c candidates. An additional �ltering step will
retain the non-dominated solutions from the := candidates, using
an existing method of complexity $ (:= log(:=)) [22].
Proposition 5.2. Under a �xed)c candidate, the query-level ob-
jective space of Pareto optimal solutions is bounded by its extreme
points in a 2D objective space.

Proposition 5.3. Given subQ-level solutions, our boundary ap-
proximation method guarantees to include at least : query-level
Pareto optimal solutions for a MOO problem with : objectives.

5.1.3 Multiple �ery Plan Search. Our compile-time MOO algo-
rithm so far has considered only one physical query plan (with the
corresponding subQs) based on the default con�guration. Since
at runtime, AQE may generate a very di�erent physical plan, we
further enhance our compile-time optimization by considering mul-
tiple physical plans. Initially, we sample plan-related parameters (B3
and B4) in)? to collect di�erent physical query plans. We then rank
these plans based on their predicted query latency under the default

3573

con�guration. Subsequently, we trigger compile-time optimization
(the HMOOC algorithm) for each of the top-k fastest query plans,
run them in parallel, and merge their Pareto solutions into the same
objective space to obtain the �nal Pareto set.

5.2 Runtime Optimization
The compile-time optimization relied on the estimated cardinal-
ity and assumption of uniform data distributions. However, its
true value is to recommend the optimal context parameters) ⇤2 by
considering the correlations with)? and)B . Then, our runtime
optimization addresses the remaining problems, adapting)? and
)B based on actual runtime statistics and plan structures.

To start the runtime process, we need to �rst suit the constraint
that Spark accepts only one copy of)? and)B at the query submis-
sion time. To do so, we intelligently aggregate the �ne-grained)?
and)B from compile-time optimization to initialize the runtime pro-
cess. In particular, Spark AQE can convert a sort-merge join (SMJ)
to a shu�ed hash join (SHJ) or a broadcast hash join (BHJ), but
not vice versa. Thus, imposing high thresholds (B3, B4 in Table 1) to
force SHJ or BHJ based on inaccurate compile-time cardinality can
result in suboptimal plans. In the example of Figure 3(b), when the
cardinality of Join4 is underestimated at the compile time, MO-WS
returns a query plan broadcasting the output of Join4. At runtime,
when the actual output size of Join4 is observed to be 4.5GB, Spark
cannot switch the BHJ back to other joins but broadcasting the
4.5GB data, leading to suboptimal performance. On the other hand,
setting B3, B4 to zeros initially might overlook opportunities to apply
BHJs, especially for joins on base tables with small input sizes. To
mitigate this, we initialize)? with the smallest threshold among all
join-based subQs, enabling more e�ective runtime decisions. Other
details of aggregating)? and)B are in [31].

Runtime optimization then operates within a client-server model.
The client, integrated with the Spark driver, dispatches optimization
requests—including runtime statistics and plan structures—when a
collapsed logical query plan (LQP) or a runtime query stage (QS)
necessitates optimization (Steps 6, 9 in Figure 2). The server, hosted
on a GPU-enabled node and supported by the learned models and
a library of MOO algorithms [47], processes these requests over a
high-speed network connection.

Complex queries can trigger numerous optimization requests
every time when a collapsed logical plan or a runtime QS is pro-
duced, signi�cantly impacting overall latency. For instance, TPC-DS
queries, with up to 47 subQs, may generate up to nearly a hundred
requests throughout a query’s lifecycle. To address this, we estab-
lished rules to prune unnecessary requests based on the runtime
semantics of parametric rules as detailed in [31]. By applying these
rules, we substantially reduce the total number of optimization calls
by 86% and 92% for TPC-H and TPC-DS respectively.

6 EXPERIMENTAL EVALUATION
In this section, we evaluate our modeling and �ne-grained compile-
time/runtime optimization techniques. We further present an end-
to-end evaluation against the SOTA tuning methods.

Spark setup. We perform SQL queries at two 6-node Spark
3.5.0 clusters with runtime optimization plugins. Our optimization
focuses on 19 parameters, including 8 for)2 , 9 for)? , and 2 for)B ,

Table 3: Model performancewithGraph TransofmerNetwork (GTN)
+ Regressor

Target Ana-Latency/Latency (s) Shu�e Size (MB) Xput
WMAPE P50 P90 Corr WMAPE P50 P90 Corr K/s

TPC-H
subQ 0.131 0.029 0.292 0.99 0.025 0.006 0.045 1.00 70
QS 0.149 0.027 0.353 0.98 0.002 3e-05 0.004 1.00 86
LQP 0.164 0.060 0.337 0.95 0.010 8e-05 0.002 1.00 146

TPC-DS
subQ 0.249 0.030 0.616 0.95 0.098 0.016 0.134 0.99 60
QS 0.279 0.060 0.651 0.95 0.028 4e-04 0.023 1.00 79
LQP 0.223 0.095 0.459 0.93 0.107 0.028 0.199 0.99 462

TPC-H*
(TPC-DS)

subQ 0.139 0.018 0.346 0.984 0.019 0.002 0.034 0.996 45
QS 0.143 0.017 0.346 0.982 0.003 0.001 0.006 1.000 72
LQP 0.148 0.046 0.292 0.924 0.019 0.005 0.028 0.998 242

selected based on feature selection pro�ling [19] and best practices
from the Spark documentation. More details are in [31].

Workloads. We generate datasets from the TPC-H and TPC-DS
benchmarks with a scale factor of 100. We use the default 22 TPC-H
and 102 TPC-DS queries for the optimization analyses and end-
to-end evaluation. To collect training data, we further treat these
queries as templates to generate 50k distinct parameterized queries
for TPC-H and TPC-DS, respectively. We run each query under one
con�guration sampled via Latin Hypercube Sampling [37].

Implementation.We implement our optimizer using plugins
into Spark. (1) The trace collector is implemented as customized
Spark listeners to track runtime plan structures and statistics, cost-
ing an average of 0.02s per query. (2) The compile-time optimizer
operates as a standalone module, costing an average of 0.4s. (3) The
runtime optimizer operates in the server-client model, where the
client is wrapped in customized Spark query plan rules, and the
server is on a standalone machine, costing an average of 0.3-0.4s
per query. (4) The model server maintains up-to-date models on
the same server as the optimizer. The TPC-H and TPC-DS traces
were split into 8:1:1 for training, validation, and testing. It took 6-12
hours to train one model and 2 weeks for hyperparameter tuning
on a GPU node with 4 NVIDIA A100 cards.

6.1 Model Evaluation
We trained separate models for subQ, QS, and LQP to support
compile-time/runtime optimization. We evaluate each model using
the weighted mean absolute percentage error (WMAPE), median
and 90th percentile errors (P50 and P90), Pearson correlation (Corr),
and inference throughput (Xput).

Expt 1: Model Performance.We present the performance of our
best-tuned models for TPC-H and TPC-DS in the �rst 6 rows of
Table 3. First, our models can provide highly accurate prediction
in latency and analytical latency for Spark queries for di�erent
compile-time and runtime targets, achieving WMAPEs of 13-28%,
P50 of 3-10%, and P90 of 29-65%, alongside a correlation range of
93-99% with the ground truth. Second, the shu�e size is more pre-
dictable than latency, evidenced by aWMAPE of 0.2-11% and almost
perfect 99-100% correlation with the actual shu�e size, attributed to
its consistent performance across con�gurations. Third, the models
show high inference throughput, ranging from 60-462K queries per
second, which enables e�cient solving time of our compile-time
and runtime optimizations.

Expt 2: Impact of Skewness. We now investigate the impact of
data skewness on our latency models. Following recent work [21],
we de�ne the skewness ratio as the gap between the maximum and

3574

Figure 10: CDF of TPC-DS skewness

Table 4: Correlation
between model errors
and skewness ratios in
intermediate RDDs.

Lat. range >1s >!%90 > !%99

TPC-H 0.001 0.019 -0.026
TPC-DS -0.017 -0.015 0.048

average partition size divided by the average. Figure 10 shows the
skewness ratio in base tables and intermediate RDDs in the TPC-DS
benchmark, which exceeds 100% for over 40% of columns in base
tables and for over 26% of the intermediate RDDs. Table 4 further
shows that the correlations between model errors and skewness are
close to 0 during runtime optimization, across queries in di�erent
latency ranges. This indicates that once the skewness is captured at
runtime, the model can work quite well regardless of the skewness
level. Additional results are reported in [31].

Expt 3: Model Generalizability. We further explore the generaliz-
ability of our trained model to unseen workloads. The �rst approach
applies the latency model trained on TPC-DS directly to TPC-H,
or vice versa. However, it leads to high errors due to signi�cant
di�erences in the execution environments. The second approach
transfers the graph embedding through the GTNmodel and retrains
only the regressor for latency prediction for a di�erent workload.
Our results indicate that graph embeddings trained on a work-
load with a broader range of query operators (e.g., TPC-DS) can be
transferred e�ectively. As shown in the last three rows of Table 3,
applying the GTN learned from TPC-DS to TPC-H queries and
retraining the regressor for TPC-H leads to a modest 0.008 WMAPE
increase for the subQmodel and a 0.006 and 0.016WMAPE decrease
for QS and LQP, respectively. More details can be found in [31].

6.2 Compile-time MOO Methods
We next evaluate our compile-time MOO methods against existing
MOO methods. The objectives include query latency and cloud cost
as a weighted sum of cpu hours, memory hours, shu�e sizes.

Expt 4: DAG Aggregation methods. We �rst compare the three
DAG aggregation methods (§5.1.2) in the HMOOC framework in
terms of accuracy and e�ciency. Hypervolume (HV) is a standard
measure of the dominated space of a Pareto set in the objective
space. All three methods provide similar HV and hence we omit
the plot in the interest of space. For e�ciency, Figure 11(a) shows
that Boundary-based Approximation (HMOOC3) is the most e�cient
for both benchmarks, achieving the mean solving time of 0.5-0.8s.
Therefore, we use HMOOC3 in the remaining experiments.

Expt 5: Sampling Methods. We next compare di�erent sampling
methods used with HMOOC3, where H3-R and H3-L denote Random
sampling and Latin Hypercube Sampling (LHS), and H3-'̂ and H3-!̂
denote their variants with feature importance score (FIS) based pa-
rameter �ltering. Further, H3-A denotes our Adaptive grid-search
with FIS-based parameter �ltering. The sampling rate is set uni-
formly (⇠ = 54) ⇥ (% = 243) for all methods. Figures 11(b)-11(c)
report on HV and solving time, in the �rst 5 bars in each group. In
terms of HV, H3-A is the best for TPC-H, and H3-L and H3-R slightly
outperform the other three with parameter �ltering for TPC-DS.
Considering solving time, H3-A achieves the lowest solving time,

Table 5: Latency reduction with a strong speed preference
TPC-H TPC-DS

MO-WS HMOOC3 HMOOC3+ MO-WS HMOOC3 HMOOC3+

Total Lat Reduction 18% 61% 63% 25% 61% 65%
Avg Lat Reduction -1% 53% 52% 34% 56% 59%
Avg Solving Time (s) 2.6 0.41 0.70 15 0.41 0.80
P50 Solving Time (s) 2.3 0.38 0.69 14 0.35 0.65
P90 Solving Time (s) 4.0 0.51 0.90 26 0.63 1.4
Max Solving Time (s) 4.5 0.81 1.4 68 1.4 2.9

�nishing all TPC-H queries in 1s and 100/102 TPC-DS queries in
2s. The methods without parameter �ltering can have the solving
time exceeding 6 seconds for some TPC-DS queries. Overall, H3-A
achieves a good balance between HV and solving time.

Expt 6: Comparison with SOTA MOO methods. We next compare
with SOTAMOOmethods, WS [35] (with tuned hyperparameters of
10k samples and 11 pairs of weights), Evo [9] (with a population size
of 100 and 500 function evaluations), and PF [47], for �ne-grained
tuning of parameters based on Def. 3.3. Figures 11(b)-11(c) report
their HV and solving time, in the last three bars of each group.
HMOOC3 outperforms other MOOmethods with 4.7%-54.1% improve-
ment in HV and 81%-98.3% reduction in solving time. These results
stem from HMOOC’s hierarchical framework, which addresses a
smaller search space with only one set of)c and)p at a time, and
uses e�cient DAG aggregation to recover query-level values from
subQ-level ones. In contrast, other methods solve the optimization
problem using the global parameter space, including< sets of)p ,
where< is the number of subQs in a query.

6.3 End-to-End Evaluation
We now extend our best compile-time optimization method HMOOC3
with runtime optimization, denoted as HMOOC3+, which includes the
adaptive sampling rate scheme introduced in Section 5.1 to achieve
a better balance between accuracy and e�ciency. We compare it
with existing methods in actual execution time when Spark AQE is
enabled. To account for model errors, we re�ne the search range
for each Spark parameter by avoiding the extreme values of the
parameter space that could make the predictions less reliable.

Expt 7: Bene�ts over Default Con�guration. Figure 12(a) and 12(b)
show the per-query latency using HMOOC3+ or the default con�g-
uration. Among the 22 TPC-H and 102 TPC-DS queries, HMOOC3+
signi�cantly outperforms the default con�guration for most of the
queries, while being similar (within 2s latency improvement) for
three short-running queries (h6, ds8, and ds20). HMOOC3+ loses to
the default con�guration only for one short-running query (h14),
mainly due to the model error in predicting its latency. As we use
WMAPE as the training loss to give more weight to long-running
queries, short queries can have inaccurate predictions and hence ex-
perience a suboptimal query plan or insu�cient resource allocation.

Expt 8: Bene�ts over Query-level MOO. We next show the ad-
vantages of our methods (HMOOC3 and HMOOC3+) over the best-
performing MOO method identi�ed in the previous study, i.e., WS
for query-level MOO, denoted as MO-WS. Here, we prioritize la-
tency over cost with a preference vector of (0.9, 0.1) on latency
and cost. The results in Table 5 show the improvement over the
default Spark con�guration. First, �ne-grained tuning signi�cantly
enhances performance (major result R1), cutting latency by 61% for

3575

(a) Solving time of DAG aggregation methods (b) Mean Hypervolume of HMOOC3 and baselines (c) Solving time of HMOOC3 and baselines

Figure 11: Accuracy and e�ciency of our compile-time MOO algorithms, compared to existing MOO methods

(a) Latency of queries in TPC-H (b) Latency of queries in TPC-DS (c) Long-running queries in TPC-H and DS

Figure 12: End-to-end performance of our algorithm, compared to the state-of-the-art (SOTA) methods

Table 6: Latency and cost adapting to preferences
Prefs. TPC-H TPC-DS
Lat/Cost SO-FW HMOOC3+* SO-FW HMOOC3+*
(0.0, 1.0) 20% / -11% -15% / -10% -6% / 64% -45% / -22%
(0.1, 0.9) 1% / 1% -31% / -5% -28% / 105% -57% / -7%
(0.5, 0.5) -1% / 25% -46% / -3% -28% / 128% -59% / 29%
(0.9, 0.1) -13% / 27% -51% / 0% -34% / 139% -59% / 55%
(1.0, 0.0) -14% / 44% -55% / 3% -26% / 144% -59% / 64%

both benchmarks with compile-time optimization (HMOOC3), and
by 63-65% with runtime optimization (HMOOC3+). They both out-
perform MO-WS with only 18-25% reductions and in some cases,
worse than the default con�guration. Second, MO-WS, even limited
to query-level tuning, su�ers in e�ciency, with 14s and 26s as the
P50 and P90 solving time, respectively, for TPC-DS. In contrast, our
approach solves MOO with a P50 solving time of 0.65-0.69s and P90
time of 0.9-1.4s for the two benchmarks.

Expt 9: Bene�ts for Long-running Queries. We further consider
long-running queries that are hard to optimize and often su�er
from suboptimal plans with)? tuned based on compile-time cardi-
nality estimates. Figure 12(c) shows the top long-running queries
from TPC-H and TPC-DS. While HMOOC3 already o�ers signi�cant
latency reduction, HMOOC3+ achieves up to a 22% additional latency
reduction over the default con�guration.We �nally turned onmulti-
query plan search, running up to 3 query plan structures in parallel
at compile-time optimization. This method, HMOOC3+*, further im-
proves h9, h21, ds50, etc. Overall, HMOOC3+* reduces latency by
64-85% for long-running queries (R2).

Expt 10: Adaptability Comparison to SO with �xed weights. As
MO-WS is too slow for cloud use due to its ine�ciency, we now
compare the adaptability of our approach against the common,
practical approach that combines multiple objectives into a single
objective using �xed weights [25, 66, 73], denoted as SO-FW. Table 6
shows the average reduction rates in latency and cost relative to the
default con�gurations across a range of preference vectors. First,
HMOOC3+* dominates SO-FW with more latency and cost reductions
in most cases (R3), achieving up to 55-59% latency reduction and
10-22% cost reduction in both benchmarks, while SO-FW gets at
most 1-34% average latency reduction and in most cases, increases
the cost compared to default. Second, our approach demonstrates

superior adaptability to varying preferences (R4), enhancing latency
reductions progressively as preferences shift towards speed. In con-
trast, SO-FW does not make meaningful recommendations: Under a
cost-saving preference of (0.0, 1.0), SO-FW struggles to lower costs
in TPC-DS, instead increasing the average cost by 64% across all
queries. Despite this cost increase, it achieves a merely 6% reduc-
tion in latency. In contrast, HMOOC3+* achieves a 45% reduction in
latency alongside a 22% cost saving, underscoring its e�ectiveness
and adaptability to the speci�ed cost performance preference.

7 CONCLUSIONS
This paper presented a Spark optimizer for �ne-grained parameter
tuning in the new AQE architecture based on a hybrid compile-
time/runtime optimization approach. Our approach employed so-
phisticated modeling techniques to capture di�erent compile-time
and runtime modeling targets, and a suite of techniques tailored for
multi-objective optimization (MOO) while meeting the stringent
solving time constraint of 1-2 seconds. Evaluation results using
TPC-H and TPC-DS benchmarks show that (8) when prioritizing
latency, our approach achieves 63% and 65% latency reduction on av-
erage for TPC-H and TPC-DS, respectively, under the solving time
of 0.7-0.8 sec, outperforming the most competitive MOO method
with 18-25% latency reduction and high solving time of 2.6-15 sec;
(88) when shifting preferences between latency and cost, our ap-
proach dominates the solutions from alternative methods by a wide
margin. In the future, we plan to extend our tuning approach to
support diverse (e.g., machine learning) workloads. In addition, we
plan to extend our approach to other big data/DMBS systems like
Presto [49], Greenplum [33], and MaxCompute [36], which can
observe runtime statistics and support runtime adaptability.

ACKNOWLEDGMENTS
This work was partially supported by the European Research Coun-
cil (ERC) Horizon 2020 research and innovation programme (grant
n725561) and China Scholarship Council (CSC). We also thank
Julien Fontanarava for engineering e�orts and Guillaume Lachaud
for the discussion and help.

3576

REFERENCES
[1] Kavita Agarwal, Bhushan Jain, and Donald E. Porter. 2015. Containing the Hype.

In Proceedings of the 6th Asia-Paci�c Workshop on Systems, APSys 2015, Tokyo,
Japan, July 27-28, 2015, Kenji Kono and Takahiro Shinagawa (Eds.). ACM, 8:1–8:9.
https://doi.org/10.1145/2797022.2797029

[2] Michael Armbrust, Reynold S. Xin, Cheng Lian, Yin Huai, Davies Liu, Joseph K.
Bradley, Xiangrui Meng, Tomer Kaftan, Michael J. Franklin, Ali Ghodsi, andMatei
Zaharia. 2015. Spark SQL: Relational Data Processing in Spark. In Proceedings
of the 2015 ACM SIGMOD International Conference on Management of Data,
Melbourne, Victoria, Australia, May 31 - June 4, 2015, Timos K. Sellis, Susan B.
Davidson, and Zachary G. Ives (Eds.). ACM, 1383–1394. https://doi.org/10.1145/
2723372.2742797

[3] Vinayak R. Borkar, Michael J. Carey, Raman Grover, Nicola Onose, and Rares
Vernica. 2011. Hyracks: A �exible and extensible foundation for data-intensive
computing. In ICDE. 1151–1162.

[4] Google Cloud. 2022. Data�ow Pricing. https://cloud.google.com/data�ow/
pricing

[5] Samuel Daulton, Maximilian Balandat, and Eytan Bakshy. 2020. Di�erentiable
Expected Hypervolume Improvement for Parallel Multi-Objective Bayesian Op-
timization. CoRR abs/2006.05078 (2020). arXiv:2006.05078 https://arxiv.org/abs/
2006.05078

[6] Je�rey Dean and Sanjay Ghemawat. 2004. MapReduce: simpli�ed data processing
on large clusters. In OSDI’04: Proceedings of the 6th conference on Symposium
on Opearting Systems Design & Implementation (San Francisco, CA). USENIX
Association, Berkeley, CA, USA, 10–10.

[7] Sergey Dudoladov, Chen Xu, Sebastian Schelter, Asterios Katsifodimos, Stephan
Ewen, Kostas Tzoumas, and Volker Markl. 2015. Optimistic Recovery for Iterative
Data�ows in Action. In Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data, Melbourne, Victoria, Australia, May 31 - June
4, 2015. 1439–1443. https://doi.org/10.1145/2723372.2735372

[8] Vijay Prakash Dwivedi and Xavier Bresson. 2021. A Generalization of Trans-
former Networks to Graphs. AAAI Workshop on Deep Learning on Graphs:
Methods and Applications (2021).

[9] Michael T. Emmerich and André H. Deutz. 2018. A Tutorial on Multiobjective
Optimization: Fundamentals and Evolutionary Methods. Natural Computing: an
international journal 17, 3 (Sept. 2018), 585–609. https://doi.org/10.1007/s11047-
018-9685-y

[10] Wenchen Fan, Herman van Hovell, and MaryAnn Xue. 2020. Adap-
tive Query Execution: Speeding Up Spark SQL at Runtime. https:
//www.databricks.com/blog/2020/05/29/adaptive-query-execution-speeding-
up-spark-sql-at-runtime.html.

[11] Ayat Fekry, Lucian Carata, Thomas Pasquier, Andrew Rice, and Andy Hopper.
2020. To Tune or Not to Tune? In Search of Optimal Con�gurations for Data
Analytics. In Proceedings of the 26th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining (Virtual Event, CA, USA) (KDD ’20).
Association for Computing Machinery, New York, NY, USA, 2494âĂŞ2504. https:
//doi.org/10.1145/3394486.3403299

[12] Alan Gates, Olga Natkovich, Shubham Chopra, Pradeep Kamath, Shravan
Narayanam, Christopher Olston, Benjamin Reed, Santhosh Srinivasan, and
Utkarsh Srivastava. 2009. Building a HighLevel Data�ow System on top of
MapReduce: The Pig Experience. PVLDB 2, 2 (2009), 1414–1425.

[13] Shohedul Hasan, Saravanan Thirumuruganathan, Jees Augustine, Nick Koudas,
and Gautam Das. 2020. Deep Learning Models for Selectivity Estimation of
Multi-Attribute Queries. In Proceedings of the 2020 International Conference on
Management of Data, SIGMOD Conference 2020, online conference [Portland, OR,
USA], June 14-19, 2020, David Maier, Rachel Pottinger, AnHai Doan, Wang-
Chiew Tan, Abdussalam Alawini, and Hung Q. Ngo (Eds.). ACM, 1035–1050.
https://doi.org/10.1145/3318464.3389741

[14] Daniel Hernández-Lobato, José Miguel Hernández-Lobato, Amar Shah, and
Ryan P. Adams. 2016. Predictive Entropy Search for Multi-objective Bayesian Op-
timization. In Proceedings of the 33nd International Conference on Machine Learn-
ing, ICML 2016, New York City, NY, USA, June 19-24, 2016 (JMLR Workshop and
Conference Proceedings), Maria-Florina Balcan and Kilian Q. Weinberger (Eds.),
Vol. 48. JMLR.org, 1492–1501. http://proceedings.mlr.press/v48/hernandez-
lobatoa16.html

[15] Herodotos Herodotou and Elena Kakoulli. 2021. Trident: Task Scheduling over
Tiered Storage Systems in Big Data Platforms. Proc. VLDB Endow. 14, 9 (2021),
1570–1582. http://www.vldb.org/pvldb/vol14/p1570-herodotou.pdf

[16] Zhiyao Hu, Dongsheng Li, Dongxiang Zhang, Yiming Zhang, and Baoyun Peng.
2021. Optimizing Resource Allocation for Data-Parallel Jobs Via GCN-Based
Prediction. IEEE Trans. Parallel Distributed Syst. 32, 9 (2021), 2188–2201. https:
//doi.org/10.1109/TPDS.2021.3055019

[17] ArvindHulgeri and S. Sudarshan. 2002. Parametric QueryOptimization for Linear
and Piecewise Linear Cost Functions. In Proceedings of the 28th International
Conference on Very Large Data Bases (Hong Kong, China) (VLDB ’02). VLDB
Endowment, 167–178. http://dl.acm.org/citation.cfm?id=1287369.1287385

[18] Sangeetha Abdu Jyothi, Carlo Curino, IshaiMenache, ShravanMatthur Narayana-
murthy, Alexey Tumanov, Jonathan Yaniv, Ruslan Mavlyutov, Iñigo Goiri, Subru

Krishnan, Janardhan Kulkarni, and Sriram Rao. 2016. Morpheus: Towards Auto-
mated SLOs for Enterprise Clusters. In 12th USENIX Symposium on Operating
Systems Design and Implementation, OSDI 2016, Savannah, GA, USA, Novem-
ber 2-4, 2016. 117–134. https://www.usenix.org/conference/osdi16/technical-
sessions/presentation/jyothi

[19] Konstantinos Kanellis, Ramnatthan Alagappan, and Shivaram Venkataraman.
2020. Too Many Knobs to Tune? Towards Faster Database Tuning by Pre-
selecting Important Knobs. In 12th USENIX Workshop on Hot Topics in Storage
and File Systems, HotStorage 2020, July 13-14, 2020, Anirudh Badam and Vijay
Chidambaram (Eds.). USENIX Association. https://www.usenix.org/conference/
hotstorage20/presentation/kanellis

[20] Herald Kllapi, Eva Sitaridi, Manolis M. Tsangaris, and Yannis Ioannidis. 2011.
Schedule Optimization for Data Processing Flows on the Cloud. In Proceedings of
the 2011 ACM SIGMOD International Conference on Management of Data (Athens,
Greece) (SIGMOD ’11). ACM, New York, NY, USA, 289–300. https://doi.org/10.
1145/1989323.1989355

[21] Paraschos Koutris and Dan Suciu. 2016. A Guide to Formal Analysis of Join
Processing in Massively Parallel Systems. SIGMOD Rec. 45, 4 (2016), 18–27.
https://doi.org/10.1145/3092931.3092934

[22] Hsiang-Tsung Kung, Fabrizio Luccio, and Franco P Preparata. 1975. On �nding
the maxima of a set of vectors. Journal of the ACM (JACM) 22, 4 (1975), 469–476.

[23] Mayuresh Kunjir and Shivnath Babu. 2020. Black or White? How to Develop an
AutoTuner for Memory-based Analytics. In Proceedings of the 2020 International
Conference on Management of Data, SIGMOD Conference 2020, online conference
[Portland, OR, USA], June 14-19, 2020, David Maier, Rachel Pottinger, AnHai
Doan, Wang-Chiew Tan, Abdussalam Alawini, and Hung Q. Ngo (Eds.). ACM,
1667–1683. https://doi.org/10.1145/3318464.3380591

[24] Viktor Leis and Maximilian Kuschewski. 2021. Towards Cost-Optimal Query
Processing in the Cloud. Proc. VLDB Endow. 14, 9 (2021), 1606–1612. http:
//www.vldb.org/pvldb/vol14/p1606-leis.pdf

[25] Guoliang Li, Xuanhe Zhou, Shifu Li, and Bo Gao. 2019. QTune: A Query-Aware
Database Tuning System with Deep Reinforcement Learning. Proc. VLDB Endow.
12, 12 (2019), 2118–2130. https://doi.org/10.14778/3352063.3352129

[26] Rundong Li, Ningfang Mi, Mirek Riedewald, Yizhou Sun, and Yi Yao. 2019. Ab-
stract cost models for distributed data-intensive computations. Distributed Par-
allel Databases 37, 3 (2019), 411–439. https://doi.org/10.1007/S10619-018-7244-2

[27] Yang Li, Huaijun Jiang, Yu Shen, Yide Fang, Xiaofeng Yang, Danqing Huang,
Xinyi Zhang, Wentao Zhang, Ce Zhang, Peng Chen, and Bin Cui. 2023. Towards
General and E�cient Online Tuning for Spark. Proc. VLDB Endow. 16, 12 (2023),
3570–3583. https://doi.org/10.14778/3611540.3611548

[28] Chen Lin, Junqing Zhuang, Jiadong Feng, Hui Li, Xuanhe Zhou, and Guoliang
Li. 2022. Adaptive Code Learning for Spark Con�guration Tuning. In 38th IEEE
International Conference on Data Engineering, ICDE 2022, Kuala Lumpur, Malaysia,
May 9-12, 2022. IEEE, 1995–2007. https://doi.org/10.1109/ICDE53745.2022.00195

[29] Jie Liu, Wenqian Dong, Dong Li, and Qingqing Zhou. 2021. Fauce: Fast and
Accurate Deep Ensembles with Uncertainty for Cardinality Estimation. Proc.
VLDB Endow. 14, 11 (2021), 1950–1963. http://www.vldb.org/pvldb/vol14/p1950-
liu.pdf

[30] Yao Lu, Srikanth Kandula, Arnd Christian König, and Surajit Chaudhuri. 2021.
Pre-training Summarization Models of Structured Datasets for Cardinality Esti-
mation. Proc. VLDB Endow. 15, 3 (2021), 414–426. http://www.vldb.org/pvldb/
vol15/p414-lu.pdf

[31] Chenghao Lyu, Qi Fan, Philippe Guyard, and Yanlei Diao. 2024. A Spark Optimizer
for Adaptive, Fine-Grained Parameter Tuning. Technical Report. https://chenghao.
pages.dev/papers/vldb24-lyu-tr.pdf

[32] Chenghao Lyu, Qi Fan, Fei Song, Arnab Sinha, Yanlei Diao,Wei Chen, LiMa, Yihui
Feng, Yaliang Li, Kai Zeng, and Jingren Zhou. 2022. Fine-Grained Modeling and
Optimization for Intelligent Resource Management in Big Data Processing. Proc.
VLDB Endow. 15, 11 (2022), 3098–3111. https://doi.org/10.14778/3551793.3551855

[33] Zhenghua Lyu, Huan Hubert Zhang, Gang Xiong, Gang Guo, Haozhou Wang,
Jinbao Chen, Asim Praveen, Yu Yang, Xiaoming Gao, Alexandra Wang, Wen
Lin, Ashwin Agrawal, Junfeng Yang, Hao Wu, Xiaoliang Li, Feng Guo, Jiang Wu,
Jesse Zhang, and Venkatesh Raghavan. 2021. Greenplum: A Hybrid Database for
Transactional and Analytical Workloads. In SIGMOD ’21: International Conference
on Management of Data, Virtual Event, China, June 20-25, 2021, Guoliang Li,
Zhanhuai Li, Stratos Idreos, and Divesh Srivastava (Eds.). ACM, 2530–2542.
https://doi.org/10.1145/3448016.3457562

[34] Ryan Marcus and Olga Papaemmanouil. 2016. WiSeDB: A Learning-based Work-
load Management Advisor for Cloud Databases. PVLDB 9, 10 (2016), 780–791.
http://www.vldb.org/pvldb/vol9/p780-marcus.pdf

[35] Regina Marler and J S Arora. 2004. Survey of multi-objective optimization
methods for engineering. Structural and Multidisciplinary Optimization 26, 6
(2004), 369–395.

[36] MaxCompute [n.d.]. Open Data Processing Service. https://www.alibabacloud.
com/product/maxcompute.

[37] Michael D. McKay, Richard J. Beckman, and William J. Conover. 2000. A Com-
parison of Three Methods for Selecting Values of Input Variables in the Anal-
ysis of Output From a Computer Code. Technometrics 42, 1 (2000), 55–61.

3577

https://doi.org/10.1145/2797022.2797029
https://doi.org/10.1145/2723372.2742797
https://doi.org/10.1145/2723372.2742797
https://cloud.google.com/dataflow/pricing
https://cloud.google.com/dataflow/pricing
https://arxiv.org/abs/2006.05078
https://arxiv.org/abs/2006.05078
https://arxiv.org/abs/2006.05078
https://doi.org/10.1145/2723372.2735372
https://doi.org/10.1007/s11047-018-9685-y
https://doi.org/10.1007/s11047-018-9685-y
https://www.databricks.com/blog/2020/05/29/adaptive-query-execution-speeding-up-spark-sql-at-runtime.html
https://www.databricks.com/blog/2020/05/29/adaptive-query-execution-speeding-up-spark-sql-at-runtime.html
https://www.databricks.com/blog/2020/05/29/adaptive-query-execution-speeding-up-spark-sql-at-runtime.html
https://doi.org/10.1145/3394486.3403299
https://doi.org/10.1145/3394486.3403299
https://doi.org/10.1145/3318464.3389741
http://proceedings.mlr.press/v48/hernandez-lobatoa16.html
http://proceedings.mlr.press/v48/hernandez-lobatoa16.html
http://www.vldb.org/pvldb/vol14/p1570-herodotou.pdf
https://doi.org/10.1109/TPDS.2021.3055019
https://doi.org/10.1109/TPDS.2021.3055019
http://dl.acm.org/citation.cfm?id=1287369.1287385
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/jyothi
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/jyothi
https://www.usenix.org/conference/hotstorage20/presentation/kanellis
https://www.usenix.org/conference/hotstorage20/presentation/kanellis
https://doi.org/10.1145/1989323.1989355
https://doi.org/10.1145/1989323.1989355
https://doi.org/10.1145/3092931.3092934
https://doi.org/10.1145/3318464.3380591
http://www.vldb.org/pvldb/vol14/p1606-leis.pdf
http://www.vldb.org/pvldb/vol14/p1606-leis.pdf
https://doi.org/10.14778/3352063.3352129
https://doi.org/10.1007/S10619-018-7244-2
https://doi.org/10.14778/3611540.3611548
https://doi.org/10.1109/ICDE53745.2022.00195
http://www.vldb.org/pvldb/vol14/p1950-liu.pdf
http://www.vldb.org/pvldb/vol14/p1950-liu.pdf
http://www.vldb.org/pvldb/vol15/p414-lu.pdf
http://www.vldb.org/pvldb/vol15/p414-lu.pdf
https://chenghao.pages.dev/papers/vldb24-lyu-tr.pdf
https://chenghao.pages.dev/papers/vldb24-lyu-tr.pdf
https://doi.org/10.14778/3551793.3551855
https://doi.org/10.1145/3448016.3457562
http://www.vldb.org/pvldb/vol9/p780-marcus.pdf
https://www.alibabacloud.com/product/maxcompute
https://www.alibabacloud.com/product/maxcompute

https://doi.org/10.1080/00401706.2000.10485979
[38] Achille Messac. 2012. From Dubious Construction of Objective Functions to the

Application of Physical Programming. AIAA Journal 38, 1 (2012), 155–163.
[39] Achille Messac, Amir Ismailyahaya, and Christopher A Mattson. 2003. The nor-

malized normal constraint method for generating the Pareto frontier. Structural
and Multidisciplinary Optimization 25, 2 (2003), 86–98.

[40] Tomás Mikolov, Ilya Sutskever, Kai Chen, Gregory S. Corrado, and Je�rey
Dean. 2013. Distributed Representations of Words and Phrases and their
Compositionality. In Advances in Neural Information Processing Systems 26:
27th Annual Conference on Neural Information Processing Systems 2013. Pro-
ceedings of a meeting held December 5-8, 2013, Lake Tahoe, Nevada, United
States, Christopher J. C. Burges, Léon Bottou, Zoubin Ghahramani, and Kil-
ian Q. Weinberger (Eds.). 3111–3119. https://proceedings.neurips.cc/paper/2013/
hash/9aa42b31882ec039965f3c4923ce901b-Abstract.html

[41] Derek G. Murray, Frank McSherry, Rebecca Isaacs, Michael Isard, Paul Barham,
and Martín Abadi. 2013. Naiad: A Timely Data�ow System. In Proceedings of
the Twenty-Fourth ACM Symposium on Operating Systems Principles (Farminton,
Pennsylvania) (SOSP ’13). ACM, New York, NY, USA, 439–455. https://doi.org/
10.1145/2517349.2522738

[42] Vikram Nathan, Vikramank Singh, Zhengchun Liu, Mohammad Rahman, An-
dreas Kipf, Dominik Horn, Davide Pagano, Balakrishnan Narayanaswamy Gau-
rav Saxena, and Tim Kraska. [n.d.]. Intelligent Scaling in Amazon Redshift. In
SIGMOD ’24: International Conference on Management of Data, Philadelphia, 2024.
ACM, 1–. To appear.

[43] Parimarjan Negi, Ryan C. Marcus, Andreas Kipf, Hongzi Mao, Nesime Tatbul,
Tim Kraska, and Mohammad Alizadeh. 2021. Flow-Loss: Learning Cardinality
Estimates That Matter. Proc. VLDB Endow. 14, 11 (2021), 2019–2032. http:
//www.vldb.org/pvldb/vol14/p2019-negi.pdf

[44] YuanQiu, YileiWang, Ke Yi, Feifei Li, BinWu, and Chaoqun Zhan. 2021. Weighted
Distinct Sampling: Cardinality Estimation for SPJ Queries. In SIGMOD ’21: In-
ternational Conference on Management of Data, Virtual Event, China, June 20-25,
2021, Guoliang Li, Zhanhuai Li, Stratos Idreos, and Divesh Srivastava (Eds.).
ACM, 1465–1477. https://doi.org/10.1145/3448016.3452821

[45] Kaushik Rajan, Dharmesh Kakadia, Carlo Curino, and Subru Krishnan. 2016.
PerfOrator: eloquent performance models for Resource Optimization. In Proceed-
ings of the Seventh ACM Symposium on Cloud Computing, Santa Clara, CA, USA,
October 5-7, 2016. 415–427. https://doi.org/10.1145/2987550.2987566

[46] Prateek Sharma, Lucas Chaufournier, Prashant J. Shenoy, and Y. C. Tay. 2016.
Containers and Virtual Machines at Scale: A Comparative Study. In Proceedings
of the 17th International Middleware Conference, Trento, Italy, December 12 - 16,
2016. ACM, 1. http://dl.acm.org/citation.cfm?id=2988337

[47] Fei Song, Khaled Zaouk, Chenghao Lyu, Arnab Sinha, Qi Fan, Yanlei Diao,
and Prashant J. Shenoy. 2021. Spark-based Cloud Data Analytics using Multi-
Objective Optimization. In 37th IEEE International Conference on Data Engi-
neering, ICDE 2021, Chania, Greece, April 19-22, 2021. IEEE, 396–407. https:
//doi.org/10.1109/ICDE51399.2021.00041

[48] Ji Sun, Guoliang Li, and Nan Tang. 2021. Learned Cardinality Estimation for
Similarity Queries. In SIGMOD ’21: International Conference on Management of
Data, Virtual Event, China, June 20-25, 2021, Guoliang Li, Zhanhuai Li, Stratos
Idreos, and Divesh Srivastava (Eds.). ACM, 1745–1757. https://doi.org/10.1145/
3448016.3452790

[49] Yutian Sun, Tim Meehan, Rebecca Schlussel, Wenlei Xie, Masha Basmanova, Orri
Erling, Andrii Rosa, Shixuan Fan, Rongrong Zhong, Arun Thirupathi, Nikhil
Collooru, Ke Wang, Sameer Agarwal, Arjun Gupta, Dionysios Logothetis, Kostas
Xirogiannopoulos, Amit Dutta, Varun Gajjala, Rohit Jain, Ajay Palakuzhy, Prithvi
Pandian, Sergey Pershin, Abhisek Saikia, Pranjal Shankhdhar, Neerad Somanchi,
Swapnil Tailor, Jialiang Tan, Sreeni Viswanadha, Zac Wen, Biswapesh Chat-
topadhyay, Bin Fan, Deepak Majeti, and Aditi Pandit. 2023. Presto: A Decade
of SQL Analytics at Meta. Proc. ACM Manag. Data 1, 2 (2023), 189:1–189:25.
https://doi.org/10.1145/3589769

[50] Zilong Tan and Shivnath Babu. 2016. Tempo: robust and self-tuning resource
management in multi-tenant parallel databases. Proceedings of the VLDB Endow-
ment 9, 10 (2016), 720–731.

[51] Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao, Prasad Chakka,
Suresh Anthony, Hao Liu, Pete Wycko�, and Raghotham Murthy. 2009. Hive
- A Warehousing Solution Over a Map-Reduce Framework. PVLDB 2, 2 (2009),
1626–1629.

[52] Immanuel Trummer and Christoph Koch. 2014. Approximation Schemes for
Many-objective Query Optimization. In Proceedings of the 2014 ACM SIGMOD
International Conference on Management of Data (Snowbird, Utah, USA) (SIGMOD
’14). ACM, New York, NY, USA, 1299–1310. https://doi.org/10.1145/2588555.
2610527

[53] Immanuel Trummer and Christoph Koch. 2014. Multi-objective Parametric
Query Optimization. Proc. VLDB Endow. 8, 3 (Nov. 2014), 221–232. https:
//doi.org/10.14778/2735508.2735512

[54] Immanuel Trummer and Christoph Koch. 2015. An Incremental Anytime Algo-
rithm for Multi-Objective Query Optimization. In Proceedings of the 2015 ACM
SIGMOD International Conference on Management of Data, Melbourne, Victoria,

Australia, May 31 - June 4, 2015. 1941–1953. https://doi.org/10.1145/2723372.
2746484

[55] Dana Van Aken, Andrew Pavlo, Geo�rey J. Gordon, and Bohan Zhang. 2017.
Automatic Database Management System Tuning Through Large-scale Machine
Learning. In Proceedings of the 2017 ACM International Conference on Management
of Data (Chicago, Illinois, USA) (SIGMOD ’17). ACM, New York, NY, USA, 1009–
1024. https://doi.org/10.1145/3035918.3064029

[56] Vinod Kumar Vavilapalli, Arun C. Murthy, Chris Douglas, Sharad Agarwal,
Mahadev Konar, Robert Evans, Thomas Graves, Jason Lowe, Hitesh Shah, Sid-
dharth Seth, Bikas Saha, Carlo Curino, Owen O’Malley, Sanjay Radia, Ben-
jamin Reed, and Eric Baldeschwieler. 2013. Apache Hadoop YARN: yet an-
other resource negotiator. In ACM Symposium on Cloud Computing, SOCC ’13,
Santa Clara, CA, USA, October 1-3, 2013, Guy M. Lohman (Ed.). ACM, 5:1–5:16.
https://doi.org/10.1145/2523616.2523633

[57] Jiayi Wang, Chengliang Chai, Jiabin Liu, and Guoliang Li. 2021. FACE: A Normal-
izing Flow based Cardinality Estimator. Proc. VLDB Endow. 15, 1 (2021), 72–84.
http://www.vldb.org/pvldb/vol15/p72-li.pdf

[58] Junxiong Wang, Immanuel Trummer, and Debabrota Basu. 2021. UDO: Universal
Database Optimization using Reinforcement Learning. Proc. VLDB Endow. 14, 13
(2021), 3402–3414. https://doi.org/10.14778/3484224.3484236

[59] Lucas Woltmann, Dominik Olwig, Claudio Hartmann, Dirk Habich, and Wolf-
gang Lehner. 2021. PostCENN: PostgreSQL with Machine Learning Mod-
els for Cardinality Estimation. Proc. VLDB Endow. 14, 12 (2021), 2715–2718.
http://www.vldb.org/pvldb/vol14/p2715-woltmann.pdf

[60] PeizhiWu andGao Cong. 2021. A Uni�ed DeepModel of Learning from both Data
and Queries for Cardinality Estimation. In SIGMOD ’21: International Conference
on Management of Data, Virtual Event, China, June 20-25, 2021, Guoliang Li,
Zhanhuai Li, Stratos Idreos, and Divesh Srivastava (Eds.). ACM, 2009–2022.
https://doi.org/10.1145/3448016.3452830

[61] Ziniu Wu, Amir Shaikhha, Rong Zhu, Kai Zeng, Yuxing Han, and Jingren Zhou.
2020. BayesCard: Revitilizing Bayesian Frameworks for Cardinality Estimation.
https://doi.org/10.48550/ARXIV.2012.14743

[62] Jinhan Xin, Kai Hwang, and Zhibin Yu. 2022. LOCAT: Low-Overhead Online
Con�guration Auto-Tuning of Spark SQL Applications. In Proceedings of the 2022
International Conference on Management of Data (SIGMOD/PODS âĂŹ22). ACM.
https://doi.org/10.1145/3514221.3526157

[63] Reynold S. Xin, Josh Rosen, Matei Zaharia, Michael J. Franklin, Scott Shenker,
and Ion Stoica. 2013. Shark: SQL and rich analytics at scale. In Proceedings of
the 2013 ACM SIGMOD International Conference on Management of Data (New
York, New York, USA) (SIGMOD ’13). ACM, New York, NY, USA, 13–24. https:
//doi.org/10.1145/2463676.2465288

[64] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma,
Murphy McCauley, Michael J. Franklin, Scott Shenker, and Ion Stoica. 2012. Re-
silient distributed datasets: a fault-tolerant abstraction for in-memory cluster
computing. In Proceedings of the 9th USENIX conference on Networked Systems De-
sign and Implementation (San Jose, CA) (NSDI’12). USENIX Association, Berkeley,
CA, USA, 2–2. http://dl.acm.org/citation.cfm?id=2228298.2228301

[65] Khaled Zaouk, Fei Song, Chenghao Lyu, Arnab Sinha, Yanlei Diao, and Prashant J.
Shenoy. 2019. UDAO: A Next-Generation Uni�ed Data Analytics Optimizer.
PVLDB 12, 12 (2019), 1934–1937. https://doi.org/10.14778/3352063.3352103

[66] Ji Zhang, Yu Liu, Ke Zhou, Guoliang Li, Zhili Xiao, Bin Cheng, Jiashu Xing,
Yangtao Wang, Tianheng Cheng, Li Liu, Minwei Ran, and Zekang Li. 2019. An
End-to-End Automatic Cloud Database Tuning System Using Deep Reinforce-
ment Learning. In Proceedings of the 2019 International Conference onManagement
of Data (Amsterdam, Netherlands) (SIGMOD ’19). ACM, New York, NY, USA,
415–432. https://doi.org/10.1145/3299869.3300085

[67] Xinyi Zhang, Hong Wu, Zhuo Chang, Shuowei Jin, Jian Tan, Feifei Li, Tieying
Zhang, and Bin Cui. 2021. ResTune: Resource Oriented Tuning Boosted by
Meta-Learning for Cloud Databases. In SIGMOD ’21: International Conference
on Management of Data, Virtual Event, China, June 20-25, 2021, Guoliang Li,
Zhanhuai Li, Stratos Idreos, and Divesh Srivastava (Eds.). ACM, 2102–2114.
https://doi.org/10.1145/3448016.3457291

[68] Xinyi Zhang, Hong Wu, Yang Li, Jian Tan, Feifei Li, and Bin Cui. 2022. Towards
Dynamic and Safe Con�guration Tuning for Cloud Databases. In SIGMOD ’22:
International Conference on Management of Data, Philadelphia, PA, USA, June
12 - 17, 2022, Zachary G. Ives, Angela Bonifati, and Amr El Abbadi (Eds.). ACM,
631–645. https://doi.org/10.1145/3514221.3526176

[69] Zhuo Zhang, Chao Li, Yangyu Tao, Renyu Yang, Hong Tang, and Jie Xu. 2014.
Fuxi: a Fault-Tolerant Resource Management and Job Scheduling System at
Internet Scale. Proc. VLDB Endow. 7, 13 (2014), 1393–1404. https://doi.org/10.
14778/2733004.2733012

[70] Jingren Zhou, Nicolas Bruno, Ming-ChuanWu, Per-Ake Larson, Ronnie Chaiken,
and Darren Shakib. 2012. SCOPE: parallel databases meet MapReduce. The VLDB
Journal 21, 5 (Oct. 2012), 611–636. https://doi.org/10.1007/s00778-012-0280-z

[71] Rong Zhu, Ziniu Wu, Yuxing Han, Kai Zeng, Andreas Pfadler, Zhengping Qian,
Jingren Zhou, and Bin Cui. 2021. FLAT: Fast, Lightweight and Accurate Method
for Cardinality Estimation. Proc. VLDB Endow. 14, 9 (2021), 1489–1502. http:
//www.vldb.org/pvldb/vol14/p1489-zhu.pdf

3578

https://doi.org/10.1080/00401706.2000.10485979
https://proceedings.neurips.cc/paper/2013/hash/9aa42b31882ec039965f3c4923ce901b-Abstract.html
https://proceedings.neurips.cc/paper/2013/hash/9aa42b31882ec039965f3c4923ce901b-Abstract.html
https://doi.org/10.1145/2517349.2522738
https://doi.org/10.1145/2517349.2522738
http://www.vldb.org/pvldb/vol14/p2019-negi.pdf
http://www.vldb.org/pvldb/vol14/p2019-negi.pdf
https://doi.org/10.1145/3448016.3452821
https://doi.org/10.1145/2987550.2987566
http://dl.acm.org/citation.cfm?id=2988337
https://doi.org/10.1109/ICDE51399.2021.00041
https://doi.org/10.1109/ICDE51399.2021.00041
https://doi.org/10.1145/3448016.3452790
https://doi.org/10.1145/3448016.3452790
https://doi.org/10.1145/3589769
https://doi.org/10.1145/2588555.2610527
https://doi.org/10.1145/2588555.2610527
https://doi.org/10.14778/2735508.2735512
https://doi.org/10.14778/2735508.2735512
https://doi.org/10.1145/2723372.2746484
https://doi.org/10.1145/2723372.2746484
https://doi.org/10.1145/3035918.3064029
https://doi.org/10.1145/2523616.2523633
http://www.vldb.org/pvldb/vol15/p72-li.pdf
https://doi.org/10.14778/3484224.3484236
http://www.vldb.org/pvldb/vol14/p2715-woltmann.pdf
https://doi.org/10.1145/3448016.3452830
https://doi.org/10.48550/ARXIV.2012.14743
https://doi.org/10.1145/3514221.3526157
https://doi.org/10.1145/2463676.2465288
https://doi.org/10.1145/2463676.2465288
http://dl.acm.org/citation.cfm?id=2228298.2228301
https://doi.org/10.14778/3352063.3352103
https://doi.org/10.1145/3299869.3300085
https://doi.org/10.1145/3448016.3457291
https://doi.org/10.1145/3514221.3526176
https://doi.org/10.14778/2733004.2733012
https://doi.org/10.14778/2733004.2733012
https://doi.org/10.1007/s00778-012-0280-z
http://www.vldb.org/pvldb/vol14/p1489-zhu.pdf
http://www.vldb.org/pvldb/vol14/p1489-zhu.pdf

[72] Yuqing Zhu and Jianxun Liu. 2019. ClassyTune: A Performance Auto-Tuner for
Systems in the Cloud. IEEE Transactions on Cloud Computing (2019), 1–1.

[73] Yuqing Zhu, Jianxun Liu, Mengying Guo, Yungang Bao, Wenlong Ma, Zhuoyue
Liu, Kunpeng Song, and Yingchun Yang. 2017. BestCon�g: tapping the perfor-
mance potential of systems via automatic con�guration tuning. SoCC ’17: ACM

Symposium on Cloud Computing Santa Clara California September, 2017 (2017),
338–350.

3579

	Abstract
	1 Introduction
	2 Related Work
	3 Problem Statement and Overview
	3.1 Background on Spark
	3.2 Effects of Parameter Tuning
	3.3 Our Parameter Tuning Approach

	4 Modeling
	4.1 Compile-time and Runtime Models
	4.2 Modeling Objectives
	4.3 Model Formulation for Optimization

	5 Compile-time/Runtime Optimization
	5.1 Hierarchical MOO with Constraints
	5.2 Runtime Optimization

	6 Experimental Evaluation
	6.1 Model Evaluation
	6.2 Compile-time MOO Methods
	6.3 End-to-End Evaluation

	7 Conclusions
	Acknowledgments
	References

